数系的扩充和复数的概念

合集下载

(完整word版)数系的扩充和复数的概念全面版

(完整word版)数系的扩充和复数的概念全面版

数系的扩充和复数的概念教学目标重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等。

复数在现代科学技术中以及在数学学科中的地位和作用.难点:虚数单位i 的引进以及对复数概念的理解.知识点:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、实部、虚部、实数、虚数、纯虚数、复数相等);理解虚数单位i 及i 与实数的运算规律能力点:探寻复数的形成过程,体会引入虚数单位i 和复数形式的合理性,以及等价转化思想、方程思想、分类讨论数学思想的运用。

教育点:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,经历由实数系扩充到复数系的研究过程,感受人类理性思维的作用以及数与现实世界的联系.自主探究点:如何运用实数与虚数单位i 的加、乘运算得到复数代数形式及探索复数相等的充要条件. 考试点:用复数的基本概念解决简单的数学问题。

易错易混点:对复数代数形式的认识,及复数分类的把握。

拓展点:如何利用复数代数形式解题,理解复数的几何意义.一、 引入新课求下列方程的解:(1)24x = 2(2)40x -= (3)310x -= 2(4)20x -= 2(5)10x +=.学生分析各题的解:(1)2x =;(2)22x x ==-或;1(3)3x =;(4)22x x ==-或;(5)实数集内无解. 通过以上五题解的探讨,学生会发现方程(5)在实数集中遇到了无解现象.如何使方程(5)有解呢?类比引进2,就可以解决方程220x -=在有理数中无解的问题,就有必要扩充数集,今天我们来与大家一起学习“数系的扩充”。

【设计意图】通过类比,易引发学生的学习兴趣.使学生了解扩充数系要从引入新数开始,引出本课题.二、探究新知1.复习已学过的数系问题1:数,是数学中的基本概念。

到目前为止,我们学习了哪些数集?用符号如何表示?它们之间有怎样的包含关系?用图示法可以如何表示?答:自然数集、整数集、有理数集、实数集,符号分别表示为N ,Z ,Q ,R ; 其中它们之间的关系式:N Z Q R ; 用文氏图表示N ,Z ,Q ,R 的关系【设计意图】数集及其之间关系的回顾,特别是“图示法”的直观表示,旨在帮助学生对“数系的扩充”有个初步感受.我们将一个数集连同相应的运算及结构叫做一个数系。

数系的扩充和复数的概念

数系的扩充和复数的概念

必要不充分
条件.
17:06


复数集与实数集、虚数集、纯虚数集
之间有什么关系?
17:06
复数的分类
实数(b 0) 纯虚数(a 0,b 0) 1、复数z=a+bi 虚数(b 0) 非纯虚数(a 0,b 0)
2. 复数集、虚数集、实数集、 纯虚数集之间的关系
17:06
在测量过程中,常常会发生度量不尽的 情况,如果要更精确地度量下去,就必然 产生自然数不够用的矛盾.这样,正分数就 应运而生.据数学史书记载,三千多年前埃 及纸草书中已经记有关于正分数的问题.引 进正分数,这是数的概念的第一次扩展. 最初 人们在记数时,没有“零” 的概念.后来,在 生产实践中,需要记录和计算的东西越来越 多,逐渐产生了位值制记数法.有了这种记 数法,零的产生就不可避免的了.我国古代 筹算中,利用 “空位”表示零.公元6世纪, 印度数学家开始用符号“0”表示零.
17:06
• 上面,我们简要地回顾了数的发展过程.必须 指出,数的概念的产生,实际上是交错进 行的.例如,在人们还没有完全认识负数之 前,早就知道了无理数的存在;在实数理论 还未完全建立之前,经运用虚数解三次方程 了. 直到19世纪初,从自然数到复数的理论 基础,并未被认真考虑过.后来,由于数学 严密性的需要以及公理化倾向的影响,促 使人们开始认真研究整个数系的逻辑结构. 从19世纪中叶起,经过皮亚诺(G.Peano, 1855~1939)、康托尔(G.Cantor, 1845~1918)、戴德金(R.Dedekind, 1831~1916)、外尔斯特拉斯
x 2 y i (2x 5) (3x y)i
求 x与 y .

y R,

数系的扩充和复数的概念

数系的扩充和复数的概念

R)
——复数的代数形式 i----虚数单位
b——虚部
虚数可以比较大小吗?

不可以。但是可以判断是否相等。

在复数集C={a+bi|a、b R}中任取两个数 a+bi,c+di(a 、b、 c、d R),我们规定:

a+bi=c+di相等
a=c且b=d
复数和实数间有什么关系?
对于复数z=a+bi, 若b=0,z为实数;若a=b=0,z=0; 若b不为0,z为虚数; 若a=0且b=0,z叫纯虚数。

(2)在整数集内解方程 3x-2=0 无解,因而添加分数,在 有理数集内方程的根为 x=2/3
(3)在有理数集内解方程x2-2=0 无解,因而添加无理数, 在实数集内方程的根为 x= 2

解方程 x2+1=0 上述方程在实数系中是无解的。
设想引入新数i,使i是方程 x2+1=0的根,即使i i=-1 。 把数添加到实数集中,得到一个新数集A,则方程 x2+1=0 在A中就有解i了。

为使i与实数间仍能进行加法、乘法的运算律,我们有了 a+bi (a、b R)这样的数的形式。


所以实数系经过扩充后得到的新数集为C={a+bi|a、b R}, 我们把形如a+bi (a、b R)的数叫做复数,其中i叫做虚数 单位,全体复数组成的集合C叫做复数集。



复数通常表示为z=a+bi(a、b a——实部
实数(b=0)
复数
虚数(b=0)
纯虚数(a=0,)
非纯虚数(a=0)

练习 1.判断下列复数的实部和虚部: 1 -2+ i , 2 +i , 2 ,- 3 i ,i ,0 3 2 2. 指出下列各数中,哪些是实数,哪些是虚数,哪些使纯 虚数。 2+ 7 ,0.618 ,

数系的扩充和复数的概念

数系的扩充和复数的概念
3、4、5、…正整数是现实世界最基本的数量,是全部
数学的发源地.
古代印度人最早使用了“0” 公元5世纪时,“0”已经传入罗马。
但罗马教皇凶残而且守旧。他不允许任 何使用“0”。有一位罗马学者在笔记中 记载了关于使用“0”的一些好处和说明, 就被教皇召去,砍去了双手
2021/2/4
1
3
数系的扩充 SHUXI DI KUOCHONG
复数的代数形式 复数的实部 、虚部
虚数、纯虚数
复数相等
2021/2/4
1
29
谢谢观赏!
2020/11/5
30
(3)全体复数所形成的集合叫做复数 集,一般用字母 C 表示.
2021/2/4
1
19
C RQZ N
2021/2/4
1
20
数系的扩充 SHUXI DI KUOCHONG
1.新数 i 叫做虚数单位,并规定: (1)i 2 1; (2)实数可以与 i 进行四则运算,在进
行四则运算时,原有的加法与乘法 的运算律仍然成立.
2021/2/4
1
21
例题讲解
例1.写出下列复数的实部与虚部.
4 , 23i, 0 , 1 4 i,
5 2i, 6i 2 3
解: 4的实部为 4 ,虚部为 0 ;
2-3i的实部为 2 ,虚部为 -3 ;
0的实部为 0 ,虚部为 0 ;
1 2
4i 3
的实部为
1
2 ,虚部为
4
3;
5 2i的实部为 5 ,虚部为 2 ;
中国是世界上最早认识应用负数的
国家.早在2000多年前的《九章算术》 中,就有正数和负数的记载.公元3世纪,
刘徽在注解“九章算术”时,明确定义了正 负数:“两算得失相反,要令正负以名之”. 不仅如此,刘徽还给出了正负数的加减法 运算法则.千年之后,负数概念才经由阿 拉伯传人欧洲。负数的引入, 解决了在自然 数集中不够减的矛盾

数系的扩充和复数的概念

数系的扩充和复数的概念

知识探究
德国
高斯
Carl Friedrich Gauss 公元1777—1855年
1801年 系统地使用i这个符号,使i通行于世
知识探究
叫做虚数单位, 并规定: 引入的新数i, (1)i2=-1; 进行四则运算 (2)实数可以与i进行四则运算, 时,原有的加法、乘法运算律仍然成立.
例如
1.实数a与i相加,记作: a+i 2.实数b与i相乘,记作: bi 3.实数a与bi相加,记作: a+bi 这些运算都可以写成a+bi(a,b∈R)的形式
4 (1)4; 0 (5)0;
(2)2 3i
1 (6) i 2
;
;
(3)5i 2 ; (4) 6i
(7) 2 3 .
;
4 0
2 3
5i 2 2 3i 1 i 6i 2
知识探究
二、复数的分类
实数(b=0), 复数z=a+bi (a,bR) 虚数(b0) (特别地当a =0时为纯虚数).


0
实数 4 实数2 3
R C
虚数 5i 虚数 2 1 纯虚数 2 3i 纯虚数6i i 2
知识探究
自然数集
数 系 的 扩 充
负整数
整数集
分 数
有理数集 无理数 实数集 虚?数 复数集 ?
C RQ Z N
例题讲解
例题2.实数m取什么值时,复数z=(m+1)+(m-1)i 是:
知识探究
பைடு நூலகம்
一、复数的有关概念
1.复数的定义 把形如 a+bi(a,b∈R) 的数叫做复数, 通常用z表示. z = a + bi (a,b∈R)

数系的扩充和复数的概念

数系的扩充和复数的概念

2、复数加法的几何意义: 问题二:复数与复平面内的向量有一一 对应关系。我们讨论过向量加法的几何 意义,你能由此出发讨论复数加法的几 何意义吗? 复数的加法可以按照向量的加法来进行——平行四边 形法则或三角形法则
问题三:复数是否有减法?如何理解复数的减法?
(二)复数的减法:
1、定义:复数的减法是加法的逆运算,即把满足 (c+di)+(x+yi)=a+bi的复数x+yi叫做复数a+bi减去复数 c+di的差,记作(a+bi)-(c+di).
3.1.2复数的几何意义
问题一:我们知道,实数与数轴上的点一一对应,因此, 实数可用数轴上的点来表示,类比实数的几何意义,复数 的几何意义是什么?
复数集与平面直角坐标系中的点集之间可以建 立一一对应的关系.
王新敞
奎屯
新疆
王新敞
奎屯
新疆
一、复数的坐标表示 1、复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是 b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建 立了直角坐标系来表示复数的平面叫做复平面,也叫 高斯平面,x轴叫做实轴,y轴叫做虚轴。 实轴上的点都表示实数
第三章 数系的扩充与复数的引入
(一)数系的扩充
• 我们认识数是一个不断发展的过程,从自然数到 整数,从整数到有理数,再从有理数到实数。这 个认识过程是在原有数集的基础上,再加上新的 数,是对原有数集不断扩充的过程。而这种扩充 是为了解决新的问题所必需的。 • 这种扩充的动力主要来源于两个方面:
①解决实际问题的需要
若存在实数t 使得 | z2 || z1 | 成立,求:实数 k的取值范围。
练习:设z是复数,满足下列条件的点Z的集合是什么图 形? (1)|z|=2 ; (2) 2<|z|<3。

数系的扩充和复数的概念

数系的扩充和复数的概念

数系的扩充和复数的概念1. 数系的演变说到数,大家可能会想起从小到大学的那些简单的算数题。

其实,数的世界可不止这些啊,随着时间的推移,数学家们可没闲着,他们不断在探索和扩充数的种类,直到把它们搞得五花八门,简直让人眼花缭乱。

首先,我们从最基本的自然数说起,自然数就像我们在数手指头时用到的那些,比如1、2、3……这些都是小朋友们耳熟能详的。

但是,等到你发现了零,这可就是个“翻天覆地”的概念了。

零的加入,瞬间让自然数的大家族扩展成了整数的大家庭,嘿,这可是一种“大门大开”的感觉呀!1.1 整数的引入说到整数,大家知道它们就是自然数加上了负数部分,像1、2、3……这样的存在。

整数让我们的数系更加丰富,原本的“有钱”小朋友们也多了些“欠债”的伙伴,嘿嘿,这样一来,数的对比和运算就变得更加有趣了。

想想,如果没有负数,我们能做多少有趣的数学题呢?而整数的出现,恰如给数系加上了一对翅膀,让它飞得更高,看到更广的世界。

1.2 有理数的诞生紧接着,数学家们又发现了“有理数”。

这可是一群有趣的数,它们可以被写成分数的形式,像是1/2、3/4、甚至5/6这样的,真是让人觉得“哇塞”。

有理数的加入,给我们提供了更多的可能性,特别是在解决实际问题的时候。

想象一下,我们在做蛋糕时,切一块有理数大小的蛋糕,那可真是“酸甜苦辣”的完美结合了!2. 复数的出现不过,数系的扩展可不止于此!随着数学的发展,复数这个家伙也横空出世了,简直是个“黑马”。

复数的形式看上去有点怪异,像是a + bi,其中a是实数,b是虚数,i是一个让人咋舌的数,它的平方竟然是1!这真是让许多人瞠目结舌,脑袋里一片空白。

“这怎么可能呢?”不少人疑惑地问。

但是,复数的引入,真的让我们可以解决许多在实数范围内无法解决的问题,简直是“救命稻草”。

2.1 复数的应用再想想,复数的应用可真广泛,从电工程到量子物理,它们都大展身手。

比如,在电路中,复数可以用来描述交流电的性质。

数系的扩充和复数的概念

数系的扩充和复数的概念

1 复数的概念
思考: 1.复数集C和实数集R之间有什么关系?
复数集C
虚数集
纯虚数集
实数集 R
2.实数和虚数之间有什么关系? 区别:实数可以比较大小,虚数不可以比较大小
例: 实数m取什么值时,复数 z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
例:若复数 z=m2-1+(m2-m-2)i 为纯虚数,则实数m
0
3.两个复数相等,则它们的实部和虚部分别相等
的值为 B
A -1 B ±1 C 1 D -2
复数相等
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
若a,b,c, d R,
a bi c di
a c b d
特别的,若z a bi 0
a 0 b 0
例:已知x2-y2+2xy i=2i(其中x>0),则实数x,y 的值分别为
7.1.1数系的扩充和复数的 概念
数系的扩充
x2 +1 0
x2 1
引进一个新数:i
新数 i 叫做虚数单位,则:
i 2 = -1
找规律?
ii
i2 1
i3 i
i4 1
i5.... i
i2023 ?
1 复数的概念
知识点1 复数的概念 把实数b与i 相乘记作bi,把实数a与bi相加记作a+bi (a,b为实数)
形如 a+bi(a,b∈R)的数叫做复数(i为虚数单位) 全体复数所形成的集合叫做复数集,一般用字母C表示
记为C {a bi | a, b∈R}
1 复数的概念
知识点2 复数的代数形式
复数通常用字母 z 表示,即
z = a+b i (a, b R)

3.1.1数系的扩充和复数的概念

3.1.1数系的扩充和复数的概念

数系的扩充
方程x 1 0有解吗?
2
i
i 1
2
虚数单位
规定: i 与实数可以进行四则运算,在进行运算时,原 有的加、乘运算律仍然成立.
数系的扩充
实数a与i做加法, 结果记为a i
实数b与i做乘法, 结果记为bi
设a, b R, 则:
a +b i 记作
C a bi a, b R
复数z a bi可以分类如下: b 0 实数 复数z b 0 虚数 (a 0纯虚数)
下列复数中哪些是实数,哪些是虚数,哪些是 纯虚数?
3 2i
1 3 i 2
- 5
1 3 i 2
1 3i 2
0.2i
i( 2 1)
1 3i 2
i
2
(i)
2
例题1:实数m取什么值时,复数
3.1.1 数系的扩充和复数的概念
数系的扩充
为了解决测量、分配中遇到的将某些量进 行等分的问题人们引进了分数,为了表示 各种具有相反意义的量,又引进了负数
自然数集N
用正方形的边长去度量它的对角线所得的结 果,无法用有理数表示,为了解决这个矛盾, 人们又引进了无理数.
有理数集Q
实数集R
实数集还需要进一步扩充吗?怎样扩充?
x, y
的值
小结:
2 1.数系扩充:复数集 i 2 1 ,(-i) 1
2.复数的代数形式:z a bi 1)实数
b0 2)虚数 b 0 3)纯虚数 b 0, 且a 0
z1 a bi, z2 c di z1 z2 a c, 且b=d
3.复数相等的充要条件:
a +bi

数系的扩充和复数的概念(省实验中学)

数系的扩充和复数的概念(省实验中学)
人教版选2修017
第三章 3.1.1 数系的扩充和复数的概念
广东实验中学数学科 张 曙
一、数系的扩充
1.自然数N : {0,1,2,3...}
对减法不封闭:2 - 3的结果不在自然数集中
2.整数Z :{ - 3,-2,-1,0, 1,2,3 }
对除法不封闭:2 3的结果不在整数集中
3.有理数Q :{x | x p , p、q Z} q
对开方运算不封闭:x Q时,x2 2无解(也可以说对极限 运算不封闭)
4.实数R : (-,)
x R时,方程x2 1无解
一、数系的扩充
引入这样一个数 i ,把 i 叫做虚数单位,并且规定: •• 实数可以与 进行四则运算,在进行四则运算时, 原有的加法与乘法的运算率 包括交换律、结合律 和分配律 仍然成立 • i 与实数b 相乘得bi , 规定0• i =0 • i 与实数a相加得a+i • bi=0+bi,a=a+0i,i=0+1i
三、题型探究
解析: ①错,复数由实数与虚数构成,在虚数中又分为纯虚数和
非纯虚数. ②错,只有当m,n∈R时,才能说复数z=3m+2ni的实部与 虚部分别为3m,2n. ③ 正 确 , 复 数 z = x + yi(x , y∈R) 为 纯 虚 数 的 条 件 是 x = 0 且 y≠0,只要x≠0,则复数z一定不是纯虚数. ④错,只有当a∈R,且a≠-3时,(a+3)i才是纯虚数.
m2m-+m3-6=0, m2+5m+6≠0
⇔mm= ≠- -23或 且mm= ≠3-,2 ⇔m=3.
∴当m=3时,复数z是纯虚数.
谢谢观看!
三、题型探究
2.复数分类的应用
例2.求当实数m为何值时,z= m2-m-6+(m2+5m+6)i分别是:

7.1.1 数系的扩充和复数的概念 课件(共52张PPT)

7.1.1 数系的扩充和复数的概念 课件(共52张PPT)

(3)纯虚数; 解 当mm22- +25mm- +16=5≠00, 时,复数 z 是纯虚数,∴m=-2.
(4)0.
解 当mm22- +25mm- +16=5=00, 时,复数 z 是 0, ∴m=-3.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.分别求满足下列条件的实数x,y的值. (1)2x-1+(y+1)i=x-y+(-x-y)i;
12345
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)数系的扩充. (2)复数的概念. (3)复数的分类. (4)复数相等的充要条件. 2.方法归纳:方程思想. 3.常见误区:未化成z=a+bi(a,b∈R)的形式.
4 课时对点练
PART FOUR
基础巩固
1.设a,b∈R,则“a=0”是“复数a+bi是纯虚数”的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.如果(m2-1)+(m2-2m)i>1,则实数m的值为__2___. 解析 由题意得mm22- -21>m1=,0, 解得 m=2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9.当实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i是下列数? (1)实数;
解 因为z>0,所以z为实数,
需满足m2m-+m3-6>0, m2-2m-15=0,
解得 m=5.
反思 感悟
复数分类问题的求解方法与步骤 (1)化标准式:解题时一定要先看复数是否为a+bi(a,b∈R) 的形式,以确定实部和虚部. (2)定条件:复数的分类问题可以转化为复数的实部与虚部应 该满足的条件问题,只需把复数化为代数形式,列出实部和 虚部满足的方程(不等式)即可.

数系的扩充和复数概念和公式总结

数系的扩充和复数概念和公式总结

数系的扩充和复数概念和公式总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII数系的扩充和复数概念和公式总结1.虚数单位i:它的平方等于-1,即21i=-2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=14.复数的定义:形如(,)+∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成a bi ab R的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)=+∈z a bi a b R5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)+∈,当且仅当b=0时,复数a bi ab Ra+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a ≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:N Z Q R C.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di⇔a=c,b=d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较当两个复数不全是实数时不能比较大小7. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做实轴上的点都表示实数 (1(2(3)原点对应的有序实数对为(0,0)设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .11.复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数于0的两个共轭复数也叫做共轭虚数通常记复数z 的共轭复数为z 。

复数知识点总结

复数知识点总结

复数一、数系的扩充和复数的概念:1.复数的定义:形如),(R b a bi a ∈+的数叫做复数,其中i 叫做虚数单位。

其中a 叫作复数z 的实部,b 叫做复数z 的虚部(其中12-=i )。

2.复数分类:复数⎩⎨⎧=≠=∈+)0)(0()0(),(时为纯虚数当虚数实数a b b R b a bi a 。

3.数集之间的关系:4.复数相等的充要条件:d b c a di c bi a ==⇔+=+且。

特别的:0,00,,==⇔=+∈b a bi a R b a 。

二、复数的几何意义:1.复平面:如图,点Z 的横坐标是a ,纵坐标是b ,复数bi a z +=可用点Z (a ,b )表示。

这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴, y 轴叫做虚轴。

实轴上的点表示实数;除了原点外,虚轴上的点都表示纯虚数。

2.复数与向量的对应:如图所示:复数−−−→←∈+=一一对应),(R b a bi a z 平面向量OZ , 这时复数的另一种几何意义。

3.复数的模:向量OZ 的模叫做复数),(R b a bi a ∈+的模或绝对值,记作z 或bi a +。

即22b a bi a z +=+=。

4.共轭复数:实部相等,虚部互为相反数的两个复数称为共轭复数。

虚部不等于0的两个共轭复数也叫做共轭虚数。

复数z 的共轭复数用z 表示。

注意:互为共轭复数的两个复数在复平面内所对应的点关于x 轴对称。

三、复数的运算:设),,,(,21R d c b a di c z bi a z ∈+=+=是任意两个复数。

复数的加法运算:i d b c a di c bi a z z )()()()(21+++=+++=+; 复数的减法运算:i d b c a di c bi a z z )()()()(21-+-=+-+=-; 复数的乘法运算:i bc ad bd ac di c bi a z z )()()()(21++-=+⋅+=⋅; 复数的除法运算:i d c ad bc d c bd ac di c bi a 2222+-+++=++;加法运算律:交换律:1221z z z z +=+;结合律:)()(321321z z z z z z ++=++;乘法运算律:交换律:1221z z z z ⋅=⋅;结合律:)()(321321z z z z z z ⋅⋅=⋅⋅;乘法对加法的分配率:3121321)(z z z z z z z ⋅+⋅=+.四、复数的三角形式(选学)1.复数的代数形式转化为三角形式:代数形式),(R b a bi a z ∈+=可化为三角形式)sin (cos θθi r z +=。

数系的扩充和复数的概念说课

数系的扩充和复数的概念说课

数系的扩充和复数的概念引言数学中数系的扩充和复数的概念是数学的基础知识,它们是解决一元二次方程和其他复杂数学问题的关键。

本文将全面、详细、完整且深入地探讨数系的扩充和复数的概念。

数系的扩充数系的扩充是指将实数系扩展到包含更多元素的数系。

实数系包括有理数和无理数,但在一些问题中,这些数无法满足需求。

因此,为了解决这些问题,数学家引入了新的数,例如虚数和复数。

虚数定义:虚数是不能与实数进行比较的数,它们由一个实数和虚数单位 i(i^2 = -1)的乘积构成。

复数定义:复数是形如 a+bi 的数,其中 a 和 b 是实数,i 是虚数单位。

复数包括实数部分和虚数部分,实数部分用 a 表示,虚数部分用 bi 表示。

复数的运算复数与复数之间的加减法和乘除法可以通过对实部和虚部进行分别运算得到。

具体的运算规则如下:1.加法:(a+bi) + (c+di) = (a+c) + (b+d)i2.减法:(a+bi) - (c+di) = (a-c) + (b-d)i3.乘法:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i4.除法:(a+bi) / (c+di) = (ac+bd)/(c2+d2) + (bc-ad)/(c2+d2)i复数的性质复数具有以下性质:1.共轭复数:如果 a+bi 是一个复数,其中 a 和 b 是实数,那么 a-bi 称为其共轭复数。

2.模长:复数 a+bi 的模长定义为 |a+bi| = sqrt(a^2 + b^2)。

它表示复数到原点的距离。

3.相位:复数 a+bi 的相位定义为 arg(a+bi) = arctan(b/a)。

它表示复数的角度。

数系的应用数系的扩充和复数的概念在实际问题中有广泛的应用。

以下列举了一些典型的应用:电工学复数可以用来表示交流电路中的电压和电流。

在交流电路中,电压和电流往往是正弦波形式,通过使用复数来描述它们的幅值和相位差,可以方便地进行电路分析和计算。

数系的扩充和复数的概念

数系的扩充和复数的概念

复数集、实数集、虚数集、纯虚数集之间的关系
虚数集 复数集 纯虚数集 实数集
判断下列命题是否正确:
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z= a一定不是虚数
例1 实数m取什么值时,复数
z m 1 (m 1)i
m 1时,复数z 是实数. m 1 时,复数z 是虚数.
两个复数相等
a c 设z1=a+bi,z2=c+di(a、b、c、dR),则 z1=z2 b d
即实部等于实部,虚部等于虚部
注意:两个复数只能说相等或不相等,而 不能比较大小。但两个实数可以比较大小。
x
例2. 已知x、yR,(1)若(2x-1)+i=y-(3-y)i , 则 x= 、 y= ; (2) 若(3x-4)+(2y+3)i=0,则x=
特别地,a+bi=0 a=b=0 .
、 y=
.
复数Z i i i i 的值是
2 3 4
B
nZ
*
i
i
4n


1
4 n 2
-1
i i 4 n 3 i i
4 n 1
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式: z a bi (a R, b R) 复数的实部 、虚部
R
Q
Z
N
知识引入
我们已知知道:
对于一元二次方程
x
我们能否将实数集进行扩充,使得在新的 数集中,该问题能得到圆满解决呢?
引入一个新数:
i
满足
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数系的扩充和复数的概念
一、教学任务分析
本节课的主要教学内容是数系的扩充和复数的概念.教学目标如下:
(1)在问题情境中了解数系的扩充过程,体会实际需要与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;
(2)理解复数的基本概念及复数相等的意义;
(3)培养学生的创新意识.
二、教学重点和难点:
重点:数系的扩充过程与复数集的建立,复数的分类.
难点:数系扩充的原因和特征的认识.
三、教学基本流程
四、教学过程设计
五、教学反思
上完这节课,从学生表现及其反馈情况来看,对数系的理解还比较模糊,学生对数系的理解空间牢牢的限制在实数范围内,很难拓展到复数的空间,对其他概念的理解只停留在表象及模仿上,对此,本人有一下几点思考:要围绕新课程的课堂教学要求,课堂应关注:①学生参与程度。

在教学过程中学生是否有积极地参与讨论、
交流、很好地体验“探究活动”的学习过程;②学生思维状态——课堂上学生是否有足够地思考探索问题的时间和空间,思维积极活跃与否,能否发现和提出有价值的问题,能否敢于发表自己的见解;③课堂是否有探究氛围;
④学习效果是否体现三维目标。

这些都是适应新课标教学要求的课堂教学评价的主要内容。

相关文档
最新文档