2018年高三数学第一轮复习单元讲座:第09讲 空间几何体的表面积和体积
高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积
第二节空间几何体的表面积与体积表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).知识点一空间几何体的表面积1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表(侧)面积名称侧面积表面积圆柱(底面半径r,母线长l)2πrl 2πr(l+r)圆锥(底面半径r,母线长l)πrl πr(l+r) 圆台(上、下底面半径r1,r2,母线长l)π(r1+r2)l π(r1+r2)l+π(r21+r22)球(半径为R)4πR2易误提醒(1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.(2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.(3)组合体的表面积应注意重合部分的处理.[自测练习]1.正六棱柱的高为6,底面边长为4,则它的表面积为()A.48(3+3)B.48(3+23)C.24(6+2) D.144解析:正六棱柱的侧面积S侧=6×6×4=144,底面面积S底=2×6×34×42=483,S表=144+483=48(3+3).答案:A2.如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .8+4 2B .10πC .11πD .12π解析:由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和,即S =4π+2π+2π×3=12π,故选D.答案:D知识点二 空间几何体的体积空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh . (2)V 锥体=13Sh .(3)V 台体=13h (S +SS ′+S ′).(4)V 球=43πR 3(球半径是R ).易误提醒 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.[自测练习]3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3D .4 cm 3解析:由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥,如图所示.由四棱锥的体积公式知所求几何体的体积V =83cm 3.答案:B4.某一容器的三视图如图所示,则该几何体的体积为________.解析:依题意,题中的几何体是从一个棱长为2的正方体中挖去一个圆锥,其中该圆锥的底面半径是1、高是2,因此题中的几何体的体积等于23-13π×12×2=8-2π3.答案:8-2π3考点一 空间几何体的表面积|1.(2015·高考福建卷)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S 表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+22,故选B.答案:B2.(2015·高考课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2.答案:B3.(2016·昆明模拟)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的表面积与球O 的表面积的比值为________.解析:设等边三角形的边长为2a ,则S 圆锥表=12·2πa ·2a +πa 2=3πa 2.又R 2=a 2+(3a -R )2(R 为球O 的半径),所以R =233a ,故S 球表=4π·⎝⎛⎭⎫233a 2=16π3a 2,故其表面积比为916. 答案:916(1)由三视图求相关几何体的表面积:,给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体(常规几何体、组合体或旋转体)的特征求表面积:①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.考点二 空间几何体的体积|(1)(2015·高考山东卷)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π(2)(2015·辽宁五校联考)某几何体的三视图如图所示,则该几何体的体积是________.[解析] (1)由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=423π.(2)由三视图知,该几何体为长方体去掉一个三棱锥,其体积V =2×2×3-13×⎝⎛⎭⎫12×2×1×3=11.[答案] (1)B (2)11空间几何体体积问题的三种类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.(2015·绵阳模拟)一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .8+π3B .8+2π3C .8+8π3D .8+16π3解析:依题意得,该机器零件的形状是在一个正方体的上表面放置了一个14的球体,其中正方体的棱长为2,相应的球半径是1,因此其体积等于23+14×43π×13=8+π3,选A.答案:A考点三 与球有关的切、接问题|与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:1.四面体的外接球. 2.四棱锥的外接球. 3.三棱柱的外接球. 4.圆锥的内切球与外接球. 5.四面体的内切球. 探究一 四面体的外接球问题1.(2016·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π解析:如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R (R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.答案:A探究二 四棱锥的外接球问题2.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面P AD ⊥底面ABCD ,△P AD 为正三角形,AB =2AD =4,则球O 的表面积为( )A.323π B .32π C .64πD.643π 解析:依题意,AB ⊥平面P AD 且△P AD 是正三角形,过P 点作AB 的平行线,交球面于点E ,连接BE ,CE ,则可得到正三棱柱APD -BEC .因为△P AD 是正三角形,且AD =2,所以△P AD 的外接圆半径是23,球O 的半径R =22+⎝⎛⎭⎫232=43,球O 的表面积S =4πR 2=64π3,故选D.答案:D探究三 三棱柱的外接球问题3.(2016·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3探究四 圆锥的内切球与外接球问题4.(2016·嘉兴模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π探究五 四面体的内切球问题5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π求解与球有关的切、接问题的关键点解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.21.补形法在空间几何体的体积、面积中的应用【典例】 已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[思维点拨] 可考虑将几何体补完整,再分析求解.[解析] 法一:由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.法二:由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用大小与形状完全相同的补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.[答案] B[方法点评] 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.[跟踪练习] (2015·沈阳模拟)已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π解析:依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π,选C.答案:CA 组 考点能力演练1.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233 D.643解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.答案:D2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .43π D .23π解析:由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.答案:A3.(2016·唐山模拟)某几何体的三视图如图所示,则该几何体的体积为( ) A .8π+16 B .8π-16 C .8π+8 D .16π-8解析:由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.答案:B4.某几何体的三视图如图所示,则该几何体的体积为( )A.2π B .22π C.π3 D.2π3解析:依题意得,该几何体是由两个相同的圆锥将其底面拼接在一起所形成的组合体,其中该圆锥的底面半径与高均为1,因此题中的几何体的体积等于2×13π×12×1=2π3,选D.答案:D5.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( )A.323π B .12π C .16π D .32π 解析:设球心为O ,球心在平面BCD 的投影为O 1,则OO 1=AB2=1,因为△BCD 为等边三角形,故DO 1=23×323=3,因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,球O 的表面积S =4πR 2=16π,故选C.答案:C6.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:437.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π8.(2016·南昌一模)已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝⎛⎭⎫BC 22+⎝⎛⎭⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π9.已知某锥体的三视图(单位:cm)如图所示,求该锥体的体积.解:由三视图知,原几何体是一个五面体,由一个三棱柱截去一个四棱锥得到,其体积为V =V 三棱柱-V 四棱锥=12×2×2×2-13×12×(2+1)×2×2=2.10.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2,S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2, 所以S 表面=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a1+π2.B 组 高考题型专练1.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:由所给三视图可知,该几何体是圆柱从底面圆直径处垂直切了一半,故该几何体的表面积为12×2π×1×2+2×12×π×12+2×2=3π+4,故选D.答案:D2.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:三棱锥V O -ABC =V C -OAB=13S △OAB×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O -ABC =V C -OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π. 答案:C3.(2015·高考课标卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.15解析:如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.答案:D4.(2015·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:该几何体的体积V =23+13×22×2=323(cm 3).答案:C5.(2015·高考四川卷)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离.根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:124。
空间几何体的表面积与体积
空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。
每个空间几何体都有其独特的特征,其中包括表面积和体积。
表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。
不同类型的空间几何体有不同的表面积和体积计算公式。
下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。
一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。
球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。
二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。
长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。
三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。
圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。
四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。
圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。
五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。
正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。
除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。
总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。
高三数学一轮复习 8.2 空间几何体的表面积与体积
考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,
高中数学 空间几何体的表面积和体积
1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
表面积、全面积和侧面积
• 表面积:立体图形的所能触摸到的面积之 和叫做它的表面积。(每个面的面积相加 )
• 全面积 全面积是立体几何里的概念, 相对于截面积(“截面积”即切面的面积) 来说的,就是表面积总和
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、下底面周 长分别为c′、c,斜高为h′,则正n棱台的侧面积公
式:S正棱台侧= 1∕2(c+c.′)h′
②圆台:如果圆台的上、下底面半径分别为
r′、r,母线长为l,则S圆台侧= πl(r′+. r)
(2)锥体的侧面积
①正棱锥:设正棱锥底面正多边形的周长为c,斜 高为h′,则
S正棱锥侧= 1∕2ch.(′ 类比三角形的面积)
②圆锥:如果圆锥的底面半径为r,母线长为l,那 么
S圆锥侧= πrl.(类比三角形的面积)
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥= 侧 12ch'
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧S底
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆锥 = S 侧 扇 = n 3l6 201 2l扇 lrl
高考数学第一轮复习 空间几何体的表面积和体积教案
41中高三数学第一轮复习—空间几何体的表面积和体积一.命题走向由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;二.要点精讲1.多面体的面积和体积公式表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。
2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
P ADO点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。
∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S, V 1=31h(S+41S+41⋅S )=127ShV 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5。
高考数学复习—空间几何体的表面积与体积
1.柱体、锥体、台体的表面积
(1)直棱柱、正棱锥、正棱台的侧面积 S 直棱柱侧=__________,S 正棱锥侧=__________, S = 正棱台侧
__________(其中 C,C′为底面周长,h 为高,h′为斜高).
(2)圆柱、圆锥、圆台的侧面积 S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________
故正方体的体积为 223= 42,所以三棱锥 P-CDE 的体积为 42-
4×13×12× 22× 22× 22= 122.故填122.
类型四 空间旋转体的体积问题
已知球的外切圆台上、下底面的半径分别为 r,
R,求圆台的体积.
解:如图,图①是该几何体的直观图,图②是该几何体的轴
截面平面图.
圆台轴截面为等腰梯形,与球的大圆相切,根据切线长定理, AC=AO1,BO=BC,得梯形腰长为 R+r,梯形的高即球的直径 长为 OO1= AB2-(OB-O1A)2= (R+r)2-(R-r)2
则 AD1= 32+42+122=13,所以直三棱柱外接球的半径为123.故选
C.
点 拨: 求解几何体外接球的半径主要从两个方面考 虑:一是根据球的截面的性质,利用球的半径 R、 截面圆的半径 r 及球心到截面圆的距离 d 三者的关 系 R2=r2+d2 求解,其中确定球心的位置是关键; 二是将几何体补成长方体,利用该几何体与长方体 共有外接球的特征,由外接球的直径等于长方体体
=123.即直三棱柱外接球的半径为123.
解法二:(补体法)如图所示,将直三棱柱 ABC-A1B1C1 的底面补
成矩形,得到长方体 ABDC-A1B1D1C1.显然,直三棱柱 ABC-A1B1C1 的 外 接 球 就 是 长 方 体 ABDC-A1B1D1C1 的 外 接 球 . 而 长 方 体
高三数学一轮复习7.2空间几何体的表面积与体积课件
【互动探究】若本例(1)中的三视图不变,求该几何体的体积.
【解析】由三视图可知,该几何体为一个放倒的四棱柱,底面为
梯形,由三视图可知该四棱柱的底面积为 1 ×(2+8)×4=20.高
2
为10,故体积为20×10=200.
【规律方法】 1.几何体表面积的求法 (1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和. (3)规则几何体:若所给的几何体是规则的柱体、锥体或台体 , 则可直接利用公式进行求解. (4)若以三视图的形式给出,解题的关键是对给出的三视图进行 分析,从中发现几何体中各元素间的位置关系及数量关系 ,得到
A. 3
2
B.2π
C.3π
D.4π
【解析】选A.由三视图知,该空间几何体为圆柱,所以全面积为
1 1 3 ( ) 2 2+2 1 = . 2 2 2
5.平面α 截球O的球面所得圆的半径为1,球心O到平面α 的距离 为 则此球的体积为 2, .
【解析】球半径 r 1 ( 2)2 3, 所以球的体积为 4 ( 3)3 4 3.
名称
图形
表面积 S=π r2+π rl =π r(r+l)
侧面积
圆锥
π rl S侧=____
圆台
π (r′2+r2 S=__________
S 侧= π (r+r′)l __________
+r′l+rl) _________
名称
图形
表面积
侧面积
球
2 4 π r S=_____
2.几何体的体积 Sh (1)设棱(圆)柱的底面积为S,高为h,则体积V=___.
2018届高三数学一轮复习第八章立体几何第二节空间几何体的表面积和体积课件文
C.90
D.81
(2)(2016安徽江南十校3月联考)某几何体的三视图如图所示,其中侧视
图的下半部分曲线为半圆弧,则该几何体的表面积为 ( )
A.4π+16+4 3 B.5π+16+4 3
C.4π+16+2 3
D.5π+16+2 3
答案 (1)B (2)D
解析 (1)由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧 棱长为3 5 的斜四棱柱. 其表面积S=2×32+2×3×3 5 +2×3×6=54+18 .故选 B. 5 (2)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三
16 3
)
B. π D.24π
32 3
答案 B 设球的半径为R,
则由4πR2=16π, 解得R=2,
4 3 32 所以这个球的体积为 πR = . 3 3
3.(2016四川,12,5分)已知某三棱锥的三视图如图所示,则该三棱锥的体 积是 .
答案
3 3
3 ,宽、高均为1)中作出此三棱锥,如图所示, 解析 在长方体(长为2
所以h0= 3 =2, 1
1 ×2×2×6=12. 所以该六棱锥的侧面积为 2
考点突破
考点一 空间几何体的表面积
典例1 (1)(2016课标全国Ⅲ,10,5分)如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ( )
A.18+36 5 B.54+18 5
(5)正方体既有外接球又有内切球. (√)
(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧 面积是2πS. (×)
2018版高考数学(理)一轮复习文档:第八章8.2 空间几何体的表面积与体积含解析
1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体S表面积=S侧+2S V=Sh【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=错误!a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=错误!a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。
(3)正四面体的外接球与内切球的半径之比为3∶1.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)多面体的表面积等于各个面的面积之和.( √)(2)锥体的体积等于底面积与高之积.( ×)(3)球的体积之比等于半径比的平方.(×)(4)简单组合体的体积等于组成它的简单几何体体积的和或差.(√)(5)长方体既有外接球又有内切球.( ×)(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( ×)1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cm B.2 cmC.3 cm D。
错误!cm答案B解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2B.129 cm2C.132 cm2D.138 cm2答案D解析该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S=[2×(4×6+4×3)+3×6+3×3]+(5×3+4×3+2×错误!×4×3)=99+39=138(cm2).3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.12π B.错误!πC.8π D.4π答案A解析由题意可知正方体的棱长为2,其体对角线2错误!即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A。
高考数学一轮复习空间几何体的表面积与体积精品课件理新人教A版
在直角梯形O1ODD1中,
O1O= DD12 - (OD - O1D1 )2 = 4 3
∴棱台的高为 4 3cm.
【评析】求解有关多面体表面积的问题,关键是找 到其特征几何图形,如圆柱中的矩形,棱台中的直角 梯形,棱锥中的直角三角形,它们是联系高与斜高、 边长等几何元素的桥梁,从而架起求侧面积公式中的 未知量与条件中已知几何元素间的联系.
点,则CP+PA1的最小值
为
.
【分析】将所求最值问题转化为熟悉的平面上的最
值问题,易解决.
【解析】由直三棱柱的性质得A1B=2 ,又 ∠A1C1B=90°,A1C1=6,BC1=2,
将△A1C1B与△BC1C沿BC1折放在同一平面内,则 A1C为所求.
A1C = 62 + ( 2)2 - 2× 6× 2·cos135 = 5 2.
AP=DP= ,1 在Rt△AGE中, E G = 2,1 A E = 1 ,
2
∴AG=
3 2
,在Rt△APG中,GP=
2.
2
∴S△AGD = 42,VAGD—BHC=
1
= 3 S△AGD ·EG=
2,
24
∴V=VAGD—BHC+2VE—AGD=
2,VE—AGD=VF—BHC
4
2 .故应选A.)
3
考点四 旋转体的体积
V圆柱下=Sh=π×42×1=16π(cm3).
所以此组合体体积V=V圆锥+V圆柱中+V圆柱下
= 8π +40π+16π= 17π6 (cm3).
3
3
考点五 曲面最值
(湛江市11年高三调研)如图,
在直三棱柱ABC—
2018高考数学文科一轮复习讲义 3.2 第二节 空间几何体的表面积与体积
第二节 空间几何体的表面积与体积【考点点知】知己知彼,百战不殆新课标中空间几何体的表面积和体积有加强的趋势,考试的要求也有所提高.重点是柱体和多面体,特别是不规则几何体的表面积和体积的计算,高考中一般以选择、填空、解答题的形式出现,难度不大,但是常与其他问题一起考查.体现了“多一点想,少一点算”的命题思想.考点一: 直棱柱、正棱柱、正棱锥、正棱台的概念1.侧棱垂直于底面的棱柱叫做直棱柱.底面是正多边形的直棱柱叫做正棱柱.2.如果一个棱锥的底面是正多边形,并且顶点在底面上的正投影是底面中心,我们称这样的棱锥为正棱锥.正棱锥的侧棱长相等.3.正棱锥被平行于底面的平面所截,截面和底面的部分叫做正棱台.4. 棱柱的分类(1)按底面多边形的边数分类:三棱柱,四棱柱,……,n 棱柱. (2)按侧棱与底面的位置关系分类: 斜棱柱(侧棱与底面不垂直)棱柱 正棱柱(底面为正 直棱柱(侧棱垂直于底面) 多边形的直棱柱) 其他直棱柱考点二: 直棱柱、正棱锥、正棱台的侧面积一些简单的多面体可以沿着多面体的某些棱将它剪开面成平面图形,这个平面图形叫做该多面体的平面展开图.1.直棱柱的侧面展开图是矩形, 这个矩形的长等于棱柱的底面周长c ,宽等于直棱柱的高h ,因此直棱柱的侧面积是S ch =直棱柱侧.2.棱锥的侧面展开图是由各个侧面三角形组成的,展开图的面积就是棱锥的侧面积.如果正棱锥的底面周长为c ,斜高(即侧面等腰三角形底面上的高)为h ',则它的侧面积是12S ch '=正棱锥侧. 3.若正棱台的上、下底面的周长分别为,c c ',斜高为h ',则它的侧面积是1()2S c c h ''=+正棱台侧. 考点三: 圆柱、圆锥、圆台的侧面积1.圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图.它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高.这个长方形又叫圆柱的侧面展开图.图1所示, 就是圆柱的平面展开图.若圆柱的底面圆周为c ,底面圆半径为r ,母线长为l ,则圆柱体的侧面积公式2S cl rl π==圆柱侧.2.圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图.它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图.具体图形见图2所示,就是圆锥的平面展开图.若圆锥的底面圆周长为c ,底面圆半径为r ,母线长为l ,则圆锥体的侧面积公式12S cl rl π==圆锥侧.3.圆台锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆台体剪开铺平,就得到圆台锥的平面展开图.它是由一个半径为圆台锥体的母线长,两弧长分别等于圆台体上下底面圆的周长的扇环形和两个圆组成的,这个扇环形又叫圆台的侧面展开图.具体图形见图3所l c 'c c c cc l r r l cc 图1 图2 图3 示,就是圆台的平面展开图.若圆台的上、下底面圆周分别为,c c ',上、下底面圆半径为分别,r r ',母线长为l ,则圆台锥体的侧面积公式1()()2S c c l r r l π''=+=+圆台侧. 圆柱、圆锥、圆台的表面积就是侧面和底面的和.考点四: 祖暅原理与几何体体积1.祖暅原理:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.2.长方体的长、宽、高分别为,,a b c ,底面积为S ,高为h ,那么它的体积为V abc =长方体或V Sh =长方体.3.柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh =柱体.4.棱锥的底面积为S ,高为h ,那么它的体积为13V Sh =锥体. 5.台体(棱台、圆台)的体积可以转化为锥体的体积来计算,如果台体的上、下底面面积分别为S '、S ,高是h ,那么它的体积为1()3V h S S '=台体. 考点五: 球的体积与表面积1.引理.球面内接圆台(圆台上、下底面是球的两个平行截面)的高为h ,球心到母线的距离为P ,那么圆台的侧面积为2πPh .2.定理.球面面积等于它的大圆面积的4倍,即24S R π=球面.3.球体积公式V =34πR 3. 【考题点评】分析原因,醍醐灌顶 例1.(基础·2007湛江市模拟)如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为 (不考虑接触点)A . 6+3+πB . 18+3+π4C . 18+23+πD . 32+π正视图 侧视图俯视图SACBOPABCD OM N E h 2h 1h 1F思路透析:由三视图可知,该几何体为一个底边边长为2的等边三角形,高为3的正三棱柱与一个半径为1的球组合而成的.该几何体的表面积222232341184S ππ=+⨯⨯+⨯=+, 故应选C . 点评:由三视图想象几何体时要根据"长对正,宽相等,高平齐"的基本特征,想象视图中每部分对应的实物部分的形象.特别注意几何体中与投影面垂直或平行的线及面的位置.例2.(基础·2007宁夏卷文科11)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A.π B.2π C.3π D.4π思路透析:如右图所示,OS=OA=OB=OC=r ,又SO ⊥平面ABC, 可得SO 的长即为三棱锥S-ABC 的高.∵ACBC ⊥, AC =,∴BC AC ==,∴3243411)32S ABCr V V r ππ-==⨯⨯⨯球三棱锥,故应选D.点评:考生不能够定位球心的位置,而使球的半径求解错误,部分考生书写锥体积公式时遗忘了三分之一,增加了检验的时间而出现解答基本题的延时现象.灵活抓住线面垂直的关系,迅速定位球心位置找出求半径与三棱锥棱长间的关系,可降低出错率.例3.(综合·2007宁夏卷理科12)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =()2:2思路透析:如图所示,正四棱锥P-ABCD 的一个侧面与正四面体P-CDF 的一个侧面重合,过点P 作PO ⊥面ABCD 于点O, 取CD 、PF 边的中点M 、N,连结MN,则MN=PO=1h , 过点P 作PE ⊥FM 于点F , 则PE ⊥平面FCD, 即PE=2h , 又∵平面PAB//平面FCD, ∴2h h =,设棱长为a ,则在PMF ∆中1122PMF S PF MN FM PE ∆=⋅=⋅,∴122h MN MF h PE PF ===,∴12::2:2h h h =, 故应选B. 点评:不少考生的解题过程中看错了三条高线各自对应的几何体,使求得的结论出现颠倒的现象,仍有不少考生不能迅速定位高线的位置,找出各条高线间的相互关系.无论是什么样的几何体的高,在分析与求解时均可以化归为一个三角形的高去研究,本题中出现的三个高可以化归为一个三角形中的两条高线,通过面积公式去求得高线长之比. 例4.(综合·2006江苏9题)两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个(C )3个 (D )无穷多个思路透析:如图所示,在正方体的俯视图中,可得正八面体中 截面四边形正方形ABCD 的内接于另一个 正方形,此正方形ABCD 的面积的范围为1[,1)2S ∈∴八面体的体积1111[,)363V S =⨯∈, 即其体积的可能 值有穷多个.故应选D.点评:本题考查了正方体内接几何体的空间模型建构.通过俯视图的作图来化归分析几何问题,解决了此开放性问题.很多立体几何问题如果直接求解,空间想象不一定会很到位, 而通过三视图中的正视图或俯视图等其中之一去思考,可以实现从立几到平几间的直接过渡,巧妙解决立几问题.例5.(创新探究·2007广东卷文科17)已知某几何体的俯视图是 如图所示的矩形,正视图(或称主视图)是一个底边长为8、 高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、 高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S思路透析:由已知可得该几何体是一个底面为矩形,高为4,顶点 在底面的射影是矩形中心的四棱锥V-ABCD ;(1)()1864643V =⨯⨯⨯= (2)该四棱锥有两个侧面V AD. VBC 是全等的等腰三角形,且BC 边上的高为1h == 另两个侧面V AB. VCD 也是全等的等腰三角形,AB边上的高为25h ==,因此112(685)4022S =⨯⨯⨯⨯=+点评:本题考查了对四棱锥的三视图所表示的立体模型的识别,多数考生将高为4的等腰三角形理解为四棱锥的一个侧面,将4视侧面上的斜高而求解锥体的表面积与体积,没有正确分析得出锥体的主视图与左视图中三角形的高即为锥体的高的结论.例6.(创新探究·2007广东卷理科19)如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值 思路透析:(1)由折起的过程可知,P E ⊥平面ABC ,ABC S ∆=2254BEFBDC x S S ∆∆=⋅=21(9)12x -(0x << (2)∵21'())4V x x -, ∴(0,6)x ∈时,'()0v x > ,V(x)单调递增;6x <<'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值 (3)过F 作MF//AC 交AD 与M, 则,21212BM BF BE BEMB BE AB BC BD AB=====,PM=MF BF PF ====在△PFM 中, 84722cos 427PFM -∠==, ∴异面直线AC 与PF 所成角的余弦值为27;点评:考生对于空间几何体中体积最值的导数法求解在心理上存在很大的不适应,对异面直线所成角的作图构建把握不好,空间向量的应用时点的坐标求解及运算等均出现“马虎”性的错误.立几的综合性问题解题中要注意规范化,注意对解析式的研究,综合各种数学思想,从整体上去推理论证.【画龙点睛】探索规律,豁然开朗 1.规律总结:①首先从图形上理解三者之间的关系, 以棱台为中间图形, 当棱台的上底面与下底面为全等的多边形时,棱台视作为棱柱,此时上下底面的周长相等c c '=; 当棱台的上底面多边形缩小为一个点时,棱台视作为棱锥,此时上底面的周长为0c '=.②由此可得: 011()22c cc S ch S c c h S ch ''=='''=←−−−=+−−−→=直棱柱侧正棱台侧正棱锥侧 . ③分析过程侧重于三维实物与平面图形的转化,强调的是一种基于观察、实验操作基础上的实践能力.建议多从生活实际出发,考虑日常所常见的几何体的平面展开图,感受数学来自现实生活.(3)当柱体的上底缩小时,几何体可以近似看作是台体, 台体的上底进一步缩小,当缩小为一个点时,该几何体为锥体.还可以从台体出发作公式上和几何体上的探讨,如当台体的上底与下底相同时,几何体为柱体,当上底的缩为一个点时,几何体为一个锥体,反应到体积公式中可得下列的变化关系:11()33S S S V Sh V h S S V Sh ''=='=←−−−=+−−−→=柱体台体锥体.(4)正确运用各种方式,在图形的展开与折叠中求几何体的表面积,计算侧面积中要弄清展开图的形状及侧面展开图中各线段与原几何体的关系.在等价转化中求几何体的体积以及利用几何体的分割和补形的数学方法.计算体积的关健是根据条件找出相应的底面积和高,要充分利用多面体及旋转体的轴截面将空间问题转化为平面问题.2.学以致用:(1)在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A92π B 72π C 52π D 32π (2)过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A 1:2:3B 1:3:5C 1:2:4D 1:3:9(3)一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是(4)如图,已知正三棱柱111ABC A B C -的底面边长为1, 高为8,一质点自A 点出发,沿着三棱柱的侧面绕行 两周..到达1A 点的最短路线的长为.答案:(1)D 解析:213(1 1.51)32V V V r ππ=-=+-=大圆锥小圆锥,故应选D . (2)B 解析:从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l ==12312132::1:4:9,:():()1:3:5S S S S S S S S =--=,故应选B .(3)109Q 解析:22223,S R R R Q R πππ=+===全32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==.(4)10解析:如图,把正三棱柱展开成两个侧面积, AA 1//1A "A ,连接AA "1即为绕在正三棱柱侧面上两周的最短距离,在"∆11A AA Rt 中,6,8111="=A A AA . 则,101="AA 即值 A 从正三棱柱侧面绕绕绕两周到A 1的最短距离为10. 3.易错分析:(1)棱锥的考查点为两个特征三角形,熟悉棱锥体的几何结构可以进一步解决此问题; (2)棱柱问题常以综合问题面目出现, 此类问题以多面体、正方体、长方体综合性问题综合考查为主, 此类问题的得分往往不能得全, 解题过程中环节不齐, 思维漏洞较多, 平时应多作规范化训练.(3)对球的考察一般不会出现在大题目中,而往往以应用题为背景做简单的考察,考生要牢记表面积和体积公式(不管试卷是否提供)、熟悉一些地理术语,要求考生具有一定的空间想象能力、抽象能力以及分析问题的能力和处理问题的一定技巧;(4)对于图形的翻折问题,关健是利用翻折前后的不变量,另外,球和正方体,长方体,三棱锥的组合问题,应引起高度重视,而且有些问题也可以通过补形法转化成球内接正方体或内接长方体问题.【能力训练】学练结合,融会贯通一、选择题:1.下图是一个空间几何体的三视图,根据图中尺寸(单位:cm ),可知几何体的表面积是( )A.218cm +B.2 2cmC.218cmD.26cm +2. 棱长都是1的三棱锥的表面积为( )ABCD3.已知高为3的直三棱柱ABC —A 'B 'C '的底面边长为1的 正三角形(如图所示),则三棱锥B '—ABC 的体积为( ).(A)41 (B)21 (C)63 (D)432222俯视图侧视图正视图33CABC 'A 'B '4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A 25πB 50πC 125πD 都不对 5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A23 B 76 C 45 D 566.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A 224cm π,212cm π B 215cm π,212cmπC 224cm π,236cm π D 以上都不正确二、填空题:7. 球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍8.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________9.若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆, 则这个圆锥的底面的直径为_______________10.如图,一个简单空间几何体的三视图其主视图与左视图是边长 为2的正三角形、俯视图轮廓为正方形,则其体积是____.三、解答题:11.(如图)在底半径为2,母线长为4求圆柱的表面积12. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?13.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,CD =2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积14.一个几何体的三视图如右图所示,其中正视图和侧视 图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积; (Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论;正视图侧视图俯视图【能力训练】参考答案 一、选择题:1. A2. A3. D4. B5. D6. A 二、填空题:7. 88.316a 9.10. 334 三、解答题:11.解析:圆锥的高h =1r =,22(2S S S πππ=+=+=+侧面表面底面 12.解析:'1(),3V S S h h =+=319000075360024001600h ⨯==++.13.解析:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=V V V =-圆台圆锥222112211148()333r r r r h r h πππ=++-=. 14.解析::(Ⅰ)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的 正方形,高为CC 1=6,故所求体积是7266312=⨯⨯=V . (Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍, 故用3个这样的四棱锥可以拼成一个棱长为6的正方体, 其拼法如图2所示.证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的 正方形,于是D D AA C A ABB C ABCD C V V V 1111111---== 故所拼图形成立.BC DC 1图1A BC DD 1A 1B 1C 1 图2。
第一轮复习单元讲座(人教版)--第9讲 空间几何体的表面积和体积
普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座9)—空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2009年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
高考数学一轮复习教学案空间几何体的表面积和体积
第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积 体积 圆柱 S 侧=2πrl V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2圆台 S 侧=π(r 1+r 2)lV =13(S 上+S 下+S 上·S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上·S 下)h球 S 球面=4πR 2V =43πR 3[小题能否全取]1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a , ∴S 全=34a 2+3×12×⎝⎛⎭⎫22a 2=3+34a 2. 2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例1](·安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答]由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD中,作DE⊥AB,垂足为E,则DE=4,AE=3,则AD=5.所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案]92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(·河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A.3 B .2 3 C .43 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝⎛⎭⎫12×1×1=4.几何体的体积典题导入[例2] (1)(·广东高考)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)(·山东高考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V 圆锥=π×32×4-13π×32×4=24π.答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1)(·长春调研)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为13Sh -13·12S ·12h -13·12Sh 13Sh =14.(·浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例3] (·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1)(·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2)(·潍坊模拟)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝⎛⎭⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62. 故球O 的体积V =4πR 33=6π.答案:(1)D (2)6π1.(·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×P A =13×12×2×2×2=43. 2.(·山西模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O -ABCD 的高等于42-⎝⎛⎭⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51. 3.(·马鞍山二模)如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.(·济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. (·江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝⎛⎭⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.(·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.(·上海高考)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π.答案:33π 9.(·郑州模拟)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.(·江西八校模拟)如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ; (2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2, ∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF , ∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D =2×13×12×(3)2×1+12×(3)2×2=4.11.(·大同质检)如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB =4,CD =2,侧面P AD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为P A 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD . 所以四边形BCDF 为平行四边形. 所以DF ∥BC .在△P AB 中,PE =EA ,AF =FB ,所以EF ∥PB . 又因为DF ∩EF =F ,PB ∩BC =B , 所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC . (2)取AD 的中点O ,连接PO . 在△P AD 中,P A =PD =AD =2, 所以PO ⊥AD ,PO = 3.又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2, AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4.故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433.12.(·湖南师大附中月考)一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积;(2)证明:A1C⊥平面AB1C1.解:(1)几何体的直观图如图所示,四边形BB1C1C是矩形,BB1=CC1=3,BC=B1C1=1,四边形AA1C1C是边长为3的正方形,且平面AA1C1C垂直于底面BB1C1C,故该几何体是直三棱柱,其体积V=S△ABC·BB1=12×1×3×3=3 2.(2)证明:由(1)知平面AA1C1C⊥平面BB1C1C且B1C1⊥CC1,所以B1C1⊥平面ACC1A1.所以B1C1⊥A1C.因为四边形ACC1A1为正方形,所以A1C⊥AC1.而B1C1∩AC1=C1,所以A1C⊥平面AB1C1.1.(·潍坊模拟)已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC 把△ACD折起,则三棱锥D-ABC的外接球表面积等于()A.8πB.16πC.482πD.不确定的实数解析:选B设矩形长为x,宽为y,周长P=2(x+y)≥4xy=82,当且仅当x=y=22时,周长有最小值.此时正方形ABCD沿AC折起,∵OA=OB=OC=OD,三棱锥D-ABC的四个顶点都在以O为球心,以2为半径的球上,此球表面积为4π×22=16π.2.(·江苏高考)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.答案:63.(·深圳模拟)如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少? (2)当AD ⊥BC 时,求α的大小.解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD , 又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD . ∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC=26·OD ·OC =26·CD ·cos α·CD ·sin α =23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号.∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD , 又AD ⊥BC , ∴AD ⊥平面BOC . ∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°, ∴Rt △ABD ∽Rt △BDO . ∴OD BD =BD AB. ∴OD =BD 2AB =(2)22=1,在Rt △COD 中,cos α=OD CD =12,得α=60°.1.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A .(6-33)πB .(8-43)πC .(6+33)πD .(8+43)π解析:选A 设球O 1、球O 2的半径分别为r 1、r 2, 则3r 1+r 1+3r 2+r 2=3, r 1+r 2=3-32,从而4π(r 21+r 22)≥4π·(r 1+r 2)22=(6-33)π. 2.已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A .8R 2 B .6R 2 C .4R 2D .2R 2解析:选A 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2,所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立.3.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π解析:选A 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中,正方体的棱长为2,半圆柱的底面半径为1,母线长为2.故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.(·湖北高考)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈ 3169VB .d ≈ 32V C .d ≈3300157V D .d ≈32111V 解析:选D ∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.5.(·上海高考)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是________.解析:如图过点B 在平面BAD 中作BE ⊥AD ,垂足为E ,连接CE ,因为BC ⊥AD ,所以AD ⊥平面BCE .所以四面体ABCD 的体积为13S △BCE ·AD .当△BCE 的面积最大时,体积最大.因为AB +BD =AC +CD =2a ,所以点B ,C 在一个椭圆上运动,由椭圆知识可知当AB =BD =AC =CD =a 时,BE =CE =a 2-c 2为最大值,此时截面△BCE 面积最大,为12×2a 2-c 2-1=a 2-c 2-1,此时四面体ABCD 的体积最大,最大值为13S △BCE ·AD =2c3·a 2-c 2-1.答案:23c a 2-c 2-1。
高三数学一轮复习(名师微博+考点详解+易错矫正)空间几何体的表面积和体积课件 理
变式训练2 (2012·东莞模拟)某几何体的三视图如图所 示,则该几何体的体积等于( )
第二十九页,共43页。
28 A. 3 π C.43π+8
16 B. 3 π D.12π
第三十页,共43页。
解析:由三视图可知,该几何体是底面半径为2,高为2 的圆柱和半径为1的球的组合体,则该几何体的体积为 π×22×2+43π=238π.
第九页,共43页。
基础自测
1.母线长为1的圆锥的侧面展开图的圆心角等于43π,则该 圆锥的体积为( )
22 A. 81 π
8 B.81π
45 C. 81 π
10 D.81π
第十页,共43页。
解析:设圆锥的底面半径为r,则21πr=43π.
∴r=23.
∴圆锥的高h=
1-232=
5 3.
∴圆锥的体积V=13πr2h=4815π.
第七页,共43页。
正方体的体对角线长等于球的直径.球与旋转体的组合,通 常作它们的轴截面进行解题,球与多面体的组合,通过多面 体的一条侧棱和球心或“切点”、“接点”作出截面图.
第八页,共43页。
(2)等积法:等积法包括等面积法和等体积法.等积法的 前提是几何图形(或几何体)的面积(或体积)通过已知条件可 以得到,利用等积法可以用来求解几何图形的高或几何体的 高,特别是求三角形的高和三棱锥的高.这一方法回避了具 体通过作图得到三角形(或三棱锥)的高,而通过直接计算得 到高的数值.
算公式.
为选择、填空题.
第二页,共43页。
知识梳理 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
□ S圆柱侧= 1 ______
第三页,共43页。
□ S圆锥侧= 2 ____ □ S圆台侧= 3 ____
高三数学一轮复习优质课件1:8.1 空间几何体的表面积与体积
1.(1)(2014·高考安徽卷)一个多面体的三视图如 图所示,则该多面体的表面积为( A )
A.21+ 3 C.21
B.18+ 3 D.18
(2)(2015·江西八校联考) 若一个圆台的正视图如图所示,则 其表面积等于__5_π__+__3__5_π________.
解析:(1)由几何体的三视图可知,该几何体的直观图如图 所示.
(2)(2015·长春市调研)某几何体的三视图如图所示,则它的表 面积为( A )
A.2+1+2 5π C.2+(1+ 5)π
B.2+1+22 5π D.2+2+2 5π
[解析] (1)该几何体如图所示,长方体的长、宽、高分别 为 6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边 长分别为 3 cm,4 cm,5 cm,所以表面积 S=[2×(4×6+
第八章 立体几何
8.1 空间几何体的表面积与体积
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面 展开图
侧面
S圆柱侧=
积公式 ___2_π__rl____
S圆锥侧= ____π_rl_____
____πS__(圆r_台+_侧_r_=′)_l____
君不见,黄河之水天上来,奔流到海不复回。 君不见,高堂明镜悲白发,朝如青丝暮成雪。 人生得意须尽欢,莫使金樽空对月。 天生我材必有用,千金散尽还复来。 烹羊宰牛且为乐,会须一饮三百杯。 岑夫子,丹丘生,将进酒,杯莫停。 与君歌一曲,请君为我倾耳听。 钟鼓馔玉不足贵,但愿长醉不复醒。 古来圣贤皆寂寞,惟有饮者留其名。 陈王昔时宴平乐,斗酒十千恣欢谑。 主人何为言少钱,径须沽取对君酌。 五花马,千金裘,呼儿将出换美酒,与尔同销万古愁
2018版高考数学一轮复习课件:第7章 第2节 空间几何体的表面积与体积
上一页
返回首页
下一页
第十七页,编辑于星期六:二十二点 二十八分。
高三一轮总复习
[规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2) 简单组合体:应搞清各构成部分,并注意重合部分的处理.
2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发 现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条 件求解.
上一页
返回首页
下一页
第二十三页,编辑于星期六:二十二点 二十八 分。
高三一轮总复习
由于 V 圆柱=π·AB2·BC=π×12×2=2π, V 圆锥=13π·CE2·DE=13π·12×(2-1)=π3, 所以该几何体的体积 V=V 圆柱-V 圆锥=2π-π3=53π. (2)由三视图知,四棱锥的高为 3,底面平行四边形的一边长为 2,对应高为 1, 所以其体积 V=13Sh=13×2×1×3=2.]
此时 2r=4>3,不合题意. 因此球与三棱柱的上、下底面相切时,球的半径 R 最大. 由 2R=3,即 R=32. 故球的最大体积 V=43πR3=92π.]
上一页
返回首页
下一页
第二十九页,编辑于星期六:二十二点 二十八 分。
高三一轮总复习
[迁移探究 1] 若本例中的条件变为“直三棱柱 ABC-A1B1C1 的 6 个顶点都在球 O 的球面上”,若 AB=3,AC=4,AB⊥AC,AA1=12,求球 O 的表面积.
高三一轮总复习
△BCD 为等腰三角形,E 为 BC 的中点,连接 AE,DE, 又 AD=BE=EC=1,DE=2, 所以 BD=CD= 5,AE= 5. 则 S△ACD=S△ABD=12×1× 5= 25,S△ABC=12×2× 5= 5,S△BCD=2. 故 S 表=S△ACD+S△ABD+S△BCD+S△ABC=2+2 5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座9)—空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测008年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。
∴点O 在∠BAD 的平分线上。
(2)∵AM=AA 1cos3π=3×21=23∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:柱体的表面积、体积综合问题例3.(2000全国,3)一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D 。
点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。
例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。
∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S, V 1=31h(S+41S+41⋅S )=127Sh V 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5。
点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。
最后用统一的量建立比值得到结论即可。
题型3:锥体的体积和表面积PACDOE 例5.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。
在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO ,于是PO=BOtan60°=3,而底面菱形的面积为23。
∴四棱锥P -ABCD 的体积V=31×23×3=2。
点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。
在能力方面主要考查空间想象能力。
例6.(2002京皖春文,19)在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55。
(如图所示) (Ⅰ)证明:SC ⊥BC ;(Ⅱ)求侧面SBC 与底面ABC 所成二面角的大小; (Ⅲ)求三棱锥的体积V S -AB C 。
解析:(Ⅰ)证明:∵∠SAB =∠SAC =90°, ∴SA ⊥AB ,SA ⊥A C 。
又AB ∩AC =A , ∴SA ⊥平面AB C 。
由于∠ACB =90°,即BC ⊥AC ,由三垂线定理,得SC ⊥BC 。
(Ⅱ)解:∵BC ⊥AC ,SC ⊥BC 。
∴∠SCA 是侧面SCB 与底面ABC 所成二面角的平面角。
在Rt △SCB 中,BC =5,SB =55,得SC =22BC SB -=10。
在Rt △SAC 中AC =5,SC =10,cos SCA =21105==SC AC , ∴∠SCA =60°,即侧面SBC 与底面ABC 所成的二面角的大小为60°。
(Ⅲ)解:在Rt △SAC 中,∵SA =755102222=-=-AC SC ,S △ABC =21·AC ·BC =21×5×5=225, ∴V S -ABC =31·S △ACB ·SA =631257522531=⨯⨯。
点评:本题比较全面地考查了空间点、线、面的位置关系。
要求对图形必须具备一定的洞察力,并进行一定的逻辑推理。
题型4:锥体体积、表面积综合问题例7.ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GB 垂直于正方形ABCD 所在的平面,且GC =2,求点B 到平面EFC 的距离?解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG 。
设点B 到平面EFG 的距离为h ,BD =42,EF =22,CO =344232×=。
GO CO GC =+=+=+=222232218422()。
而GC ⊥平面ABCD ,且GC =2。
由V V B EFG G EFB --=,得16EF GO h ··=13S EFB △· 点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。
构造以点B 为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。
例8.(2006江西理,12)如图,在四面体ABCD中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDCV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC ,而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。
题型5:棱台的体积、面积及其综合问题例9.(2002北京理,18)如图9—24,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h 。
(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的大小; (Ⅱ)证明:EF ∥面ABCD ;(Ⅲ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V =6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) (Ⅰ)解:过B 1C 1作底面ABCD 的垂直平面,交底面于PQ ,过B 1作B 1G ⊥PQ ,垂足为G 。
如图所示:∵平面ABCD ∥平面A 1B 1C 1D 1,∠A 1B 1C 1=90°, ∴AB ⊥PQ ,AB ⊥B 1P .∴∠B 1PG 为所求二面角的平面角.过C 1作C 1H ⊥PQ ,垂足为H .由于相对侧面与底面所成二面角的大小相等,故四边形B 1PQC 1为等腰梯形。
∴PG =21(b -d ),又B 1G =h ,∴tan B 1PG =db h -2(b >d ), ∴∠B 1PG =arctand b h -2,即所求二面角的大小为arctan db h-2. (Ⅱ)证明:∵AB ,CD 是矩形ABCD 的一组对边,有AB ∥CD ,又CD 是面ABCD 与面CDEF 的交线, ∴AB ∥面CDEF 。
∵EF 是面ABFE 与面CDEF 的交线, ∴AB ∥EF 。