七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.
【例5】如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)
(1)在坐标系中,画出此四边形;
(2)求此四边形的面积;
(3)在坐标轴上,你能否找一个点P,使S△PBC=50,
【例10】如图,y轴的负半轴平分∠AOB, P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB于点M、N.(1)如图1,MN⊥y轴吗?为什么?
(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,
其他条件都不变时,等式∠APM= (∠OBA-∠A)是否成立?为什么?
(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.
(3)在(2)的条件下,在E点处水平放第二个平面镜,如图所示,光线CD经过二次反射后,反射光线为EG.射线CD、EG的反向延长线交于点P.求证:∠P= 2∠OHF.
(3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中, 的大小是否发生变化,若不变,求出其值.
【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7),
(1)求C点的坐标;
【例8】如图,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)²+|a-b+4|=0,
过C作CB⊥x轴于B。
(1)求三角形ABC的面积。
(2)若过B作BD//AC交y轴于D,且AE、DE分别平分∠CAB,∠ODB,如图,求∠AED的度数。
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点的坐标;
(1)求B、C的坐标;
(2)如图,AB//CD,Q是CD上一动点,CP平分∠DCB,BQ与CP交于点P,求∠DQB+∠QBC+∠QPC的值。
【例7】如图,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的负方向运动,点B以每秒n个单位长度沿y轴的正方向运动。
(1)若|m+2n-5|+|2m-n|=0,试分别求出1秒钟后A、B两点的坐标。
【例3】如图,在平面直角坐标系中,∠ABO=2∠BAO,P为x轴正半轴上一动点,BC平分∠ABP,PC平分∠APF,OD平分∠POE。
(1)求∠BAO的度数;(2)求证:∠C=15°+12∠OAP
(3)P在运动中,∠C+∠D的值是否变化,若发生变化,说明理由,若不变求其值。
【例4】如图,A为x轴负半轴上一点,C(0,-2),D(-3,-2)。
(3)在(2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.
【例9】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D连结AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
若不存在,请说明理由。
【例9】如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.
(1)若∠A=∠AOC,求证:∠B=∠BOC;
(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P.当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.
【例7】在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(2)在y轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB,若存在这样一点,求出点P点坐标,若不存在,试说明理由;
(3)若点Q自O点以0.5个单位/s的速度在线段AB上移动,运动到B点就停止,设移动的时间为t秒,(1)是否是否存在一个时刻,使得梯形CDQB的面积是四边形ABCD面积的三分之一?
若能,求出P点坐标,若不能,说明理由.
【例6】如图,A点坐标为(-2,0),B点坐标为(0,-3).
(1)作图,将△ABO沿x轴正方向平移4个单位,得到△DEF,延长ED交y轴于C点,过O点作OG⊥CE,垂足为G;
(2)在(1)的条件下,求证:∠COG=∠EDF;
(3)求运动过程中线段AB扫过的图形的面积.
【例13】在直角坐标系中,A(-4,0),B(2,0),点C在y轴正半轴上,且S△ABC= 18.
(1)求点C的坐标;
(2)是否存在位于坐标轴上的点P,S△ACP= S△ABC.若存在,请求出P点坐标,若不存在,说明理由.
【例14】如图,(1)DO平分∠EDC,探究∠E,∠C,∠DOC的关系.
(2)在直角坐标系中,第一象限AB方向放有一个平面镜,一束光线CD经过反射的反射光线是DE,法线DH交y轴于点H.交x轴于点F(∠DCE>∠DEC),若平面镜AB绕点D旋转,则是否存在一个正整数k,使∠DCE-∠DEC=k∠OHF.若存在,请求出k值,若不存在,请说明理由.
【例8】在平面直角坐标系中,OA=4,OC=8,四边形ABCO是平行四边形.
(1)求点B的坐标及的面积 ;
(2)若点P从点C以2单位长度/秒的速度沿CO方向移动,同时点Q从点O以1单位长度/秒的速度沿OA方向移动,设移动的时间为t秒,△AQB与△BPC的面积分别记为 , ,是否存在某个时间,使 = ,若存在,求出t的值,若不存在,试说明理由;
【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.
(1)如图1,直接写出图中相等的线段,平行的线段;
(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;
(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;
(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;
【例3】如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(4)是否是否存在一个时刻,使得梯形CDQB的面积等于△ACO面积的二分之一?
【例10】在直角坐标系中,△ABC的顶点A(—2,0),B(2,4),C(5,0).
(1)求△ABC的面积
(2)点D为y负半轴上一动点,连BD交x轴于E,是否存在点D使得 ?若存在,请求出点D的坐标;若不存在,请说明理由.
培优训练三:平面直角坐标系(压轴题)
一、坐标与面积:
【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
【例11】在平面直角坐标系中,点 , , ,且满足 ,过点C作 轴,D是MN上一动点.
(1)求 的面积;
(2)如图1,若点 的横坐标为-3, 交 于 ,求点 的坐标;
(3)如图2,若 , 是 上的点,Q是射线DM上的点,射线QG平分 ,射线PH平分 , ,请你补全图形,并求 的值.
【例12】如图,直角坐标系中,C点是第二象限一点,CB⊥y轴于B,且B(0,b)是y轴正半轴上一点,A(a,0)是x轴负半轴上一点,且 ,S四边形AOBC=9。
(3)点F(5,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC的面积,则点G的坐标为(用含n的式子表示)
二、坐ຫໍສະໝຸດ Baidu与几何:
【例1】如图,已知A(0,a),B(0,b),C(m,b)且(a-4)2+|b+3|=0,S△ABC=14.
(1)求C点坐标
(2)作DE⊥DC,交y轴于E点,EF为∠AED的平分线,且∠DFE=900.求证:FD平分∠ADO;
(3)若点A、C的位置不变,当点P在y轴上什么位置时,使 ;
(4)若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
【例4】如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足 ,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;
(2)如图,设∠BAO的邻补角和∠ABO的邻补角平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由。
(2)动点P从B点出发以每秒1个单位的速度沿BA方向运动,同时动点Q从C点出发也以每秒1位的速度沿y轴正半轴方向运动(当P点运动到A点时,两点都停止运动)。设从出发起运动了x秒。
①请用含x的代数式分别表示P,Q两点的坐标;
②当x=2时,y轴上是否存在一点E,使得△AQE的面积与△APQ的面积相等?
若存在,求E的坐标,若不存在,说明理由?
(1)求C点坐标;
(2)设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交与点P,求∠APD的度数?
(3)当D点在线段OB上运动时,作DM⊥AD交CB于M,∠BMD,∠DAO的平分线交于N,则D点在运动的过程中∠N的大小是否变化,若不变,求出其值;若变化,请说明理由。
(1)求△BCD的面积;
(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系,
并说明你的结论。
(3)若∠ADC=∠DAC,点B在x轴正半轴上任意运动,∠ACB的平分线CE交DA的延长线于点E,
在B点的运动过程中, 的值是否变化?若不变,求出其值;若变化,说明理由。
【例5】如图,已知点A(-3,2),B(2,0),点C在x轴上,将△ABC沿x轴折叠,使点A落在点D处。
(1)写出D点的坐标并求AD的长;
(2)EF平分∠AED,若∠ACF-∠AEF=15º,求∠EFB的度数。
【例6】如图,在直角坐标系中,已知B(b,0),C(0,a),且|6–2b| +(2c-8)²=0.BD⊥x轴于B.
相关文档
最新文档