3MW循环流化床锅炉设计特点及运行情况分析.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3MW循环流化床锅炉设计特点及运行情况分析
135MW循环流化床锅炉设计特点及运行情况分析
1.概述
徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。
工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。
机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。
2.锅炉整体布置特点
2.1 锅炉本体设计参数及布置特点
锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。
锅炉的主要设计参数如下表所示:
名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7
过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56
再热蒸汽进/出口温度℃318/540 313/540
锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。
第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。
第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。
锅炉整体呈左右对称布置,支吊在锅炉钢架上。
2.2 锅炉岛系统布置特点
输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。
一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。
二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。
返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。
冷渣器用风系统:冷渣器用风由单独的风机供应,配置为2x100%容量<一运一备)。
石灰石系统:购买成品石灰石粉作为脱硫剂,采用气力输送的方式,由锅炉返料斜腿送入炉膛,配置2台高压流化风机<罗茨风机)作为石灰石系统风机。
除灰系统:落入布袋除尘器灰斗中的粉尘借助气力输送系统送入灰仓。
除渣系统:采用风水联合冷渣器,冷渣器排出的冷渣通过一级刮板输渣机、斗式提升机送入渣仓。
吹灰系统:采用蒸汽吹灰。在锅炉尾部烟道的对流受热面区域布置伸缩或固定式吹灰器。
3.锅炉本体设计特点
锅炉为武锅引进ALSTOM技术生产制造的首台135MW循环流化床锅炉。同时,采用该技术生产的锅炉在中国国内已投运多台,针对上述工程在国内的运行情况,在本次锅炉设计过程中进行了局部优化设计,主要有以下几点:
3.1 炉膛下部密相区耐磨层与水冷壁管过渡区域的防磨措施。
炉膛下部密相区耐磨层与水冷壁管过渡区域内由于沿壁面下流的颗粒与炉内向上运动的颗粒运动方向相反,因而在此处形成漩涡流,同时沿炉膛壁面下流的颗粒在交界区域产生流动方向的改变,因而对水冷壁产生磨损<见附图2)。
在本台锅炉的设计中,水冷壁管采用外让结构<见附图3),金属
表面喷涂防磨材料,同时要求耐磨材料施工厂家,在耐磨材料施工中,严格按照锅炉厂设计要求,保证耐磨材料内表面与上部水冷壁管中心线平齐,避免颗粒在此处形成漩涡流,达到减轻磨损的目的。
采取了上述措施后,锅炉运行一年后,进行停炉检查,该区域水冷壁管基本未见磨损现象出现。
3.2 炉膛内过热器屏及再热器屏的热有效系数的选取。
早期投运的锅炉在试运期间多次出现过热器、再热器超温爆管现象,测量发现,再热器管壁温度高达700℃左右,远高于设计值,管壁氧化涨粗现象严重。分析认为是炉内屏面积布置过多,屏再、屏过吸热量偏大,同时,由于蒸汽流程或结构不合理,造成蒸汽流量偏差较大,使低流量管子得不到有效冷却而导致超温爆管。
针对上述现象,在本台锅炉的设计中,我们多次与ALSTOM公司相关人员展开讨论研究,分析认为国外循环流化床炉膛内多布置贯穿前后墙的Ω屏,而国内考虑到成本原因多采用平行前墙的L屏,ALSTOM公司认为L屏的换热低于Ω屏,而实际运行表明,两种型
式屏的换热系数基本相同,根据上述情况,在我们的建议下,ALSTOM公司修改了设计导则,调整了炉内过热器屏、再热器屏的面积。
同时,优化了过热器<再热器)屏进出口集箱的引入引出形式,合理选择分配集箱和汇集集箱的规格,从蒸汽系统的连接方式及控制蒸汽流速出发,减小流量偏差;
经过上述调整,从锅炉运行情况来看,已完全消除了早期投运的135MW循环流化床锅炉普遍存在的过热器<再热器)超温现象。3.3 锅炉尾部烟道中省煤器的热有效系数的选取
目前国内已投运的同容量的循环流化床锅炉普遍存在排烟温度偏高的现象,而本工程配备的是布袋除尘器,相对于电除尘器来说,布袋除尘器对排烟温度更敏感。若排烟温度高于180℃,将严重缩短布袋除尘器的使用寿命,布袋除尘器不能投入正常使用。
针对上述问题,我们与ALSTOM公司共同研究分析,认为国外循环流化床锅炉特别是ALSTOM-EVT公司设计的锅炉多燃用高水分的褐煤<水分35~58%,灰分1~40%,低位热值8~12MJ/kg),而国内由于政府政策的原因多燃用高灰分的劣质燃料,如本工程就是燃用的劣质烟煤<水分5.5%,灰分46.83%,低位热值14.52MJ/kg),因此,尾部烟道对流受热面特别是低温区域<省煤器、空预器)的积灰情况,存在较大差异。
在本台锅炉的设计中,对省煤器的受热面积进行了调整。从目前的运行工况来看,达到了当初的设想。但如果吹灰器不投入运行的情况下,