新人教数学 7年级上:达标训练(3.1.1 立体图形与平面图形)
人教版七年级上4.1.1 立体图形与平面图形练习含答案
人教版七年级上4.1.1 立体图形与平面图形练习含答案一、填空题:请将答案填在题中横线上.1.下列图形中,表示平面图形的是__________;表示立体图形的是_________.(填入序号)【答案】①③;②④2.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.【答案】6,8,33. 若一个棱柱有7个面,则它是__________棱柱.【答案】5二、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.4.下列图形中,含有曲面的立体图形是A.B.C.D.【答案】D5.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管烟囱酒瓶【答案】A6.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是A.正方体B.球C.圆锥D.圆柱体【答案】D7.下面的几何体是棱柱的为A.B.C.D.【答案】C8.下列几何体中,是圆柱的为A.B.C.D.【答案】A三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.【答案】如图:10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.【答案】(1)体积为a⋅b⋅6=6ab,表面积为2(ab+6a+6b)=2ab+12a+12b.(2)当a=10,b=8时,原式=2×10×8+12×10+12×8=376。
故答案为376.。
人教版七年级上册数学 几何图形之立体图形与平面图形习题练习(附答案)
几何图形之立体图形与平面图形一、选择题1.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90度,然后在桌面上按逆时针方向旋转90度,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成32次变换后,骰子朝上一面的点数是()A. 6B. 5C. 3D. 22.如图,以下四个图形是由立体图形展开得到的,相应的立体图形的顺次是()A.正方体、圆柱、圆锥、三棱锥B.正方体、三棱锥、圆柱、圆锥C.正方体、圆柱、三棱柱、圆锥D.三棱锥、圆锥、正方体、圆锥3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④4.如过正方形中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确的展开图为()A.B.C.D.二、填空题5.一个正方形的平面展开图如图所示,将它折成正方体后,“保”字对面的字是______.6.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是.7.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中共有三角形个,圆个.8.如图所示的图形中为柱体的是,其中为圆柱的是,为棱柱的是.()9.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,类似于棱柱的物体有,类似于球体的物体有,类似于圆锥的物体有,类似于圆柱的物体有.10.请指出右图中的平面图形是左图所示立体图形的哪个视图?三、解答题11.如图,是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)请根据图中所标的尺寸,计算这个几何体的侧面积.12.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.13.我们知道,对于一些立体图形问题,常把它转化为平面图形来研究和处理,棱长为a的正方体摆成如图所示的形状,问:(1)这个几何体共有几个正方体?(2)这个几何体的表面积是多少?答案解析1.【答案】A【解析】先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求32被3整除后余数是2,从而确定第1次变换的第2步变换.解:根据题意可知连续3次变换是一循环.因为32÷3=10…2,所以是第2次变换后的图形.故选A.2.【答案】C【解析】观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选C.3.【答案】A【解析】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.4.【答案】B【解析】选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.5.【答案】碳【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“低”与“绿”是相对面,“碳”与“保”是相对面,“环”与“色”是相对面.故答案为:碳.6.【答案】12 cm3【解析】∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:(6-4)÷2=1(cm),∴EF=4-1=3(cm),∴原长方体的体积是:3×4×1=12(cm3).故答案为:12 cm3.7.【答案】4;4【解析】根据三角形和圆的定义及所给图形可知:图中共有三角形4个,圆4个.故答案为:4;4.8.【答案】②③;②;③.【解析】根据柱体是上下一样粗的几何体可得答案;两底面是圆形的柱体是圆柱,底面是多边形的柱体是棱柱.9.【答案】火柴盒、六角螺母;足球;铅垂体;易拉罐.【解析】棱柱主要特点:上下两个平行的面,侧面是四边形;球体主要特点:一个曲面;圆锥主要特征;两个面,底面是圆,侧面是一个曲面;圆柱主要特征:上下两个全等的平行的圆,侧面是一个曲面.解:根据以上分析特征故火柴盒六角螺母类似于棱柱;足球类似于球体;铅垂体类似于圆锥;易拉罐似于圆柱.10.【答案】从左面看;从上面看;从正面看【解析】根据立体图形得出从不同方向看物体的视图.11.【答案】解:(1)这个几何体的名称是六棱柱;(2)侧面积=(2+4)ab=6ab.【解析】(1)根据几何体的三视图,可得出几何体是六棱柱;(2)由图可得侧面积等于六个矩形的面积.12.【答案】解:(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为a cm,则长与宽相等为5a cm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000(cm3).【解析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有两种情况,(3)设最短的棱长高为a cm,则长与宽相等为5a cm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.13.【答案】解:(1)上面一层有1个正方体,中间层有3个正方体,底层有6个正方体,共10个正方体;(2)根据以上分析该物体的表面积为6×6×a2=36a2.【解析】(1)先找出每一层中正方体的个数,然后相加即可;(2)由题可知上下左右前后露出的面都为6个正方形,故总共的表面为36个表面,由此得出表面积.。
人教版初一七年级上册数学 课时练《 立体图形和平面图形》02(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练1.由五个大小相同的正方体组成的几何体如图所示,那么从正面看到的图形是()第1题图2.移动台阶如图所示,则从正面看到的图形是()第2题图3.如图所示的几何体,从左面看得到的平面图形是()第3题图4.有一种圆柱体茶叶筒如图所示,从前面看得到的平面图形是()第4题图5.一个直立在水平面上的圆锥体从正面、上面、左面看的图形分别是()A.长方形、三角形、圆B.三角形、圆、三角形C.三角形、三角形、圆D.长方形、圆、长方形6.分别从正面、左面、上面看下列立体图形,得到的平面图形都一样的是()7.一张坐凳的形状如图所示,以箭头所指的方向为正方向,则从左边看得到的图形是()第7题图8.一个几何体从正面、左面、上面看,得到的平面图形如图所示,那么这个几何体是()第8题图9.用包装带按如图所示的方式捆绑长方体的包装箱,已知包装箱的长、宽、高分别是50cm、20cm、20cm,则所需要的包装带的最小总长度为____________cm.第9题图10.将长∶宽∶高=3∶1∶1的两个长方体如图摆放,画出分别从正面,左面,上面看到的几何图形.第10题图11.棱长为a的正方体摆放成如图的形状,问:(1)有几个正方体;(2)摆放成如图形式后,表面积是多少?第11题图12.如图所示几何体从左面看到的图象是()第12题图13.桌上放着一个茶壶,4个同学从各自的方向观察,请指出如图下方的四幅图,从左至右分别是由哪个同学看到的?()第13题图A.①②③④B.①③②④C.②④①③D.④③①②14.由几个小正方体组成的几何体从上往下看得到的图形如图所示,小正方体中的数字表示在该位置的小正方体的个数,则从左边看这个立体图形得到的图形是()第14题图15.若干桶方便面摆放在桌子上,如图所示是从它的正面、左面和上面看到的情形,则依据看到的情形推导这堆方便面的桶数应为()第15题图A.6B.7C.8D.916.一个长方体从左面看、从上面看的相关数据如图所示,则从正面看到的图形的面积为________.第16题图17.如图是由一些相同的小正方体搭成的几何体从三个不同方向看得到的图形,搭成这个几何体的小正方体的个数是________个.第17题图18.小乐乐在堆积木,现在已经堆成右面的立体图形,她要在这个基础上把它堆成一个大立方体,最少还需要__________块正方体的小积木.第18题图19.用小立方体搭成一个几何体,使它从正面看和上面看如图所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?第19题图参考答案1—5.CBBDB6—8.ACD9.30010.如下:第10题图11.(1)10个(2)36a212—15.DACB16.817.418.5219.摆这样的几何体,最多用17个小立方体,最少用11个小立方体.。
人教版七年级数学上册立体图形与平面图形同步测试(含答案)
人教版七年级数学上册4.1.1 立体图形与平面图形同步测试(含答案)一、单选题1.下列图形中不是正方体展开图的是()A.B.C.D.2.如图正方体纸盒,展开后可以得到()A.B.C.D.3.下列图形中,能折叠成正方体的是()A.B.C.D.4.如图是一个正方体的表面展开图,若把展开图折叠成正方体,则“识”字一面的对面上的字是()A.就B.是C.力D.量5.下列几何体的侧面展开图形状不是长方形的是()A.圆柱B.正方体C.圆锥D.棱柱6.在市委、市政府的领导下,全市人民齐心协力,力争于2017年将我市创建为“全国文明城市”,为此小宇特制了正方体模具,其展开图如图所示,原正方体中与“文”字所在的面正对面上标的字是()A.全B.国C.明D.城7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.五D.峰8.下列选项的图形中,是三棱柱的侧面展开图的为()A.B.C.D.9.如图,左边的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.10.下列图形中,不能折叠成一个正方体的是()A.B.C.D.二、填空题11.如图是一个正方体的表面展开图,在原正方体上,与“蝴蝶面”相对的面上的数字为.12.有理数a、b、c在数轴上的位置如图所示,化简的结果是.13.如图,是一个正方体的六个面的展开图形,则“力”所对的面是.14.如图,一圆柱高6cm,底面周长为l6cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.15.如图,纸板上有19个无阴影的小正方形,从中选涂1个,使它与图中5个有阴影的小正方形一起能折叠成一个正方体纸盒,一共有种选法.三、解答题16.已知m的平方根是k+1和2k-2,求k的值.17.如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.18.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.19.已知a、b互为相反数,c、d互为倒数,x在数轴上的位置距原点2个单位长度,求a+b+x2−cd2的值.20.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.21.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.22.如图是一个正方形盒的展开图,若在其中的三个正方形A、B、C、内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为多少?23.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.24.如图,图中有多少个三角形?答案1.D 2.A 3.A 4.D 5.C 6.D 7.C 8.D 9.C 10.B11.4 12.-2a 13.我14.10 15.416.解:当m=0时,k+1=2k-2解之:k=3∴k+1=3+1=4≠0,∴不符合题意;当m为正数时k+1+2k-2=0,解之:k=13.17.解:如图所示.18.解:如图所示:19.解:因为a、b互为相反数,c、d互为倒数,x在数轴上的位置原点2个单位长度,所以a+b=0,cd=1,x2=4,所以a+b+x2−cd2=0+4−12=72.20.解:由题意知:x+10=52z+3=5y+(-2)=5所以:x=-5,y=7,z=1即:x+y+z=(-5)+7+1=321.解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.故x+y+z=4.22.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣1”是相对面,“B”与“2”是相对面,“C”与“0”是相对面,∵相对的面上的两个数互为相反数,∴入正方形A、B、C内的三个数依次为1,﹣2,0.23.解:(1)多余一个正方形如图所示:(2)表面积=52×2+8×5×4=50+160=210cm2.故答案为210cm2.24.解:有1个三角形构成的有9个;有4个三角形构成的有3个;最大的三角形有1个;所以,三角形个数为9+3+1=13.。
最新人教版七年级数学上册:立体图形与平面图形课时练习及答案解析.docx
新人教版数学七年级上册4.1.1立体图形与平面图形课时练习一、选择题(共15小题)1.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④答案:B知识点:简单几何体的三视图解析:解答:运用已学过的简单几何体三视图,分别列出上述四个几何体的三视图。
①长方体:它的主视图、左视图、俯视图均为长方形,主视图是由其长和高组成的长方形,左视图是由其宽和高组成的长方形,俯视图是由其长和宽组成的长方形。
在没有告知长宽高具体数据的情况下,我们一般地认为长宽高是互不相等的。
②圆柱:它的主视图和左视图都是长方形,长方形的长都等于圆柱底面的直径,宽等于圆柱的高。
其俯视图是圆。
③圆锥:它的主视图和左视图都是三角形,三角形的底等于圆锥底面的直径,两腰都是顶点到底面圆边的距离。
其俯视图是圆。
④球:它的三视图都是圆,并且圆的直径相等。
分析:本题容易混淆的是①图和③图,有的学生会默认①图的主视图和俯视图相同,对于③图,有时会记错它的左视图。
本题考查简单几何体的三视图。
2.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是()答案:C知识点:图形的旋转;主视图解析:解答:图形绕直线旋转一周,得到一个立体图形。
这个立体图形的横切面(俯视图)是圆,圆的半径等于旋转面上的点到直线的距离。
而该立体图形的主视图,则是平面图形以旋转直线为对称轴作出来的轴对称图形。
比如,圆柱是由长方形绕其一边旋转得到的,它的底面半径是该长方形另一边的长,绕其旋转的一边就是它的高。
圆锥是由一个直角三角形绕其一条直角边旋转一周得到的图形,这条直角边就是圆锥的高,另一条直角边就是圆锥的底面半径。
题目中的立体图形是一个等腰梯形,其上底长小于下底长。
由此,可以选出正确答案。
分析:在大脑中构建旋转立体图形,或者将已知立体图形的主视图画出来,按照选项中的直线位置作对称轴,得到的图形就是正确选项。
人教版七年级上册 4.1.1 立体图形与平面图形同步练习(含答案)
4.1.1 立体图形与平面图形(1)1.下列几何图形中,是棱柱的是( )A.B.C.D.2.与图中实物图相类似的立体图形按从左至右的顺序依次是()A.圆柱、圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、棱柱D.棱柱、圆锥、棱柱、长方体3.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,从三个不同的方向看得到的图形如图4-1-1-13所示,则n的值是()图4-1-1-13A.6 B.7 C.8 D.9 4.下面的图形中是平面图形的是( )A.B.C.D.5.如图4-1-1-2.组成这个美丽图案的图形有()图4-1-1-2A.三角形和半圆形B.圆和四边形C.圆和三角形D.圆和扇形6.图4-1-1-3是由5个大小相同的正方体搭成的几何体,从上面看这个几何体,所看到的图形是()7.如图4-1-1-4所示的几何体,从左面看,所看到的图形是()8.图4-1-1-5所示的几何体是由一个圆柱体和一个长方体组成的,则从上面看这个几何体,得到的图形是()9.从三个方向看一个几何体得到的平面图形如图4-1-1-6所示,则这个几何体摆放的位置是()10.从一个物体的不同方向看到的是如图4-1-1-7所示的三个图形,则该物体的形状为()图4 -1-1-7A .圆柱 B.棱柱 C.圆锥 D .球 11.下列平面图形中,不是正方体的展开图的是()12.图4-1-1-8是某个几何体的展开图,该几何体是()图4-1-1-8A .三棱柱 B.三棱锥 C.圆柱 D .圆锥13.图4-1-1-9是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()图4-1-1-9A .传B .统C .文D .化14.图4-1-1-10是某种几何体表面展开图的图形,这个几何体是()图4-1-1-10A .圆锥B .球C .圆柱D .棱柱4.1.1 立体图形与平面图形(2)1.图4-1-1-11是两个等直径圆柱构成的“T”形管道,从左面看,所看到的图形是() 2.将如图4-1-1-12所示的立方体展开,得到的图形是()3.下列图形中,属于平面图形的是()4.一个正方体的每个面都有一个汉字,其平面展开图如图4-1-1-15所示,那么在该正方体中和“值”字相对的字是()图4-1-1-15A.记B.观C.心D.间5.图4-1-1-16是由6个大小相同的小正方体组成的几何体,从正面看该几何体,所看到的图形是()图4-1-1-166.下列几何体中,是圆柱的为()7.如图4 -1-1-17所示的几何体是由4个相同的小正方体搭成的,从正面看,所看到的图形是( )8.下列图形中,属于立体图形的是()9.图4-1-1-18是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()图4-1-1-18A.丽B.连C.云D.港10.下列图形中,是圆锥的侧面展开图的是()11.如图4-1-1-1,上面是一些具体的物体,下面是一些立体图形,试找出与立体图形类似的实物(用线连接).12.小华在一个正方体的六个面上分别写上“x,y,z,1,-1,2”字样,表面展开图如图4-1-1-14所示,若在该正方体中,相对面上的数字相等,则=_______.图4-1-1-1413.如图4-1-1-19,请帮助他们实现心愿.图4 -1-1-19物体如图4 -1-1- 20所示,图4-1-1- 2014.用若干个相同的小正方体搭成一个几何体,使它从正面和左面看得到的图形如图4-1-1-21所示.(1)搭成这样的一个几何体,需要多少个小正方体?(2)试画出几种从上面看得到的图形,并在相应的图形中标出各个小正方形所在位置的小正方体的个数.图4-1-1-214. 1.1 立体图形与平面图形(1)1.B A是圆柱;B是棱柱:C是球:D是圆锥.2.B与题图中实物网相类似的立体图形按从左至右的顺序依次是圆柱、球、正方体、长方体.故选B.3.B 在从上面看得到的图形上标出相应位置的粉笔盒数,如图,则n= 1+1+3+2=7.故选B.4.D A是圆柱,B是圆锥.C是球,它们都是立体图形,D是圆.是平面图形,故选D.5.A从题中图案可以看出这个美丽图案由三角形和半圆形组成.6.A从上面看到的图形有1列,第1列(从左向右)有2个正方形,第2列、第3列各有1个正方形,故选A.7.C从左面看去,应该是“L”形的图形.故选C.8.C从上面看圆柱,所看到的图形是一个圆,从上往下看长方体得到的图形是一个长方形.9.A从上面看得到的图形是三角形,可排除B、D,根据从正面看得到的图形中的虚线,可排除C.故选A.10.C从不同方向看圆柱和棱柱,一定有长方形,故可排除A.B,从不同方向看球,所看到的图形都是网,故可排除D,只有C符合.11.D 由四棱柱四个侧面和上下两个底面的特征可知,选项A,B,C可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图,故选D.12.A根据侧面都是矩形可知,该几何体是柱体,根据上、下底面部是三角形可知.该柱体是三棱柱,故选A.13.C所给图形是正方体展开图中的“132”型,∴把所给图形折成正方体后,“弘”与“文”、“扬”与“统”、“传”与“化”相对,故选C.14.A圆锥的展开图为一个扇形于一个圆形,故这个几何体是圆锥.4. 1.1 立体图形与平面图形(2)1.B从左面看到的图形为选项B中的图形,故选B.2.D选项A.B折叠后不符合原正方体的特征,选项C中带图案的三个面没有一个公共顶点,所以不符合原正方体的特征,只有选项D折叠后符合原正方体的特征故选D.3.B选项A是正方体,选项B是三角形,选项C是圆柱,选项D是四棱锥,只有B 属于平面图形.4.A这是一个正方体的平面展开冈,共有六个面,其中面“值”与研“记”相对.面“观”与面“间”相对,面“价”与面“心”相对,故选A.5.C从正面看该儿何体所看到的图形共两层三列,第一层有3个正方形,第二层有1个正方形,儿在最右边,故选C.6.A 知A、B、C.D四个选项中的几何体分别是圆柱、圆锥、接住和棱锥,故选A.7.B该几何体由4个相同的小正方体组合而成,从正面看到的图形的第一层是横排的三个小正方形,第二层有一个小正方形,儿在最右边,故选B.8.C A.角是平面图形,故A不符合题意.B.圆是平面图形,故B不符合题意.C.圆锥是立体图形,故C符合题意.D.三角形是平面图形,故D不符合题意.故选C.9.D经折叠知,“美”字一面与“港”字一面相对,“丽”字一面与“连”字一面相对,“的”字一面与“云”字一面相对,故选D.10.B 圆锥的侧面展开图是扇形,故选B.11.解析如图所示:12.答案1解析∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“x”与“-1”是相对面,“y”与“2”是相对面,“1”与“z”是相对面,∵在该正方体中,相对面上的数字相等,∴x=-1.y=2.∴x²=(-1)1=1.故答案为1.13.解析甲选择(2)和(4);乙选择(1);丙选择(1)和(3).14.解析(1)6个、7个、8个、9个、10个、11个小正方体均可搭成这样的一个儿何体.(2)根据(1)可以给出部分可能情况,从上面看得到的图形中各个小正方形所在位置的小正方体的个数如图.。
数学人教版七年级上册 4.1.1 立体图形与平面图形 课时练习(word、含答案)
4.1.1 立体图形与平面图形学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.一个几何体的表面展开图如图所示,则这个几何体是( )A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱2.我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图是“牟合方盖”的一种模型,从正面看,所看到的图形是( )A. B.C. D.3.下列物体中,与球的形状类似的是( )A. 电视机B. 铅笔C. 西瓜D. 烟囱4.如图是由三个相同正方体组成的甲、乙两个几何体,它们的三视图中不一致的是( )A. 主视图B. 左视图C. 俯视图D. 都不一致5.下列平面图形不能够围成正方体的是( )A. B.C. D.6.如图所示,从左面看该几何体,看到的图形是( )A.B.C.D.7.如图是某种几何体的表面展开图,这个几何体是( )A. 圆锥B. 球C. 圆柱D. 棱柱8.从下列物体抽象出来的几何体可以看成圆柱的是( )A. 足球B. 易拉罐C. 吊锤D. 茶杯9.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A. ①②③B. ②③④C. ①③④D. ①②④10.下图中是三棱锥的立体图形的是( )A. B. C. D.二、填空题(本大题共2小题,共6.0分)11.如下图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面、上面三个不同方向看该立体图形得到的平面图形中,面积最小的是从__________面看得到的平面图形.12.小华在一个正方体的六个面上分别写上“x,y,z,1,−1,2”的字样,表面展开图如图所示,若在该正方体中,相对面上的数字相等,则x y=.三、解答题(本大题共4小题,共32.0分。
人教版七年级上册数学立体图形与平面图形同步训练
人教版七年级上册数学4.1.1立体图形与平面图形同步训练一、单选题1.如图所示,该正方体的展开图为()A.B.C.D.2.下列立体图形中,全部是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球3.如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱4.如图,把图1中的七巧板,拼成图2的长方形,如果图1中阴影部分是边长为1的正方形,则图2中长方形的周长为()A.6B.8C.12D.165.如图是几何体的展开图,这个几何体是()A.圆柱B.三棱锥C.四棱柱D.三棱柱6.计算制作一个圆柱体需要多少铁皮,应该计算的是()A.侧面积+一个底面积B.侧面积C.底面积D.侧面积+两个底面积7.下面图形中为圆柱的是()A.①B.①C.①D.①8.如图为一个长方体的展开图,且长方体的底面为正方形.根据图中标示的长度,求此长方体的体积为何?()A.144B.224C.264D.300二、填空题9.如图是一个正方体的展开图,则原正方体中与“武”字所在的面相对的面上标的字是_____.10.如图是一个正方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数,则22+-+的值是________.a b c d11.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色12.如图是一个正方体的展开图,把它复原为正方体后,与平面B垂直的平面是_________.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为−4的面与它对面的数字之和是_______.14.密封的瓶子里装着一些水,如图(单位:cm).请你想办法计算出瓶子的容积是____mL.( 取3.14)15.如图,把一个高9dm的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了236dm.原来这个圆柱的体积是______3dm.16.如图所示是一个几何体的表面展开图,则该几何体的体积为_________.(结果用含π式子表示)三、解答题17.下面是一个正方体的平面展开图,请把10,23,-17,0.1,32,-7分别填入六个正方形中,使得折成正方体后,相对面上的数互为倒数.18.如图是一个正方体的平面展开图,标注了字母M的是正方体的前面,标注了﹣2的是正方体的底面,正方体的左面与右面标注的式子的和为21(1)求x的值;(2)求正方体的上面和后面的数字的积.19.如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.20.已知一直棱柱共有11个面,且它的底面边长都相等,侧棱长是10厘米,侧面积是180平方厘米.(1)它是几棱柱?(2)它的底面边长是多少?参考答案:1.D2.D3.A4.C5.D6.D7.B8.B9.城10.-911.黄12.A、C、E、F13.-714.100.4815.3616.24π18.(1)x=3(2)-919.(1)长方体(2)表面积280cm2,体积300cm320.(1)9(2)2厘米答案第1页,共1页。
人教版初中数学七年级上册《4.1.1 立体图形与平面图形》同步练习卷
人教新版七年级上学期《4.1.1 立体图形与平面图形》同步练习卷一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.3.下列几何图中,是棱锥的是()A.B.C.D.4.下列几何体中,是圆锥的为()A.B.C.D.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.7.下列几何体中,面的个数最少的是()A.B.C.D.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形10.下列图形中,是棱柱的是()A.B.C.D.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体13.下列图形中,含有曲面的立体图形是()A.B.C.D.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体17.如图,下列图形全部属于柱体的是()A.B.C.D.18.下列几何体中,是柱体的是()A.B.C.D.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个20.下列各图是立体图形的是()A.B.C.D.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有个面.24.四棱柱有条侧棱.25.六棱柱有条棱,顶点,个面.26.六棱柱是一个立体图形,它是由个面,条棱,个顶点组成的.27.下面的几何体中,属于柱体的有个.28.正六棱柱有个顶点.29.若一个棱柱有7个面,则它是棱柱.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.人教新版七年级上学期《4.1.1 立体图形与平面图形》2019年同步练习卷参考答案与试题解析一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个【分析】按照每层的小正方体的个数,相加即可得到这个立体图形中小正方体的个数.【解答】解:由图可得,第一层有7个;第二层有5个;故这个立体图形中小正方体的个数是12个,故选:D.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.【点评】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.3.下列几何图中,是棱锥的是()A.B.C.D.【分析】根据棱锥的定义判断即可.【解答】解:A、是圆柱,B、是圆锥,C、是正方体,D、是三棱锥,故选:D.【点评】本题考查了认识立体几何,正确的认识几何体是解题的关键.4.下列几何体中,是圆锥的为()A.B.C.D.【分析】根据圆锥的定义解答.【解答】解:观察可知,C选项图形是圆锥.故选:C.【点评】本题考查了认识立体图形,熟悉常见的立体图形是解题的关键.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机【分析】结合实物进行解答.【解答】解:A、铅笔是圆柱体,故本选项错误;B、打足气的自行车内胎不是球体,故本选项错误;C、乒乓球是球体,故本选项正确;D、电视机不是球体,故本选项错误;故选:C.【点评】此题主要考查了认识立体图形,结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:A、是三棱柱,是柱体,不符合题意;B、是圆柱,是柱体,不符合题意;C、是球,属球体,符号题意;D、是圆锥,是锥体,不符合题意;故选:C.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.7.下列几何体中,面的个数最少的是()A.B.C.D.【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.【点评】考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【分析】观察所给图形,根据圆柱体的特点即可做出判断.【解答】解:最接近圆柱的是生日蛋糕.故选:A.【点评】本题考查了认识立体图形,比较简单,熟悉圆柱体是解题的关键.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形【分析】根据正方体的截面性质判断即可.【解答】解:在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是钝角三角形,故选:B.【点评】此题考查了认识立体图形,弄清正方体截面的特征是解本题的关键.10.下列图形中,是棱柱的是()A.B.C.D.【分析】根据棱柱与棱锥的区别进行判断.【解答】解:A、是三棱锥,故A错误;B、是圆柱,故B错误;C、是圆锥,故C错误;D、是三棱柱,故D正确;故选:D.【点评】本题考查了认识立体图形:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【分析】根据圆柱体的截面图形可得.【解答】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到D选项的形状,不能得到三角形的形状,故选:C.【点评】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体【分析】根据平面图形定义:一个图形的各部分都在同一个平面内的图形是平面图形可得答案.【解答】解:A、球、圆锥是立体图形,错误;B、棱锥、棱柱是立体图形,错误;C、角、三角形、正方形、圆是平面图形,正确;D、长方体是立体图形,错误;故选:C.【点评】此题主要考查了平面图形,关键是掌握平面图形的定义.13.下列图形中,含有曲面的立体图形是()A.B.C.D.【分析】根据立体图形的特征,可得答案.【解答】解:A、角是平面图形,故A不符合题意;B、半圆环是平面图形,故B不符合题意;C、棱台不含曲面,故C不符合题意;D、侧面是曲面的立体图形,故D符合题意;故选:D.【点评】本题考查了认识立体图形,正确区分平面图形与立体图形是解题关键.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【分析】根据三棱锥的特点,可得答案.【解答】解:侧面是三角形,说明它是棱锥,底面是三角形,说明它是三棱锥,故选:C.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体【分析】根据由多个平面组成的几何体是多面体,可得答案.【解答】解:∵圆锥是旋转体,四棱柱、长方体、五棱柱都是多面体,∴圆锥不是多面体,故选:B.【点评】本题考查了认识立体图形,多面体是由多个平面组成的几何体,注意圆锥是旋转体.17.如图,下列图形全部属于柱体的是()A.B.C.D.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.18.下列几何体中,是柱体的是()A.B.C.D.【分析】根据柱体的概念和定义即可解.【解答】解:A、该图形是圆锥体,故本选项错误;B、该图形是三棱锥,故本选项错误;C、该图形上下两底面不全等,不是柱体,故本选项错误;D、该图形是正方体,属于柱体,故本选项正确.故选:D.【点评】本题考查的棱柱的定义,关键点在于:棱柱的侧面是几个长方形围成,且上下底面是相等的.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个【分析】先根据图形得出最右边的正方体是:上蓝,下白,左绿,右红,前黄,后紫,即可推出其它正方形,代入朵数即可得出答案.【解答】解:∵大小颜色花朵分布完全一样,∴最左边的正方体告诉我们:黄色紧邻的面是白色;最右边的正方体告诉我们:黄色紧邻着红色和蓝色;∴可以推断出最右边的正方体的白色面是在它的左侧面或下底面;又∵右数第二个正方体告诉我们红色紧邻着白色;∴对于最右边的正方体,白色只可能在下底面(如果在左侧面就与红色是对立面了,不符题意);∵根据左数第二个正方体可知:红色紧邻着紫色;∴对于最右边的正方体,后侧面是紫色,左侧面是绿色.即最右边的正方体为例,它是:上蓝,下白,左绿,右红,前黄,后紫.也就是说:黄的对立面是紫;紫的对立面是黄;红的对立面是绿,蓝的对立面是白.依次对应从左至右的四个正方体,下底面分别是:紫,黄,绿,白.∴长方体的上面有花:2+5+1+3=11朵,前面有花:4+1+4+2=11朵,下面有花:5+2+6+4=17朵,后面有花:3+6+3+5=17朵,左面有花:1朵,右面有花:6朵,长方体的表面包括下底面共有:11+11+17+17+6+1=63朵.故选:D.【点评】考查了认识立体图形,注意正方体的空间图形,从相对面入手,分析及解答问题.20.下列各图是立体图形的是()A.B.C.D.【分析】根据立体图形的定义,可得答案.【解答】解:由题意,得三棱锥是立体图形,故选:D.【点评】本题考查了立体图形,每个面不在同一个平面内是解题关键.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、第三、第六个几何体是棱柱,共有3个.故选:A.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的【分析】根据棱柱的结构特征进行判断.【解答】解:A、棱柱的每一个侧面都是平行四边形,故本选项错误;B、棱柱的侧面展开图是长方形,故本选项正确;C、一个棱柱的底面是一个5边形,则它的侧面必须有5个长方形组成,故本选项正确;D、棱柱的上下底面是全等的多边形,则棱柱的上下底面是形状、大小相同的多边形.故本选项正确;故选:A.【点评】本题考查了立体图形的认识,熟记常见立体图形的结构特征是解题的关键.二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有9个面.【分析】根据棱柱的概念和定义,可知有21条棱的棱柱是七棱柱.【解答】解:21÷3=7,∴一个棱柱共有21条棱,那么它是七棱柱,∴这个棱柱共有9个面.故答案为:9.【点评】本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.24.四棱柱有4条侧棱.【分析】根据立体图形,即可解答.【解答】解:四棱柱有4条侧棱,故答案为:4.【点评】本题考查了棱柱的特征,解题时可以运用一般规律:n棱柱有(n+2)个面,2n 个顶点和3n条棱.25.六棱柱有18条棱,12顶点,8个面.【分析】根据六棱柱的概念和定义即可得出答案.【解答】解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有12个顶点;8个面;18条棱.故答案为18,12,8.【点评】此题主要考查了立体图形,解决本题的关键是掌握六棱柱的构造特点.26.六棱柱是一个立体图形,它是由8个面,18条棱,12个顶点组成的.【分析】根据长方体的特征,六棱柱有8个面,相对的面面积相等;有18条棱互相平行的一组4条棱的长度相等;有12个顶点.【解答】解:六棱柱有8个面,18条棱,12个顶点.故答案为:8,18,12.【点评】此题主要考查认识立体图形的知识,解题的关键是了解长方体的特征.27.下面的几何体中,属于柱体的有4个.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.28.正六棱柱有12个顶点.【分析】根据正六棱柱上、下地面各有6个顶点,据此可得.【解答】解:正六棱柱有12个顶点.故答案为:12.【点评】本题主要考查认识立体图形,解题的关键是掌握常见几何体的形状和构成.29.若一个棱柱有7个面,则它是5棱柱.【分析】根据棱柱有两个底面求出侧面的面数,然后解答解答.【解答】解:∵棱柱有七个面,∴它有5个侧面,∴它是5棱柱,故答案为:5【点评】本题考查了认识立体图形,关键在于根据棱柱有两个底面确定出侧面的面数.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为51.【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,判断出6是最小的数,然后确定出这六个数,再相加即可得解.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴6若不是最小的数,则6与9是相对面,∵6与9相邻,∴6是最小的数,∴这6个整数的和为:6+7+8+9+10+11=51.故答案为:51.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧.【分析】根据柱体的意义,椎体的意义,可得答案.【解答】解:柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧,故答案为:①②⑤⑦⑧;④⑥;③④⑧.【点评】本题考查了认识立体图形,正确区分柱体和锥体是解题关键.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.【分析】(1)针对立体图形的特征,直接填写它们的名称即可.(2)可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.【解答】解:(1)从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【点评】本题考查了立体图形的认识和几何体的分类.熟记常见立体图形的特征是解决此类问题的关键.几何体的分类,从图形形状可以分为柱体、锥体和球三种,注意结合实际几何体的特征进行分类.。
人教版七年级数学上册立体图形与平面图形导学练(附答案)
人教版七年级数学上册立体图形与平面图形导学练(附答案)一、单选题1.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“齐”相对的面上的汉字是()A. 心B. 力C. 抗D. 疫2.下列图形中可以作为一个正方体的展开图的是()A. B. C. D.3.下列几何图形中为圆锥的是().A. B. C. D.4.下列图形中,哪一个是正方体的展开图()A. B. C. D.5.如图为正方体的展开图,每个面都标有汉字,那么在原正方体中与“文”字所在面相对面上的字为()A. 创B. 建C. 西D. 安二、填空题6.一张长50cm,宽40cm的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为________cm3.7.如图是正方体的表面展开图,则原正方体“4”与相对面上的数字之和是________.8.如图是某个几何体的展开图,写出该几何体的名称________。
9.“生命在于运动”是法国著名哲学家伏尔泰提出来的,这句话也被认为是体育哲学运动观和生命观重要命题.小明同学将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方运动体中,和“动”相对的字是________.10.一个正方体的每个面上都写有一个有理数,且相对两个面的两个有理数的和都相等,这个正方体的表面展开图如图所示,则的值是________.11.如图,纸板上有19个无阴影的小正方形,从中选涂1个,使它与图中5个有阴影的小正方形一起能折叠成一个正方体纸盒,一共有________种选法.三、计算题12.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.四、解答题13.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.14.如图是长方体的展开图,若图中的正方形边长为6cm,长方形的长为8cm,宽为6cm,请求出由展开图折叠而成的长方体的表面积和体积.15.将下列几何体与它的名称连起来16.某产品的形状是长方体,长为,它的展开图如图所示,求长方体的体积.答案一、单选题1. D2. B3. B4. A5. D二、填空题6. 65527. 78. 圆柱(体)9. 在10. -7 11. 4三、计算题12. 解:如图所示:新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.四、解答题13. 解:∵三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∴连接如图:14. 解:根据题意,则表面积=6×8×4+62×2=192+72=264cm2.折叠而成的长方体的体积=6×8×6=288cm315. 解:连线如图所示:16. 解:设长方体的高为xcm,则长方形的宽为(14 2x)cm,根据题意可得:14 2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3).。
人教版数学七年级上册:4.1.1 立体图形与平面图形 同步练习(附答案)
9.如图是一座房子的平面图,组成这幅图的几何图形有( )
A.三角形、长方形
B.三角形、正方形、长方形
C.三角形、正方形、长方形、梯形
D.正方形、长方形、梯形
10.如图是由平面图形
和
构成的.
11.说出下列图形的名称.
12.下列简单几何体中,属于柱体的个数是(
)
A.5
B.4
C.3
D.2
13.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中立体图形 有 m 个,平面图形有 n 个,则 m-n 的值为( )
A.厉
B.害
C.了
10.如图,有三张硬纸片,用它们围成一个立体图形叫
D.我 .
11.如图所示几何体是由五个小正方体搭建而成的.从它的正面看到的是( ) 12.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有( )
A.1 个
B.2 个
C.3 个
D.4 个
13.如图所示的各图中,不是正方体表面展开图的是( )
解:如图. 6.C 7.C 8.C 9.C
10.正方形和半圆. 11.解:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形. 12.B
13.D
14.D 15.共有三角形 4 个,圆 6 个. 16.三角形、长方形、半圆等. 17.解:图中包含圆、正方形、长方形、三角形、平行四边形. 18.解:(1)由正方体、圆柱、圆锥组成. (2)由圆柱、长方体、三棱柱组成. (3)由五棱柱、球组成. 19.
4.1.1 立体图形与平面图形
第 1 课时 认识立体图形与平面图形
1.下列几何图形中属于立体图形的是(
)
A
B
人教版七年级数学上册4.1.1立体图形和平面图形同步练习(word版含解析)
立体图形和平面图形一、选择题1.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有()A.1个B.2个C.3个D.4个2.若一个立体图形从正面看、从左面看都是长方形,从上面看是圆,则这个图形可能是()A.圆柱B.球C.圆锥D.三棱锥3.如下图,下列图形属于柱体的有()个A.4B.5C.2D.14.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个5.在下图所示的几何体中,柱体有()A.①③④B.①②③C.①②D.①②④6.一个正方体的面共有A.2个B.4个C.5个D.6个7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.8.按面划分,与圆锥为同一类几何体的是()A.正方体B.长方体C.球D.棱柱9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.下面几何体中为圆柱的是()A.B.C.D.二、填空题11.如图,几个棱长为的小正方体在地板上堆积成一个模型,表面喷涂红色染料,那么染有红色染料的模型的表面积为________.12.五棱柱有____个顶点,有____条棱,____个面。
13.如图所示,截去正方体一角变成一个多面体,这个多面体有________个面,有________条棱,有________个顶点.14.下列请写出下列几何体,并将其分类.(只填写编号)如果按“柱”“锥”“球”来分,柱体有_____,椎体有_____,球有_____;如果按“有无曲面”来分,有曲面的有_____,无曲面的有_____.15.根据几何体的特征,填写它们的名称.(1)上下两个底面是大小相同的圆,侧面展开后是长方形.___________________(2)6个面都是长方形._________________________(3)6个面都是正方形.________________________(4)上下底面是形状大小相同的多边形,侧面是长方形.________________________(5)下底面是圆,上方有一个顶点,侧面展开后是扇形.___________________(6)下底面是多边形,上方有一个顶点._______________________(7)圆圆的实体.___________________________三、解答题16.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 6 10 12棱数9 12面数 5 8观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.17.如图,左面的几何体叫三棱柱,它有五个面,条棱,个顶点,中间和右边的几何体分别是四棱柱和五棱柱.四棱柱有________个顶点,________条棱,________个面;五棱柱有________个顶点,________条棱,________个面;你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?棱柱有几个顶点,几条棱,几个面吗?18.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.。
人教版七年级上册试卷立体图形与平面图形同步测试题.docx
4.1.1立体图形与平面图形同步测试题一、填空题1. 如图是由平面图形________和______构成的.2.圆柱由个面围成;圆锥由个面围成.它们的底面是,侧面是.3.有一个几何体,形状如图所示,这个几何体的面数为.4.下列几何图形:圆、圆柱、球、扇形、等腰三角形、长方体、正方体、直角,其中平面图形有______个.5.如图,这些美丽的图案我们常常见到,组成这些图案的简单的几何图形有(至少说三个)_________________________________.6.在如下图所示的图形中,柱体有___________,锥体有__________,球体有_______.7.如图是由一副七巧板组成的一个狐狸,图中含有的平面图形有__三角形、正方向、平行四边形_______,分别有___________个.8.下图各几何体中,是三棱柱的是.(只填序号)9.如图,用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.二、选择题11.下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥 B.点、线、面、体C.角、三角形、正方形、圆 D.点、相交线、线段、长方体12.把图中的三棱柱展开,所得到的展开图是( )13.在如图所示的几何体中,由四个面围成的几何体是 ()14.下列所述物体中,与球的形状最类似的是( )A.电视机 B.铅笔C.西瓜 D.烟囱冒15.下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥 B.点、线、面、体C.角、三角形、正方形、圆 D.点、相交线、线段、长方体16.奥运会的标志是五环,这五环的每一个环的形状与下列图形中类似的是( )A.三角形 B.正方形C.圆 D.长方体17. 如图所示的平面图形中,不可能围成圆锥的是( )18. 太阳、西瓜、易拉罐、篮球、书本中,形状类似圆柱的有( )A.1个 B.2个 C.3个 D.4个三、解答题19.指出图中各物体是由哪些立体图形组成的.20.如图是一长方体的展开图,每一面内都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?参考答案一、填空题1. 如图是由平面图形____正方形____和____半圆__构成的.2.圆柱由3个面围成;圆锥由2个面围成.它们的底面是平面,侧面是曲面.3.有一个几何体,形状如图所示,这个几何体的面数为6.4.下列几何图形:圆、圆柱、球、扇形、等腰三角形、长方体、正方体、直角,其中平面图形有____4____个.5.如图,这些美丽的图案我们常常见到,组成这些图案的简单的几何图形有(至少说三个)____________ 三角形、圆、长方形、半圆等 _____________________.6.在如下图所示的图形中,柱体有_____①②③⑦______,锥体有___⑤⑥_______,球体有____④___.7.如图是由一副七巧板组成的一个狐狸,图中含有的平面图形有__三角形、正方向、平行四边形_______,分别有__5, 1, 1_________个.8.下图各几何体中,是三棱柱的是④.(只填序号)9.如图,用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形4个,圆4个.二、选择题11.下列各组图形中都是平面图形的是( C )A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体12. 把图中的三棱柱展开,所得到的展开图是( B )13.在如图所示的几何体中,由四个面围成的几何体是(C)14.下列所述物体中,与球的形状最类似的是( C )A.电视机 B.铅笔C.西瓜 D.烟囱冒15.下列各组图形中都是平面图形的是( C)A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体16. 奥运会的标志是五环,这五环的每一个环的形状与下列图形中类似的是( C )A.三角形 B.正方形C.圆 D.长方体17. 如图所示的平面图形中,不可能围成圆锥的是( D )18. 太阳、西瓜、易拉罐、篮球、书本中,形状类似圆柱的有( A )A.1个 B.2个 C.3个 D.4个三、解答题19. 指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.20.如图是一长方体的展开图,每一面内都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在多面体的左面,那么F面在哪里?解:(1)右面.(2)B面和哪个面是相对的面?解:(2)E面.初中数学试卷桑水出品。
人教版七年级上册数学认识立体图形与平面图形同步练习题
人教版七年级数学测试卷(考试题)第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形1、如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).2、将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( ).3、下列结论中正确的是( ).①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④4、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ).A.③⑤⑥ B.①②③C.③⑥ D.④⑤5、将如图所示的几何体进行分类,并说明理由.6、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?参考答案1、答案:如图所示:2、解析:A×圆柱是由一长方形绕其一边长旋转而成的B×圆锥是由一直角三角形绕其直角边旋转而成的C×该几何体是由直角梯形绕其下底旋转而成的D√该几何体是由直角三角形绕其斜边旋转而成的答案:D3①×圆柱由3个面围成,其中两底面是平面,侧面是曲面,所以①错误.4、解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形.答案:A5、分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体;若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6、解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).附赠材料必须掌握的试题训练法题干分析法怎样从“做题”提升到“研究”题干分析法,是指做完题目后,通过读题干进行反思总结:这些题目都从哪几个角度考查知识点的?角度不同,容易出错的地方是不是变化了?只有这样,我们才能从单纯的“做题目”上升到“研究”,我们的思维能力和做题效率才能不断提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达标训练
基础·巩固·达标
1.观察实物图3-1-1-8,注明与它们类似的几何图形:
图3-1-1-8
思路解析:立体图形源于生活,要从生活中把它抽象出来.
答案:长方体圆柱球六棱柱
2.圆柱的侧面展开图是____.圆锥的侧面展开图是____.棱柱的侧面展开图是____.[来源:]
思路解析:圆柱和棱柱的侧面展开图是长方形.
答案:长方形扇形长方形
3.图3-1-1-9是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得它们折叠后所成正方体相对的面上的两数相同,则填入正方形A、B、C内的三个数依次为____.
图3-1-1-9
思路解析:要先想象出该正方体折叠后的形状,哪两个面是相对的面.
答案:1,2,0
4.如图3-1-1-10是____表面展开的图形()
图3-1-1-10
A.棱柱
B.球
C.圆柱
D.圆锥
思路解析:底面是圆,侧面展开是半圆的图形是圆锥,半圆也是扇形.故应选D.
答案:D
5.从空中看小汽车,形状应是图3-1-1-11中的()[来源:学科网]
图3-1-1-11[来源:学科网]
思路解析:从空中看是指俯视图,故应选B.[来源:]
答案:B
6.何方看到标枪从前面被掷过来,图3-1-1-12是他看到的一组标枪飞行图象,请按标枪飞行先后顺序给下列图象编号.
[来源:学*科*网
Z*X*X*K]
图3-1-1-12
答案:(3)(4)(5)(1)(2)
7.实际生活中,物体的表面形状可近似地看作多边形的是()
A.硬币
B.帆船
C.弓
D.菊花
[来源:学科网]
图3-1-1-13
答案:B[来源:学,科,网]
8.构成如图3-1-1-13中图案的几何图形是()
A.三角形和扇形
B.四边形和圆
C.圆和三角形
D.圆和扇形
答案:A
综合·应用·创新[来源:学#科#网]
9.将长∶宽∶高=3∶1∶1的两个长方体如图3-1-1-14摆放,画出三视图.
图3-1-1-14
思路解析:只要把较长的长方体看作由三个正方体排起来的即可,主视图左部分三份,右部分一份,都只有一层;左视图两列,左列1份,右列两份(挡住一份);俯视图是两个长3份的长方形交叉放.
答案:三视图如下:
10.用小立方体搭成一个几何体,使它的主视图和俯视图如图3-1-1-15所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?[来源:学科网]
图3-1-1-15
思路解析:(1)由于主视图每列的层数即是俯视图中该列的最大数字,因此,用的方块数最多的情况是每个方框都用该列的最大数字.即如左下图所示;此种情况共用小立方体17块.
(2)而搭建这样的几何体,每列只要有一个最大数字即可满足条件,其他方框内的数字可减少到最小的1,即如右上图所示;这样的摆法只需立方体11块.
答案:摆这样的几何体,最多用17块立方体,最少用11块立方体.
[来源:学#科#网]。