2014江苏高三数学一轮复习填空题训练二
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编19:函数的极值与导数
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编19:函数的极值与导数一、填空题1 .(江苏省盐城市2014届高三上学期期中考试数学试题)已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为________.【答案】2ln 22-2 .(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是______. 【答案】21(,]e e -∞+ 3 .(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)对于三次函数32()f x ax bx cx d =+++,定义''()y f x =是函数'()y f x =的导函数.若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数32()26322013sin(1)g x x x x x =-+++-, 则 (2011)(2010)(2012)g g g -+-+++…(2013)g 的值为_______________.【答案】4025二、解答题4 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)已知函数()223241234--++-=x ax x x x f 在区间[]1,1-上单调递减,在区间[]2,1上单调递增. (1)求实数a 的值;(2)若关于x 的方程()m f x =2有三个不同的实数解,求实数m 的取值范围;(3)若函数()[]p x f y +=2log 的图像与x 轴无交点,求实数p 的取值范围.【答案】解:(1)由 ()2101'=⇒=a f 经检验符合 ;(不写检验扣1分) (2)()()()()211'-+--=x x x x f 易知函数在()()()()↓+∞↑↓-↑-∞-,22,11,1,1,所以,函数有极大值()()382,1251-=-=-f f ,有极小值()12371-=f , 结合图像可知:⎪⎭⎫ ⎝⎛--∈38,1237m ; (3)若函数()[]p x f y +=2log 的图像与x 轴无交点,则必须有()()⎩⎨⎧=+>+无解有解10p x f p x f ,即()[]()⎩⎨⎧+=>+的值域内不在p x f y p x f 10max而()[]p p x f +-=+125max ,函数()p x f y +=的值域为⎥⎦⎤ ⎝⎛+-∞-p 125, 所以有:⎪⎪⎩⎪⎪⎨⎧+->>+-p p 12510125,解之得:1217125<<p 5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知函数()ln 3()f x a x ax a =--∈R .(1)当0a >时,求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,且函数21()()()2g x x nx mf x m n '=++∈R ,当且仅当在1x =处取得极值,其中()f x '为()f x 的导函数,求m 的取值范围;(3)若函数()y f x =在区间1(3)3,内的图象上存在两点,使得在该两点处的切线相互垂直,求a 的取值范围.【答案】解:(1)(1)()(0)a x f x x x-'=>, 当0a >时,令()0f x '>得01x <<,令()0f x '<得1x >,故函数()f x 的单调增区间为(01),,单调减区间为(1)+∞,; (2)函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,则(2)1f '=,即2a =-; 所以212()(2)2g x x nx m x=++-,所以322222()m x nx m g x x n x x ++'=++=, 因为()g x 在1x =处有极值,故(1)0g '=,从而可得12n m =--, 则322222(1)(22)()x nx m x x mx m g x x x ++---'==,又因为()g x 仅在1x =处有极值, 所以2220x mx m --≥在(0)+∞,上恒成立, 当0m >时,由20m -<,即0(0)x ∃∈+∞,,使得200220x mx m --<, 所以0m >不成立,故0m ≤,又0m ≤且(0)x ∈+∞,时,2220x mx m --≥恒成立, 所以0m ≤;(注:利用分离变量方法求出0m ≤同样给满分.)(3)由(1)()(0)a x f x x x-'=>得(01),与(1)+∞,分别为()f x 的两个不同的单调区间, 因为()f x 在两点处的切线相互垂直,所以这两个切点一定分别在两个不同单调区间内故可设存在的两点分别为1122(,())(,())x f x x f x ,,其中121133x x <<<<, 由该两点处的切线相互垂直,得1212(1)(1)1a x a x x x --⋅=-,。
2014届一轮复习数学试题选编22直线与圆(学生版)
2
y 2 4 上有且仅有四个点
到直线 12x-5y—c=0 的距离为 1,则实数 c 的取值范围是___________
8 . (江苏省无锡市 2013 届高三上学期期末考试数学试卷)已知圆 Cl: ( x 1)
(第 13 题图)
x
17( .江苏省泰州市 2012-2013 学年度第一学期期末考试高三数学试题) 已知点 P(t,2t)( t 0 )
是圆 C: x y 1内一点,直线 tx+2ty=m 圆 C 相切,则直线 x+y+m=0 与圆 C 的关系是
2 2
________________
18 . ( 2012-2013 学 年 度 苏 锡 常 镇 四 市 高 三 教 学 情 况 调 研 ( 二 ) 数 学 试 题 ) 已 知 圆
21. (南京市、淮安市 2013 届高三第二次模拟考试数学试卷)在平面直角坐标系 xOy 中,设过
原点的直线与圆 C: ( x 3)2 ( y 1)2 4 交于 M、N 两点,若 MN 2 3 ,则直线的斜率 k 的取值范围是______.
22. (江苏省 2013 届高三高考压轴数学试题)已知 A( — 2,0),B(0,2),实数 k 是常数,M、N
10 . ( 江 苏 省 盐 城 市 2013 届 高 三 10 月 摸 底 考 试 数 学 试 题 ) 当 且 仅 当 a r
b 时,圆
x 2 y 2 r 2 r 0 上恰好有两点到直线 3x 4 y 10 0 的距离为 1,则 b a 的值为
1
________.
l2 : y
2014届江苏省扬州中学高三数学模拟训练
2014届江苏省扬州中学高三数学模拟训练(4.12)一、填空题:1. 已知集合{}1,2,3,4A =--,{}2|,5B x x R x =∈<,则AB = . {}1,2-2. 已知复数34z i =-,则z . 53. 设()f x 是定义在R 上的奇函数且(4)(3)2f f +-=,则(3)(4)f f-= ..2- 4. 已知平面向量),2(),3,12(m b m a =+=,且a ∥b ,则实数m 的值等于 5. 设等比数列{}n a 的公比q =2,前n 项和为n S ,则43S a = 1546. 已知正方形ABCD 的四个顶点在椭圆)(012222>>=+b a by a x 上,AB ∥x 轴,AD 过左焦点F ,则该椭圆的离心率为 .7.右图是某小组在一次测验中的数学成绩的茎叶图,则平均成绩是______78 8. 函数sin()(0)6y x πωω=+>的图象关于直线3x π=对称,则ω的最小值为 19.“一条直线与两个相交平面都平行”是“这条直线与这两个平面的交线平行”的_________条件。
充分不必要 10. 给出下列四个结论:①命题“2,0"x R x x ∃∈->的否定是“2,0x R x x ∀∈-≤”; ②“若22,am bm <则a b <”的逆命题为真; ③函数()sin f x x x =-(x R ∈)有3个零点;④对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x >0时,()0,()0,f x g x ''>> 则x <0时()().f x g x ''>其中正确结论的序号是 .(填上所有正确结论的序号)①④11. ⊙A :(x -3)2+(y -5)2=1,⊙B :(x -2)2+(y -6)2=1,P 是平面内一动点,过P 作⊙A 、⊙B 的切线,切点分别为D 、E ,若||),0,0(|,|||PO O PE PD 则=的最小值为 .223 12. 等边三角形ABC 中,P 在线段AB 上,且AP →=λAB →,若CP →·AB →=P A →·PB →,则实数λ的值是________.1-2213. 给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,当1+n a =______时,1221++++++=n n n a a a y 取得最大值。
2014届高三数学一轮复习 正弦定理和余弦定理提分训练题
正弦定理和余弦定理一、选择题1.在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( ). A .135° B .105° C .45° D .75° 解析 由正弦定理知BCsin A =AB sin C ,即2sin A =3sin 60°,所以sin A =22,又由题知,BC <AB ,∴A =45°. 答案 C2.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的大小为( ).A .60°B .90°C .120°D .150° 解析 由(a +b -c )(a +b +c )=ab ,得(a +b )2-c 2=ab , ∴c 2=a 2+b 2+ab =a 2+b 2-2ab cos C , ∴cos C =-12,∴C =120°.答案 C3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a =λ,b =3λ(λ>0),A =45°,则满足此条件的三角形个数是( )A .0B .1C .2D .无数个 解析:直接根据正弦定理可得asin A =bsin B,可得sin B =b sin A a =3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0. 答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴s in A cos A +cos 2B =sin 2B +cos 2B =1. 答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )C. 12D. 12- 解析 2122cos 2222222=+-≥-+=ba c c abc b a C ,故选C. 答案 C6.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A∈⎝⎛⎦⎥⎤0,π3.答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎪⎨⎪⎧a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A.答案 A 二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2.答案29. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________. 解析:根据正弦定理,a sin A =csin C,由3a =2c sin A ,得a sin A =c32,∴sin C =32,而角C 是锐角.∴角C =π3. 答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得x +2+y 2= 2x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动, 所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2.答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A +tan Ctan B的值是________.解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tanC tan B=4.法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab,即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c2a 2+b 2-c 2=4.答案 4 三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C ,法一 如图(1),图(1)a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0), ∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A =b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解析:由余弦定理b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 2π3=a 2+c 2+ac =(a +c )2-ac . 又∵a +c =4,b =13,∴ac =3.联立⎩⎪⎨⎪⎧a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b .(1)求sin Csin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.解析 (1)由正弦定理,设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A ,因此sin Csin A =2.(2)由sin C sin A =2得c =2a .由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5.从而a =1,因此b =2.。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______.【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC 的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.【答案】314 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅=,则tan tan AB= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC ∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,AB =||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC,=, 12AE EB = , 若12BD AC ⋅=- , 则⋅=_____.【答案】43-8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n ==,则AE =_____________________. 【答案】1255m n +9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O 是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__.【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量n m --==若),3,2(),2,1(与2+共线(其中,,0mm n R n n∈≠且)则等于_ .【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c 都是单位向量,且a b c += ,则a c ⋅的值为_________.【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-14.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知ABC ∆是边长为4的正三角形,D 、P是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】15.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上【答案】B16.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知)2sin ,2(),sin,1(2x x ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =_____. 【答案】1;17.(江苏省泰州中学2014届第一学学期高三数学摸底考试)在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为__________.【答案】218.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅=________.【答案】74-19.(江苏省南莫中学2014届高三10月自主检测数学试题)已知向量a 的模为2,向量e 为单位向量,)(-⊥,则向量a 与e 的夹角大小为_______.【答案】3π; 20.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)已知向量a 与b 的夹角为60º,且|a |=1,|b |=2,那么2()+a b 的值为________.【答案】721.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____ 300lABCP【答案】222.(江苏省泰州市姜堰区张甸中学2014届高三数学期中模拟试卷)已知平面向量(1,2)a = ,(1,3)b =-,则a与b夹角的余弦值为___________【答案】22; 23.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知,是非零向量且满足a b a ⊥-)(2,b a b ⊥-)(2,则a 与b 的夹角是________.【答案】3π24.(江苏省扬州中学2014届高三开学检测数学试题)已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 ▲ .【答案】125.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b的夹角为π3,则|→a +2→b |=_______【答案】26.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)已知向量a =(2,1),a ·b =10,|a +b |=则|b |=__________【答案】527.(江苏省盐城市2014届高三上学期期中考试数学试题)设向量(1,),(3,4)a x b ==- ,若//a b ,则实数x 的值为________.【答案】43-28.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =________. 【答案】1-29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)若等腰梯形ABCD中,//AB CD ,3AB =,BC =45ABC ∠=,则AC BD ⋅的值为____________【答案】330.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)设x ∈R,向量(,1),(3,2)x ==-a b 且⊥a b ,则x = ______.【答案】2331.(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)设平面向量(1,2)a = ,与向量(1,2)a =共线的单位向量坐标为_______.【答案】(,55或(55-- 32.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知向量(12,2)a x =-,()2,1b - =,若→→b a //,则实数x =______.【答案】25二、解答题33.(江苏省南莫中学2014届高三10月自主检测数学试题)设(,1)a x = ,(2,1)b =- ,(,1)c x m m =--(,x m ∈∈R R ).(Ⅰ)若a 与b的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<-.【答案】(1)由题知:210a b x ⋅=-< ,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-(2)由a c a c +<-知,0a c ⋅< ,即(1)[(1)]0x x m ---<;当2m <时,解集为{11}x m x -<<; 当2m =时,解集为空集;当2m >时,解集为{11}x x m <<-34.(江苏省徐州市2014届高三上学期期中考试数学试题)设向量(2,sin ),(1,cos ),a b θθθ== 为锐角.(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.【答案】解:(1)因为a ·b =2 + sin θcos θ =136 , 所以sin θcos θ = 16, 所以(sin θ +cos θ)2= 1+2sin θcos θ = 34 .又因为θ为锐角,所以sin θ + cos θ = 233(2)因为a ∥b ,所以tan θ = 2,所以sin2θ = 2sin θcos θ = 2sin θcos θsin 2θ+cos 2θ = 2tan θtan 2θ+1 = 45 , cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-331035.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 【答案】(1)当13=λ时,13AP AB = ,2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+= .∴||CP =(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λ ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λ即2222212a a a a -+λ≥-λ+λ,∴21202λ-λ+≤,∴2222≤λ≤.又00≤λ≤,∴212≤λ≤. 36.(江苏省无锡市2014届高三上学期期中调研考试数学试题)已知向量,m n的夹角为45︒,则||1,||m n = 又2,3a m n b m n =+=-+.(1)求a 与b 的夹角;(2)设,2c ta b d m n =-=-,若//c d ,求实数t 的值.【答案】37.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<< 是平面上的两个向量,若向量a b + 与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅= ,且4tan 3β=,求tan α的值.【答案】(Ⅰ)由题设可得()()0,a b a b +⋅-=即220,a b -=代入,a b坐标可得22222cos +(1)sin cos sin 0αλαββ---=.222(1)sin sin 0,λαα∴--=0,0,22παλλ<<>∴= .(Ⅱ)由(1)知,4cos cos sin sin cos(),5a b αβαβαβ⋅=+=-=02παβ<<< ∴ 02παβ-<-<33sin(),tan()54αβαβ∴-=--=-.34tan()tan 743tan tan[()]=341tan()tan 241()43αββααββαββ-+-+∴=-+==--⋅--⨯. 7tan 24α∴=38.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)已知平面向量a =(1,2sin θ),b =(5cos θ,3).(1)若a ∥b ,求sin2θ的值; (2)若a ⊥b ,求tan(θ+π4)的值.【答案】 (1)因为a ∥b ,所以1×3-2sin θ×5cos θ=0,即5sin2θ-3=0,所以sin2θ=35(2)因为a ⊥b ,所以1×5cos θ+2sin θ×3=0 所以tan θ=-56所以tan(θ+π4)=tan θ+tanπ41-tan θtanπ4=11139.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||c =,且//c a ,求:c 的坐标(2)若||b = 且2a b + 与2a b - 垂直,求a 与b 的夹角【答案】解:设(,)c x y =由//||c a c =及2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 (2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=-∴cos 1||||a ba b θ⋅==- ,∵[0,]θπ∈∴θπ=40.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=m ,且⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 【答案】解: (Ⅰ)∵d c⊥,且1=⋅,∴0)tan 3(tan 232=-+-=⋅m θθ∴)2,2(),tan 3(tan 41)(3ππθθθθ-∈-==f m (Ⅱ)设θtan =t ,又∵]3,6[ππθ-∈,∴]3,33[-∈t ,则)3(41)(3t t t g m -== )1(43)(''2-==t t g m 令0)('=t g 得1-=t (舍去) 1=t ∴)1,33(-∈t 时0)('<t g ,)3,1(∈t 时0)('>t g ,∴1=t 时,即4πθ=时, )1(g 为极小值也是最小值,)(t g 最小值为21-41.(江苏省如皋中学2014届高三上学期期中模拟数学试卷)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.【答案】(1)∵BP PA =,∴BO OP PO OA +=+ ,即2OP OB OA =+ ,∴1122OP OA OB =+ ,即12x =,12y =(2)∵3BP PA = ,∴33BO OP PO OA +=+,即43OP OB OA =+∴3144OP OA OB =+∴34x =,14y =31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=-。
2014届高三数学(文)选择填空题专题训练(二)
2014届高三数学(文)选择填空题专题训练(二)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的. 1.已知z 是纯虚数,21z i+-对应的点中实轴上,那么z 等于A .2iB .iC .i -D . 2i -2.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是A .4a ≥B .4a ≤C .5a ≥ D. 5a ≤3.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①()sin cos f x x x =;②()2s i n ()4f x x π=+;③()s i n f x x x =;④()21f x x =+.其中是“同簇函数”的是A. ①②B. ①④C. ②③D. ③④ 4.已知等差数列{}n a 的公差和首项都不等于0,且248,,a a a 成等比数列,则15923a a a a a ++=+A. 2B. 3C. 5D. 7 5.平面向量a 与b 的夹角为23π,(3,0),||2a b ==,则|2|a b += A. 7 B.C.D. 36.如图所示,程序框图(算法流程图)的输出结果是 A. -3 B. -2 C.-1 D.07.设F 1、F 2分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A. 340x y ±=B. 350x y ±=C. 540x y ±=D. 430x y ±=8.设(,)M x y 是区域86x y ax y x +≤⎧⎪+≥⎨⎪≥⎩内的动点,且不等式214x y +≤恒成立,则实数a 的取值范围是A.[8,10]B. [8,9]C. [6,9]D. [6,10]9.已知[]x 表示不超过实数x 的最大实数,()[]g x x =为取整函数,0x 是函数2()ln f x x x=-的零点,则0()g x 等于 A. 4 B. 3 C. 2 D. 1 10.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数2213y mx nx =-+在[1,)+∞上为增函数的概率是 A .12 B. 23 C. 34 D. 56第Ⅱ卷(非选择题 共100分) 二、 填空题:本大题共7小题。
2014高三数学复习第二次检测(教师版。含答案)
走向高考(二)一、选择题:(每小题5分,共60分) 1.若点(a ,9)在函数3x y =的图象上,则tan6a π的值为:( ) (A)0 (B)33(C)1 (D)3 解析:考察指数方程,三角函数的值。
选D 。
容易题;2.命题“任意x ∈[1,2],x 2-m ≤0”为真命题的一个充分不必要条件是( )(A).m ≥4 (B).m ≤4 (C).m ≥5 (D).m ≤5解析:考察充要条件,恒成立问题;找出[)+∞,4的一个真子集,选C 。
错误表现:错误认为是充要条件选A 。
3.不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为( )A.2- B. 1- C. 0 D.1解析:考察不等式组表示的平面区域,选D 。
错误表现:若只是考虑区域形状会误选C 。
4.设n S 是公差为d (d≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是( ) A.若d <0,则数列﹛S n ﹜有最大项; B.若数列﹛S n ﹜有最大项,则d <0;C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S ;D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列;解析:考察等差数列基本性质;选C 。
容易题;5. 已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是 ( )A .1(0,]4B .1[,)4+∞C .1(0,]8D .1[,)8+∞解析:考察等价转化思想,恒成立问题参数;选D 。
错误表现:转化不当会误选B 。
解:方法一:转化为不等式()c x x +≤2即81422+⎪⎪⎭⎫ ⎝⎛--≥x c 对(0,)x ∈+∞恒成立; 方法二:转化为不等式()22c x x +≤即()0214222≥+-+c x c x 对(0,)x ∈+∞恒成立;所以设222)14(2)(c x c x x g +-+= 因为02)0(2>=c g 所以0441≤-c或81016)14(22≥∴≤--=∆c c c6.已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:考察函数的零点;选B 。
2014届高三数学一轮复习 二项式定理提分训练题
二项式定理一、选择题1.二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中的常数项是( )A .20B .-20C .160D .-160解析 二项式(2x -1x)6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r.令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160.答案 D2.若二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中第5项是常数项,则正整数n 的值可能为( ).A .6B .10C .12D .15 解析 T r +1=C r n (x )n -r⎝ ⎛⎭⎪⎫-2x r =(-2)r C r nx n -3r 2,当r =4时,n -3r 2=0,又n ∈N *,∴n =12.答案 C3.⎠⎛0x (1-t)3d t 的展开式中x 的系数是( )A .-1B .1C .-4D .4解析 ⎠⎛0x (1-t)3d t =⎣⎢⎡⎦⎥⎤--44⎪⎪x0=--44+14,故这个展开式中x 的系数是 -C 14-4=1.答案 B4.已知⎝⎛⎭⎪⎫x -a x8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( ).A .28B .38C .1或38D .1或28解析 由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38. 答案 C 5.设⎝⎛⎭⎪⎫5x -1x n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( ).A .-150B .150C .300D .-300 解析 由已知条件4n-2n=240,解得n =4,T r +1=C r4(5x )4-r⎝⎛⎭⎪⎫-1x r =(-1)r 54-r C r4x 4-3r 2,令4-3r2=1,得r =2,T 3=150x .答案 B6.⎝⎛⎭⎪⎪⎫x +13x 2n 展开式的第6项系数最大,则其常数项为( ) A .120 B .252C .210D .45解析 根据二项式系数的性质,得2n =10,故二项式⎝⎛⎭⎪⎪⎫x +13x 2n 的展开式的通项公式是 T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎪⎫13x r =C r 10x 5-r 2-r 3,根据题意5-r 2-r 3=0,解得r =6,故所求的常数项等于C 610=C 410=210.正确选项为C. 答案 C 7.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( ).A .23 008B .-23 008C .23 009D .-23 009解析 (x -2)2 006=x2 006+C 12 006x2 005(-2)+C 22 006x2 004(-2)2+…+(-2)2 006,由已知条件S =-C 12 006(2)2 006-C 32 006(2)2 006-…-C 2 0052 006(2)2 006=-22 005·21 003=-23 008.答案 B 二、填空题8.(1+x )3(1+1x )3的展开式中1x的系数是________.解析 利用二项式定理得(1+x )3⎝ ⎛⎭⎪⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝ ⎛⎭⎪⎫1+1x 3的展开式中1x的系数是15.答案 159. 设x 6=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5+a 6(x -1)6,则a 3=________.解析 x 6=[1+(x -1)]6,故a 3=C 36=20. 答案 2010.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析 令x =1,则a 0+a 1+a 2+…+a 12=36,令x =-1,则a 0-a 1+a 2-…+a 12=1,∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案 36411.已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x3n 的展开式中没有常数项,n ∈N *且2≤n ≤8,则n =________.解析 ⎝⎛⎭⎪⎫x +1x 3n展开式中的通项为T r +1=C r n x n -r⎝ ⎛⎭⎪⎫1x 3r=C r n xn -4r(r =0,1,2,…,8),将n =2,3,4,5,6,7,8逐个检验可知n =5.答案 n =512.若(cos φ+x )5的展开式中x 3的系数为2,则sin ⎝⎛⎭⎪⎫2φ+π2=________.解析 由二项式定理得,x 3的系数为C 35cos 2φ=2,∴cos 2φ=15,故sin ⎝⎛⎭⎪⎫2φ+π2=cos2φ=2cos 2φ-1=-35.答案 -35三、解答题 13.若⎝⎛⎭⎪⎫3x +1x n的展开式中各项系数和为1 024,试确定展开式中含x 的整数次幂的项.解析 令x =1,则22n=1 024,∴n =5.T r +1=C r5(3x )5-r⎝ ⎛⎭⎪⎫1x r =C r 5·35-r·1032rx -,含x 的整数次幂即使10-3r 2为整数,r =0、r =2、r =4,有3项,即 T 1=243x 5,T 3=270x 2,T 5=15x -1.14.在杨辉三角形中,每一行除首末两个数之外,其余每个数都等于它肩上的两数之和. (1)试用组合数表示这个一般规律:(2)在数表中试求第n 行(含第n 行)之前所有数之和;(3)试探究在杨辉三角形的某一行能否出现三个连续的数,使它们的比是3∶4∶5,并证明你的结论.第0行 1 第1行 1 1第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 第6行 1 6 15 20 15 6 1 … … 解析 (1)C r n +1=C r n +C r -1n (2)1+2+22+…+2n =2n +1-1(3)设C r -1n ∶C rn ∶C r +1n =3∶4∶5 由C r -1n C r n =34,得r n -r +1=34 即3n -7r +3=0① 由C r n C r +1n =45,得r +1n -r =45 即4n -9r -5=0② 解①②联立方程组得n =62,r =27即C 2662∶C 2762∶C 2862=3∶4∶5.15.已知等差数列2,5,8,…与等比数列2,4,8,…,求两数列公共项按原来顺序排列构成新数列{C n }的通项公式.解析 等差数列2,5,8,…的通项公式为a n =3n -1,等比数列2,4,8,…的通项公式为b k =2k ,令3n -1=2k ,n ∈N *,k ∈N *, 即n =2k+13=-k+13=C 0k 3k -C 1k 3k -1+…+C k -1k-k -1+C k k -k+13,当k =2m -1时,m ∈N *, n =C 02m -132m -1-C 12m -132m -2+…+C 2m -22m -133∈N *,C n =b 2n -1=22n -1(n ∈N *).16.已知f (x )=2x-12x +1.(1)试证:f (x )在(-∞,+∞)上为单调递增函数; (2)若n ∈N *,且n ≥3,试证:f (n )>nn +1.证明 (1)任取x 1,x 2∈(-∞,+∞).设x 1<x 2,f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=x 1-x 2+-x 2-x 1+x 1+x 2+=x 1-2x 2x 1+x 2+,由x 1<x 2则2x 1<2x 2,∴2x 1-2x 2<0.因此f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 因此f (x )在(-∞,+∞)上单调递增.(2)当n ∈N *且n ≥3,要证f (n )>nn +1,即2n-12n +1>n n +1,只须证2n>2n +1,∵2n =C 0n +C 1n +C 2n +…+C n n >C 0n +C 1n +C n -1n =2n +1. ∴f (n )>nn +1.。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编8:函数的应用问题
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编8:函数的应用问题一、填空题1 .(江苏省诚贤中学2014届高三上学期摸底考试数学试题)甲地与乙地相距250公里.某天小袁从上午7∶50由甲地出发开车前往乙地办事.在上午9∶00,10∶00,11∶00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11∶00时,小袁距乙地还有________公里.【答案】60二、解答题2 .(江苏省阜宁中学2014届高三第一次调研考试数学(理)试题)某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4m.规定:以CD 为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.【答案】3 .(江苏省兴化市2014届高三第一学期期中调研测试)已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入 2.7万元,设该公司年内共生产品牌服装x千件并全部销售完,每千件的销售收入为()x R 万元,且()⎪⎪⎩⎪⎪⎨⎧>-≤<-=10,31000108100,3018.1022x x x x x x R . (1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?【答案】解:(1)由题意得⎪⎪⎩⎪⎪⎨⎧>--⎪⎭⎫ ⎝⎛-≤<--⎪⎭⎫ ⎝⎛-=10,107.231000108100,107.23018.1022x x x x xx x x x W , 即⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛+-≤<--=10,7.23100098100,103011.83x x x x x x W . (2)①当100≤<x 时,103011.83--=x x W 则()()109910811011.822x x x x W -+=-=-=' ∵100≤<x∴当90<<x 时,0>'W ,则W 递增;当109≤<x 时,0<'W ,则W 递减;∴当9=x 时,W 取最大值6.385193=万元. ②当10>x 时,⎪⎭⎫⎝⎛+-=x x W 7.23100098387.231000298=⋅-≤x x . 当且仅当x x 7.231000=,即109100>=x 取最大值38. 综上,当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.4 .(江苏省徐州市2014届高三上学期期中考试数学试题)如图,某生态园欲把一块四边形地BCED 辟为水果园,其中90,C D BC BD ∠=∠=︒=,1CE DE ==.若经过DB 上一点P 和EC 上一点Q 铺设一条道路PQ ,且PQ 将四边形BCED 分成面积相等的两部分,设,DP x EQ y ==.(1)求,x y 的关系式;(2)如果PQ 是灌溉水管的位置,为了省钱,希望它最短,求PQ 的长的最小值;(3)如果PQ 是参观路线,希望它最长,那么P Q 、的位置在哪里?。
2014届高三数学一轮复习 直线的方程提分训练题
直线的方程一、选择题1.已知直线l 的倾斜角α满足条件sin α+cos α=15,则l 的斜率为( )A.43B.34 C .-43 D .-34 解析 α必为钝角,且sin α的绝对值大,故选C. 答案 C2.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( ).A .-1B .-3C .0D .2 解析 由2y +1--4-2=2y +42=y +2, 得:y +2=tan 3π4=-1.∴y =-3.答案 B3. 若PQ 是圆22x 9y +=的弦,PQ 的中点是(1,2),则直线PQ 的方程是( ) A .230x y +-= B .250x y +-= C .240x y -+= D .20x y -=答案 B4.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12D .2或-12解析 令y =0则(2m 2+m -3)x =4m -1, ∴x =4m -12m 2+m -3=1.∴m =2或-12.答案 D5.设直线l 的方程为x +y co s θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ). A .[0,π)B.⎣⎢⎡⎭⎪⎫π4,π2C. ⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4解析 (直接法或筛选法)当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞). ∴tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上知,倾斜角的范围是⎣⎢⎡⎦⎥⎤π4,3π4. 答案 C【点评】 本题也可以用筛选法.取α=π2,即cos θ=0成立,排除B 、D ,再取α=0,斜率tan α=-1cos θ=0不成立,排除A.6.若直线ax +by +c =0经过第一、二、三象限,则有( ). A .ab >0,bc >0 B .ab >0,bc <0 C .ab <0,bc >0 D .ab <0,bc <0 解析 数形结合可知-a b >0,-c b>0,即ab <0,bc <0. 答案 D7.已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ). A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12解析 (数形结合法)由已知直线l 恒过定点P (2,1),如右图.若l 与线AB 相交,则k PA ≤k ≤k PB ,∵k PA =-2,k PB =12,∴-2≤k ≤12.答案 D【点评】 本题采用数形结合法,即通过图形观察过点P 的直线l 的斜率与直线PA 、PB 的斜率大小. 二、填空题8.若A (-2, 3),B (3,-2),C (12,m )三点共线,则m 的值为________.解析 由k AB =k BC ,即-2-33+2=m +212-3,得m =12.答案 129.直线过点(2,-3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是________. 解析 设直线方程为为x a -ya =1或y =kx 的形式后,代入点的坐标求得a =5和k =-32.答案 y =-32x 或x 5-y5=110. 若是直线的一个方向向量,则的倾斜角的大小为 ______.(结果用反三角函数值表示).解析 设直线的倾斜角为,则21arctan ,21tan ==αα.答案11.不论m 取何值,直线(m -1)x -y +2m +1=0,恒过定点________. 解析 (回顾检验法)把直线方程(m -1)x -y +2m +1=0, 整理得:(x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案 (-2,3)12.若A (a,0),B (0,b ),C (-2,-2),(ab ≠0)三点共线,则1a +1b的值为________.解析 由题意知:b -a =-2-2-a,整理得:2a +2b =-ab .∴1a +1b =-12. 答案 -12三、解答题13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解析:(1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是 -4k-3,3k +4,由已知,得(3k +4)(4k+3)=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0. 14.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解析 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,当然相等. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, 得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-a +>0,a -2≤0或⎩⎪⎨⎪⎧-a +=0,a -2≤0.∴a ≤-1.综上可知a 的取值范围是a ≤-1.15.已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2)BC 边的中线所在直线的一般式方程,并化为截距式方程. 解析 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.16.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A 、B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出;若不存在,请说明理由. 解析 存在.理由如下.设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝⎛⎭⎪⎫2-1k,0,B (0,1-2k ),△ AOB 的面积S =12(1-2k )⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+-4k +⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4.当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.。
江苏省2014届一轮复习数学试题选编24:双曲线(学生版)
江苏省2014届一轮复习数学试题选编24:双曲线填空题1 .(苏州市第一中学2013届高三“三模”数学试卷及解答)已知双曲线22221(0,0)x y a b a b-=>>的一条渐,且右焦点与抛物线2y =的焦点重合,则该双曲线的方程为____.2 .(2012年江苏理)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为____.3 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))已知点P 是椭圆222212222211,,11x y x y F F a a a a +=-=+-与双曲线的交点是椭圆焦点,则12cos F PF ∠=________________.4 .(南京市、淮安市2013届高三第二次模拟考试数学试卷)在平面直角坐标系xOy 中,已知双曲线C:22143x y -=.设过点M(0,1)的直线与双曲线C 交于A 、B 两点,若2AM MB = ,则直线的斜率为_____.5 .(南通市2013届高三第一次调研测试数学试卷)已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,,则该双曲线的标准方程为________.6 .(江苏省徐州市2013届高三期中模拟数学试题)已知对称中心为原点的双曲线2122=-y x 与椭圆有公共的焦点,且它们的离心率互为倒数,则该椭圆的标准方程为___________________. 7 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y E a b a b-=>>的左顶点为A ,过双曲线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ∆为直角三角形,则双曲线E 的离心率为_________.8 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为___________9 .(江苏省徐州市2013届高三考前模拟数学试题)已知双曲线与椭圆2212x y +=有相同的焦点,且它们的 离心率互为倒数,则该双曲线的方程为________.10.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)方程22115x y k k =-++表示双曲线的充要条件是k ∈____.11.(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为_____.12.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)已知双曲线()222210,0x y a b a b-=>>,1,B B 分别是双曲线虚轴的上、下端点,,A F 分别是双曲线左顶点和坐焦点,若双曲线的离心率为2,则AB与1B F夹角的余弦值为______.13.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)若双曲线221(0)yx a a-=>的一个则此双曲线方程为______.14.(常州市2013届高三教学期末调研测试数学试题)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值为______.15.(南京市四星级高级中学2013届高三联考调研考试(详细解答)2013年3月 )已知双曲线的中心在坐标原点,一个焦点为(10,0)F ,两条渐近线的方程为43y x =±,则该双曲线的标准方程为__________. 16.(镇江市2013届高三上学期期末考试数学试题)设双曲线22221x y a b-=的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且124PF PF =,则此双曲线离心率的最大值为______.17.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知1F ,2F 是双曲线的两个焦点,以线段12F F 为边作正12MF F ∆,若边1MF 的中点在此双曲线上,则此双曲线的离心率为__________.18.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))已知对称轴为坐标轴且焦点在x 轴上的双曲线,两个顶点间的距离为2,焦点到渐近线的距离为2,则双曲线的方程为________________________.19.(南京市、盐城市2013届高三第三次模拟考试数学试卷)在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B .若FB →=2FA →,则双曲线的离心率为________.20.(2010年高考(江苏))在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M,点M 的横坐标是3,则M到双曲线右焦点的距离是__________21.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2= 4x 的准线交于A 、B 两点,AB =3,则C 的实轴长为______.22.(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点)2,则该椭圆的离心率为____.23.(2013江苏高考数学)双曲线191622=-y x 的两条渐近线的方程为_____________.江苏省2014届一轮复习数学试题选编24:双曲线参考答案填空题1. 1222=-y x2. 由22214x y m m -=+得a b c∴=c e a 即244=0m m -+,解得=2m . 3. 0 4. 12±5. 答案:221520y x -=. 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申6. 1222=+y x7. 28. ⎪⎪⎭⎫⎝⎛2,5569. 22221x y -= 10. (1,5)-;12. 1413. 2213y x -= 14.15.2213664x y -= 16.35;118. 2214y x -= 19. 220. 4 21. 1;22.23.解析:本题主要考察双曲线12222=-by a x 的两条渐近线的求法,把1改成0得02222=-b y a x∴双曲线12222=-b y a x 的两条渐近线的方程为x a by ±=∴双曲线191622=-y x 的两条渐近线的方程为x y 43±=。
高三数学一轮复习备考试题:函数(含答案解析)
江苏省2015年高考一轮复习备考试题函数一、填空题1、(2014年江苏高考)已知函数1)(2-+=mx x x f ,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .2、(2014年江苏高考)已知)(f x 是定义在R 上且周期为3的函数,当)3,0[x 时,|212|)(2+-=x x x f a x f -=)(y 在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ . 3、(2013年江苏高考)已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 。
4、(2012年江苏高考)函数x x f 6log 21)(-=的定义域为 ▲ .5、(2012年江苏省高考)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 6、(2012年江苏省5分)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为 ▲8、(2015届江苏南通市直中学高三9月调研)已知函数23 1 ()x a x f x x a x ⎧+>⎪=⎨+⎪⎩≤,,,1,若()f x 在R 上为增函数,则实数a 的取值范围是 ▲9、(2015届江苏苏州高三9月调研)已知函数()2log 1a x f x x-=+为奇函数,则实数a 的值为 ▲ 10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0, ,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲11、(南通市2014届高三第三次调研)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .112、(苏锡常镇四市2014届高三5月调研(二))函数y =A ,函数()lg 2y x =-的定义域为B ,则A I B = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数()f x 是R 上的单调函数,若函数2()()y f x f k x =+-只有一个零点,则实数k 的值是 ▲ .14、(徐州市2014届高三第三次模拟)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 ▲15、(徐州市2014届高三第三次模拟)已知函数1()()e x af x a x=-∈R .若存在实数m ,n , 使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 ▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f (x )=ln x +1-x 的定义域为 ▲ 17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f (x )是定义在R 上的奇函数,当0≤x≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1).若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ 18、(2014江苏百校联考一)函数1()2sin(),[2,4]1f x x x xπ=-∈--的所有零点之和为 .19、(南京、盐城市2014高三第一次模拟)若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(ln )(ln )2(1)f t f f t+<时,那么t 的取值范围是 20、(苏锡常镇四市2014届高三3月调研(一))已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲ 21、(南通市2014届高三上学期期末考试)设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2()1f x x =-;已知函数lg ||0()10x x g x x ≠⎧⎪=⎨=⎪⎩,,,. 则函数()f x 和()g x 的图象在区间[]510-,内公共点的个数为 . 22、(苏州市2014届高三1月第一次调研)已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是 ▲23、(泰州市2014届高三上学期期末考试)设函数()()f x x a x a b =--+(,a b 都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上) ①对任意实数,a b ,函数()y f x =在R 上是单调函数; ②存在实数,a b ,函数()y f x =在R 上不是单调函数; ③对任意实数,a b ,函数()y f x =的图像都是中心对称图形; ④存在实数,a b ,使得函数()y f x =的图像不是中心对称图形. 24、(江苏省扬州中学2014届高三上学期12月月考)设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = ▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为 ▲ . 26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数ln (),()xf x kxg x x==,如果关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,那么实数k 的取值范围是 ▲ .27、(江苏省阜宁中学2014届高三第三次调研)已知函数()()2log ,12,01x x f x f x x ⎧⎪=⎨<<⎪⎩≥,则()3212f ⎡⎤⎢⎥⎢⎥⎣⎦= ▲28、(无锡市2014届高三上学期期中)定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2g x f x =-的所有零点之和为_____。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编20:函数的最值与导数
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编20:函数的最值与导数一、填空题1 .(江苏省阜宁中学2014届高三第一次调研考试数学(理)试题)若不等式3ln 1mx x -≥对(]0,1x ∀∈恒成立,则实数m 的取值范围是_______.【答案】2[,)3e +∞2 .(江苏省沛县歌风中学(如皋办学)2014届高三上学期期中模拟数学试题)已知函数()133+-=x x x f ,()m x g x -=)21(,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是______.【答案】45≥m 3 .(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)函数x x x f ln )(=在区间)0](1,1[>+t t 上的最小值为_________.【答案】0 二、解答题4 .(江苏省如皋中学2014届高三上学期期中模拟数学试卷)(本题满分16分,第1小题 ,第2小题4分,第3小题8分)已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值; ⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.【答案】(本题满分16分,第1小题 ,第2小题4分,第3小题8分)解:⑴()2323f x ax bx '=+-根据题意,得()()12,10,f f =-⎧⎪⎨'=⎪⎩即32,3230,a b a b +-=-⎧⎨+-=⎩解得10a b =⎧⎨=⎩所以()33f x x x =-⑵令()0f x '=,即2330x -=.得1x =±.因为()12f -=,()12f =-,所以当[]2,2x ∈-时,()max 2f x =,()min 2f x =- 则对于区间[]2,2-上任意两个自变量的值12,x x ,都有()()()()12max min 4f x f x f x f x -≤-=,所以4c ≥.所以c 的最小值为4⑶因为点()()2,2M m m ≠不在曲线()y f x =上,所以可设切点为()00,x y . 则30003y x x =-.因为()20033f x x '=-,所以切线的斜率为2033x -则2033x -=300032x x mx ---,即32002660x x m -++=.因为过点()()2,2M m m ≠可作曲线()y f x =的三条切线, 所以方程32002660x x m -++=有三个不同的实数解. 所以函数()32266g x x x m =-++有三个不同的零点.则()2612g x x x '=-.令()0g x '=,则0x =或2x =.。
2014届高三数学一轮复习 直线、平面平行的判定与性质提分训练题
直线、平面平行的判定与性质一、选择题1.若直线m ⊂平面α,则条件甲:“直线l ∥α”是条件乙:“l ∥m ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 D2.若直线a ∥直线b ,且a ∥平面α,则b 与α的位置关系是( ) A .一定平行 B .不平行C .平行或相交D .平行或在平面内 解析 直线在平面内的情况不能遗漏,所以正确选项为D. 答案 D3.设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( ). A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β解析 A 选项不正确,n 还有可能在平面α内,B 选项不正确,平面α还有可能与平面β相交,C 选项不正确,n 也有可能在平面β内,选项D 正确. 答案 D4.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行答案 C5. a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a其中正确的命题是( )A.①②③B.①④C.②D.①③④解析②正确.①错在α与β可能相交.③④错在a可能在α内.答案 C6.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ).A.m∥β且l1∥α B.m∥l1且n∥l2C.m∥β且n∥β D.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B. 答案 B7.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是( ).A .①②B .①④C .②③D .③④ 解析 由线面平行的判定定理知图①②可得出AB ∥平面MNP . 答案 A 二、填空题 8.给出下列命题:①一条直线平行于一个平面,这条直线就与这个平面内的任何直线不相交; ②过平面外一点有且只有一条直线与这个平面平行; ③过直线外一点有且只有一个平面与这条直线平行; ④平行于同一条直线的一条直线和一个平面平行; ⑤a 和b 是异面直线,则经过b 存在唯一的平面与a 平行. 则其中正确命题的序号为________.解析 ①显然正确,如果直线与平面内的一条直线相交,则直线与平面相交,与直线与平面平行矛盾;②不正确,过平面外一点有一个平面与平面平行,而在这个平面内有无数条直线与平面平行;③不正确,过直线外一点有一条直线与已知直线平行,而过直线外一点与直线平行的平面却有无数个;④不正确,这条直线可能在该平面内;⑤正确,过b 上一点作一直线与a 平行,此时该直线与b 相交可确定一平面,且与a 平行,且唯一. 答案 ①⑤9.过三棱柱ABC-A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.解析 过三棱柱ABC-A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条. 答案 610.已知a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题: ①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ;②⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;④⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α;⑤⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α.其中正确的命题是________(将正确命题的序号都填上).解析 ②中a 、b 的位置可能相交、平行、异面;③中α、β的位置可能相交. 答案 ①④⑤⑥11.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线; ③已知α、β互相平行,m 、n 互相平行,若m ∥α,则n ∥β; ④若m 、n 在平面α内的射影互相平行,则m 、n 互相平行.解析 ①为假命题,②为真命题,在③中,n 可以平行于β,也可以在β内,故是假命题,在④中,m 、n 也可能异面,故为假命题. 答案 ②12.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.解析 由平面HNF ∥平面B 1BDD 1知当M 点满足在线段FH 上有MN ∥面B 1BDD 1. 答案 M ∈线段FH 三、解答题13.如图所示,两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB 且AM =FN ,求证:MN ∥平面BCE .证明 过M 作MG ∥BC ,交AB 于点G ,如图所示,连接NG . ∵MG ∥BC ,BC ⊂平面BCE ,MG ⊄平面BCE ,∴MG ∥平面BCE .又BG GA =CM MA =BNNF,∴GN ∥AF ∥BE ,同样可证明GN ∥平面BCE . 又MG ∩NG =G , ∴平面MNG ∥平面BCE .又MN ⊂平面MNG ,∴MN ∥平面BCE .14.如图,在七面体ABCDMN 中,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =2,NB =1,MB 与ND 交于P 点,点Q 在AB 上,且BQ =23.(1)求证:QP ∥平面AMD ; (2)求七面体ABCDMN 的体积.解析 (1)证明:∵MD ⊥平面ABCD ,NB ⊥平面ABCD , ∴MD ∥NB .∴BP PM =NB MD =12.又QB QA=232-23=12,∴QB QA =BP PM . ∴在△MAB 中,QP ∥AM . 又QP ⊄平面AMD ,AM ⊂平面AMD , ∴Q P ∥平面AMD .(2)连接BD ,AC 并交于点O ,则AC ⊥BD , 又MD ⊥平面ABCD , ∴MD ⊥AC ,又BD ∩MD =D . ∴AC ⊥平面MNBD .∴AO 为四棱锥A -MNBD 的高. 又S 四边形MNBD =12×(1+2)×22=32,∴V A -MNBD =13×32×2=2.又V C -MNBD =V A -MNBD =2, ∴V 七面体ABCDMN =2V A -MNBD =4.15.如图所示,正方体ABCD-A 1B 1C 1D 1中,直线l 是平面AB 1D 1与下底面ABCD 所在平面的交线.求证:l ∥平面A 1BD .证明 ∵平面A 1B 1C 1D 1∥平面ABCD ,且平面A 1B 1C 1D 1∩平面AB 1D 1=B 1D 1,平面ABCD ∩平面AB 1D 1=l ,∴l ∥B 1D 1.又B 1D 1∥BD ,∴l ∥BD .又l ⊄平面A 1BD ,BD ⊂平面A 1BD ,∴l ∥平面A 1BD .16.如图,三棱柱ABC-A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E 、F 分别是棱CC 1、BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?解析 法一 如图,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M . ∵侧棱A 1A ⊥底面ABC , ∴侧面A 1ACC 1⊥底面ABC ,∴OM ⊥底面ABC .又∵EC =2FB ,∴OM ∥FB 綉12EC ,∴四边形OMBF 为矩形, ∴BM ∥OF ,又∵OF ⊂面AEF ,BM ⊄面AEF .故BM ∥平面AEF ,此时点M 为AC 的中点.法二 如图,取EC 的中点P ,AC 的中点Q ,连接PQ 、PB 、BQ , ∴PQ ∥AE .∵EC =2FB , ∴PE 綉BF ,PB ∥EF ,∴PQ ∥平面AEF ,PB ∥平面AEF . 又PQ ∩PB =P , ∴平面PBQ ∥平面AEF ,又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编9:三角函数
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编9:三角函数一、填空题1 .(江苏省苏州市2013-2014学年第一学期高三期中考试数学试卷)已知1sin ,3α=且(,)2παπ∈,则tan α=______.【答案】- 2 .(江苏省启东市2014届高三上学期第一次检测数学试题)已知01a <<,则满足x x a cos sin >1的角x 所在的象限为________.【答案】二或四(少1个不给分)3 .(江苏省南京市2014届高三9月学情调研数学试题)已知四边形ABCD 是矩形,AB=2,AD=3,E 是线段BC 上的动点,F 是CD 的中点.若∠AEF 为钝角,则线段BE 长度的取值范围是____【答案】(1,2)4 .(江苏省沛县歌风中学(如皋办学)2014届高三第二次调研数学试题)函数f (x )=2s in (),x ∈[﹣π,0]的单调递减区间为__________.【答案】5 .(江苏省兴化市安丰高级中学2014届高三第一学期9月份月考数学试卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若=a 3,C =120°,△ABC 的面积S =4,则=c ___★___. 【答案】7. 6 .(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)计算sin390︒=_______.【答案】 0.5;7 .(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知),10cos()10cos()20sin(000-++=+x x x 则=x tan ______. 【答案】38 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为___________. 【答案】3100πcm 2 9 .(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为A.22sin(2)3y x π=+B.2sin(2)3y x π=+ C.2sin()23x y π=- D.2sin(2)3y x π=- 【答案】A10.(江苏省兴化市2014届高三第一学期期中调研测试)在ABC ∆中,已知0s i n s i n s i n s i n s i n 222=---C B C B A ,则A ∠的大上为__★__. 【答案】32π11.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)函数y x +cos2x 的最小正周期是________.【答案】π12.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)将函数sin(2)3y x π=-的图象向左平移()0>ϕϕ个单位,得到的图象对应的函数为()x f ,若()x f 为奇函数,则ϕ的最小值为______ 【答案】6π13.(江苏省徐州市2014届高三上学期期中考试数学试题)已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,45,60a A B ==︒=︒,那么ABC ∆的面积ABC S ∆=___. 【答案】433+ 14.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知函数()3sin()(0)6f x x πωω=->和()2cos(2)(0)g x x ϕϕπ=+<<的图象的对称轴完全相同,则()3g π的值是______. 【答案】2-15.(江苏省兴化市安丰高级中学2014届高三第一学期9月份月考数学试卷)已知点()00,y x P 是函数xy tan =与函数()0>-=x x y 的图象的一个交点,则()()=++12cos 1020x x ___★___. 【答案】2.16.(江苏省沛县歌风中学(如皋办学)2014届高三上学期期中模拟数学试题)在△ABC 中,角A ,B ,C 所对的边。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数一、填空题1 .(江苏省兴化市2014届高三第一学期期中调研测试)计算:()=++-3233ln 125.09loge__★__.【答案】112 .(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)如图,已知过原点O 的直线与函数8log y x =的图像交于A,B 两点,分别过A,B 作y 轴的平行线与函数2log y x =的图像交于C,D 两点;若//BC x 轴,则点A 的坐标为_____________.【答案】213,log 36⎫⎪⎭3 .(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)=+5lg 2lg ________.【答案】14 .(江苏省兴化市2014届高三第一学期期中调研测试)已知函数()a ax x y3log 221+-=在[)+∞,2上为减函数,则实数a 的取值范围是__★__.【答案】(]4,4-5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知函数1()log (01)axf x a b x-=+<<为奇函数,当(1]x a ∈-,时,函数()f x 的值域是(1]-∞,,则实数a b +的值为______.【答案】26 .(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知函数f (x )=log a (x 2-ax +2)在(2,+∞)上为增函数,则实数a 的取值范围为________. 【答案】(1,3]7 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)已知51a -=,函数()log (1)a f x x =-,若正实数m 、n 满足 ()()f m f n >,则m 、n 的大小关系为____【答案】m>n8 .(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)若))3((.2),1(1,2,2)(21f f x x g x e x f x 则⎪⎩⎪⎨⎧≥+<=-的值为_______; 【答案】29 .(江苏省苏州市2013-2014学年第一学期高三期中考试数学试卷)已知函数||)(a x ex f -=(a 为常数),若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 ___.【答案】(]1,∞-10.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)函数224log ([2,4])log y x x x=+∈的最大值是______. 【答案】511.(江苏省梁丰高级中学2014届第一学期阶段性检测一)若函数()xf x a x a =--(a>0且a ≠1)有两个零点,则实数a 的取值范围是___________【答案】}1|{>a a12.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)函数212()log (23)f x x x =--+的单调递增区间是_____________;【答案】(1,1)-13.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知函数nmy x =,其中,m n 是取自集合{1,2,3}的两个不同值,则该函数为偶函数的概率为______.【答案】1314.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)若点(,9)a 在函数3x y=的图像上,则6tanπa 的值为______. 【答案】315.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)把函数xy 2=图象上所有点向_____平移一个单位可得12+=x y 的图象;【答案】左。
江苏2014级高三数学填空题训练2
江苏2014级高三数学填空题训练2中国数学奥林匹克教练 高级教师 王统好1. 已知集合{}R x x y y A ∈==,sin ,集合{}R x x y y B ∈==,,则=B A . 2. “0a =”是“复数a bi +(,)a b R ∈是纯虚数”的 条件3. 将函数sin(2)3y x π=-的图象先向左平移3π,然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为_______________4. 若抛物线)0(22>-=p px y 的焦点与双曲线2213x y -=的左焦点重合,则p 的值 .5. 函数()2f x x lnx =--在定义域内零点的个数为6. 已知直线1+=kx y 与曲线b ax x y ++=3切于点(1, 3),则b 的值为 7. 若规定a bad bc c d =-,则不等式311log 01x<的解集是 8. 若平面向量a ,b 满足1a b += ,a b + 平行于x 轴,(2,1)b =- ,则a =9.在ABC △中,AB BC =,7cos 18B =-.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .10. 直线y x =+与圆心为D 的圆22((1)3x y +-=交于A 、B 两点,则直线AD 与BD 的倾斜角之和为11.如果函数()2sin (0)f x x ωω=>在22,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的最大值为 12. 等差数列{}n a 中,n S 是其前n 项和,12008a =-,20072005220072005S S -=,则2008S =_____.13 .△ABC 满足AB AC ⋅= ︒=∠30BAC ,设M 是△ABC 内的一点(不在边界上),定义),,()(z y x M f =,其中z y x ,,分别表示△MBC ,△MCA ,△MAB 的面积,若)21,,()(y x M f =,则14x y +的最小值为。
2014届高三数学综合练习(二)
高三理科数学综合练习(二)一、选择题:1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.已知偶函数)(x f 的定义域为R ,则下列函数中为奇函数的是( )(A ))](sin[x f (B ))(sin x f x ⋅ (C ))(sin )(x f x f ⋅ (D )2)](sin [x f 4.若ABC ∆为锐角三角形,则下列不等式中一定能成立的是( )(A )0sin cos log cos >B A C(B )0cos cos log cos >B A C (C )0sin sin log sin >B A C (D )0cos sin log sin >BAC 5.)函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .[-2 , 2] 6.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为(A )191622=-x y (B )191622=-y x (C )116922=-x y (D )116922=-y x 7.函数|1|2)(||log 2xx x f x --=的图像大致是8.设S n 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于 (A )103(B )31(C )91 (D )81 9.设0,0),0,(),1,(),2,1(>>-=-=-=b a b OC a OB OA ,O 为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是(A )2(B )4(C )6(D )810.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员也不能分给同一个部门.则不同的分配方案有 ( ) (A ) 36种 (B )38种 (C )108种 (D ) 114种 二.填空题:11.设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则55a b +=__________。
2014届高三数学一轮复习 两角和与差的正弦、余弦、正切提分训练题
两角和与差的正弦、余弦、正切一、选择题1.cos13计算sin43cos 43-sin13的值等于( )A.12解析 原式=1sin (43-13)=sin 30=2,故选A. 答案 A2.已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ) A.12 B .-12 C.22 D .-22解析:由cos 2α=cos ⎝⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0. ∴cos α-sin α=22,平方得1-sin 2α=12. ∴sin 2α=12.答案:A3.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x 等于( ).A.724 B .-724 C.247 D .-247 解析 ∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan 2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 D4.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ).A.π4B.3π4C.π4和3π4D .-π4和-3π4解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4. 答案 A5.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ). A.33B .-33C.539D .-69解析 对于cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.答案 C6.已知α是第二象限角,且sin(π+α)=-35,则tan2α的值为( )A.45 B .-237 C .-247 D .-83解析 由sin (π+α)=-35,得sin α=35,又α是第二象限角,故cos α=-1-sin 2α=-45,∴tan α=-34,tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 C7.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是( ).A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题8.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴sin ⎝ ⎛⎭⎪⎫α+π4=223. 故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26. 答案:4+269.化简[2sin50°+sin10°(1+3tan10°)]·2sin 280°的结果是________.解析 原式=2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=⎣⎢⎢⎡⎦⎥⎥⎤2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10° =⎣⎢⎡⎦⎥⎤2sin 50°+2sin 10°·cos -cos 10°·2cos 10°=22(sin 50°cos 10°+sin 10°cos 50°)=22sin 60°= 6. 答案 610.已知tan ⎝ ⎛⎭⎪⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________.解析 法一 ∵tan ⎝ ⎛⎭⎪⎫π4+θ=3,∴1+tan θ1-tan θ=3,解得tan θ=12.∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2 θ-1-tan 2 θ1+tan 2θ-1 =45-35-1=-45. 法二 sin 2θ-2cos 2 θ=sin 2θ-cos 2θ-1=-cos ⎝ ⎛⎭⎪⎫π2+2 θ-sin ⎝⎛⎭⎪⎫π2+2θ-1=-1-tan 2⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-2tan ⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-1 =-1-91+9-2×31+9-1=-45.答案 -4511.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )min =1-2. 答案 1- 212.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.解析 由已知,得cos αcos β-sin αsin β=15,cos αcos β+sin αsin β=35,则有cos αcos β=25,sin αsin β=15,sin αsin βcos αcos β=12,即tan αtan β=12.答案 12三、解答题13.已知sin ⎝ ⎛⎭⎪⎫π4+x =513,且x ∈⎝ ⎛⎭⎪⎫π4,3π4,求1-tan x 1+tan x .解析 ∵x ∈⎝ ⎛⎭⎪⎫π4,3π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π4+x =-1213, ∴tan ⎝ ⎛⎭⎪⎫π4+x =-512, ∴1-tan x 1+tan x =1tan ⎝⎛⎭⎪⎫x +π4=-125. 14.设函数f (x )=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2,x ∈R.(1)若ω=12,求f (x )的最大值及相应的x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解析 (1)f(x)=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2=sin ωx -cos ωx , 当ω=12时,f(x)=sin x 2-cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2-π4, 而-1≤sin ⎝ ⎛⎭⎪⎫x 2-π4≤1,所以f(x)的最大值为2, 此时,x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,相应的x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =3π2+4k π,k ∈Z .(2)因为f (x )=2sin ⎝⎛⎭⎪⎫ωx -π4,所以,x =π8是f (x )的一个零点⇔f ⎝ ⎛⎭⎪⎫π8=sin ⎝ ⎛⎭⎪⎫ωπ8-π4=0,即ωπ8-π4=k π,k ∈Z ,整理,得ω=8k +2,又0<ω<10,所以0<8k +2<10,-14<k <1,而k ∈Z ,所以k =0,ω=2,f (x )=2sin ⎝⎛⎭⎪⎫2x -π4,f (x )的最小正周期为π. 15.在△ABC 中,A 、B 、C 为三个内角,f (B )=4cos B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+3cos 2B -2c os B .(1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解析 (1)f (B )=4cos B ×1-cos ⎝ ⎛⎭⎪⎫π2+B 2+3cos 2B -2c os B=2cos B (1+sin B )+3cos 2B -2cos B =2cos B sin B +3cos 2B=sin 2B +3cos 2B =2sin ⎝ ⎛⎭⎪⎫2B +π3. ∵f (B )=2,∴2sin ⎝ ⎛⎭⎪⎫2B +π3=2,π3<2B +π3<73π,∴2B +π3=π2.∴B =π12.(2)f (B )-m >2恒成立,即2sin ⎝ ⎛⎭⎪⎫2B +π3>2+m 恒成立.∵0<B <π,∴2sin ⎝ ⎛⎭⎪⎫2B +π3∈[-2,2],∴2+m <-2.∴m <-4.16. (1)①证明两角和的余弦公式C (α+β):cos(α+β)=c os αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解析 (1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos⎝ ⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2-α=cos α.sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β=cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β)=sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β. (2)∵α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35. ∵β∈⎝⎛⎭⎪⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010.cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编16:算法
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编16:算法
一、填空题
1 .(江苏省启东中学2014届高三上学期期中模拟数学试题)程序框图(即算法流程图)如图所示,其输出结果
是
____.
【答案】127
2 .(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)根据如图所示的伪代码,最后输出的i
的值为______.
【答案】9
3 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)某算法的伪代码如图所示,该算法输出的结
果是______.
【答案】6
4 .(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)右图是一个算法的流程图,最后输出的
T ←1
i ←3
While T <10
T ←T +i
i ←i +2
End While
Print i
k =_______.
【答案】11
5 .(江苏省扬州中学2014届高三开学检测数学试题)根据如图所示的伪代码,最后输出的S 的值为 ▲ .
【答案】145
6 .(江苏省沛县歌风中学(如皋办学)2014届高三上学期期中模拟数学试题)阅读如图所示的程序框图,运
行相应的程序,输出的结果i ___________.
(第8题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014江苏高三数学一轮复习填空题训练(二)
1.设集合A ={x ||x |≤2,x ∈R },B ={y |y =-x 2,-1≤x ≤2},则∁R (A ∩B )=
________.
2.若复数z 满足(1+2i)z =-3+4i(i 是虚数单位),则z =________.
3.某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某
一天各自课外阅读所用时间的数据,结果用下图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为________.
4.已知向量a ,b 的夹角为90°,|a |=1,|b |=3,则|a -b |=________.
5.已知变量x ,y 满足⎩⎨⎧
x ≥1,y ≤2,
x -y ≤0,
则x +y 的最小值是________.
6.函数f (x )=log 2x -1
x
的零点所在的区间是________.
7.下图是某算法的程序框图,则程序运行后输出的结果是________.
8.已知四棱锥V -ABCD ,底面ABCD 是边长为3的正方形,VA ⊥平面ABCD ,
且VA =4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.
9.某酒厂制作了3种不同的精美卡片,每瓶酒酒盒随机装入一张卡片,集齐3
种卡片可获奖,现购买该种酒5瓶,能获奖的概率为________.
10.在△ABC 中,三个内角A 、B 、C 的对边分别为a ,b ,c ,若b =25,∠B
=π4,sin C =5
5,则c =________,a =________. 11.已知sin ⎝ ⎛⎭⎪⎫α+π12=14,则sin ⎝ ⎛⎭
⎪⎫
5π12-α=________.
12.已知双曲线C :x 2a 2-y 2
b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的
方程为________.
13.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-3)(x 0+1)2,
则该函数的单调递减区间为________.
14.如图是见证魔术师“论证”64=65飞神奇.对这个乍看起来颇为神秘的现
象,我们运用数学知识不难发现其中的谬误.另外,我们可以更换图中的数据,就能构造出许多更加直观与“令人信服”的“论证”.请你用数列知识归纳:(1)这些图中的数所构成的数列:________;(2)写出与这个魔术关联的一个数列递推关系式:________.
参考答案
2014江苏高三数学一轮复习填空题训练(二)
1.解析 由已知条件可得A =[-2,2],B =[-4,0], ∴∁R (A ∩B )=(-∞,-2)∪(0,+∞).
答案 (-∞,-2)∪(0,+∞)
2.解析 ∵(1+2i)z =-3+4i ,∴z =-3+4i 1+2i =(-3+4i )(1-2i )(1+2i )(1-2i )=5+10i
5=1+2i.
答案 1+2i
3.解析 一天平均每人的课外阅读时间应为一天的总阅读时间与学生的比,即 0×7+0.5×14+1.0×11+1.5×11+2.0×7
50
=0.97(小时).
答案 0.97小时
4.解析 利用数量积的运算性质求解.由a ,b 的夹角是90°可得a·b =0,所以
|a -b |= (a -b )2=1+9=10.
答案
10
5.解析 先由不等式组确定平面区域,再平移目标函数得最小值.作出不等式
组对应的平面区域如图,当目标函数x +y 经过点(1,1)时,取得最小值2.
答案 2
6.解析 利用零点存在定理求解.因为f (1)f (2)=(-1)⎝ ⎛
⎭
⎪⎫1-12<0,所以由零点存
在定理可知零点所在的区间是(1,2).
答案 (1,2)
7.解析 由框图的顺序,s =0,n =1,s =(s +n )n =(0+1)×1=1,n =n +1=2,
依次循环s =(1+2)×2=6,n =3,注意此刻3>3仍然否,所以还要循环一次s =(6+3)×3=27,n =4,此刻输出s =27.
答案 27
8.解析 可证四个侧面都是直角三角形,其面积S =2×12×3×4+2×1
2
×3×5
=27.
答案 27
9.解析 P =35-(3×25-3)35=50
81.
答案 5081
10.解析 由正弦定理得b sin B =c sin C ,所以c =b sin C
sin B =25×5
5
22
=2 2.由c <b
得C <B ,故C 为锐角,所以cos C =25
5,
sin A =sin(B +C )=sin B cos C +cos B sin C =31010,由正弦定理得b
sin B =a sin A ,所以a =b sin A sin B =25×310
10
22
=6.
答案 22 6
11.解析 由sin ⎝ ⎛
⎭⎪⎫α+π12=14,得
cos ⎝ ⎛
⎭
⎪⎫α+π12=±154, 所以sin ⎝ ⎛⎭⎪⎫5π12-α=cos ⎝ ⎛
⎭⎪⎫α+π12=±154.
答案 ±15
4
12.解析 由焦距为10知,c =5,即a 2+b 2=25,根据双曲线方程可知,渐近
线方程为y =±b a x ,带入点P 的坐标得,a =2b ,联立方程组可解得a 2
=20,
b 2
=5,所以双曲线方程x 220-y 2
5=1.
答案 x 220-y 2
5=1
13.解析 由导数的几何意义可知,f ′(x 0)=(x 0-3)(x 0+1)2≤0,解得x 0≤3,即
该函数的单调递减区间是(-∞,3].
答案 (-∞,3]
14.解析 利用推理知识求解.由图形可知,图中的数构成裴波纳契数列,所以
(1)a n +2=a n +1+a n ,a 1=1,a 2=1;(2)题右图中间实质上有一个面积是1的平行四边形,有时空着,有时重合,所以与魔术有关的数列递推关系式可能是
a n+2·a n-a2n+1=(-1)n-1和a n
a n+1
≈0.618.
答案(1)a n+2=a n+1+a n,a1=1,a2=1,(2)a n+2·a n-a2n+1=(-1)n-1和
a n a n+1
≈0.618.。