第3章 聚类分析
聚类分析
聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
第3章 类分析答案
第三章 聚类分析一、填空题1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。
2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。
3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。
4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。
5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。
6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一1≤ij 和 对一切的i,j ,有ji ij C C =。
7.常用的相似系数有 夹角余弦 和 相关系数 两种。
8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
9.快速聚类在SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为:()qpk q jk ik ij x x q d 11⎥⎦⎤⎢⎣⎡-=∑=,当1=q 时,它表示 绝对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。
11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。
第三章 聚类分析
0 A ( x) 1
当x A时 当x A 时
2. 集合的表示方法
集合的表示方法有多种多样。就给定的集合来讲,一般
有三种表达形式:
(1)列举法 指把集合中的所有元素一一列举出来的方
法。如A={1,2,3,4}, B={b1,b2,b3}等。 (2)趋势法 这种表达方法仅适用于集合中元素的排列
具有某种规律性,此时只需列举出有限个元素,其余元素可 用省略号“……”表示。例如:A={…,-1,0,1,2,…} B={a1 , a2 , … , an}
(3)描述法
又称谓语语句法,这是一种广泛应用的
集合表示方法。其一般表达式如下 A={x|p(x)}
式中:x-表示集合元素;
p(x)-作为谓语,用以说明x是什么,或在什么范围内变化。 例如:
n
n
当A1=A2=…=An时,
i1
A i | A |n
四
关系集
研究直积集的根本目的,就是为了进一步研
D2
D2
其中 叫二维笛卡空间,也即是说,若X取全体实数集 合,则其直幂集代表平面上全部点的集合。
3. 推广 以上我们研究的是两个集合的直积集问题,其中有序对叫 有序二元。那么,我们完全可以仿照这种思路,把直积集的概
念推广到几个集合。
设已知 A1 A2 A n 个非空集合,则A 1 到A 2 , 2 到A 3 … A 的直积集记成 A i
亮与不亮则表示逻辑或(∨)的取值。
P
Q
P Q
图 3-1 开关串联电路
P Q
P Q
图 3-2 开关并联电路
4.条件语句 条件语句是表示逻辑变量之间,或等式之间相互因果关 系的一种表达形式,分为单向条件语句和双向条件语句。 (1)单向条件语句记成“PQ”,读作有P必有Q。 若P为T,且有Q为T,则单向条件语句成立,PQ=T; 反之若P为T,而Q为F,则条件语句不成立,PQ=F。 (2)双向条件语句记成“PQ”,读作有P必有Q, 有Q必有P。若P为T(F),且有Q为T(F),则双向条 件语句成立,PQ=T;若P为T(F),而Q为F(T),则
聚类分析详解ppt
编号
购物环境
样本
A商厦
73
B商厦
66
C商厦
84
D商厦
91
E商厦
94
服务质量 68 64 82 88 90
• 把商厦分成两类:A、B为一类,C、D、E为一类 • 把商厦分为三类:A、B为一类,C为一类,D、E为一类 • 没有指定分类标准,大家为什么会这么分呢? • 从数据出发,根据性质上的亲疏程度进行分类!
(3) 计算新类G M 与任一G 类J
之间距离的递
推公式为 D M Ji G m M ,ijn G Jdij m ini G m K,ijn G Jdij,i G m L,ijn G Jdij
m inD K J,D L J
-
最短距离法的聚类步骤
在D 0 中G ,K G L 和
所在的行和列合并成一
个新行新G列M ,对应
,该行列上的新距离值由
(6.3.2)式求得,其余行列上的距离值不变,这
样就得到新的距离矩D 阵1 ,记作
。
(4) 对D 1
重复上述D 0对
的D两 2 步得
,
如此下去直至所有元素合并成一类为止。
如果某一步D m 中最小的元素不止一个,则称 此现象为结(tie),对应这些最小元素的类可以任 选一对合并或同时合并。
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
c ij 1 cij c ji
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
编号 A商厦
B商厦
购物环境 73 66
服务质量 68 64
-
相似系数
参考教材:《应用多元统计分析》高惠璇,北京大学出版社
聚类分析的思路和方法 ppt课件
PPT课件
7
例 对10位应聘者做智能检验。3项指标X,Y
和Z分别表示数学推理能力、空间想象能力和语 言理解能力。得分如下,选择合适的统计方法 对应聘者进行分类。
应聘者 1 2 3 4 5 6 7 8 9 10 X 28 18 11 21 26 20 16 14 24 22 Y 29 23 22 23 29 23 22 23 29 27 Z 28 18 16 22 26 22 22 24 24 24
PPT课件
19
二值(Binary)变量的聚类统计量
PPT课件
20
聚类的类型
根据聚类对象的不同,分为Q型聚类和R型聚 类。
Q型聚类:样本之间的聚类即Q型聚类分析, 则常用距离来测度样本之间的亲疏程度。
R型聚类:变量之间的聚类即R型聚类分析, 常用相似系数来测度变量之间的亲疏程度。
PPT课件
p
dij 1 xik x jk k 1
2. 欧氏距离(Euclidean distance)
1
dij2Biblioteka p( xik
x
jk
)
2
2
k 1
PPT课件
15
3. 明考斯基距离(Minkowski)
4. 兰氏距离
1
dij
p
( xik
PPT课件
8
PPT课件
9
PPT课件
10
聚类分析根据一批样本的许多观 测指标,按照一定的数学公式具体地 计算一些样本或一些指标的相似程度, 把相似的样本或指标归为一类,把不 相似的归为一类。
PPT课件
11
样本或变量间亲疏程度的测度
聚类分析方法
聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。
在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。
聚类分析方法有很多种,其中一种是K均值聚类。
K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。
首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。
另一种常见的聚类分析方法是层次聚类。
层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。
层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。
另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。
然后,通过计算图的特征向量来对数据进行聚类分析。
聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。
这些方法可以根据具体的问题和数据类型来选择和应用。
总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。
它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。
通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。
遥感影像识别-第三章 聚类分析 Part Ⅰ
(2)马氏(Mahalanobis)距离
定义:马氏距离的平方
2 ( x )T 1 ( x )
马氏距离排除了不同特征之间相关性的影响, 其关键在于协方差矩阵的计算。当∑为对角阵时 ,各特征之间才完全独立;当∑为单位矩阵时, 马氏距离等于欧氏距离。 马氏距离 比较适用于对样本已有初步分类的 情况,做进一步考核、修正。
从上图看出,(b)、(c)特征空间划分是不同的。 (b)中 x1 , x2 为一类,x3 , x4 为另一类,(c) 中 x1, x3 为一类,x2 , x4 为另一类。
欧氏距离具有旋转不变的特性,但对于一般的线性变换 不是不变的,此时要对数据进行标准化(欧氏距离使用 时,注意量纲,量纲不同聚类结果不同,克服这一缺点 ,要使特征数据标准化使之与量纲无关)。 另外,使用欧氏距离度量时,还要注意模式样本测量值 的选取,应该是有效反映类别属性特征(各类属性的代 表应均衡)。但马氏距离可解决不均衡(一个多,一个 少)的问题。 例如,取5个样本,其中有4个反映对分类有意义的特征 A,只有1个对分类有意义的特征B,欧氏距离的计算结 果,则主要体现特征A。
当预先不知道类型数目,或者用参数估计和非 参数估计难以确定不同类型的类概率密度函数 时,为了确定分类器的性能,可以利用聚类分 析的方法。 聚类分析无训练过程,训练与识别混合在一起 。
§ 3-1 相似性准则
xn} 设有样本集 X {x1, x2 ,...., ,要求按某种相似性把 X 分类,怎样实现?
1
2
n
1
2
c
c
J c || xk m j ||2
j 1 k 1
c
数据挖掘算法原理与实现第2版第三章课后答案
数据挖掘算法原理与实现第2版第三章课后答案
1.密度聚类分析:
原理:密度聚类分析是指通过测量数据对象之间的密度(density)
来将其聚成几个聚类的一种聚类分析方法。
它把距离邻近的数据归入同一
类簇,并把不相连的数据分成不同的类簇。
实现:通过划分空间中每一点的邻域来衡量数据点之间的聚类密度。
它将每个数据点周围与它最近的K个数据点用一个空间圆包围起来,以定
义该数据点处的聚类密度。
然后,可以使用距离函数将所有点分配到最邻
近的类中。
2.引擎树:
原理:引擎树(Search Engine Tree,SET)是一种非常有效的数据
挖掘方法,它能够快速挖掘关系数据库中指定的有价值的知识。
实现:SET是一种基于决策树的技术,通过从关系数据库的历史数据
中提取出有价值的信息,来建立一种易于理解的引擎树,以及一些有益的
信息发现知识,以便用户快速找到想要的信息。
SET对原始数据进行一系
列数据挖掘处理后,能够提取出其中模式分析的信息,从而实现快速、高
效的引擎。
3.最大期望聚类:
原理:最大期望聚类(Maximization Expectation Clustering,MEC)是一种有效的数据挖掘算法,它可以自动识别出潜在的类簇结构,提取出
类簇内部的模式,帮助用户快速完成类簇分析任务。
市场研究——聚类分析法
市场研究——聚类分析法
聚类分析法在市场研究中有着广泛的应用。
通过对市场中消费者、产品、品牌等进行聚类分析,可以帮助市场研究人员更好地理解市场细分和
目标受众,并制定针对不同群体的市场营销策略。
下面将详细介绍聚类分
析法的原理、应用和步骤。
聚类分析的原理是将数据样本划分为不同的类别或群组,使得同类之
间的差异最小,而不同类之间的差异最大。
输入聚类分析的数据通常是多
维的,每个维度代表一个变量。
聚类分析的目标是找到一个最优的聚类方案,使得相同类别内的样本相似度最高,而不同类别的样本相似度最低。
聚类分析法的应用非常广泛。
在市场研究中,它可以用于客户细分、
产品定位、市场定位等方面。
通过对消费者进行聚类,可以发现隐藏在市
场中的不同消费者群体,并确定他们的特征、需求和偏好。
对产品和品牌
进行聚类分析,则可以帮助确定产品和品牌的差异化定位和市场竞争策略。
需要注意的是,聚类分析法只是一种分析工具,通过聚类分析得到的
结果并不一定代表真实的市场现象,仅供市场研究人员参考和决策。
在市场研究中,聚类分析法的应用是非常重要的。
它能够帮助市场研
究人员更好地理解市场细分和目标受众,并制定针对不同群体的市场营销
策略。
随着数据量的不断增加和分析技术的不断发展,聚类分析法在市场
研究中的应用前景将更加广阔。
聚类分析原理
聚类分析原理聚类分析是一种常用的数据分析方法,它可以将数据集中的个体按照相似性进行分组,从而揭示数据内在的结构和规律。
在实际应用中,聚类分析被广泛应用于市场细分、社交网络分析、生物信息学、图像处理等领域。
本文将介绍聚类分析的原理及其常见的方法。
首先,聚类分析的原理是基于样本之间的相似性进行分组。
相似的样本被归为同一类别,而不相似的样本则被划分到不同的类别中。
在进行聚类分析时,我们需要选择合适的相似性度量方法,常见的相似性度量包括欧氏距离、曼哈顿距离、余弦相似度等。
通过计算样本之间的相似性,我们可以构建出样本之间的相似性矩阵,从而为后续的聚类分析提供依据。
其次,聚类分析的方法包括层次聚类和非层次聚类两种。
层次聚类是一种自下而上或自上而下的聚类方法,它通过计算样本之间的相似性来构建聚类树,从而实现对样本的分层聚类。
非层次聚类则是一种直接将样本划分为不同类别的方法,常见的非层次聚类方法包括K均值聚类、DBSCAN聚类等。
不同的聚类方法适用于不同的数据特点和分析目的,选择合适的聚类方法对于获得准确的聚类结果至关重要。
此外,聚类分析还需要考虑到聚类数目的确定。
在进行聚类分析时,我们需要事先确定聚类的数目,这也是聚类分析的一个重要参数。
常见的确定聚类数目的方法包括肘部法则、轮廓系数法等。
通过选择合适的聚类数目,我们可以获得更加准确和有意义的聚类结果。
总之,聚类分析是一种重要的数据分析方法,它可以帮助我们揭示数据内在的结构和规律。
在进行聚类分析时,我们需要选择合适的相似性度量方法、聚类方法和确定聚类数目的方法,以获得准确和有意义的聚类结果。
希望本文能够帮助读者更好地理解聚类分析的原理和方法,从而更好地应用聚类分析于实际问题中。
聚类分析课件
聚类分析课件聚类分析课件聚类分析是一种常用的数据分析方法,它可以将一组数据分成不同的类别或簇,每个簇内的数据点具有相似的特征,而不同簇之间的数据点具有较大的差异。
聚类分析在各个领域都有广泛的应用,如市场细分、社交网络分析、医学诊断等。
在本文中,我们将介绍聚类分析的基本概念、常用算法和实际应用案例。
一、聚类分析的基本概念聚类分析的目标是通过对数据进行分组,使得每个组内的数据点相似度较高,而不同组之间的相似度较低。
聚类分析的基本概念包括距离度量和聚类算法。
1. 距离度量距离度量是衡量数据点之间相似度或差异度的标准。
常用的距离度量方法包括欧氏距离、曼哈顿距离和闵可夫斯基距离等。
欧氏距离是最常用的距离度量方法,它计算数据点在多维空间中的直线距离。
曼哈顿距离则计算数据点在坐标轴上的绝对距离,而闵可夫斯基距离则是这两种距离的一种泛化形式。
2. 聚类算法常用的聚类算法包括K-means算法、层次聚类算法和DBSCAN算法等。
K-means算法是一种迭代的、基于距离的聚类算法,它将数据点分成K个簇,使得每个簇内的数据点与该簇的中心点的距离最小。
层次聚类算法则是一种自底向上的聚类算法,它通过计算数据点之间的相似度来构建一个层次结构。
DBSCAN算法是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点三类,具有较好的鲁棒性和灵活性。
二、常用的聚类分析算法1. K-means算法K-means算法是一种迭代的、基于距离的聚类算法。
它的基本思想是随机选择K个初始中心点,然后将每个数据点分配到距离其最近的中心点所对应的簇中。
接着,重新计算每个簇的中心点,并重复这个过程直到收敛。
K-means算法的优点是简单易实现,但它对初始中心点的选择敏感,并且需要预先指定簇的个数K。
2. 层次聚类算法层次聚类算法是一种自底向上的聚类算法。
它的基本思想是将每个数据点看作一个独立的簇,然后通过计算数据点之间的相似度来构建一个层次结构。
统计学课后题
统计学课后题第二章均值向量和协方差阵的检验1、试谈willks统计量在多元方差分析中的重要意义。
2、形象分析的基本思路是什么?形象又称轮廓图,是将总体样本的均值绘制到同一坐标轴里所得的折线图,每一个指标都表示为折线图上的一点。
形象分析是将两总体的形象绘制到同一个坐标下,根据形象的形状对总体的均值进行比较分析。
第三章聚类分析1、聚类分析的基本思想和功能是什么?聚类分析的核心思想是根据具体的指标对所研究的个体或者对象进行分类,使得同一类中的对象之间的相似性比其他类的对象的相似性更强。
聚类分析不仅可以用来对样品进行分类,也可以用来对变量进行分类。
对样品的分类常称为Q型聚类分析,对变量的分类常称为R型的聚类分析。
聚类分析的目的或功能就是把相似的研究对象归成类,即使类间对象的同质性最大化和类与类间对象的异质性最大化。
2、试述系统聚类法的原理和具体步骤系统聚类的基本思想是:距离相近的样品先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品总能聚到合适的类中。
系统聚类的具体步骤:假设总共有N个样品第一步:将每个样品独自聚成一类,共有N类;第二步:根据所确定的样品“距离”公式,把距离较近的两个样品聚合为一类,其他的样品仍各自聚为一类,共聚成N-1类;第三步:将“距离”最近的两个类进一步聚成一类,共聚成N-2类;。
,以上步骤一直进行下去,最后将所有的样品全聚成一类。
3、试述K-均值聚类的方法原理这种聚类方法的思想是把每个样品聚集到其最近形心类中。
首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。
计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。
4、试述模糊聚类的思想方法模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法。
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间;在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权;其中最典型的就是0-1标准化和Z 标准化;2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离;在二维和三维空间中的欧氏距离的就是两点之间的距离;缺点:就大部分统计问题而言,欧氏距离是不能令人满意的;每个坐标对欧氏距离的贡献是同等的;当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离;当各个分量为不同性质的量时,“距离”的大小与指标的单位有关;它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求;没有考虑到总体变异对距离远近的影响;马氏距离表示数据的协方差距离;为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离;优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据计算出的二点之间的马氏距离相同;马氏距离还可以排除变量之间的相关性的干扰; 缺点:夸大了变化微小的变量的作用;受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出;3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关;如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离;4、如果正态随机向量12(,,)p X X X X '=的协方差阵为对角阵,证明X 的分量是相互独立的随机变量;解: 因为12(,,)p X X X X '=的密度函数为 又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x则其分量是相互独立;5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N ;(a )求21y 的分布;(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布;(c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布;解:a 由于1y ~)1,0(N ,所以1y ~)1(2χ;b 由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ 第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义;3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ n=9 p=5检验统计量/n-1)()(0102μμ-'-=-X S X n T 服从P,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以nn-1,这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {n-p/n-1p}2T >,()p n p F α-1/102T >F5,45μ0= 2972 ’样本均值 ’样本均值-μ0’= Inter-Item Covariance Matrix人均GDP 元 三产比重% 人均消费元 人口增长% 文盲半文盲% 人均GDP 元三产比重%人均消费元人口增长%文盲半文盲%协方差的逆矩阵计算:2T=9s^-1 ’F统计量=> 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显着差异;4、略第3章聚类分析1.、聚类分析的基本思想和功能是什么聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来;功能是把相似的研究对象归类;2、试述系统聚类法的原理和具体步骤;系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止;具体步骤:1、对数据进行变换处理;不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果;3、试述K-均值聚类的方法原理;K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心均值类中,它是把样品聚集成K 个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组;步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中通常采用标准化数据或非标准化数据计算欧氏距离重新计算接受新样品的类和失去样品的类的形心;重复这一步直到各类无元素进出;4、试述模糊聚类的思想方法;模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别;简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的;模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面;它有两种基本方法:系统聚类法和逐步聚类法;该方法多用于定性变量的分类;5、略第4章判别分析1、应用判别分析应该具备什么样的条件答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差;对于判别分析有三个假设:1每一个判别变量不能是其他判别变量的线性组合;有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性;2各组变量的协方差矩阵相等;判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显着性检验;3各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显着性检验值和分组归属的概率;2、试述贝叶斯判别法的思路;答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识先验概率分布,得到后验概率分布,各种统计推断都通过后验概率分布来进行;将贝叶斯判别方法用于判别分析,就得到贝叶斯判别;3、试述费歇判别法的基本思想;答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向;因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题;为了有利于判别,我们选择投影方向a 应使投影后的k个一元总体能尽量分开同一总体中的样品的投影值尽量靠近;k要做到这一点,只要投影后的k个一元总体均值有显着差异,即可利用方差分析的方法使组间平方和尽可能的大;则选取投影方向a使Δa达极大即可;4、什么是逐步判别分析答:具有筛选变量能力的判别方法称为逐步判别分析法;逐步判别分析法就是先从所有因子中挑选一个具有最显着判别能力的因子,然后再挑选第二个因子,这因子是在第一因子的基础上具有最显着判别能力的因子,即第一个和第二个因子联合起来有显着判别能力的因子;接着挑选第三个因子,这因子是在第一、第二因子的基础上具有最显着判别能力的因子;由于因子之间的相互关系,当引进了新的因子之后,会使原来已引入的因子失去显着判别能力;因此,在引入第三个因子之后就要先检验已经引入的因子是否还具有显着判别能力,如果有就要剔除这个不显着的因子;接着再继续引入,直到再没有显着能力的因子可剔除为止,最后利用已选中的变量建立判别函数;5、简要叙述判别分析的步骤及流程答:1研究问题:选择对象,评估一个多元问题各组的差异,将观测个体归类,确定组与组之间的判别函数;2设计要点:选择解释变量,样本量的考虑,建立分析样本的保留样本;3假定:解释变量的正态性,线性关系,解释变量间不存在多重共线性,协方差阵相等;4估计判别函数:联立估计或逐步估计,判别函数的显着性;5使用分类矩阵评估预测的精度:确定最优临界得分,确定准则来评估判对比率,预测精确的统计显着性;6判别函数的解释:需要多少个函数;评价单个函数主要从判别权重、判别载荷、偏F值几个方面;评价两个以上的判别函数,分为评价判别的函数和评价合并的函数;7判别结果的验证:分开样本或交叉验证,刻画组间的差异;6、略第5章主成分分析1、主成分的基本思想是什么在对某一事物进行实证研究时,为更全面、准确地反映事物的特征及其发展规律,往往考虑与其有关的多个指标,在多元统计中也称为变量;一方避免遗漏重要信息而考虑尽可能多的指标看,另一方面考虑指标的增多,又难以避免信息重叠;希望涉及的变量少,而得到的信息量有较多;主成分的基本思想是研究如何通过原来的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法;研究某一问题涉及的众多变量之间有一定的相关性,必然存在着支配作用的公共因素;通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个无关的综合指标主成分来代替原来的指标;通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标;最经典的做法就是用F1选取的第一个线性组合,即第一个综合指标的方差来表达,即VarF1越大,表示F1包含的信息越多;因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分,如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求CovF1,F2=0则称F2为第二主成分,依此类推可以构造出第三、第四······,第P个主成分;2、主成分在应用中的主要作用是什么作用:利用原始变量的线性组合形成几个综合指标主成分,在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾;通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量数据进行定量分析,解释变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入;主成分分析能降低所研究的数据空间的维数,有时可通过因子载荷aij的结论,弄清X变量间的某些关系,多维数据的一种图形表示方法,用主成分分析筛选变量,可以用较少的计算量来选择,获得选择最佳变量子集合的效果;3.由协方差阵出发和由相关阵出发求主成分有什么不同1由协方差阵出发设随即向量X=X1,X2,X3,……Xp’的协方差矩阵为Σ,1≥2≥……≥p为Σ的特征值,γ1,γ2,……γp为矩阵A各特征值对应的标准正交特征向量,则第i个主成分为Yi=γ1iX1+γ2iX2+……+γpiXp,i=1,2,……,p此时VARYi=i,COVYi,Yj=0,i≠j我们把X1,X2,X3,……Xp的协方差矩阵Σ的非零特征根1≥2≥……≥p>0向量对应的标准化特征向量γ1,γ2,……γp分别作为系数向量,Y1=γ1’X, Y2=γ2’X,……, Yp=γp’X分别称为随即向量X的第一主成分,第二主成分……第p主成分;Y的分量Y1,Y2,……,Yp依次是X的第一主成分、第二主成分……第p主成分的充分必要条件是:1Y=P’X,即P为p阶正交阵,2Y的分量之间互不相关,即DY=diag1,2,……,p,3Y的p个分量是按方差由大到小排列,即1≥2≥……≥p;2由相关阵出发对原始变量X进行标准化,Z=Σ^1/2^-1X-μ covZ=R原始变量的相关矩阵实际上就是对原始变量标准化后的协方差矩阵,因此,有相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则相一致的;λi,γi 分别表示相关阵R的特征根值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:Yi=γi’Z=γi’Σ^1/2^-1X-μ在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰到好处;有些数据涉及到指标的不同度量尺度使指标方差之间不具有可比性,对于这类数据用协方差矩阵进行主成分分析也有不妥;相关系数矩阵计算主成分其优势效应仅体现在相关性大、相关指标数多的一类指标上;避免单个指标方差对主成分分析产生的负面影响,自然会想到把单个指标的方差从协方差矩阵中剥离,而相关系数矩阵恰好能达到此目的;4、略第6章 因子分析1、因子分析与主成分分析有什么本质不同答:1因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成,因此,我们的目的就是要从数据中探查能对变量起解释作用的公共因子和特殊因子,以及公共因子和特殊因子的线性组合;主成分分析则简单一些,它只是从空间生成的角度寻找能解释诸多变量绝大部分变异的几组彼此不相关的新变量2因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合3主成分分析中不需要有一些专门假设,因子分析则需要一些假设,因子分析的假设包括:各个因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关;4在因子分析中,提取主因子的方法不仅有主成分法,还有极大似然法等,基于这些不同算法得到的结果一般也不同;而主成分分析只能用主成分法提取;5主成分分析中,当给定的协方差矩阵或者相关矩阵的特征根唯一时,主成分一般是固定;而因子分析中,因子不是固定的,可以旋转得到不同的因子;6在因子分析中,因子个数需要分析者指定,结果随指定的因子数不同而不同;在主成分分析中,主成分的数量是一定的,一般有几个变量就有几个主成分; 7与主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量新的变量几乎带有原来所有变量的信息来进行后续的分析,则可以使用主成分分析;2、因子载荷ij a 的统计定义是什么它在实际问题的分析中的作用是什么答:1因子载荷ij a 的统计定义:是原始变量i X 与公共因子j F 的协方差,i X 与j F ),...,2,1;,...,2,1(m j p i ==都是均值为0,方差为1的变量,因此ij a 同时也是i X 与j F 的相关系数;(2)记),,...,2,1(...222212m j a a a g pjj j j =+++=则2j g 表示的是公共因子j F 对于X 的每一分量),...,2,1(p i X i =所提供的方差的总和,称为公共因子j F 对原始变量X 的方贡献,它是衡量公共因子相对重要性的指标;2j g 越大,表明公共因子j F 对i X 的贡献越大,或者说对X 的影响作用就越大;如果因子载荷矩阵对A 的所有的),...,2,1(2m j g j =都计算出来,并按大小排序,就可以依此提炼出最有影响的公共因子;3、略第7章 对应分析1、试述对应分析的思想方法及特点;思想:对应分析又称为相应分析,也称R —Q 分析;是因子分子基础发展起来的一种多元统计分析方法;它主要通过分析定性变量构成的列联表来揭示变量之间的关系;当我们对同一观测数据施加R 和Q 型因子分析,并分别保留两个公共因子,则是对应分析的初步;对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;特点:对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主z |Uz |V 要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;2、试述对应分析中总惯量的意义;总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2x 统计量仅相差一个常数,而2x 统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系;对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系;3、略第8章 典型相关分析1、试述典型相关分析的统计思想及该方法在研究实际问题中的作用;答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法;用于揭示两组变 量之间的内在联系;典型相关分析的目的是识别并量化两组变量之间的联系;将两组变量相 关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系;基本思想:1在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数; 即:XX 1, X 2, , , X p 、XX 1, X 2, , , X q 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量 U i 、Vi,使是原变量的线性组合;U i a 1X 1 a 2 X 2..... a P X P ≡ a ‘XV i b 1Y 1 b 2 Y 2 .... b q Y q ≡ b‘Y 在 D aX D bX 1 的条件下,使得 aX , bX 达到最大;2选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此;其作用为:进行两组变量之间的相关性分析,用典型相关系数衡量两组变量之间的相关性;2、简述典型相关分析中冗余分析的内容及作用;答:典型型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比 例,从而定量测度典型变量所包含的原始信息量;第一组变量样本的总方差为 t r R 11 p ,第二组变量样本的总方差为 t r R 22 q ;*A ˆz和*B ˆz 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量, Z z z **A ˆU ˆ=,Z z z **B ˆV ˆ= 前 r 对典型变量对样本总方差的贡献为则第一组样本方差由前 r 个典型变量解释的比例为:第二组样本方差由前 r 个典型变量解释的比例为:3、典型变量的解释有什么具体方法实际意义是什么答:主要使用三种方法:1典型权重标准相关系数:传统的解释典型函数的方法包括观察每个原始变量在它的典型变量中的典型权重,即标准化相关系数Standardized Canonical Coefficients 的符号和大小;有较大的典型权重,则说明原始变量对它的典型变量的贡献较大,反之则相反;原始变量的典型权重有相反的符号说明变量之间存在一种反面关系,反之则有正面关系;但是这种解释遭到了很多批评;这些问题说明在解释典型相关的时候应慎用典型权重;(2)典型载荷结构系数:由于典型载荷逐步成为解释典型相关分析结果的基础;典型载荷分析,即典型结构分析Canonical Structure Analyse,是原始变量自变量或者因变量与它的典型变量间的简单线性相关系数;典型载荷反映原始变量与典型变量的共同方差,它的解释类似于因子载荷,就是每个原始变量对典型函数的相对贡献;(3)典型交叉载荷交叉结构系数:它的提出时作为典型载荷的替代,也属于典型结构分析;计算典型交叉载荷包括每个原始因变量与自变量典型变量直接相关,反之亦然;交叉载荷提供了一个更直接地测量因变量组与自变量组之间的关系的指标;实际意义:即使典型相关系数在统计上是显着的,典型根和冗余系数大小也是可接受的,研究者仍需对结果做大量的解释;这些解释包括研究典型函数中原始变量的相对重要性;4.、略。
【免费下载】第3章 聚类分析答案
9.快速聚类在 SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为: dij q
对距离
穷时,它表示 切比雪夫距离
11.聚类分析是将一批 样品
上
;当 q 2 时,它表示 欧氏距离
的 亲疏、相似程度
k 1
p
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲
17.在系统聚类方法中, 中间距离法和 重心法 不具有单调性。
18.离差平方和法的基本思想来源于 方差分析 。
19.最优分割法的基本步骤主要有三个:第一,定义类的直径 ;第二, 定
义目标函数 ;第三, 求最优分割 。
20.最优分割法的基本思想是基于 方差分析的思想 。
二、判断题
1.在对数据行进中心化变换之后,数据的均值为 0,而协差阵不变,且变换后
后的数据与变量的量纲无关。
)
2.根据分类的原理,我们可以把聚类分为样品聚类和变量聚类。
)
3.兰氏距离不仅克服了明氏距离与各指标的量纲有关的缺点,而且也考虑了变
量间的相关性。
)
4.当各变量之间相互独立时,马氏距离就退化为欧氏距离。
)
5.在几种系统聚类法中,最短(长)距离法、(可边)类平均法、重心法和离
差平方和法都具有单调性,只有中间距离法不具有单调性。
)
6.重心法比离差平方和法使空间扩张。
)
7.离差平方和法的思想来源于方差分析.如果类分得比较合理,同类样品之间的
离差平方和应当较大,类与类之间的离差平方和应当较小.
)
8.使用离差平方和法时,计算样品间的距离必须采用欧氏距离.
)
9.快速聚类法又称为动态聚类法,是一种非谱系聚类法,它可以应用于比系统聚
第3章聚类分析答案
第三章聚类分析一、填空题1 •在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型:间隔尺度_______ 、顺序尺度和名义尺度°2.Q型聚类法是按—样品—进行聚类,R型聚类法是按—变量—进行聚类。
3.Q型聚类统计量是—距离」而R型聚类统计量通常釆用一相似系数—o4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下儿种:—中心化变换 _____ 、—标准化变换—> —规格化变换一、__对数变换一」5.距离如一般应满足以下四个条件:对于一切的i,j,有妁no、i = J时,有eg = 0、对于一切的i, j,有d§ = d口、对于一切的i, j,k,有< d,k + d kj o6.相似系数一般应满足的条件为:若变量兀与心成比例,则C厂±1、对一切的i,j,有|C:. | <1和对一切的i, j,有C“ = C;7 o7.常用的相似系数有__________ 两种。
8 •常用的系统聚类方法主要有以下八种:最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
9.快速聚类在SPSS中由_K-mean ________________ 过程实现。
■ p严10 •常用的明氏距离公式为:d^q)=乞应-,当9 = 1时,它表示绝对距离 ;当q =2时,它表示_____ ;当g趋于无穷时,它表示___________ o11・聚类分析是将一批样品或变量,按照它们在性质上的_________ 进行分类。
12・明氏距离的缺点主要表现在两个方面:第一明氏距离的值与各指标的量纲有关,第二明氏距离没有考虑到各个指标(变量)之间的相关性°13.马氏距离又称为广义的____________ 。
14,设总体G为卩维总体,均值向量为尸0\,血,…,协差阵为》,则样品X=(X|,X2,…,xj与总体G 的马氏距离定义为〃2(x,G)=(X—“jH(X—“)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3:对某公司50名销售人员业绩(包括销售增长 、销售利润及新客户销售额3项指标)进行分析, 根据业绩将这50人分为三类。 例4:测量成年女子的上体长、手臂长、胸围、颈 围、总肩宽、腰围等14个变量,测量3454名成年 女子的数据,将这些变量分成几类,以便考虑能 否合并或简化一些变量。
③ ⑥
⑦ 9 .43 14.87
5、 d 36 = 6 为最小,⑧= {3,6}
d 87 = min{d 37 , d 67 } = 9.43
6、按聚类的过程画聚类谱系图
并 类 距 离 ⑨
d 4,5 = 2 d1, 2 = 3.6 d 3, 6 = 6 d 7 ,8 = 9.43
⑧
4
5
3
1
2
7、
类的 图
提供的产品,得到的数据如表,试对这4家产 品聚类。
供货商 甲 乙 丙 丁 样本均值 18.002 17.997 18.050 18.200 样本标准差 0.003 0.004 0.002 0.500
例2:对5个女顾客调查她们对某件服装的看法
,分别取5个变量:式样,图案,颜色,材料; 喜欢取1,不喜欢取0。所得数据见下表,试将 她们分类。
§1 什么是聚类分析
聚类分析是研究分类问题的一种多元统计方法。 所谓类,就是指相似元素的集合。 类 相似元素的集合。 相似元素的集合 聚类分析的研究目的 把相似的东西归成类,根据相似的程度将研 究目标进行分类。 为了进一步了解聚类分析概念,我们看看下面 的六个例子。
例1:某零件标准长度为18,检验4家供货商
(1) 明氏距离
x11 x 设n个样本,m个变量, 21 M 构成样本矩阵为 x n1
令
x12 L x1m x22 L x2 m M M M xn 2 L xnm
d ij
表示样品
xi
与
m
xj
的距离
k 1 k
m
明氏距离
dij = (∑| xil − xjl | )
2、变量间的相似性 、
(1)相关系数
变量
xj
和
xk
n i =1
的相关系数:
− x j )( xik − xk )
1 2
rjk =
∑ (x
ij
n n 2 (xij − x j ) ∑ ( xik − xk )2 ∑ i =1 i =1
(2)夹角余弦
c jk =
∑x
i =1
n
ij
(
)
(
)
=
∑
l =1
m
(x
il
− x jl sl2
)
2
或者先将原始矩阵标准化,再计算欧氏距离: 或者先将原始矩阵标准化,再计算欧氏距离:
x11 − x1 s1 x21 − x1 s 1 M M xn1 − x1 s1
x12 − x2 s2 x22 − x2 s2 M M xn 2 − x2 s2
类 5 3类
{1,2} 、3} 、{4,5} {
二、最长距离法
定义类p与 之间的距离为两类最远样品的距离 之间的距离为两类最远样品的距离, 定义类 与q之间的距离为两类最远样品的距离,即
d pq = max {d ij }
i∈ p , j∈q
• x11• •
x21•
d12
• • •
•
设类p与 q合并成一个新类,记为k,则k与任一类r 的距离是
, dqr }
k p q r
【例】最短距离法
设抽样调查5位中年男性,调查如下2个指标 x1 :每月大约喝多少瓶啤酒? x2 :喜欢喝啤酒吗? 调查数据如下,对这5位男性分类。
x1
1 2 3 4 5 20 18 10 4 4
x2
7 10 5 5 3
1.计算5个样品两两之间的距离 记为距离矩阵
d ij(采用欧氏距离),
这些问题都是聚类问题,它们的共同点是: 这些问题都是聚类问题,它们的共同点是: (1)有若干变量或指标,例1的两个变量是样本均值,样 有若干变量或指标, 变量或指标 的两个变量是样本均值, 本标准差, 本标准差,例2的4个变量是对服装的式样、颜色等的态度, 个变量是对服装的式样、颜色等的态度, 例3的变量是销售增长、销售利润等。 的变量是销售增长、销售利润等。 (2)有若干次观测值,每次观测值成为一个样品,构成若 有若干次观测值,每次观测值成为一个样品, 观测值 干个样本。 干个样本。 (3)要求分类或分组,有的要求对样本分类,有的要求对 要求分类或分组,有的要求对样本分类, 分类或分组 变量分类。 变量分类。 通常将这些分类称为聚类。 通常将这些分类称为聚类。 聚类
x − x jm + ... + im sm
2
d ij =
=
xi 1 − x j 1 xi 2 − x j 2 + s1 s2
2
1 1 1 2 2 2 xi 1 − x j 1 + 2 xi 2 − x j 2 + ... + 2 (xi m − x jm ) s12 s2 sm
xik
1 2
n 2 n 2 ∑ xij ∑ xik i =1 i =1
下面介绍两种主要的聚类方法: 下面介绍两种主要的聚类方法:
系统聚类法 快速聚类法(动态聚类法) 快速聚类法(动态聚类法)
§3 系统聚类法
系统聚类法的基本思想
先将n个样品各自看成一类,然后规定样品之 间的“距离”和类与类之间的距离。选择距离最近 距离最近 的两类合并成一个新类,计算新类和其它类(各当 前类)的距离,再将距离最近的两类合并。这样, 每次合并减少一类,直至所有的样品都归成一类为 直至所有的样品都归成一类为 止。
得距离矩阵如下: ② 3.6 ③ 10.2 9.43 ⑥ 16.12 14.87 6
① ② ③
4、重复步骤2、3,合并距离最近的两类为新类,直到所有 的类并为一类为止。
d12 = 3.6 为最小, ⑦= { ,2} 1
d 73 = min{d13 , Βιβλιοθήκη 23 } = 9.43⑥ 6
d 76 = min{d16 , d 26 } = 14.87
1≤l ≤3
明考夫斯基距离有以下两个缺点: 明考夫斯基距离有以下两个缺点:
①明氏距离的数值与指标的量纲 量纲有关。当各 量纲 变量的测量值相差悬殊时,常发生“大数吃小数” 的现象,为消除量纲的影响,通常先将每个变量 进行标准化。 ②明氏距离的定义没有考虑各个变量之间相 关性的影响。
甲 乙 年龄 30 40 收入 3000 3200 家庭人口数 1 3
第三章 系统模型与模型化
工业工程教研室
第三章 系统模型与模型化
第一节: 第一节:系统模型与模型化概述 第二节: 第二节:系统结构模型化技术 第三节: 第三节:主成份分析及聚类分析 第四节: 第四节:状态空间模型 第五节: 第五节:系统工程模型技术的新进展
第三节 聚类分析
§1 什么是聚类分析 §2 相似性的测度 §3 系统聚类法 §4 动态聚类法
d甲乙 = ( 30 − 40) 2 + ( 3000 − 3200) 2 + (1 − 3) 2
(2) 标准化的欧氏距离
设原始矩阵为 标准化的欧氏距离为
x11 x 21 M x n1
2
x12 L x1m x22 L x2 m M M M xn 2 L xnm
1≤l ≤m
x1
1 2 3 4 5 欧氏距离 20 18 10 4 4
x2
7 10 5 5 3
3
x3
25.2 36.3 28.9 11.5 17
计 d24 算
d24 =
(x2l − x4l )2 ∑
l =1
= (18 − 4)2 + (10 − 5)2 + (36.3 −11.5)2
切比雪夫距离
d24 = m x2l − x4l = 36.3−11.5 = 24.8 ax
d kr = max{d pr
, d qr }
k p q r
例 最长距离法
1.计算5个样品两两之间的距离 记为距离矩阵
定义类p与 之间的距离为两类最近样品的距离 之间的距离为两类最近样品的距离, 定义类 与q之间的距离为两类最近样品的距离,即
d pq = min {d ij }
i∈ p , j∈q
xq1• xp2• xp1•
d pq
xq2•
xq3•
设类p与 q合并成一个新类,记为k,则k与任一类r 的距离是
d kr = min{d pr
例5:对10位应聘者做能力测试。3项指标X、Y和Z分 别表示数学推理能力、空间想象能力和语言理解能力。 其得分如下,选择合适的统计方法对应聘者进行分类。
应聘者 X Y Z 1 28 29 28 2 18 23 18 3 11 22 16 4 21 23 22 5 26 29 26 6 20 23 22 7 16 22 22 8 14 23 24 9 24 29 24 10 22 27 24
聚类分析的研究对象
R型分析----对变量进行分类 Q型分析----对样品进行分类
聚类分析研究的主要内容
如何度量事物之间的相似性 ? 怎样构造聚类的具体方法以达到分类的目的?
§2 相似性的测度
1、样本之间的相似性 、 距离:测度样品之间的亲疏程度。将每一个 距离 样品看作p维空间的一个点,并用某种度量测 量点与点之间的距离,距离较近的归为一类, 距离较远的点应属于不同的类。