TC1313-BQ3EMF中文资料
WIFI模块-硬件设计资料
WIFI模块硬件设计规格书版本: 1.0目录1 模块总体介绍(Gerneral introduction) (4)1.1 概述及实物图片(Description) (4)1.2 应用领域(Application) (6)1.3 产品特性 (Main feature) (6)2 模块电气特性(Electric Characteristics) (8)2.1 极限条件(Absolute Maximum Ratings) (8)2.2 工作条件(Recommended Operate Range) (8)2.3 电气特性(General Electric Characteristics)............................... (8)2.4 拼脚定义(Pin Assignment and Description) (9)3 模块应用设计指导(Application note) (14)3.1 功能框图(Function Block description) (14)3.2 工作状态描述(state descriptions) (14)3.3 硬件应用接口概述 (15)3.4 电源和驱动应用接口 (16)3.4.1 电源和驱动管脚定义 (16)3.4.2 主电源供电特性Vbat (17)3.4.3 备用电池RTC................................................................................. ........................... (18)3.4.4 开关机及复位(Power ON/OFF and Reset) (19)3.4.5 充电输入口VCHGIN............................ ................................. .. (20)3.4.6 充电输出口VCHGOUT........................... ................................. . (21)3.4.7 电池检测专用ADC口ADC3/BAT_ID ........................... .. (21)3.4.8 4路LDO输出.................................................... .. (22)3.4.9 LED-驱动 (22)3.4.10 KEY_ LED-驱动 (23)3.4.11电源电路参考设计 (23)3.5 按键接口........................................... . (24)3.6 语音接口........................................... (25)3.6.1模拟音频差分输入主MIC0和辅助MIC1.................................................................................. . (25)3.6.2 模拟音频差分输出受话器REC (26)3.6.3 模拟音频差分输出喇叭SPK (26)3.7 UART 接口 (27)3.8 IIC 接口 (28)3.9 LCD IO驱动为2.8V SPI 接口 (28)3.10 LCD IO驱动为1.8V SPI 接口 (29)3.11 USB 接口..................................... . (30)3.12 SIM 卡接口 (31)3.13 T-F卡接口 (32)3.14 F M 接口 (34)3.15 BT 接口 (34)3.16 通用GPIO接口 (35)3.17 中断口EINT (35)3.18 模拟输入ADC (35)3.19 射频天线接口 (36)4硬件设计指南 (37)4.1 PCB板布局说明 (37)4.2 PCB 关键走线说明......................................................... (37)5 机械特性 (38)5.1 模块机械尺寸 (38)5.2 模块产品 Top-View 视图.......................................... (39)5.3模块供电要求及接法 (41)5.4下载软件 (41)5.5模块开机 (41)5.6 RF测试连接 (41)6 附录 (42)6.1 射频指标 (42)6.2 通信专用术语 (42)1 模块总体介绍1.1 概述及实物图片GW01_GSM&WIFI是一款GSM/GPRS/WIFI无线四频(GSM850/GSM900/DCS1800/PCS1900)工业模块,可以覆盖全球通用GSM频段。
SIMATIC NET 工业以太网交换机 SCALANCE XC-200 操作说明说明书
SIMATIC NET工业以太网交换机SCALANCE XC-200操作说明02/2023法律资讯警告提示系统为了您的人身安全以及避免财产损失,必须注意本手册中的提示。
人身安全的提示用一个警告三角表示,仅与财产损失有关的提示不带警告三角。
警告提示根据危险等级由高到低如下表示。
危险表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。
警告表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。
小心表示如果不采取相应的小心措施,可能导致轻微的人身伤害。
注意表示如果不采取相应的小心措施,可能导致财产损失。
当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。
如果在某个警告提示中带有警告可能导致人身伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。
合格的专业人员本文件所属的产品/系统只允许由符合各项工作要求的合格人员进行操作。
其操作必须遵照各自附带的文件说明,特别是其中的安全及警告提示。
由于具备相关培训及经验,合格人员可以察觉本产品/系统的风险,并避免可能的危险。
按规定使用 Siemens 产品请注意下列说明:警告Siemens 产品只允许用于目录和相关技术文件中规定的使用情况。
如果要使用其他公司的产品和组件,必须得到 Siemens 推荐和允许。
正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。
必须保证允许的环境条件。
必须注意相关文件中的提示。
商标所有带有标记符号 ® 的都是 Siemens AG 的注册商标。
本印刷品中的其他符号可能是一些其他商标。
若第三方出于自身目的使用这些商标,将侵害其所有者的权利。
责任免除我们已对印刷品中所述内容与硬件和软件的一致性作过检查。
然而不排除存在偏差的可能性,因此我们不保证印刷品中所述内容与硬件和软件完全一致。
印刷品中的数据都按规定经过检测,必要的修正值包含在下一版本中。
Siemens AGDigital Industries Postfach 48 4890026 NÜRNBERG C79000-G8952-C442-14Ⓟ 02/2023 本公司保留更改的权利Copyright © Siemens AG 2016 - 2023.保留所有权利目录1简介 (7)2安全须知 (15)3安全建议 (17)4设备描述 (25)4.1产品总览 (25)4.2设备视图 (31)4.2.1SCALANCE XC206-2 (ST/BFOC) (31)4.2.2SCALANCE XC206-2 (SC) (32)4.2.3SCALANCE XC206-2G PoE (33)4.2.4SCALANCE XC206-2SFP (34)4.2.5SCALANCE XC208 (35)4.2.6SCALANCE XC208G PoE (36)4.2.7SCALANCE XC216 (37)4.2.8SCALANCE XC216-3G PoE (38)4.2.9SCALANCE XC216-4C (38)4.2.10SCALANCE XC224 (40)4.2.11SCALANCE XC224-4C (41)4.3附件 (41)4.4SELECT/SET 按钮 (47)4.5LED 指示灯 (49)4.5.1总览 (49)4.5.2“RM”LED (50)4.5.3“SB”LED (50)4.5.4“F”LED (50)4.5.5LED“DM1”和“DM2” (51)4.5.6LED“L1”和“L2” (51)4.5.7端口 LED (52)4.6C-PLUG (54)4.6.1C-PLUG 的功能 (54)4.6.2更换 C-PLUG (56)4.7组合端口 (57)4.8以太网供电 (PoE) (58)4.8.1符合标准的电源和电压范围 (58)4.8.2设备的 PoE 属性 (59)4.8.3电源传输和引脚分配 (30 W) (61)SCALANCE XC-200目录4.8.4电源传输和引脚分配 (60 W) (62)4.8.5组态 (62)5组装和拆卸 (63)5.1安装的安全注意事项 (63)5.2关于 SFP 收发器的一般说明 (66)5.3安装类型 (66)5.4在 DIN 导轨上安装 (67)5.4.1基于固定板的凹顶导轨安装 (67)5.4.2无固定板时的凹顶导轨安装 (69)5.5在标准 S7-300 导轨上安装 (70)5.5.1在带有固定板的标准导轨 S7-300 上安装 (70)5.5.2在不带固定板的标准导轨 S7-300 上安装 (71)5.6在标准导轨 S7-1500 上安装 (72)5.6.1在带有固定板的标准导轨 S7-1500 上安装 (72)5.6.2在不带固定板的标准导轨 S7-1500 上安装 (74)5.7基于固定板的墙式安装 (75)5.8更改固定销的位置 (76)5.9拆卸 (77)6连接 (79)6.1不使用 PoE 的设备的安全注意事项 (79)6.2PoE 设备的安全注意事项 (80)6.3有关在危险场所使用的安全注意事项 (82)6.4附加说明 (85)6.5接线规则 (86)6.624 V DC 电源 (87)6.754 V DC 电源 (88)6.8信号触点 (90)6.9功能性接地 (91)6.10串口 (92)6.11工业以太网 (94)6.11.1电气 (94)6.11.2光纤 (95)SCALANCE XC-200目录7维护和清洁 (97)8故障排除 (99)8.1使用 TFTP 下载新固件(无需 WBM 和 CLI) (99)8.2恢复出厂设置 (100)9技术规范 (101)9.1SCALANCE XC206-2 (ST/BFOC) 的技术规范 (101)9.2SCALANCE XC206-2 (SC) 的技术规范 (104)9.3SCALANCE XC206-2G PoE 的技术规范 (107)9.4SCALANCE XC206-2G PoE (54 V) 的技术规范 (110)9.5SCALANCE XC206-2G PoE EEC (54 V) 的技术规范 (113)9.6SCALANCE XC206-2SFP 的技术规范 (116)9.7SCALANCE XC206-2SFP G 的技术规范 (119)9.8SCALANCE XC206-2SFP EEC 的技术规范 (122)9.9SCALANCE XC206-2SFP G EEC 的技术规范 (125)9.10SCALANCE XC208 的技术规范 (128)9.11SCALANCE XC208G 的技术规范 (130)9.12SCALANCE XC208G PoE 的技术规范 (132)9.13SCALANCE XC208G PoE (54 V) 的技术规范 (134)9.14SCALANCE XC208EEC 的技术规范 (136)9.15SCALANCE XC208G EEC 的技术规范 (138)9.16SCALANCE XC216 的技术规范 (140)9.17SCALANCE XC216EEC 的技术规范 (142)9.18SCALANCE XC216-3G PoE 的技术规范 (144)9.19SCALANCE XC216-3G PoE (54 V) 的技术规范 (146)9.20SCALANCE XC216-4C 的技术规范 (150)9.21SCALANCE XC216-4C G 的技术规范 (153)9.22SCALANCE XC216-4C G EEC 的技术规范 (156)9.23SCALANCE XC224 的技术规范 (159)9.24SCALANCE XC224-4C G 的技术规范 (161)9.25SCALANCE XC224-4C G EEC 的技术规范 (164)9.26机械稳定性(运行时) (167)SCALANCE XC-200目录9.27射频辐射符合 NAMUR NE21 标准 (167)9.28电缆长度 (167)9.29交换特性 (168)10尺寸图 (171)11证书和认证 (179)索引 (189)SCALANCE XC-200简介1操作说明的用途这些操作说明适用于 SCALANCE XC-200 系列产品的安装和连接。
UM1313中文资料
SPECIFICATIONS
All specifications are typical at nominal line full load, and 25°C unless otherwise noted.
GENERAL SPECIFICATIONS
Efficiency ………………….…..……………………. See Table Isolation Voltage ……………………………..... 500 VDC min. Isolation Resistance .…………………….….... 108 ohms min. Switching Frequency .………………………………... 100KHz Case Grounding …………..…….. Capacity Coupled to Input Operating Temperature Range Ambient, None Derating …………………... -25°C to +71°C Cooling ……………….…..……………. Free Air Convection Storage Temperature Range .……………... -55°C to+105°C EMI/RFI ……………………….. Six-Sided Continuous Shield Dimensions ……………………….. 2.56 x 4.56 x 0.83 inches (65 x 115.8 x 21.1 mm) Case Material …………………... Black-Coated Copper With Non-Conductive Base Weight ..…..……………………………………………..... 260g
ADuM1310中文
七、管脚封装图
※ 品选型表
通道 分布 3/0 3/0 2/1 2/1 传输速率 (Mbps) 1 10 1 10 最大传输 延时(ns) 100 50 100 50 最大脉宽 失真(ns) 40 5 40 5 工作温度范 围(℃) -40~105 -40~105 -40~105 -40~105
二、产品特性
� � � � � � � 三通道隔离 电平转换器 传输速率:1M/10Mbps 传输延迟:50ns 瞬态共模抑制能力:25KV/us 隔离电压:2500V 工作温度:-40℃~105℃ 工作电压:3V/5V
� �
SOIC-16 宽体无铅封装
低功耗
7 mA / 通道 @ 0 Mbps 5 V operation 1. 1.7 to 2 Mbps 4.0 mA /通道 @ 10 Mbps 3 V operation 1.0 mA /通道 @ 0 Mbps to 2 Mbps mA/ 2.1 mA /通道@ 10 Mbps
ADuM1 31x ADuM13
5、 直流校正功能
磁隔离器每一通道的两组线圈起到脉冲变压器的作用, 输入端逻辑电平的变化会引起一 个窄脉冲(1ns) ,经过脉冲变压器耦合到解码器,然后再经过一个施密特触发器的波形变换 输出标准的矩形波, 如果输入端逻辑电平超过 1µs 都没有任何变化, 则校正电路会产生一个 适当极性的校正脉冲,以确保变压器直流端输出信号的正确性,如果解码器一端超过 5µs 都没有收到任何校正脉冲,则会认为输入端已经掉电或不工作,由看门狗电定时器电路,将 输出端强行置为默认状态(参看真值表) 。这确保了磁耦可以传输直流信号。
ADuM1 31x ADuM13
当 VDD1=VDD2=3V,TA=25℃ 工作参数 工作电压 符号 VDD1 VDD2 静态工作电流 IDDI(Q) IDDO(Q) 0~2Mbps 时 1310 工作电流 0~2Mbps 时 1311 工作电流 输入电平 IDD1 IDD2 IDD1 IDD2 VIH VIL 输出电平 VOH VOL 最大输出电流 IO1(side1) IO2(side2) -18 -22 VDD1,2-0.1 3.0 0.0 0.1 18 22 1.6 0.4 Min 2.7 2.7 Typ 3.0 3.0 0.25 0.19 1.2 0.8 1.0 0.9 Max 3.6 3.6 0.38 0.33 1.6 1.0 1.6 1.4 单位 V V mA mA mA mA mA mA V V V V mA mA
Omega SMSC-TC 隔离热电偶条件器说明书
Thermocouple InputSocket Mount Field ConfigurableSignal ConditionerU P rovides Isolated, Linearized DC Output in Proportion to Thermocouple Input U F ield Configurable Thermocouple Types U E liminates Ground Loops U T hermocouple Burnout Detection U W ide-Ranging 50% Zero and Span Adjustability U A SIC Technology for Enhanced ReliabilityThe SMSC-TC isolating thermocouple conditioner offers wide ranging input and output capability. TheSMSC-TC can be field configured by the user to accept input from thermocouple T ypes J, K, T , E, R, S, and B and to provide current or voltage output. The output is linearized to temperature according to the particular thermocouple type.The SMSC-TC is a three-port industrial isolator—the output is optically isolated from the input up to 1500 V , and both input and output are transformer isolatedfrom the line power. Isolation allows the noise reduction benefits of grounded thermocouples to be realized without creating ground loop problems and it provides faster response. The SMSC-TC utilizes the latest in advanced analog/digital signal processing technology. In addition to its multiple microprocessors, it employs special ASIC circuitry for high accuracy and reliability. The SMSC-TC is equipped with cold-junction compensation (CJC) circuitry to provide ice-point reference. Upscale, downscale or disabled thermocouple burnout detection is switch selectable. The SMSC-TC is useful in any application requiring an isolated DC output from a thermocouple input. T ypical applications include energy management and data acquisition of process temperatures. The output of the SMSC-TC can drive a digital meter for direct display or interface with a computer for monitoring and control applications.Model SMSC-TC is equipped with top-mounted LEDs for INPUT (green), TROUBLE (yellow) and CAL OK (yellow). At start-up, both the INPUT and the CAL OK LEDs light up momentarily for 1 second. Afterwards, these LEDs flash alternately for 10 seconds while startup takes place.The input LED is a diagnostic tool. It remainscontinuously lit if the measured temperature is within the selected range of the thermocouple. However, if the measured temperature is outside the full range of the thermocouple (for example, for a Type J below minus 200°C or above 750°C), the LED will flash at a rate of 4 or 8 Hz for under/over range, respectively. If the thermocouple is within the full temperature range, but outside the selected sub-range (for example, if a Type J thermocouple is set for a range of 375 to 500°C and the temperature is either below 375°C or above 500°C) the LED will flash at 0.5 or 1 Hz respectively. The CAL OK LED is continuously on when the device is properly storing the factory calibration reference voltage. The TROUBLE LED is off during normal operation of the device.A major advantage of the SMSC-TC is its wide ranging capabilities and ease of configuration. The SMSC-TC enables 50% input zero and span adjustability within the selected sub-range.For example for Type E thermocouple range from -18 to 125°C, since the span can be contracted by 50%, this enables an input span as narrow as 50% of 143, or 72°C. This span can then be positioned anywhere within the temperature range and can have a zero step-up as large as 50% of the full scale range (e.g. span can start as high as 53°C). The factory default configuration for the model SMSC-TC is as follows: Input: Type JRange: 0 to 500°C (32 to 932°F)Output: 4 to 20 mA Burn Out: UpscaleSMSC-TC shown smallerthan actual size.SpecificationsINPUTRanges: Field configurable, see tableImpedance: >1 M ΩInput Bias Current (Burnout Detection): <1.5 µA Overvoltage: ±10V differentialCommon Mode (Input to Ground): 1500 Vdc or peak AC, max Zero and Span Range:Zero Turn-Up: 0 to 50% of full scale rangeSpan Turn-Down: 100 to 50% of full scale rangeOUTPUTVoltage Output (Dip-Switch Selectable): anges: 0 to 5 V , 0 to 10 V Impedance: <10 Ω Drive: 10 mA max (1 k Ω min)Isolation: output and powerESD Susceptibility: Meets IEC 801-2, Level 2 (4 kV) Common Mode Rejection: DC to 60 Hz: 120 dB LED Indicators:Trouble LED: Y ellow - off during normal device operation I nput LED: Green - continuously on if input is within selected range, flashes otherwise C AL OK LED: Y ellow - continuously on in normal device operationThermocouple Burnout Detect: Field-configurable Upscale or Downscale, or disabledHumidity (Non-Condensing): Operating: 25 to 95% RH @ 45°C (113°F) Soak: 90% RH for 24 Hours @ 65°C (149°F)U UThermocouple TypeTemperature Range Accuracy J -200 to 750°C (-328 to 1382°F)±2.0°C (±3.6°F)K -200 to -140°C (-328 to -220°F)±5.0°C (±9.0°F)-140 to 1250°C (-220 to -2282°F)±2.0°C (±3.6°F)1250 to 1370°C (2282 to 2498°F)±4.0°C (±7.2°F)T-150 to 400°C (-238 to 752°F)±3.0°C (±5.4°F)E-150 to 1000°C (-238 to 1832°F)±2.5°C (±4.5°F)R 50 to 1760°C (122 to 3200°F)±6.0°C (±10.8°F)S 50 to 1760°C (12 to 3200°F)±6.0°C (±10.8°F)B 500 to 1820°C (932 to 3308°F)±5.0°C (±9.0°F)Accuracy (Including Linearity and Hysteresis)To OrderModel No.DescriptionSMSC-TC Thermocouple input socket mount field configurable signal conditioner SKT-DR-8P 8-pin socket, DIN rail mount SKT-SM-8P 8-pin socket, surface mount SM-RAIL-235 mm DIN rail, 2 m (6.6') lengthSMRSRetaining spring (secures signal conditioner module into DIN rail or surface mount socket)Comes complete with operator’s manual.Ordering Example: SMSC-TC thermocouple input socket mount field configurable signal conditioner, SKT -SM-8P 8-pin socket, surface mount and OCW-1 OMEGACARE extends standard 1 year warranty to a total of 2 years.Temperature Range:Operating: 0 to 60°C (32 to 140°F) Storage: -15 to 75°C (5 to 167°F) Power:Consumption: 3 W typical, 5 W max Standard: 120 Vac ±10%, 50 to 60 Hz Optional: 240 Vac Weight: 282 g (0.62 lb)Dimensions: mm (inches)U WUU W UU WUU WU U WU U WUU U SKT-SM-8P (Track/Surface)SKT-DR-8P (DIN Rail)OMEGACARE SM extended warranty program isavailable for models shown on this page. Ask your sales representative for full details when placing an order. OMEGACARE SM covers parts,labor and equivalent loaners.Extended Warranty ProgramSM。
TC1313-BQ3EUNTR中文资料
TC1313Features•Dual-Output Regulator (500mA Buck Regulator and 300mA Low-Dropout Regulator (LDO))•Total Device Quiescent Current = 57µA (Typ.)•Independent Shutdown for Buck and LDO Outputs•Both Outputs Internally Compensated •Synchronous Buck Regulator:-Over 90% Typical Efficiency- 2.0MHz Fixed-Frequency PWM(Heavy Load)-Low Output Noise-Automatic PWM-to-PFM mode transition-Adjustable (0.8V to 4.5V) and StandardFixed-Output Voltages (0.8V, 1.2V, 1.5V,1.8V,2.5V,3.3V)•Low-Dropout Regulator:-Low-Dropout Voltage=137mV Typ. @200mA-Standard Fixed-Output Voltages(1.5V, 1.8V, 2.5V, 3.3V)•Small 10-pin 3X3 DFN or MSOP Package Options•Operating Junction Temperature Range:--40°C to +125°C•Undervoltage Lockout (UVLO)•Output Short Circuit Protection •Overtemperature ProtectionApplications•Cellular Phones•Portable Computers•USB-Powered Devices•Handheld Medical Instruments•Organizers and PDAs DescriptionThe TC1313 combines a 500mA synchronous buck regulator and 300mA Low-Dropout Regulator (LDO) to provide a highly integrated solution for devices that require multiple supply voltages. The unique combina-tion of an integrated buck switching regulator and low-dropout linear regulator provides the lowest system cost for dual-output voltage applications that require one lower processor core voltage and one higher bias voltage.The 500mA synchronous buck regulator switches at a fixed frequency of 2.0MHz when the load is heavy, providing a low-noise, small-size solution. When the load on the buck output is reduced to light levels, it changes operation to a Pulse Frequency Modulation (PFM) mode to minimize quiescent current draw from the battery. No intervention is necessary for smooth transition from one mode to another.The LDO provides a 300mA auxiliary output that requires a single 1µF ceramic output capacitor, minimizing board area and cost. The typical dropout voltage for the LDO output is 137mV for a 200mA load.The TC1313 is available in either the 10-pin DFN or MSOP package.Additional protection features include: UVLO, overtemperature and overcurrent protection on both outputs.For a complete listing of TC1313 standard parts, consult your Microchip representative.Package Type10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC10-Lead MSOP12687910543SHDN2V IN2V OUT2A GNDP GNDL XV IN1SHDN1V FB1/V OUT1NC500mA Synchronous Buck Regulator,+ 300mA LDO© 2005 Microchip Technology Inc.DS21974A-page 1TC1313DS21974A-page 2© 2005 Microchip Technology Inc.Functional Block DiagramSynchronous Buck RegulatorNDRVPDRVP GNDV IN1L XDriverP GNDControlV OUT1/V FB1V IN2SHDN1V REFLDOV OUT2A GNDA GNDP GNDUndervoltage LockoutUVLOUVLOSHDN2V REF(UVLO)© 2005 Microchip Technology Inc.DS21974A-page 3TC1313Typical Application Circuits10-Lead DFN12687910543SHDN2V IN2V OUT2A GNDP GND L XV IN1SHDN1V OUT1NC4.7µFInput Voltage 4.7µH4.7µF2.1V @1µF3.3V @4.5V to5.5V Adjustable-Output Application121k Ω200k Ω 4.99k Ω33pF 12687910543SHDN2V IN2V OUT2A GNDP GND L X V IN1SHDN1V OUT1NC4.7µF4.7µH4.7µF1.5V @ 500mA1µF2.5V @ 300mA2.7V to 4.2VTC1313V OUT1V OUT2V IN V OUT1V OUT21.0µF*Optional Capacitor V IN2300mA500mANote: Connect DFN package exposed pad to A GND .10-Lead MSOPFixed-Output ApplicationTC1313NoteTC1313DS21974A-page 4© 2005 Microchip Technology Inc.1.0ELECTRICALCHARACTERISTICSAbsolute Maximum Ratings †V IN - A GND ......................................................................6.0V All Other I/O ..............................(A GND - 0.3V) to (V IN + 0.3V)L X to P GND ..............................................-0.3V to (V IN + 0.3V)P GND to A GND ...................................................-0.3V to +0.3V Output Short Circuit Current .................................Continuous Power Dissipation (Note 7)..........................Internally Limited Storage temperature.....................................-65°C to +150°C Ambient Temp. with Power Applied.................-40°C to +85°C Operating Junction Temperature...................-40°C to +125°C ESD protection on all pins (HBM)....................................... 3kV† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied.Exposure to maximum rating conditions for extended periods may affect device reliability.DC CHARACTERISTICSElectrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSymMinTypMaxUnitsConditionsInput/Output Characteristics Input VoltageV IN 2.7— 5.5V Note 1, Note 2, Note 8Maximum Output Current I OUT1_MAX 500——mA Note 1Maximum Output Current I OUT2_MAX 300——mA Note 1Shutdown CurrentCombined V IN1 and V IN2 Current I IN_SHDN—0.051µA SHDN1=SHDN2=GND Operating I QI Q—57100µA SHDN1=SHDN2=V IN2I OUT1=0mA,I OUT2=0mA Synchronous Buck I Q—38—µA SHDN1 = V IN , SHDN2 = GND LDO I Q —44—µA SHDN1 = GND, SHDN2 = V IN2Shutdown/UVLO/Thermal Shutdown Characteristics SHDN1,SHDN2,Logic Input Voltage Low V IL ——15%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Logic Input Voltage High V IH 45——%V IN V IN1=V IN2=2.7V to 5.5V SHDN1,SHDN2,Input Leakage Current I IN-1.0±0.011.0µAV IN1=V IN2=2.7V to 5.5V SHDNX =GND SHDNY =V IN Thermal ShutdownT SHD —165—°C Note 6, Note 7Thermal Shutdown Hysteresis T SHD-HYS —10—°C Undervoltage Lockout (V OUT1 and V OUT2)UVLO 2.4 2.55 2.7V V IN1 FallingUndervoltage Lockout Hysteresis UVLO -HYS—200—mVNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313Synchronous Buck Regulator (V OUT1)Adjustable Output Voltage Range V OUT10.8— 4.5VAdjustable Reference FeedbackVoltage (V FB1)V FB10.780.80.82VFeedback Input Bias Current(I FB1)I VFB1—-1.5—nAOutput Voltage Tolerance Fixed(V OUT1)V OUT1-2.5±0.3+2.5%Note2Line Regulation (V OUT1)V LINE-REG—0.2—%/V V IN = V R+1V to 5.5V,I LOAD = 100mALoad Regulation (V OUT1)V LOAD-REG—0.2—%V IN=V R+1.5V,I LOAD=100mA to500mA (Note1)Dropout Voltage V OUT1V IN – V OUT1—280—mV I OUT1 = 500mA, V OUT1=3.3V(Note5)Internal Oscillator Frequency F OSC 1.6 2.0 2.4MHzStart Up Time T SS—0.5—ms T R = 10% to 90%R DSon P-Channel R DSon-P—450650mΩI P = 100mAR DSon N-Channel R DSon-N—450650mΩI N = 100mAL X Pin Leakage Current I LX-1.0±0.01 1.0μA SHDN = 0V, V IN = 5.5V, L X = 0V,L X = 5.5VPositive Current Limit Threshold+I LX(MAX)—700—mALDO Output (V OUT2)Output Voltage Tolerance (V OUT2)V OUT2-2.5±0.3+2.5%Note2Temperature Coefficient TCV OUT—25—ppm/°C Note3Line RegulationΔV OUT2/ΔV IN-0.2±0.02+0.2%/V(V R+1V) ≤ V IN≤ 5.5VLoad Regulation, V OUT2≥ 2.5VΔV OUT2/I OUT2-0.750.1+0.75%I OUT2 = 0.1mA to 300mA(Note4)Load Regulation, V OUT2 < 2.5VΔV OUT2/I OUT2-0.900.1+0.90%I OUT2 = 0.1mA to 300mA(Note4)Dropout Voltage V OUT2 > 2.5V V IN – V OUT2—137205300500mV I OUT2 = 200mA (Note5)I OUT2=300mAPower Supply Rejection Ratio PSRR—62—dB f = 100Hz, I OUT1 = I OUT2 = 50mA,C IN = 0µFOutput Noise eN— 1.8—µV/(Hz)½ f = 1kHz, I OUT2=50mA,SHDN1=GNDOutput Short Circuit Current (Average)I OUT sc2—240—mA R LOAD2≤ 1ΩDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V,I OUT1=100ma, I OUT2=0.1mA T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C.Parameters Sym Min Typ Max Units ConditionsNote1:The Minimum V IN has to meet two conditions: V IN≥ 2.7V and V IN≥ V RX + V DROPOUT, V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min) * 106)/(V OUT2 * D T).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e. T A, T J, θJA). Exceeding the maximum allowable powerdissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN, and from L X to P GND. In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is notable to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.© 2005 Microchip Technology Inc.DS21974A-page 5TC1313DS21974A-page 6© 2005 Microchip Technology Inc.TEMPERATURE SPECIFICATIONSWake-Up Time(From SHDN2 mode), (V OUT2)t WK —31100µs I OUT1 = I OUT2 = 50mA Settling Time(From SHDN2 mode), (V OUT2)t S—100—µsI OUT1 = I OUT2 = 50mAElectrical Specifications: Unless otherwise indicated, all limits are specified for: V IN = +2.7V to +5.5VParametersSymMinTypMaxUnitsConditionsTemperature RangesOperating Junction Temperature Range T J -40—+125°C Steady state Storage Temperature Range T A -65—+150°C Maximum Junction Temperature T J——+150°CTransientThermal Package Resistances Thermal Resistance, 10L-DFNθJA—41—°C/WTypical 4-layer board with Internal Ground Plane and 2 Vias in Thermal PadThermal Resistance, 10L-MSOPθJA—113—°C/WTypical 4-layer board with Internal Ground PlaneDC CHARACTERISTICS (CONTINUED)Electrical Characteristics: V IN1= V IN2=SHDN1,2=3.6V,C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, I OUT1=100ma, I OUT2=0.1mA T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C .ParametersSym Min Typ Max Units ConditionsNote 1:The Minimum V IN has to meet two conditions: V IN ≥ 2.7V and V IN ≥ V RX + V DROPOUT , V RX = V R1 or V R2.2:V RX is the regulator output voltage setting.3:TCV OUT2 = ((V OUT2max – V OUT2min ) * 106)/(V OUT2 * D T ).4:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current.5:Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction to air. (i.e. T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.7:The integrated MOSFET switches have an integral diode from the L X pin to V IN , and from L X to P GND . In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.8:V IN1 and V IN2 are supplied by the same input source.TC1313 2.0TYPICAL PERFORMANCE CURVESNote: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-1:I Q Switcher and LDOCurrent vs. Ambient Temperature.FIGURE 2-2:I Q Switcher Current vs.Ambient Temperature.FIGURE 2-3:I Q LDO Current vs. AmbientTemperature.FIGURE 2-4:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.2V).FIGURE 2-5:V OUT1 Output Efficiency vs.I OUT1 (V OUT1 = 1.2V).FIGURE 2-6:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 1.8V).Note:The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.© 2005 Microchip Technology Inc.DS21974A-page 7TC1313DS21974A-page 8© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-7:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 1.8V).FIGURE 2-8:V OUT1 Output Efficiency vs.Input Voltage (V OUT1 = 3.3V).FIGURE 2-9:V OUT1 Output Efficiency vs. I OUT1 (V OUT1 = 3.3V).FIGURE 2-10:V OUT1 vs. I OUT1(VOUT1 = 1.2V).FIGURE 2-11:V OUT1 vs. I OUT1(V OUT1 = 1.8V).FIGURE 2-12:V OUT1 vs. I OUT1(V OUT1 = 3.3V).TC1313 Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-13:V OUT1 Switching Frequencyvs. Input Voltage.FIGURE 2-14:V OUT1 Switching Frequencyvs. Ambient Temperature.FIGURE 2-15:V OUT1 Adjustable FeedbackVoltage vs. Ambient Temperature.FIGURE 2-16:V OUT1 Switch Resistancevs. Input Voltage.FIGURE 2-17:V OUT1 Switch Resistancevs. Ambient Temperature.FIGURE 2-18:V OUT1 Dropout Voltage vs.Ambient Temperature.© 2005 Microchip Technology Inc.DS21974A-page 9TC1313DS21974A-page 10© 2005 Microchip Technology Inc.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN =4.7µF, C OUT2=1µF,L =4.7µH,V OUT1 (ADJ)=1.8V, T A =+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A =+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-19:V OUT1 and V OUT2 Heavy Load Switching Waveforms vs. Time.FIGURE 2-20:V OUT1 and V OUT2 Light Load Switching Waveforms vs. Time.FIGURE 2-21:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.5V).FIGURE 2-22:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 1.8V).FIGURE 2-23:V OUT2 Output Voltage vs. Input Voltage (V OUT2 = 2.5V).FIGURE 2-24:V OUT2 Output Voltage vs. Input Voltage (V OUT2= 3.3V).Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-25:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 2.5V).FIGURE 2-26:V OUT2 Dropout Voltage vs.Ambient Temperature (V OUT2 = 3.3V).FIGURE 2-27:V OUT2 Line Regulation vs.Ambient Temperature.FIGURE 2-28:V OUT2 Load Regulation vs.Ambient Temperature.FIGURE 2-29:V OUT2 Power Supply RippleRejection vs. Frequency.FIGURE 2-30:V OUT2 Noise vs. Frequency.Note: Unless otherwise indicated, V IN1= V IN2=SHDN1,2 =3.6V, C OUT1=C IN=4.7µF, C OUT2=1µF,L=4.7µH,V OUT1 (ADJ)=1.8V, T A=+25°C. Boldface specifications apply over the T A range of -40°C to +85°C. T A=+25°C. Adjustable or fixed-output voltage options can be used to generate the Typical Performance Characteristics.FIGURE 2-31:V OUT1 Load Step Responsevs. Time.FIGURE 2-32:V OUT2 Load Step Responsevs. Time.FIGURE 2-33:V OUT1 and V OUT2 Line StepResponse vs. Time.FIGURE 2-34:V OUT1 and V OUT2 StartupWaveforms.FIGURE 2-35:V OUT1 and V OUT2 ShutdownWaveforms.3.0PIN DESCRIPTIONSThe descriptions of the pins are listed in Table3-1. TABLE 3-1:PIN FUNCTION TABLE3.1LDO Shutdown Input Pin (SHDN2) SHDN2 is a logic-level input used to turn the LDO regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.2LDO Input Voltage Pin (V IN2)V IN2 is a LDO power-input supply pin. Connect variable-input voltage source to V IN2. Connect V IN1 and V IN2 together with board traces as short as possible. V IN2 provides the input voltage for the LDO regulator. An additional capacitor can be added to lower the LDO regulator input ripple voltage.3.3LDO Output Voltage Pin (V OUT2)V OUT2 is a regulated LDO output voltage pin. Connect a 1µF or larger capacitor to V OUT2 and A GND for proper operation.3.4No Connect Pin (NC)No connection.3.5Analog Ground Pin (A GND)A GND is the analog ground connection. Tie A GND to the analog portion of the ground plane (A GND). See the physical layout information in Section 5.0 “Application Circuits/Issues” for grounding recommendations. 3.6Buck Regulator Output Sense Pin(V FB/V OUT1)For V OUT1 adjustable-output voltage options, connect the center of the output voltage divider to the V FB pin. For fixed-output voltage options, connect the output of the buck regulator to this pin (V OUT1). 3.7Buck Regulator Shutdown InputPin (SHDN1)SHDN1 is a logic-level input used to turn the buck regulator on and off. A logic-high (> 45% of V IN) will enable the regulator output. A logic-low (< 15% of V IN) will ensure that the output is turned off.3.8Buck Regulator Input Voltage Pin(V IN1)V IN1 is the buck regulator power-input supply pin. Connect a variable-input voltage source to V IN1. Connect V IN1 and V IN2 together with board traces as short as possible.3.9Buck Inductor Output Pin (L X) Connect L X directly to the buck inductor. This pin carries large signal-level current; all connections should be made as short as possible.3.10Power Ground Pin (P GND)Connect all large-signal level ground returns to P GND. These large-signal level ground traces should have a small loop area and length to prevent coupling of switching noise to sensitive traces. Please see the physical layout information supplied in Section 5.0“Application Circuits/Issues” for grounding recommendations.3.11Exposed Pad (EP)For the DFN package, connect the EP to A GND with vias into the A GND plane.Pin Function1SHDN2Active Low Shutdown Input for LDO Output Pin2V IN2Analog Input Supply Voltage Pin3V OUT2LDO Output Voltage Pin4NC No Connect5A GND Analog Ground Pin6V FB / V OUT1Buck Feedback Voltage (Adjustable Version)/Buck Output Voltage (Fixed Version) Pin 7SHDN1Active Low Shutdown Input for Buck Regulator Output Pin8V IN1Buck Regulator Input Voltage Pin9L X Buck Inductor Output Pin10P GND Power Ground PinEP ExposedPad For the DFN package, the center exposed pad is a thermal path to remove heat from the device. Electrically, this pad is at ground potential and should be connected to A GND.4.0DETAILED DESCRIPTION4.1Device OverviewThe TC1313 combines a 500mA synchronous buck regulator with a 300mA LDO. This unique combination provides a small, low-cost solution for applications that require two or more voltage rails. The buck regulator can deliver high-output current over a wide range of input-to-output voltage ratios while maintaining high efficiency. This is typically used for the lower-voltage, higher-current processor core. The LDO is a minimal parts-count solution (single-output capacitor), providing a regulated voltage for an auxiliary rail. The typical LDO dropout voltage (137mV @ 200mA) allows the use of very low input-to-output LDO differential voltages, minimizing the power loss internal to the LDO pass transistor. Integrated features include independent shutdown inputs, UVLO, overcurrent and overtemperature shutdown.4.2Synchronous Buck RegulatorThe synchronous buck regulator is capable of supply-ing a 500mA continuous output current over a wide range of input and output voltages. The output voltage range is from 0.8V (min) to 4.5V (max). The regulator operates in three different modes and automatically selects the most efficient mode of operation. During heavy load conditions, the TC1313 buck converter operates at a high, fixed frequency (2.0MHz) using current mode control. This minimizes output ripple and noise (less than 8mV peak-to-peak ripple) while main-taining high efficiency (typically > 90%). For standby or light-load applications, the buck regulator will automat-ically switch to a power-saving Pulse Frequency Modulation (PFM) mode. This minimizes the quiescent current draw on the battery while keeping the buck output voltage in regulation. The typical buck PFM mode current is 38µA. The buck regulator is capable of operating at 100% duty cycle, minimizing the voltage drop from input to output for wide-input, battery-powered applications. For fixed-output voltage applica-tions, the feedback divider and control loop compensa-tion components are integrated, eliminating the need for external components. The buck regulator output is protected against overcurrent, short circuit and over-temperature. While shut down, the synchronous buck N-channel and P-channel switches are off, so the L X pin is in a high-impedance state (this allows for connecting a source on the output of the buck regulator as long as its voltage does not exceed the input voltage).4.2.1FIXED-FREQUENCY PWM MODE While operating in Pulse Width Modulation (PWM) mode, the TC1313 buck regulator switches at a fixed 2.0MHz frequency. The PWM mode is suited for higher load current operation, maintaining low output noise and high conversion efficiency. PFM to PWM mode transition is initiated for any of the following conditions.•Continuous inductor current is sensed•Inductor peak current exceeds 100mA•The buck regulator output voltage has droppedout of regulation (step load has occurred)The typical PFM-to-PWM threshold is 80mA.4.2.2PFM MODEPFM mode is entered when the output load on the buck regulator is very light. Once detected, the converter enters the PFM mode automatically and begins to skip pulses to minimize unnecessary quiescent current draw by reducing the number of switching cycles per second. The typical quiescent current for the switching regulator is less than 38µA. The transition from PWM to PFM mode occurs when discontinuous inductor current is sensed, or the peak inductor current is less than 60mA (typ.). The typical PWM to PFM mode threshold is 30mA. For low input-to-output differential voltages, the PWM to PFM mode threshold can be low due to the lack of ripple current. It is recommended that V IN1 be one volt greater than V OUT1 for PWM to PFM transitions.4.3Low-Dropout Regulator (LDO)The LDO output is a 300mA low-dropout linear regula-tor that provides a regulated output voltage with a single 1µF external capacitor. The output voltage is available in fixed options only, ranging from 1.5V to 3.3V. The LDO is stable using ceramic output capaci-tors that inherently provide lower output noise and reduce the size and cost of the regulator solution. The quiescent current consumed by the LDO output is typically less than 43.7µA, with a typical dropout volt-age of 137mV at 200mA. The LDO output is protected against overcurrent and overtemperature. While oper-ating in Dropout mode, the LDO quiescent current will increase, minimizing the necessary voltage differential needed for the LDO output to maintain regulation. The LDO output is protected against overcurrent and overtemperature.4.4Soft StartBoth outputs of the TC1313 are controlled during startup. Less than 1% of V OUT1 or V OUT2 overshoot is observed during start-up from V IN rising above the UVLO voltage; or SHDN1 or SHDN2 being enabled.4.5Overtemperature ProtectionThe TC1313 has an integrated overtemperature protection circuit that monitors the device junction temperature and shuts the device off if the junction temperature exceeds the typical 165°C threshold. If the overtemperature threshold is reached, the soft start is reset so that, once the junction temperature cools to approximately 155°C, the device will automatically restart.5.0APPLICATION CIRCUITS/ISSUES5.1Typical ApplicationsThe TC1313 500mA buck regulator + 300mA LDO operates over a wide input-voltage range (2.7V to 5.5V)and is ideal for single-cell Li-Ion battery-powered applications, USB-powered applications, three-cell NiMH or NiCd applications and 3V to 5V regulated input applications. The 10-pin MSOP and 3X3 DFN packages provide a small footprint with minimal exter-nal components.5.2Fixed-Output ApplicationA typical V OUT1 fixed-output voltage application is shown in “Typical Application Circuits”. A 4.7µF V IN1 ceramic input capacitor, 4.7µF V OUT1 ceramic capacitor, 1.0µF ceramic V OUT2 capacitor and 4.7µH inductor make up the entire external component solution for this dual-output application. No external dividers or compensation components are necessary.For this application, the input-voltage range is 2.7V to 4.2V, V OUT1=1.5V at 500mA, while V OUT2=2.5V at 300mA.5.3Adjustable-Output ApplicationA typical V OUT1 adjustable-output application is also shown in “Typical Application Circuits”. For this application, the buck regulator output voltage is adjust-able by using two external resistors as a voltage divider. For adjustable-output voltages, it is recom-mended that the top resistor divider value be 200k Ω.The bottom resistor divider can be calculated using the following formula:EQUATION 5-1:Example:For adjustable output applications, an additional R-C compensation is necessary for the buck regulator control loop stability. Recommended values are:An additional V IN2 capacitor can be added to reduce high-frequency noise on the LDO input-voltage pin (V IN2). This additional capacitor (1µF) is not necessary for typical applications.5.4Input and Output Capacitor Selection As with all buck-derived dc-dc switching regulators, the input current is pulled from the source in pulses. This places a burden on the TC1313 input filter capacitor. In most applications, a minimum of 4.7µF is recom-mended on V IN1 (buck regulator input-voltage pin). In applications that have high source impedance, or have long leads (10 inches) connecting to the input source,additional capacitance should be used. The capacitor type can be electrolytic (aluminum, tantalum, POSCAP ,OSCON) or ceramic. For most portable electronic applications, ceramic capacitors are preferred due to their small size and low cost.For applications that require very low noise on the LDO output, an additional capacitor (typically 1µF) can be added to the V IN2 pin (LDO input voltage pin).Low ESR electrolytic or ceramic can be used for the buck regulator output capacitor. Again, ceramic is recommended because of its physical attributes and cost. For most applications, a 4.7µF is recommended.Refer to Table 5-1 for recommended values. Larger capacitors (up to 22µF) can be used. There are some advantages in load step performance when using larger value capacitors. Ceramic materials, X7R and X5R, have low temperature coefficients and are well within the acceptable ESR range required.TABLE 5-1:TC1313 RECOMMENDED CAPACITOR VALUESR TOP =200k ΩV OUT1=2.1V V FB =0.8VR BOT =200k Ω x (0.8V/(2.1V – 0.8V))R BOT =123k Ω (Standard Value =121k Ω)R COMP =4.99k ΩC COMP =33pFR BOTR TOP V FBV OUT1V FB –--------------------------------⎝⎠⎛⎞×= C (V IN1)C(V IN2)C OUT1C OUT2Min 4.7µF none 4.7µF 1µF Maxnonenone22µF10µF。
HEIDENHAIN海德汉ECN1313
> 100 mm Schirm auf Gehuse Shield on housing Blindage sur botìer Schermo sulla carcassa Blindaje a carcasa
X1
1b 6a 4b 3a 2a A+ 5b A 4a B+ 3b B 6b 1a 2b 5a UP Sensor 0 V Sensor UP 0V DATA DATA CLOCK CLOCK
oder or ou o o
7.
Md = 5 + 0.5 Nm
6. Kabel einclicken und auf Anschlag schieben
Click cable into place, and push it in as far as possible Encliqueter le cble et le pousser jusqu'en butée Fissare il cavo e spingere fino in battuta Doblar el cable y deslizarlo hasta el tope
Anschlussbelegung Pin Layout Raccordements Piedinatura Distribución del conector
X1
b a 1234 5 6
oder or ou o o
X1
d a 12ekehrter Reihenfolge Disassembly in reverse order Demontage dans l'ordre inverse Smontaggio in sequenza inversa Desmontaje en orden contrario Zwei Mglichkeiten zum Abdrücken whrend der Demontage des Drehgebers Two ways of pressing the encoder out during dismounting Deux possibilités de démontage du capteur rotatif Due possibilità di smontaggio dellencoder Dos posibilidades de aflojar durante el desmontaje del encoder
TC1413中文资料
TC1413NCOA TC1413NCPA TC1413NEOA TC1413NEPA
8-Pin SOIC 8-Pin Plastic DIP 8-Pin SOIC 8-Pin Plastic DIP
0°C to +70°C
0°C to +70°C
– 40°C to +85°C
– 40°C to +85°C
6
FUNCTIONAL BLOCK DIAGRAM
VDD TC1413
INVERTING OUTPUTS
INPUT
4.7V
300mV
NONINVERTING OUTPUTS
TC1413N
OU INPUT
C = 10pF
TELCOM SEMICONDUCTOR, INC.
Symbol
Parameter
Test Conditions
Min
Typ Max Unit
Input
VIH
Logic 1 High Input Voltage
2.0
—
VIL IIN
Output
Logic 0 Low Input Voltage
—
—
Input Current
– 5V ≤ VIN ≤ VDD
Operating Temperature Range C Version ............................................... 0°C to +70°C E Version .......................................... – 40°C to +85°C
8-Pin SOIC 8-Pin Plastic DIP 8-Pin SOIC 8-Pin Plastic DIP
BX53M中文使用说明书
5 轻松找到大致焦点的方法----------------------------------------------------------------------------------25 3-9 调节亮度-------------------------------------------------------------------------------------------------------------26
安全注意事项----------------------------------------------------------------------------------------------------------------------2
1 部件名称--------------------------------------------------------------------------------------------------------------------------8
2 可组合使用的部件列表--------------------------------------------------------------------------------------------------------9
3 显微镜的基本操作(明场观察)---------------------------------------------------------------------------------------------14 3-1 反射光明场观察步骤-----------------------------------------------------------------------------------------------14 3-2 打开电源开关--------------------------------------------------------------------------------------------------------16 3-3 选择照明--------------------------------------------------------------------------------------------------------------16 1 切换反射光照明与透射光照明----------------------------------------------------------------------------16 3-4 选择观察方法--------------------------------------------------------------------------------------------------------17 1 使用 BX3M-RLAS-S 配置时-------------------------------------------------------------------------------17 2 使用 BX3M-KMA-S 配置时-------------------------------------------------------------------------------17 3 使用 BX3M-RLA-S 配置时--------------------------------------------------------------------------------17 4 使用 BX3M-URAS-S 配置时------------------------------------------------------------------------------18 3-5 切换目镜光路与相机光路----------------------------------------------------------------------------------------19 3-6 在载物台上放置样品-----------------------------------------------------------------------------------------------19 1 放置样品-------------------------------------------------------------------------------------------------------19 2 调节载物台高度----------------------------------------------------------------------------------------------20 3 使用 Y-轴锁----------------------------------------------------------------------------------------------------21 4 调节 X-轴旋钮与 Y-轴旋钮的张力------------------------------------------------------------------------21 3-7 选择物镜--------------------------------------------------------------------------------------------------------------23 3-8 调焦--------------------------------------------------------------------------------------------------------------------24 1 垂直移动载物台----------------------------------------------------------------------------------------------24 2 更换微调焦旋钮----------------------------------------------------------------------------------------------24 3 调节粗调焦旋钮的张力-------------------------------------------------------------------------------------24 4 设置使用粗调焦旋钮的移动范围-------------------------------------------------------------------------25
snp1313说明书
snp1313说明书
1、过流保护功能变电站变压器保护测控柜配置有反应相间短路故障的三段式过流元件、复合电压元件和方向元件,过流时自动断电保护。
2、零序电流保护功能变电站变压器保护测控柜配置有反应接地故障的两段式零序过流元件和零压闭锁元件,各段的零压闭锁元件可分别投退。
发生接地故障时,先跳不接地变压器,后跳接地变压器。
3、间隙零序保护保护测控柜间隙零序保护包含间隙零压和间隙零流元件,均设置一段两时限,各个时限可投退。
间隙零压元件和间隙零流元件也可并联输出。
4、过负荷保护功能保护测控柜过负荷保护,可动作于跳闸或告警。
5、其它功能保护测控柜具有启动风冷、过载闭锁调压等异常保护和CT断线检测、PT断线检测的功能。
电磁干扰滤波器组件页面 - CORCOM, DIV OF TYCO ELECTRONICS CORP
FOKY2.E48570Electromagnetic Interference Filters - Component Page BottomElectromagnetic Interference Filters - ComponentSee General Information for Electromagnetic Interference Filters - ComponentCORCOM, DIV OF TYCO ELECTRONICS CORP E48570620 S BUTTERFIELD RDMUNDELEIN, IL 60060-9457 USAAppliance filters, Model(s) 100BCF6, 130BCF6, 15ED1, 15ED8, 16BCF6, 180BCF6, 30BCF6, 42BCF6, 55BCF6, 75BCF6, 7BCF6Electromagnetic interference appliance filters, Model(s) 100BCF10, 10CUFE1, 10CUFF1, 10CUFS1, 10EHZ1, 10EMC1, 10EMC3, 10EMC6,10ERK1, 10ESB1, 10ESB3, 10ESB6, 10VRK1, 10VSB1, 10VSB3, 10VSB6, 130BCF10, 15CUFE1, 15CUFF1, 15CUFS1, 15EHZ1, 15EMC1, 15EMC3, 15EMC6, 15ERK1, 15VRK1, 16BCF10, 16EHQ1, 16EQ1, 180BCF10, 1CUFE1, 1CUFF1, 1CUFS1, 20EHQ1, 20EHQ6, 20EHQ7, 20EHZ1, 20EHZ6,20EHZ7, 20EMC1, 20EMC3, 20EMC6, 20EQ1, 20ERK1, 20ESB1, 20ESB6, 20VQ1, 20VRK1, 20VSB1, 20VSB6, 2FB3, 30BCF10, 30EHZ6, 30EMC1, 30EMC3, 30EMC6, 30VSB1, 30VSB6, 3CUFE1, 3CUFF1, 3CUFS1, 3EHQ1, 3EHQ3, 3EHQ7M, 3EHQ8, 3EHQ8M, 3EMC1, 3EMC3, 3EMC6, 3EQ1,3EQ3, 3EQ7M, 3EQ8, 3EQ8M, 3ERK1, 3ERK3, 3FB3, 3FB3-MS, 3VQ1, 3VQ3, 3VQ8, 3VQ8M, 3VRK1, 3VRK3, 42BCF10, 4EHZ1, 55BCF10, 5FB3,60DB8, 60DBF8, 60DBJ8, 60DBX8, 6CUES1, 6CUFE1, 6CUFF1, 6EHQ1, 6EHQ3, 6EHQ8, 6EHQ8M, 6EHZ1, 6EMC1, 6EMC3, 6EMC6, 6EQ1, 6EQ3,6EQ8, 6EQ8M, 6ERK1, 6ERK3, 6ESB1, 6ESB3, 6VRK1, 6VRK3, 6VSB1, 6VSB3, 75BCF10, 7BCF10, A3B00-30, A3C00-30, F3071C, F3071E, F3186, F3265, F3978C, F4077, F4325, F4325A, F4340, F4341, F4342, F4382, F4499, F4507, F4525, F4607, F4612, F4654, F4655, F4659, F4663, F4666, F7247B, F7247X, F7247Y, F7262A, F7268A, F7328C, F7776A, HFB3Electromagnetic interference facility filters, Model(s) F6478C, F6478D, F6497A, TECUL225A6, TECUL225B6, TECUL300A6, TECUL300B6, TECUL400A6, TECUL400B6Electromagnetic Interference Filter, Model(s) 1, 3, 6, 10 or 15 followed by EJT followed by 1F or 8F.1, 3, 6, 10, 15 or 20 followed by EJT followed by 1 or 8.12FCD10, 16FCD10, 25FCD10, 36FCD10, 3VAQ3, 3VAQ8F, 3VAQ8FS, 50FCD10, 6EUP and 6EU1, 6FCD10, 6VAQ3, 6VAQ8F, 6VAQ8FS, CDEUA (a), CDEUL (a), CDEUW (a), CDEUX (a), CDEUX060A4-1, F3804A, F3804D, F7751A, F7753AElectromagnetic interference filters, Model(s) 1, 2, 3, 6 or 10, followed by EDK or VDK, followed by 1 or 31, 3, 6 or 10, followed by EAH or EBH, followed by 1, 2 or P.1, 3, 6 or 10, followed by EEA or EEB, followed by 1, 2 or P.1, 3, 6, 10 or 15, followed by EAS or EBS, followed by 1 or 8.1, 3, 6, 10 or 15, followed by EBF, followed by 1 or 4.100 or 125, followed by DC, followed by F or B, followed by 6 or 10, may be followed by B and/or F.10CFE1, 10CFS1, 10CHE1, 10CHS1, 10CKFE1, 10CKFS1, 10CKHE1, 10CKHS1, 10EDP, 10EEJ1, 10EEJ2, 10EEJ8, 10EEJP, 10EG1, 10EGG1-1,10EGG1-2, 10EGG8-1, 10EGG8-2, 10EGS1-1, 10EGS1-2, 10EGS8-1, 10EGS8-2, 10EHG1-2, 10EHG8-2, 10EHGS1-1, 10EHGS1-2, 10EJH1,10EJH2, 10EJH8, 10EJHP, 10EJHS1, 10EJHS8, 10EJM1, 10EJM2, 10EJM8, 10EJMP, 10EJMS1, 10EJMS8, 10EJS1, 10EJS8, 10EJT1, 10EJT8, 10EOP, 10VG1, 10VN1, 110AYC10B, 12EJMS1, 150AYC10B, 150AYC10B-95, 15EEJ1, 15EEJ2, 15EEJ8, 15EEJP, 15EJH1, 15EJH2, 15EJH8, 15EJHP,15EJHS1, 15EJHS8, 15EJM1, 15EJM2, 15EJM8, 15EJMP, 15EJMS8, 15EJS1, 15EJS8, 15EJT1, 15EJT815SRB, followed by 1, 2, 8, P, S1 or S8, may or may not be followed by Q, R, S, T, W, X, Y or Z.16AYA6, 16AYA6A, 16AYC10BElectromagnetic Interference Filters, Model(s) 16WGA1, 16WGB1, 16WGC1, 16WGD1, 16WGE1, 16WGF1, 16WGA3, 16WGB3, 16WGC3,16WGD3, 16WGE3, 16WGF3, 16WGA7, 16WGB7, 16WGC7, 16WGD7, 16WGE7, 16WGF7, 16WGA8, 16WGB8, 16WGC8, 16WGD8, 16WGE8 and16WGF8Electromagnetic interference filters, Model(s) 180AYC10B, 1CFE1, 1CFS1, 1CHE1, 1CHS1, 1CKFE1, 1CKFS1, 1CKHE1, 1CKHS1, 1EDK1,1EDK3, 1EDP, 1EEJ1, 1EEJ2, 1EEJ8, 1EEJP, 1EGG1-1, 1EGG1-2, 1EGG1C-1, 1EGG1C-2, 1EGG8-1, 1EGG8-2, 1EGG8C-1, 1EGG8C-2, 1EGS1-1,1EGS1-2, 1EGS8-1, 1EGS8-2, 1EHG1-2, 1EHG8-2, 1EHGS1-2, 1EJH1, 1EJH2, 1EJH8, 1EJHP, 1EJHS1, 1EJHS8, 1EJM1, 1EJM2, 1EJM8, 1EJMP,1EJMS1, 1EJMS8, 1EJS1, 1EJS8, 1EJT1, 1EJT8, 1EOP, 1VDK1, 1VDK3, 20AYP6C, 20AYT6C, 20EDK1, 20EEJ1, 20EEJ8, 20EJH1, 20EJH8, 20EJHS1, 20EJHS8, 20EJM1, 20EJMS1, 20EJMS8, 20EJS1, 20EJS8, 20EJT820SRB, followed by 1, 8, S1 or S8, followed by W, X or Y.20VDK1, 20VDK6, 25AYA6, 25AYA6A, 25AYC10B, 2VK1L3, 6, 10 or 15, followed by DAF or DAS, followed by 1, 8 or P.30AYP6C, 30AYT6C, 36AYA6, 36AYA6A, 36AYC10B, 3CFE1, 3CFS1, 3CHE1, 3CHS1, 3CKFE1, 3CKFS1, 3CKHE1, 3CKHS1, 3EDP, 3EEJ1, 3EEJ2,3EEJ8, 3EEJP, 3EGG1-1, 3EGG1-2, 3EGG1C-1, 3EGG1C-2, 3EGG8-1, 3EGG8-2, 3EGG8C-1, 3EGG8C-2, 3EGS1-1, 3EGS1-2, 3EGS8-1, 3EGS8-2,3EHG1-2, 3EHG8-2, 3EHGS1-2, 3EHZ1, 3EJH1, 3EJH2, 3EJH8, 3EJHP, 3EJHS1, 3EJHS8, 3EJM1, 3EJM2, 3EJM8, 3EJMP, 3EJMS1, 3EJMS8, 3EJS1, 3EJS8, 3EJT1, 3EJT8, 3EOP, 3EX1, 3EZ1, 3VK1L, 45AYP6C, 45AYT6C, 50AYA6, 50AYA6A, 5EFL2S, 5VK1L, 60AYP6C, 60AYT6CElectromagnetic Interference Filters, Model(s) 63ADT6, 63ADT6S, 100ADT6, 100ADT6S, 160ADT6, 200ADT6 and F6229C.Electromagnetic interference filters, Model(s) 63AYC10B, 6CFE1, 6CFS1, 6CHE1, 6CHS1, 6CKFE1, 6CKFS1, 6CKHE1, 6CKHS1, 6EDP, 6EEJ1, 6EEJ2, 6EEJ8, 6EEJP, 6EG1, 6EGG1-1, 6EGG1-2, 6EGG1C-1, 6EGG1C-2, 6EGG8-1, 6EGG8-2, 6EGG8C-1, 6EGG8C-2, 6EGS1-1, 6EGS1-2,6EGS8-1, 6EGS8-2, 6EHG1-2, 6EHG8-2, 6EHGS1-2, 6EJH1, 6EJH2, 6EJH8, 6EJHP, 6EJHS1, 6EJHS8, 6EJM1, 6EJM2, 6EJM8, 6EJMP, 6EJMS1,6EJMS8, 6EJS1, 6EJS8, 6EJT1, 6EJT8, 6EOP6FC10, 12FC10, 16FC10, 25FC10, 36FC10, 50FC106VG1, 6VN1, 80AYC10B, C1066A, C1069, C1195, C1195A, C1201A, C5691, C5691A, C7019A, C7049, F3433, F3613, F3613A, F3779, F3786,F4092, F4093, F4093A, F4136B, F4169B, F4217A, F4217B, F4259, F4290, F4298, F4402, F4481, F4564, F4649, F5396B, F7328A, F7381C,F7382M, F7382P, F7386C, F7387C, F7387D, F7388C, F7405B, F7531M, F7532A, F7655A, F7702D, F7892F, F7897A, F8017E, F8026A, F8030A,F8032A, F8137A, F8138A, F8143A, F8225AP, followed by five characters, followed by D, followed by 3, 6 or X, followed by D.P, followed by five characters, followed by H or S, followed by 3, followed by A, B, 0 or S.P, followed by five characters, followed by H, L, S or Z, followed by 6 or X, followed by A, B, C, 0 or S, may be followed by W.P, followed by five characters, followed by M3E, M6E or MXE.Facility filters, Model(s) CDSUA1030-C, CDSUA1060-C, CDSUA1100 C, CDSUA2030 CRadio frequency interference filters, Model(s) 10AY01, 10EB1, 10EB3, 10EBFX, 10EC1, 10EC8, 10ED1, 10ED1C, 10ED4, 10ED4C, 10ED8,10ED8C, 10EF1F, 10EF1FC, 10EF4, 10EF4C, 10EF8, 10EF8C, 10EH1, 10EH3, 10EH4, 10EH4C, 10EHT1, 10EHT3, 10EK1, 10EK3, 10EK7, 10EK7M, 10EP1, 10EP3, 10ER1, 10ER3, 10ER7, 10ER7M, 10ESK1, 10ESK3, 10ESK7, 10ESK7M, 10ET1, 10ET3, 10MV1, 10R1, 10R6, 10VB1, 10VB3,10VB6, 10VK1, 10VK3, 10VK6, 10VK7, 10VK7M, 10VR1, 10VR3, 10VR6, 10VR7, 10VR7M, 10VS1, 10VSK1, 10VSK3, 10VSK7, 10VSK7M, 10VT1, 10VT3, 10VV1, 10VW1, 12EP1, 12EP3, 15EASZ, 15EBFX, 15EBSZ, 15EEAY, 15EEBY, 15EFIF, 15EH4, 15EHT1, 15EHT6, 15ET1, 15ET6, 15VT1,15VT6, 1EB1, 1EB3, 1EC1, 1EC2, 1EC4, 1EC8, 1ED1, 1ED2, 1ED4, 1ED8, 1EF1F, 1EF2F, 1EF4, 1EF8, 1EK1, 1EK3, 1ER1, 1ER3, 1EZP, 1VB1,1VB3, 1VK1, 1VK3, 1VR1, 1VR3, 20AY01, 20B1, 20B6, 20EB1, 20EH1, 20EH6, 20EHT1, 20EHT6, 20EHT7, 20EK1, 20EK6, 20EP1, 20EP6, 20ER1, 20ESK1, 20ESK6, 20ET1, 20ET6, 20MV1, 20VB1, 20VB6, 20VK1, 20VK6, 20VK7, 20VP1, 20VP6, 20VR1, 20VR6, 20VS1, 20VS6, 20VSK1,20VSK6, 20VT1, 20VT6, 20VV1, 20VV6, 20VW1, 20VW6, 20VW7, 2EB1, 2EB3, 2EDL1S*, 2EDL4*, 2EK1, 2EK3, 2ER1, 2ER3, 2EXP, 2EYP, 2EZP,2VB1, 2VB3, 2VK1, 2VK3, 2VR1, 2VR3, 30ESK6, 30ESK6C, 30VB6, 30VK6, 30VK6C, 30VSK6, 30VSK6C, 3AY01, 3B1, 3EB1, 3EB3, 3EC1, 3EC2,3EC4, 3EC8, 3ED1, 3ED2, 3ED4, 3ED8, 3EF1F, 3EF2F, 3EF4, 3EF8, 3EH1, 3EH3, 3EHT1, 3EHT3, 3EHT7, 3EHT7M, 3EK1, 3EK3, 3EK7, 3EK7M,3EP1, 3EP3, 3EP7, 3EP7M, 3ER1, 3ER3, 3ER7, 3ER7M, 3ESK1, 3ESK3, 3ESK7, 3ESK7M, 3ET1, 3ET3, 3ET7, 3EXL2S, 3EXP, 3EYP, 3EZL2S, 3EZP, 3MV1, 3R1, 3VB1, 3VB3, 3VK1, 3VK3, 3VK7, 3VK7M, 3VR1, 3VR3, 3VR7, 3VR7M, 3VS1, 3VSK1, 3VSK3, 3VSK7, 3VSK7M, 3VV1, 3VW1, 40VK6, 40VK6C, 40VSK6, 4EDL1S*, 4EDL4*, 4EXP, 4EYP, 5EB1, 5EB3, 5EFM1, 5EFM1C, 5EFM1S, 5EFM1SC, 5EFM4, 5EFM4C, 5EFM4S, 5EFM4SC,5EHM1, 5EHM1C, 5EHM1S, 5EHM1SC, 5EHM4, 5EHM4C, 5EHM4S, 5EHM4SC, 5EK1, 5EK3, 5EK7, 5EK7M, 5ER1, 5ER3, 5ER7, 5ER7M, 5R1, 5VB1, 5VB3, 5VK1, 5VK3, 5VK7, 5VK7M, 5VR1, 5VR3, 5VR7, 5VR7M, 60VS6, 6AY01, 6EC1, 6EC2, 6EC4, 6EC8, 6ED1, 6ED1C, 6ED2, 6ED4, 6ED4C,6ED8, 6ED8C, 6EDL1S*, 6EDL4*, 6EF1F, 6EF2F, 6EF4, 6EF8, 6EH1, 6EH3, 6EH4, 6EH5, 6EH8, 6EH9, 6EHL1S*, 6EHL4*, 6EHT1, 6EHT3, 6EHT7, 6EHT7M, 6EP1, 6EP3, 6ESK1, 6ESK3, 6ESK7, 6ESK7M, 6ET1, 6ET3, 6ET7, 6EXP, 6MV1, 6VS1, 6VSK1, 6VSK3, 6VSK7, 6VSK7M, 6VV1, 6VW1,7EP1, 7EP3, 8ED8C, F1709C, F2470, F2537, F2577, F2577Z, F2801, F2801Z, F2807, F2821, F2870, F2914A, F2954, F3016, F3017, F3101,F3101A, F3101B, F3107, F3130, F3259, F3259A, F3295A, F3392, F3404, F3407, F3409, F3410, F3421, F3457, F3467, F3558, F3582, F3643,F3658, F3713, F3721A, F3742, F3787, F3949, F3986, F3997A, F3997B, F4006, F4008, F4025, F4041, F4041A, F4041Z, F4055, F4140, F4141,F4230A, F4230D, F7002B, F7003A, F7025A, F7070A, F7071A, F7120A, F7130D, F7147A, F7202A, F7210A, F7235A, F7311F, F7323A, F7329A,F7335A, F7346B, F7350C, F7352C, F7356A, F7358E, F7358F, F7376A, F7376B, F7393C, F7424B, F7431A, F7518D, F7526A, F7585A, F7585B,F7585D, F7585E(a) - followed by 010, 030, 060, 100, 150, 225, 300 or 400, followed by suffix A or B, followed by suffix 4 or 6* - May be followed by C and/or M. Where C indicates receptacle with integral spring tabs for mounting; and M indicates filter is normally provided with dual (European) fusing.Marking: Company name or trademark , , , , , ,and model designation.Last Updated on 2015-05-07Questions?Print this page Terms of Use Page Top© 2015 UL LLC When the UL Leaf Mark is on the product, or when the word "Environment" is included in the UL Mark, please search the UL Environment database for additional information regarding this product's certification.The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2015 UL LLC".。
硅传科技 CC1310-TC-009 大功率嵌入式 433M 无线数传模块 V3.1 说明书
CC1310-TC-009大功率嵌入式433M无线数传模块V3.1深圳市硅传科技有限公司地址:深圳市龙华区创业路汇海广场C座13层1305邮编:518109电话**************传真:*************邮箱:**********************网址:https://版本说明目录一、功能介绍 (4)二、应用领域 (4)三、模块特性 (5)四、尺寸示意图 (5)五、引脚说明 (6)六、硬件连接 (7)七、AT指令 (9)7.1 AT+MODE –设置工作模式 (9)7.2 AT+UART –设置串口参数 (9)7.3 AT+TXP –设置设备射频发射功率 (10)7.4 AT+RFRATE –设置设备射频空中波特率 (10)7.5 AT+CH –设置设备射频的工作频道 (11)7.6 AT+FACTORY –参数恢复出厂设置 (11)7.7 AT+RSTSTM –软件复位系统 (11)7.8 AT+GETRSSI –读取RSSI (12)7.9 AT+SNTYPE –设置传感器类型 (12)7.10 AT+NTP –设置传感器节点类型 (13)7.11 AT+SNPT –设置传感器数据上报周期 (13)7.12 AT+GID –设置传感器组ID (14)7.13 AT+SID –设置传感器节点ID (14)7.14 AT+VER –读取固件版本 (15)7.15 AT+EPW –模组供电电压值 (15)7.16 AT+SNTO –设置传感器数据上电延时上报时间 (16)7.17 AT+WTMD –设置射频白化功能 (16)7.18 AT+SCPRD –设置ADC传感器采样检测个数 (17)7.19 AT+BYP –内部PA/LNA Bypass模式 (17)八、电脑端上位机 (19)8.1 上位机操作说明 (19)8.2 传感器应用操作说明 (20)8.3 分组ID和节点ID (21)九、传感器串口数据协议 (22)十、使用注意事项 (23)10.1 上电延时 (23)10.2 AT指令 (23)10.3 透传数据分包机制 (23)10.4 功耗设计 (23)10.5 透传数据吞吐量 (23)十一、附加说明 (24)一、功能介绍CC1310属于德州仪器 (TI) CC26xx 和 CC13xx 系列器件中的经济高效型超低功耗Sub 1GHz的SOC RF器件。
mc1413中文资料
UAGB1313F
UB/UG/YPY : =135 deg., NFA/NFR : =150deg.UB/UG/YPY/NFA/NFR : =130 deg.Reel diameter: 180mm洸子其科技是一家从事发光二极管产品研发、生产及销售公司,致力于为国内国际市场提供高品质,低成本的各类发光管。
主营产品有:SMD LED 0402、0603、0802、0805、1204、1206、3528、5050、3020、3014、2835、3535、335、020、正面发光及侧面发光,红、绿、蓝、白、黄、橙、粉红、紫、单色双色及三色等…主要应用:照明灯具、灯光亮化装饰工程、玩具礼品、背光显示、荧光验证防伪、手机、家电、MP3、手电筒、汽车、圣诞树、霓虹灯等…点击进入洸子其科技(nm)Note : The luminous intensity(I) and dominant wavelength( ) values of the sorting machine.…10, ... 2nmPulse ForwardCurrent 1mA/mA/Derating(Ta=25 or higher)-40 +85-40 +100135( )135( )135( )150( )150( )130( )130( )130( )130( )130( ) Note: The dominant wavelength ( ) above is the setup value of the sorting machine.Tolerance: …2nmColor Tone Groups ( )Dominant Wave Length (nm)Condition: Ta=25Condition: Ta=25Condition: Ta=25Condition: Ta=25Recommended Soldering Pattern3) Temperature fluctuation to the LED during the pre-heating process shall be minimized.(6 maximum)350。
限位开关说明书(堵煤开关)
工作参数:*储仓温度:-20℃~+60℃(0~140 oF)*最大工作压力:10Bar(150psi)*最小物料介电常数Σr:2.5*壳体工作温度: -20℃~+60℃*储存温度: -20℃~+85℃探头: *FTC131Z:杆式探头,Φ18mm,最长4m杆式探头最大侧向负载为30Nm壳体型号: *铝壳IP55*铝壳IP66*聚酯壳:IP66电缆塞: *IP55壳体:镍铜质标准Pg, NBR密封件,适用线径为7~10mm.*IP66壳体:聚酰胺材质防水型Pg, N—CR密封件,适用线径为5~12mm.电子插件: *端子连线最大截面为1.5mm2*测量频率:短于4m的探头约为750KHZ,对于长度超过4m的探头,切换至450KHZ.*初始容抗(可调):约400PF*开关延迟量:约0.5秒*高低位报警模式选择开关:旋式开关*开关状态指示.红色LED灯双线制交流*电源U~:21V….250V, 50/60HZ供电电子*瞬时外接负载(最长40ms):最大工作电流1.5A; 250V时最大功耗375V A;24V时, 插件EC20Z 最大功耗36V A.*最大压降:11V*连续外接负载:最大工作电流350Ma; 250V时最大功耗87V A;24V时最大功耗8.4V A*250V时最小负载电流:10Ma(2.5V A)*24V时最小负载电流:20mA(0.5V A)*空载电流(有效值):<5mA三线制直流*电源U~:10V (55V)供电电子*允许波纹电压UPP:5V插件EC22Z *最大电流消耗:15mA及EC23Z *负载连接:集电极开路; PNP(EC22Z)或NPN(EC23Z)*最大开关电压:55V*连续外接负载:最大工作电流350MA*最大峰值冲击电流::1.2A,最长20US*最大负载并联容抗:500NF*抗短路及过载保护:响应阀值约550MA*晶体管开路状态下空载电流:<100UA*具有抗反极性保护功能继电输出型*电源U~:20V~125V交/直流供电或U~:21V~250V,50/60HZ电子插件*最大电流消耗(均方根值):5MAEC24Z *最大峰值冲击电流:200MA,最长5MS*脉冲频率:约1.5S*输出:无源翻转触点器*触点器负载能力:U~最大为250V,I~最大为4AP~最大为1000V A(COSφ=1)或P~最大为350V A,COSφ>=0.7U~最大为100V,I~最大为100W*工作寿命:最大接触负载下,至少可工作十万次*外加翻转延迟:最大1.5S测量系统整个系统是由下列部分组成:1NIVOCOMPACT FTI2电源3用户后接控制系统,开关,信号变送器(如过程控制系统,PLC,继电器,微型触点器,灯,喇叭等).工作原理探头于储仓的侧壁作为两个相对的电极组成一个电容器,而此电容器则被施以一个高频电场.基於放电回路的工作原理而获得具体物位值:当探头位于介电数εR为1的大气中时,放电时间常数τ=R.CA,其中R为电路的阻抗.而CA为探头与器壁所组成电容器的容抗.若具有较高介电常数的物料进入电场区域,则容抗值CA增大,时间常数τ亦随之增大.上述时间长数的变化量被读出,NIVOCOMPACT根据一定的开关工作模式被触发只要物料在探头与仓壁或仓顶之间不行成导通桥路,NIVOCOMPACT就具有很强的抗物料积垢能力.内置的最低/最高位报警模式选择功能保证NIVOCOMPACT所具有很高的操作安全性要求的应用场合以静态电流方式工作.高位报警模式:探头被浸没或电源出现故障时,电路断开.低位报警模式:当探头与被测物料脱离或电源出现故障时,电路断开.位于电子插件上的红色LED显示灯开关状态.应用范围FTC131Z主要用来对小型储仓中细粒散料进行限位探测.FTC331Z用来对大型储仓中细粒或粗粒散料进行限位探测.若储仓中盛放很大颗粒或磨损性很强的物料,NIVOCOMPACTFTC331Z只能用来实现高限位探测.探头之间距离为避免探头之间的相互干扰,不同探头之间应保证至少0.5M的间距位于相邻的由非导电材料组成的储仓中的探头之间亦应保证起码0.5M的距离利用气动式加料机对储仓加料时,探头之间距应更大一些,这样,即使探头晃动,亦能保证其相互间最小间距之要求.储仓加料加料物流应避免直接指向探头.室外安装作为附件供用户选用的全天候保护罩对铝壳结构的Nivocompact开关起到防过热及冷凝之作用.一般而言,大幅度的温度变化极易引起冷凝现象.电气连线(接线)各种不同电子插件的主要特性: 位于产品标牌上的定购代码中的最后一位数字代表位于Nivocompact FTC开关中电子插件的型号:1=电子插件EC20Z双线制交流供电21V (250V)电子开关,最大电流350mA2=电子插件EC22Z三线制直流供电10V (55V)晶体管电路,负载连接PNP,最大电流350mA3=电子插件EC23Z三线制直流供电10V (55V)晶体管电路,负载连接NPN,最大电流350mA4=电子插件EC24Z无源继电输出交流供电21V...250V或直流供电20V (125V)负载极限: 注意与Nivocompact所连负载的极限值超出负载极限会损害或彻底损坏电子插件线径: 工作电流很小,故只需要小线径的电缆建议使用线截面为0.5~1.5mm2的普通电缆接地,与大地等势:必须保证Nivocompact的良好接地性,使其工作可靠,免受外界干扰可将Nivocompact与接地的金属或钢筋型罐壁相连,或将它与大地等势体PE 相连.若在塑料质储仓中已设反极板,则必须在Nivocompact与此反极板之间用一根短线进行接地连接.建立一个等势面势(与大地等势,接地)须严格遵循所有防爆规定.当电子插件安装与Nivocompact中时,自动满足设计认可证书中(A7)1及2所有专门要求/指标.双线制交流供电电子插件EC20Z的连线: 正象所有开关一样,带电子插件EC20Z的物位开关Nivocompact必须与负载(如继电器,微触点器,灯泡等)串接与电源上.在没有任何中介负载情形下,将开关与电源直接相连(短路)会引起迅速而永久的电子插件损坏.负载可串接与电子插件端子1或2的认一端L1亦可与端子1或2的任一端相连.电源电压: 电子插件接线端子1与2之间的端电压值不得低于21V ,电源的端压要稍高于21V,以不偿负载引起的压降.负载开路: 值得注意的是,位报警状态下, Nivocompact的电子插件中的电子开关断路,但此时与之串接的负载并未真正与电源脱开.由于电子插件本身的工作电流要求,此时一个很小的”空载电流”依然流过负载.若负载正好是一只保持电流很小的继电器时,继电器有可能拒绝释放,此时应在继电器两端并接一个负载,如电位器,信号灯等.保险丝: 确保保险丝的功率因子与最大外接负载相匹配.此细径保险丝对电子插件EC20Z不起保护作用三线制直流供电的电子插件EC22Z(PNP)的连线负载受控与晶体管: 接与端子3的负载受控与一只晶体管,类属非接触控制,不会发生返跳现象.正常开关状态下,端子3电位为正物位报警或电源发生故障时,晶体管开路.抗短路保护: 位与端子1与3之间的负载电路具有抗过载及短路能力(脉冲过载保护).过载或短路时,晶体管开路.抗峰压保护: 与强感应仪表相连时,必须接入一只限压器.三线制直流供电的电子插件EC23Z(NPN)的连接负载受控子晶体管电路: 接与端子3的负载受控与一只晶体管,类属非接触控制,故不会发生返跳现象.正常开关状态下,端子3电位为负.物位报警或电源发生故障时,晶体管开路.抗短路保护: 位与端子2和3之间的负载电路具有抗过载及短路的能力(脉冲过载保护) 过载或短路情形下,晶体管开路.抗峰压保护; 与强感应仪表相连时,应接入一只限压器.交/直流供电的电子插件EC24Z的连线电源: 交流供电,L1或N任一端皆可与端子1相连直流供电,L+或L-任一端皆可与端子1相连.服务于负载的继电触点器: 通过一只无源继电触点器(翻转触点器)实现负载的连接,物位报警或电源发生故障时,继电触点器触发,使端子3与4之间短路.抗峰压及短路保护: 在强感应仪表上接入一只火花压制器,用来保护继电触点器.发生短路现象时,细径保险丝F2(功率因子取决于负载大小)可对继电触点器起到保护作用.标定工具准备*齿宽3MM的螺丝刀*齿宽5MM的螺丝刀旋式开关及其他标定过程中所涉调节元件均位于壳体中电子插件上.紧挨标定元件的是电源输入端子,其上电压最大可达250V只允许使用除齿部之外全绝缘的螺丝刀,否则在进行标定之前,必须在电源输入端子上贴上绝缘胶带.容抗标定进行容抗标定时,储仓必须空仓或物位低於探头起码200MM●接通电源●按图23至25的次序进行标定●标定过程中避免水气进入壳体当探头表面被非导电,低介电常数的=固体散料覆盖时,只有当纵向安装探头的一段或横向安装的全部被物料浸没时,NIVOCOMPACT开关才会被触发探头的被覆盖程度取决于於标定工程.反向旋转微标元件,可使NIVOCOMPACT的反应稍许迟钝一些.限位报警模式利用旋式开关,用户可根据实际需要选择合适的限位报警模式*高位报警模式: 探头被物料浸没或电源发生故障时,电流回路开路*低位报警模式:探头裸露於大气中或电源发生故障时,电源回路开路. 功能测试探头裸露於大气中时,用一只带有绝缘柄的螺丝刀接触电子插件的中央紧固螺母,模拟固体散料浸没探头的情形.此时,LED灯的显示状态翻转上述过程仅可用来对仪表的功能控制性能进行测试只有通过现场加料或空仓作业才能真正检查仪表的限位探测功能是否正常.试验过程中物位应:_与侧向安装杆式探头的安装点等高_与纵向安装杆式探头杆端点位置等高_与缆式探头的重锤位置等高!故障排除出现故障时,首先应检查确认*NIVOCOMPACT连接正常*与储仓或反极板接地良好*电源供电正常*所有相连仪表工作正常*使用EC20Z插件时,对相连仪表的最小负载;量要求得到满足*限位报警模式选择正确*标定正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
TC1313
Functional Block Diagram
VREF
Undervoltage Lockout (UVLO)
UVLO
VIN1 VIN2 SHDN1
Synchronous Buck Regulator
Control
PDRV
Driver
NDRV
AGND
PGND
PGND
LX PGND VOUT1/VFB1
The 500 mA synchronous buck regulator switches at a fixed frequency of 2.0 MHz when the load is heavy, providing a low-noise, small-size solution. When the load on the buck output is reduced to light levels, it changes operation to a Pulse Frequency Modulation (PFM) mode to minimize quiescent current draw from the battery. No intervention is necessary for smooth transition from one mode to another.
300
—
—
Shutdown Current
• Total Device Quiescent Current = 57 µA (Typ.) • Independent Shutdown for Buck and LDO
Outputs • Both Outputs Internally Compensated • Synchronous Buck Regulator:
DC CHARACTERISTICS
Electrical Characteristics: VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1µF, L = 4.7 µH, VOUT1 (ADJ) = 1.8V, IOUT1 = 100 ma, IOUT2 = 0.1 mA TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.
Applications
• Cellular Phones • Portable Computers • USB-Powered Devices • Handheld Medical Instruments • Organizers and PDAs
Description
The TC1313 combines a 500 mA synchronous buck regulator and 300 mA Low-Dropout Regulator (LDO) to provide a highly integrated solution for devices that require multiple supply voltages. The unique combination of an integrated buck switching regulator and lowdropout linear regulator provides the lowest system cost for dual-output voltage applications that require one lower processor core voltage and one higher bias voltage.
元器件交易网
TC1313
500 mA Synchronous Buck Regulator, + 300 mA LDO
Features
• Dual-Output Regulator (500 mA Buck Regulator and 300 mA Low-Dropout Regulator (LDO))
Input Voltage
4.5V to 5.5V
4.7 µF
*Optional
Capacitor VIN2
1.0 µF
TC1313 Adjustable-Output Application
10-Lead DFN
8 VIN1 2 VIN2
LX 9 PGND 10
7 SHDN1 VOUT1 6
1 SHDN2 VOUT2 3
6 VFB1/VOUT1
10-Lead MSOP
SHDN2 1 VIN2 2
VOUT2 3 NC 4
AGND 5
10 PGND 9 LX 8 VIN1
7 SHDN1 6 VFB1/VOUT1
© 2005 Microchip Technology Inc.
DS21974A-page 1
元器件交易网
DS21974A-page 3
元器件交易网
TC1313
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
VIN - AGND ......................................................................6.0V
- Over 90% Typical Efficiency - 2.0 MHz Fixed-Frequency PWM
(Heavy Load) - Low Output Noise - Automatic PWM-to-PFM mode transition - Adjustable (0.8V to 4.5V) and Standard
Fixed-Output Voltages (0.8V, 1.2V, 1.5V, 1.8V, 2.5V, 3.3V) • Low-Dropout Regulator: - Low-Dropout Voltage = 137 mV Typ. @ 200 mA - Standard Fixed-Output Voltages (1.5V, 1.8V, 2.5V, 3.3V) • Small 10-pin 3X3 DFN or MSOP Package Options • Operating Junction Temperature Range: - -40°C to +125°C • Undervoltage Lockout (UVLO) • Output Short Circuit Protection • Overtemperature Protection
SHDN2
VREF LDO
UVLO
VOUT2 AGND
DS21974A-page 2
© 2005 Microchip Technology Inc.
元器件交易网
Typical Application Circuits
TC1313
VIN 2.7V to 4.2V
4.7 µF
The LDO provides a 300 mA auxiliary output that requires a single 1 µF ceramic output capacitor, minimizing board area and cost. The typical dropout voltage for the LDO output is 137 mV for a 200 mA load.
TC1313 Fixed-Output Application
10-Lead MSOP
8 VIN1
LX 9
2 VIN2
PGND 10
7 SHDN1 VOUT1 6
1 SHDN2 VOUT2 3
4 NC
AGND 5
4.7 µH 4.7 µF
VOUT1 1.5V @ 500 mA
1 µF
VOUT2 2.5V @ 300 mA
Parameters
Sym
Min
Typ
Max
Units
Conditions
Input/Output Characteristics
Input Voltage
VIN
2.7
—
5.5
Maximum Output Current
IOUT1_MAX
500
—
—
Maximum Output Current
IOUT2_MAX
4 NC
AGND 5
Note
ቤተ መጻሕፍቲ ባይዱ
4.7 µH 4.7 µF
200 kΩ 4.99 kΩ
1 µF
VOUT2
3.3V @ 300 mA
33 pF
121 kΩ
VOUT1