复变函数ppt课件

合集下载

复变函数论第三版PPT课件

复变函数论第三版PPT课件
导数的性质
导数具有线性、可加性、可乘性和链式法则等性质。这些性质在计算复杂函数 的导数时非常有用。
导数的计算方法
基本初等函数的导数
隐函数的导数
对于常数、幂函数、指数函数、三角 函数等基本初等函数,其导数都有固 定的公式可以查询和使用。
如果一个函数$F(x, y) = 0$,我们可 以通过对$F$求关于$x$或$y$的偏导 数来找到隐函数的导数。
傅里叶级数与傅里叶变换
傅里叶级数
将周期函数表示为无穷级数,通过正 弦和余弦函数的线性组合来逼近原函 数。
傅里叶变换
将函数从时间域转换到频率域,通过 积分形式实现。
傅里叶变换的性质与应用
线性性质
若 $f(t)$ 和 $g(t)$ 是 可傅里叶变换的,$a, b$ 是常数,则 $af(t) + bg(t)$ 也可进行傅里叶 变换。
复数的几何意义
复数可以用平面上的点来 表示,实部为横坐标,虚 部为纵坐标。
复数的运算
复数可以进行加法、减法、 乘法和除法等运算,满足 交换律、结合律和分配律。
02 复数与复变函数
复数及其运算
复数
由实部和虚部构成的数, 表示为 a + bi,其中 a 和 b 是实数,i 是虚数单位。
复数的运算
加法、减法、乘法和除法 等。
共轭复数
如果一个复数的虚部变号, 则得到该复数的共轭复数。
复变函数及其定义域
复变函数
从复平面到复平面的映射。
定义域
复变函数的输入值的集合。
单值函数和多值函数
根据定义域和值域的关系进行分类。
复变函数的极限与连续性
极限
描述函数值随自变量变化的行为。
连续性
函数在某一点处的极限值等于该 点的函数值。

复变函数课件章节

复变函数课件章节
复变函数(第四版)课件 章节大纲
汇报人:
目录
添加目录标题
01
复变函数的基本概念
02
复变函数的微积分
03
全纯函数与亚纯函数
04
复变函数的积分公式 和全纯函数的性质
05
全纯映射和几何函数 论
06
添加章节标题
复变函数的基本 概念
复数及其几何意义
复数:实数与 虚数的组合
复平面:复数 的几何表示
复数的模:表 示复数的大小
全纯函数的性质
全纯函数是复变函数中的重要概念,具有解析性和连续性
全纯函数在复平面上的解析性,即函数在复平面上的任意点处都可以解析
全纯函数的连续性,即函数在复平面上的任意点处都可以连续
全纯函数的性质还包括其解析性和连续性的关系,即全纯函数在复平面上的解析性和连续性是等价 的
最大模原理和柯西积分公式
亚纯函数的展开 和值分布理论
亚纯函数的展开和米塔-列夫勒理论
展开:将亚纯函数分解为幂 级数的形式
米塔-列夫勒理论:研究亚纯 函数展开的性质和规律
亚纯函数:复变函数中的一 种特殊函数
应用:在解析数论、复动力 系统等领域有广泛应用
值分布理论和皮卡定理
值分布理论:研 究函数在复平面 上的值分布规律
皮卡定理:描述 函数在复平面上 的值分布规律
极值性质:全纯 映射的极值性质, 包括最大值和最 小值
泰勒定理:泰勒 定理的证明和应 用,包括泰勒级 数和泰勒展开式
极值定理:极值 定理的证明和应 用,包括极值点 的存在性和唯一 性
泰勒定理的应用: 泰勒定理在复变 函数中的应用, 包括求解微分方 程和积分方程
几何函数论和单叶函数
几何函数论:研究复变函数在几何上的性质,如解析性、单值性、连续性等 单叶函数:复变函数在某一区域内具有唯一确定的值,且该值与自变量一一对应 单叶函数的性质:解析性、单值性、连续性、可微性等 单叶函数的应用:在工程、物理、化学等领域有广泛应用,如流体力学、电磁学、量子力学等

高等数学《复变函数》课件 1

高等数学《复变函数》课件 1

n r, n 2k (k Z )
n
z
n
i 2k
re n
(k 0,1,2,, n 1)
即:
n
z
z
1 arg z 2k
arg z 2k
n [cos(
) i sin(
)]
n
n
(k 0 , 1 , 2 , , n 1)
10
例1 若 z 1 3i , 求 Re(z), Im( z), 和zz i 1i
3i
则 | z | 2,
arg z 5
6
z
2[cos(
5
)
i
s in(
5
)]
2e
5 6
i
6
6
7
二、复数的运算
1、复数的代数形式的四则运算
设 复 数 z1 x1 iy1, z2 x2 iy2
(1) z1 z2 x1 x2 i( y1 y2 )
(2) z1 z2 x1 x2 y1 y2 i( x2 y1 x1 y2 )
如果G中的点z被映射w=f(z)映射成G*中的
点w,那么w称为z的象(映象),而z 称为w的
原象。
19
一般地,映射w=f(z)
(1)将z 平面上的点映射成w 平面上的点;
例如 映射 w z 将z平面上的点z a ib 映射成w平面上的点w a ib。
z 平面 y
w平面 wz
v
• a ib
复变函数
• 复变函数与解析函数 • 复变函数的积分 • 复变函数的级数与留数定理
1
第11章 复变函数与解析函数
11.1 复数及其运算 11.2 复变函数 11.3 解析函数 11.4 初等函数

复变函数ppt课件

复变函数ppt课件
(iii) f (z) cn (z z0 )n n
有无穷多个负幂次项,称z=z0为~~本~~性~~奇~~点。
3. 性质
若z0为f (z)的可去奇点
f (z) cn(z z0 )n
n0
lim z z0
f (z) c0
补充定义:f (z0 ) c0 f (z)在z0解析.
若z0为f (z)的m (m 1) 级极点
----z=1为孤立奇点
f
(z)
1 sin
1
z
----z=0及z=1/n (n = 1 , 2 ,…)都是它的奇点
但 lim 1 0, 在z 0不论多么小的去心
n n
y
邻域内,总有f (z)的奇点存在,
故z
0不

1 sin
1
z
的孤立奇点。
这说明奇点未
o
x
必是孤立的。
2. 分类
以下将f (z)在孤立奇点的邻域内展成洛朗级数,根 据展开式的不同情况,将孤立点进行分类。考察:
(1 ez )'
ez
z i ( 2k 1)
z i ( 2k 1)
[cos (2k 1) i sin (2k 1)] 0
zk i(2k 1) (k 0,1,2,)是1 ez的一级零点
综合 z i为f (z)的二级极点; zk i(2k 1) (k 1,2,)为f (z)的 一 级 极 点.

f (m)(z0 ) m!
c0
0
必要性得证!
充分性略!
例如 z 0与z 1均为f (z) z(z 1)3的零点。 又f '(z) (z 1)3 3z(z 1)2
f "(z) 6(z 1)2 6z(z 1)

复变函数第三版课件第一章

复变函数第三版课件第一章
3
二、复数的三角不等式
关于两个复数 z1与z2
的和与差的模,有下列不等式:
(1) | z1 z2 || z1 | | z2 | (2) | z1 z2 ||| z1 | | z2 ||
(3) | z1 z2 || z1 | | z2 | (4) | z1 z2 ||| z1 | | z2 ||
§1.1 复数 §1.2 复数的表示
§1.1复数
(Complex number)
一、复数的概念 二、复数的四则运算
三、复平面
一. 复数的概念
对任意两实数x、y ,称 z=x+iy为复数。 其中 i 2 1 , i称为虚单位。
复数z 的实部 Re(z) = x ; 虚部 Im(z) = y . 设复数 z1 x1 iy1 z2 x2 iy2 则z1 z2 x1 x2 , y1 y2 (表示的唯一性)
(3)z
z1 z2
x1x2 y1 y2 | z2 |2
i
x2 y1 x1 y2 | z2 |2
例如 (3 2i) (2 3i)
(z2 0)
复数的运算满足如下交换律、结合律、
分配律。
(1) z1 z2 z2 z1
z1z3 z2z1;
(2) (z1 z2 ) z3 z1 (z2 z3 ) z1(z2z3 ) (z1z2 )z3;
n
n
当k 0,1,2,.n 1时, w有n个互不相同的值:
w
1
zn
n
r
i
e
2k
n
n r[cos(1 2k ) i sin( 1 2k )]
n
n
其中r=|z|,θ=argz.
k 0, 1, 2,, n 1

复变函数第一章

复变函数第一章

Re z 0表 示 右 半 复 平 面 , Im z 0表 示 下 半 复 平 面 .
复数z x iy可用平面上坐标为 ( x,y )的点P表示.
x轴 — 实 轴 y轴 — 虚 轴 此时, 平 面— 复 平 面 或 z平 面
点的表示:z x iy 复平面上的点 P( x,y )

数z与点z同义.
2. 向量表示法
z x iy 点P ( x,y ) OP { x , y }
z1 5 5i 7i 解: z2 3 4i 5
1 i 例2 : 求 1 i
4
1 i i 1 i
例3.证 明 若 z是 实 系 数 方 程 a n x n a n -1 x n 1 a1 x a 0 0 的 根, 则 z也 是 其 根 . (实 多 项 式 的 零 点 成 对 现 出)

当z落于一,四象限时,不变。


。 当z落于第三象限时,减 。
当z落于第二象限时,加
y arctan 2 x 2

由向量表示法知
z2 z1 — 点z1与z2之间的距离
由 此 得: z 2 z1 z 2 z1 z 2 z1 z 2 z1
y
(z)
z1
的集合称为点 z 0 的δ(去心)邻域 。
记为U(z0 ,δ) (U ( z0 , )) 即, U ( z0 , ) {z z z0 }


z0
(U ( z0 , ) { z 0 z z0 }) 设G是一平面上点集 内点 对任意z0属于G,若存在U(z 0 ,δ), 使该邻 域内的所有点都属于G,则称z 0是G的内点。

复变函数课件:2_1极限与连续

复变函数课件:2_1极限与连续

映射 如果用 z 平面上的点表示自变量 z 的值, 而用另一个平面 w 平面上的点表示函数 w 的 值, 那末函数 w f (z) 在几何上就可以看作 是把 z 平面上的一个点集 E (定义集合) 变到 w 平面上的一个点集 A (函数值集合)的映射 (或变换).
如果 E 中的点 z 被映射 w f (z) 映射成 A 中的点 w, 那末 w 称为 z 的象 (映象), 而 z 称为 w 的原象.
由二元实函数极限的定义,
lim u(x, y) a, lim v(x, y) b.
xx0 y y0
xx0 y y0
充分性() 若 lim u(x, y) a, lim v(x, y) b,
xx0
xx0
y y0
y y0
0, 0,使得当0 x x0 2 y y0 2 时
| u(x, y) a | , | v(x, y) b | ,
例3 函数 w z2, 令 z x iy, w u iv, 则 u iv ( x iy)2 x2 y2 2xyi, 于是函数 w z2 对应于两个二元实变函数 : u x2 y2, v 2xy.
3. 映射的概念
对于复变函数,由于它反映了两对变量u, v 和 x, y 之间的对应关系,因而无法用同一平面内 的几何图形表示出来, 必须看成是两个复平面上 的点集之间的对应关系.
2. 复变函数极限与实函数极限的关系
定理2.1.1 设 f (z) u(x, y) iv(x, y)在点集E 上
有定义,z0 x0 iy0为E的一个聚点, a ib,
则 lim f (z) a ib z z0
lim u(x, y) a, lim v(x, y) b.
若有一法则 f ,使对E中的每一个点 z x iy, 存在多个 w u iv 和它对应, 则称 f 为在 E 上定义了一个复变数(多值)函数 .

复变函数课件第一章第二至四节复变函数

复变函数课件第一章第二至四节复变函数
内区域
光滑曲线:
光滑曲线:如果Rez(t)和Imz(t)都在闭区 间[a,b]上连续,且有连续的导函数,在 [a,b]上,其导函数恒不为零,则称此曲线
为一条光滑曲线;类似地,可以定义分段 光滑曲线。
区域的连通性:
设D是一个区域,在复平面C上,如果D内
任何简单闭曲线所围成的内区域中每一点
都属于D,则称D是单连通区域; 否则称D是多连通区域。
1 复变函数的概念
设在复平面C上以给点集E。如果 有一个法则f,使得,
z x iy E, w u iv C
同它对应,则称f为在E上定义了一个复变数函 数,简称为复变函数,记为w=f(z)。
注1、同样可以定义函数的定义域与值域; 注2、我们也称这样的函数为单复变函数,即
对E中的每个z,唯一存在一个复数w和它对
函数f也称为从E到C上的一个映射或 映照。把集合E表示在一个复平面上,称 为z-平面;把相应的函数值表示在另一个 复平面上,称为w-平面。从集合论的观
点,令
A { f (z) | z E},
记作A=f(E),我们称映射w=f(z)把任意的z0 E
映射成为 w0 f (z0) A.
函数的几何意义:
例1:集合
{z | (1 i)z (1 i)z 0}
为半平面,它是一个单连通无界区域,其边 界为直线:
(1 i)z (1 i)z 0
x y 0
例2、集合
{z | 2 Re z 3}
为一个垂直带形,它是一个单连通无界 区域,其边界为两条直线:
Re z 2
Re z 3
例3、集合
{z | 2 arg(z i) 3}
v(x,
y)
v0
即当0 (x x0 )2 ( y y0 )2 时,有

复变函数的积分课件

复变函数的积分课件

THANKS
感谢观看
复数的几何解 释
01
02
03
平面坐标系
复数$z=a+bi$在复平面 内对应点$(a,b)$,实部为 $a$,虚部为$b$。
模长
复数$z=a+bi$的模长定 义为$sqrt{a^2+b^2}$, 表示点$(a,b)$到原点的距 离。
幅角
复数$z=a+bi$的幅角定 义为$arctan(frac{b}{a})$, 表示点$(a,b)$与正实轴之 间的夹角。
积分定理的证明
柯西积分公式
通过构造辅助函数,利用全纯函数的 性质和留数定理,证明柯西积分公式。
积分定理的推论
根据柯西积分公式和解析函数的积分 表示,推导出一些积分定理的推论。
解析函数的积分表示
利用柯西积分公式和全纯函数的性质, 证明解析函数的积分表示。
路径的选取原则
可达性原则
确保所选路径能够连接起 点和终点。
简单性原则
尽量选取简单的路径,以 简化计算。
唯一性原则
确保所选路径是唯一的, 避免出现歧义。
特殊路径的选取与应用
直线段路径
在复平面上选取直线段 作为路径,计算复变函
数的积分。
圆弧路径
在复平面上选取圆弧作 为路径,计算复变函数
的积分。
折线段路径
在复平面上选取折线段 作为路径,计算复变函
数的积分。
曲线段路径
柯西积分公式的应用
• 应用:柯西积分公式可以用来求解一些复杂的积分问题,特别 是与解析函数的奇点有关的问题。例如,如果函数$f(z)$在某 个点处不可导,那么这个点就是奇点,此时可以利用柯西积分 公式来求解该点的积分值。此外,柯西积分公式还可以用来求 解一些与解析函数的零点和极点有关的问题。

《复变函数》(工科)课件 No.3

《复变函数》(工科)课件 No.3
8
无界区域的例子
角形域:0<arg z<j
y
y
上半平面:Im z>0
j
x
x
b
y
带形域:a<Im z<b
a
x
9
2. 曲线 单连通域 多连通域 平面曲线 在数学上, 经常用参数方程来表 示各种平面曲线. 如果x(t)和y(t)是两个连续的 实变函数, 则方程组 x=x(t), y=y(t), (atb) 代表一条平面曲线, 称为连续曲线. 如果令 z(t)=x(t)+iy(t) 则此曲线可用一个方程 z=z(t) (atb) 来代表. 这就是平面曲线的复数表示式.
18
在以后的讨论中, 定义集合G常常是一个平 面区域, 称之为定义域, 并且, 如无特别声明, 所讨论的函数均为单值函数. 由于给定了一个复数z=x+iy就相当于给定 了两个实数x和y, 而复数w=u+iv亦同样地对应 着一对实数u和v, 所以复变函数w和自变量z之 间的关系w=f(z)相当于两个关系式: u=u(x,y), v=v(x,y), 它们确定了自变量为x和y的两个二元实变函 数.
z1
区域 z2
不连通
ቤተ መጻሕፍቲ ባይዱ
5
设D为复平面内的一个点集, 如果点P的任 意邻域内总包含有D中的点,也包含有D的余 集中的点,这样的点P称为D的边界点. D的所 有边界点组成D的边界. 区域的边界可能是由 几条曲线和一些孤立的点所组成的.
C3
z
g1 g2
C1
C2
6
区域D与它的边界一起构成闭区域或闭域, 记作D. 如果一个区域可以被包含在一个以原点为 中心的圆里面, 即存在正数M, 使区域D的每个 点z都满足|z|<M, 则称D为有界的, 否则称为 无界的. y

《复变函数》课件

《复变函数》课件

设 ①B是 由
C
C1
C
2
C

n



有界多连通区域.且B D, ②f (z)在D内解析,则
f (z)dz 0 (1)
n

f (z)dz
f (z)dz (2)
c
其中:闭C
D
,
i 1
C1 , C
ci
2 ,
C

n
在C的内部



闭曲线(互不包含也不相交), 每一条曲线C及Ci
是逆时针,
C
i
c
c1
ck
f ( z)dz f ( z)dz
此式说c明一个解析c1 函 数沿闭曲线的积分, 不因闭曲线在区域内 作连续变形而改变它 的积分值,只要在变 形过程中曲线不经过 的f(z)的不解析点. —闭路变形原理
D
CCC1 11
C
例2 计 算
2z 1 z2 z dz
: 包 含 圆 周z 1在 内 的
1 z2
1)
1 z
1 2
z
1
i
1 2
z
1
i
由柯西-古萨基本定理有
y
11
C
dz 0,
C1 2 z i
1 1 dz 0,
C1 2 z i
C2
•i
C1
1
11
O
x
dz 0, dz 0,
C2 z
C2 2 z i
• i
22
1
1
1
C
z(z2
dz 1)
C1
dz z
C2
2( z
i)

复变函数解读课件

复变函数解读课件

幂级数展开式的应用
幂级数展开式在数学、物理、工程等 领域有广泛的应用,如求解微分方程、
研究函数的奇点和极点等。
洛朗兹级数展开式
洛朗兹级数展开式的定义
01
将复变函数表示为洛朗兹函数的无穷级数形式,可以用于研究
函数的局部行为和性质。
洛朗兹级数展开式的收敛性
02
洛朗兹级数展开式在一定条件下收敛,收敛条件决定了函数的
解析函数的性 质
在解析区域内,解析函数具有无限次 可微性,且满足柯西-黎曼条件。
全纯函数的性质
全纯函数
如果一个复数函数在某个区域内有定义,并且在该区域内可微,则称该函数为全纯函数。
全纯函数的性质
全纯函数具有零点孤立性、增长性、最大值最小值定理等性质。
共轭函数与解析函数的判别
共轭函数
如果一个复数函数的共轭复数也满足解析函 数的条件,则称该函数为共轭函数。
复数的性质
复数具有加法、减法、乘法和除法等 运算性质,满足交换律、结合律和分 配律等基本运算规则。
复数的几何意 义
1 2
3
复平面
复数可以用几何图形表示,通常在直角坐标系中,实部表示 为横轴,虚部表示为纵轴,形成一个二维平面称为复平面。
点的表示
每个复数$z=a+bi$在复平面上对应一个点$(a,b)$。
连续性的性质
连续性具有传递性、局部性等性质,并且满足中值定理。
一致连续与一致收敛
一致连续是指函数在整个定义域上具有连续性,而一致收敛则是 指函数序列在无穷远点处的极限存在。
一致连续与一致收敛
01
一致连续的定义
如果对于任意给定的正数$varepsilon$,存在正数$delta$,使得当两
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.性质
(1)多值性
w Ln z
函数图像
w L n z l n |z | i A r g z l n |z | i ( a r g z 2 k ) .
主值支
w ° @ l n z l n |z | i a r g z L n z l n z i 2 k , k Z .
(2)运算性 (3)解析性
《复变函数与积分变换》(第二版)
华中科技大学数学系
教师 黄志祥(博士)
.
参考教材
• 1.数学物理方法(第三版),汪德新 编,科学出版社, 2007年4月.
• 2. 数学物理方法与计算机仿真,杨华军 编,电子工业 出版社,2006年7月.
• 3. MATLAB及在电子信息课程中的应用( 第3版 ),陈 怀琛 等 编著,电子工业出版社, 2006.
.
2.3.5 幂函数
1.定义
z e L n z ( C , z 0 ) ; 规 定 z 0 , R 时 , z 0 .
2. 对 具 体 取 值 进 行 讨 论
3.举例
例3.计算下列函数值 (1). 31i , (2).i2i, (3).1 2.
.
小结
初等函数是复变函数的主要研究对像.
t h z sh z Arth z 1 Ln(1 z ),
ch z
2 1 z
coth z ch z Arth z 1 Ln(1 z ).
sh z
2 z 1
注:双曲函数与三角函数的关系为
函数图像
Q:双曲正(余)弦的单值性、 周期性、奇偶性如何?
s h z i s i n ( i z ) , c h z c o s ( i z ) , t h z i t a n ( i z ) , c o t h z i c o t i z .
(2)周期性 T 2.
(3)奇偶性 cosz 偶 ,sinz 奇 .
(4)三角公式
(5)解析性 整 个 复 平 面 解 析 且 ( s i n z ) ' c o s z , ( c o s z ) ' s i n z .
.
反三角函数
定义 如果sinw=z,则称w为z的反正弦函数,记为
w A rcsinz iL n(iz1z2).
注:
x 0 E u l e r 公 式 : e i y ( c o s y is i n y ) ;
y0ez ex.
2.性质 ( 1 ) e z e x i y e x e i y |e z | e x , A r g e z y 2 k , k 0 , 1 , L .
Ln(z1z2)Ln(z1)Ln(z2);Ln(z1/z2)Ln(z1)Ln(z2);
Ln(z)nnLn(z);Ln(nz)1 nLn(z).
作业!
w L n z 在 除 原 点 及 正 实 轴 外 均 解 析 且 ( L
例2.计算ln(4).
.
2.3.3 三角函数
• 4.复变函数与积分变换典型题分析解集(第二版),李建 林 编,西北工业大学出版社, 2001年1月.
017-44/1-2
.
教学方式与要求
• 方式
板书结合PPT 源于课本稍高于课本
• 要求
适当做笔记 按质完成作业
.
《复变函数与积分变换》主要内容
解析函数(导数)
复变函数
复变积分
第六-七章不讲 共9周36课时
( 3 ) 1 ( n Z ) z 1 n e 1 n L n z |z |1 n e i a r g z n 2 k ( k 0 , 1 , L ,n 1 ) n 值 ; n
(4)p, 其 中 p,q互 质 且 q0,则
q
函数图像
zq peq pLnzeq pln|z|iq p(argz2k)eq pln|z|{cos[p(argz2k)]isin[p(argz2k)]},
介绍了常见的基本初等函数,注意与实变初等 函数类比学习,着重掌握它们之间的区别.
要求: 会计算基本初等函数值.
展望
第三章 复变函数积分.
.
数互 为 反 函
结论:一般情形下幂函数为多值函数
(1 ) 0 z z0 e 0 L n z 1 ; 函数图像
( 2 ) n Z z n e n L n z e n [ l n | z | i ( a r g z 2 k ) ] e n l n | z | e i n a r g z | z | n e i n a r g z 单 值 ;
级数
两者关系: 留数
积分变换
Fourier 变换
Laplace. 变换
复球面
.
4.4 罗朗级数
.
§2.3 初等函数
• 指数函数 • 对数函数 • 三角函数与反三角函数 • 双曲函数与反双曲函数 • 幂函数 • 小结
.
2.3.1 指数函数
1.定义 对于复数z =x+iy,定义指数函数为
w e z e x p (z ) e x ( c o sy is in y ) 函数图像
1.定义
s i n ( z ) e i z e i z ,c o s ( z ) e i z e i z ,t a n ( z ) s i n z ,c o t ( z ) c o s z .
2 i
2
c o s z s i n z
注: 正、余弦函数可以大于1.
函数图像
2.性质
(1)单值性
(2 )e z 1e z 2 e z 1 z 2 ,e z 1/e z 2 e z 1 z 2 . (3) limez 不.
z
( 4 ) 解 析 性 整 个 复 平 面 解 析 且 ( e z ) ' e z .
3.举例 例1.计算e3i4.
.
2.3.2 对数函数
1.定义 指 数 函 数 的 反 函 数 , 满 足 e w z ( 0 ) 的 w ,即
同样,有
w A rcco sz iL n(zz2 1 )
wArctanz1iLnzi. 2 iz
均为多值函数.
.
函数图像
2.3.4 双曲与反双曲函数
• 双曲函数与反双曲函数
ez ez
sh z
Arsh z Ln(z
z 2 1),
2
c h z ez ez Arch z Ln(z z 2 1), 2
相关文档
最新文档