第8章机械优化设计实例PPT课件

合集下载

机械优化设计范例(共9张PPT)

机械优化设计范例(共9张PPT)

设计变量
现设 甲矿运往东站x万吨
乙矿运往东站y万吨
则甲矿运往西站200-x万吨
乙矿运往西站260-y万吨 令x=x1,y=x2
所以:X43;1.5(200-x1)+0.8x2+1.6(260-x2) =716-0.5x1-0.8x2(万元)
所以:Min f(X)= 716-0.5x1-0.8x2
约束条件
- x1 ≤0 X1-200 ≤0 -x2 ≤0 x2 - 260 ≤ 0
x1+x2-280≤ 0 100-x1-x2≤0
求解结果
x2 280 260
100
Z
(20,260)
x1=20 x2=260
Minf(X)= 498万元
100
200 280
x1
所以: 乙矿运往西站260-y万吨
Mx2in-f(26X0)≤ =0 498万元 则令甲x=矿x1运,y=往x2西站200-x万吨
最少的运费为498万元 x令1x+=xx21-2,y8=0x≤20
己 x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 M甲i煤nf(矿X运)往=东49站8和万西元车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所。以:Min f(X)= 716-0. 煤乙矿应 运怎往样东编站制y万调吨运方案才能使总运费最少? 己x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 xM1i+nfx(2-X2)80=≤ 4098万元 现甲设煤矿甲运矿往运东往站东和站西x万车吨站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所 。以:X = [ x1, x2 ]T

《机械优化设计》第8章机械优化设计实例

《机械优化设计》第8章机械优化设计实例

机械优化设计
第一节 应用技巧
❖ 三、数学模型的尺度变换
在工程实际问题中,不同的设计变量,其量纲一 般是不同的,数量集的差别往往也很大;
在优化迭代中,这种差别对计算数值变化的灵敏 性、收敛性、稳定性,都有不同程度的影响'。
为了提高优化收敛速度,提高计算稳定性,在机
械优化设计中,常采用尺度变换措施'。
f
x
1 4
x1
x3
x22 d 2
g1
x
64Fx32 x1 x3
3 E x24 d 4
/
y0
1
0
g2 x 1 x1 / lmin 0
g3 x 1 x2 / Dmin 0
g4 x x2 / Dmax 1 0
g5 x 1 x3 / amin 0
机械优化设计
第一节 应用技巧
❖ 1)、优化目标的选择:
应当对所追求的各项指标进行细致分析,从 中选择最重要、最具代表性的指标作为优化 目标
2)、优化指标矛盾的处理
机械优化设计
第一节 应用技巧
机械优化设计
❖ 3、约束条件的确定
约束条件是就工程设计本身而提出的对设计变量 取值范围的限制条件,也是设计变量的可计算函 数'。
机械优化设计
x x1x2x3 T l daT
机床主轴优化设计的目标函数为
f
x
1
4
x1
x3
x22 d 2
再确定约束条件
g x y y0 0
在外力F给定的情况下,y是设计变量x的函数,其值按
下式计算
Fa2 l a
y
3 I
机械优化设计
I D4 d 4 64

机械优化设计PPT

机械优化设计PPT

二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图

机械优化设计实例.pptx

机械优化设计实例.pptx
用梯度投影法,对函数易于求导的问题,以可利 用导数信息的方法为好,例如可行方向法;对求导 非常困难的问题则应选用直接解法,例如复合形 法;对于高度非线性的函数,则应选用计算稳定性 较好的方法,例如BFGS变尺度法和内点惩罚函 数法相结合的方法。
• 编写计算机程序对于使用者来说,已经没 有多少工作要做了,因为已有许多成熟的 优化方法程序可供选择。使用者只需要将 数学模型按要求编写成子程序嵌入已有的 优化程序即可。
• 对于一般的机械,可按重量最轻或体积最小的要 求建立目标函数;对应力集中现象尤其突出的构件, 则以应力集中系数最小作为追求的目标,对于精 密仪器,应按其精度最高或误差最小的要求建立 目标函数。在机构设计中,当对所设计的机构的 运动规律有明确的要求时,可针对其运动学参数 建立目标函数;若对机构的动态特性有专门要求, 则应针对其动力学参数建立目标函数;而对于要求 再现运动轨迹的机构设计,则应根据机构的轨迹 误差最小的要求建立目标函数。
第一节 应用技巧
• 一、机械优化设计的一般过程 • 机械优化设计的全过程一般可分为如下几个步骤: • 1)建立优化设计的数学模型。 • 2)选择适当的优化方法。 • 3)编写计算机程序。 • 4)准备必要的初始数据并上机计算。 • 5)对计算机求得的结果进行必要的分析。 • 其中建立优化设计数学模型是首要的和关键的一
• 例如一架好的飞机,应该具有自重轻、净 载重量大,航程长,使用经济,价格便宜, 跑道长度合理等性能,显然这些都是设计 时追求的指标。但并不需要把它们都列为 目标函数,在这些指标中最重要的指标是 飞机的自重。因为采用轻的零部件建造的 自身重量最轻的飞机只会促进其它几项指 标,而不会损害其中任何一项。因此选择 飞机自重作为优化设计的目标函数应该是 最合适的了。

机械优化设计经典实例PPT课件

机械优化设计经典实例PPT课件


x1
x2 x1
3/ 2


0
g3 (X ) 3 l 3 x3 0
g4 (X ) d x2 0
g5 ( X ) D d x1 x2 0
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
6.12(x12 x22 )x3 106
设计实例1:
g1 ( X ) d 4 D 4 1.27 D 10 5 x2 4 x14 1.27 10 5 0
g2 ()

154.34D D4 d 4

Dd D
3/ 2

154.34x1 x14 x2 4
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )

机械优化设计(张翔,陈建能编著)PPT模板

机械优化设计(张翔,陈建能编著)PPT模板

2.6优化设 计的约束极
值条件
2.4函数的 凸性
2.5目标函 数的无约束
极值条件
2.1本章导 读
2.2向量、 矩阵的若干
概念
2.3目标函 数的性态分
析基础
第2章优化设计的 理论基础
2.7优化设计的数值解法及终止 准则 2.8习题
第3章一维优化 方法
第3章一维优化方 法
3.1引言 3.2确定搜索区间的进退法 3.3黄金分割法 3.4二次插值法 3.5习题
第9章优化设计实例
9.1复演预期函数机构的
1
设计
9.2圆柱齿轮减速器的优
化设计
2
9.3圆柱螺旋压缩弹簧的
3
优化设计
9.4椭圆齿轮-曲柄摇杆-
轮系引纬机构的设计
4
9.5手脚联控机构的多目
5
标优化设计
9.6应用的扩展——两个
非工程设计的应用实例
6
第9章优化设计实 例
9.7习题
参考文献
参考文献
附录混合罚函数优化 程 序 与 M AT L A B 使 用 示例
附录混合罚函数优化程序 与 M AT L A B 使 用 示 例
F1混合罚函数调用Powell法求 优参考程序
F 2 M AT L A B 优 化 工 具 使 用 示 例
2020
感谢聆听

05
7.5优化计 算结果的分

03
7.3建模中 数表和图线
的程序化
06
7.6习题
第8章现代优化计算 方法与优化工具软件 应用概述
第8章现代优化计算方法与优化 工具软件应用概述
8.1现代优化计算方法 8 . 2 M AT L A B 优 化 工 具 应 用 概 述 8.3习题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
• 例如一架好的飞机,应该具有自重轻、净 载重量大,航程长,使用经济,价格便宜, 跑道长度合理等性能,显然这些都是设计 时追求的指标。但并不需要把它们都列为 目标函数,在这些指标中最重要的指标是 飞机的自重。因为采用轻的零部件建造的 自身重量最轻的飞机只会促进其它几项指 标,而不会损害其中任何一项。因此选择 飞机自重作为优化设计的目标函数应该是 最合适的了。
• 前面几章系统地介绍了机械优化设计的理 论和方法。本章将首先针对机械优化设计 实践中需要注意的问题介绍一些可供使用 的方法;接着通过对机床主轴结构优化设计、 齿轮减速器优化设计、平面连杆机构优化 设计等工程实例的分析,来说明在解决一 个工程实际问题时,建立优化设计数学模 型,选择适当的优化方法,编制计算机程 序,最终得出符合要求的优化设计结果等 问题。
5
• 编写计算机程序对于使用者来说,已经没 有多少工作要做了,因为已有许多成熟的 优化方法程序可供选择。使用者只需要将 数学模型按要求编写成子程序嵌入已有的 优化程序即可。
• 步骤4)和5)对机械设计工作者来说,通常 不存在原则上的困难,这一点将结合实例 来说明。
6
二、建立数学模型的基本原则
• 建立数学模型的基本原则是优化设计中的一个重 要组成部分。优化结果是否可用,主要取决于所 建立数学模型是否能够确切而又简洁地反映工程 问题的客观实际。在建立数学模型时,片面地强 调确切,往往会使数学模型十分冗长、复杂,增 加求解问题的困难程度,有时甚至会使问题无法 求解;片面强调简洁,则可能使数学模型过份失真, 以致失去了求解的意义。合理的做法是在能够确 切反映工程实际问题的基础上力求简洁。设计变 量、目标函数和约束条件是组成优化设计数学模 型的三要素,下面分别予以讨论。
8
2.目标函数的确定
• 目标函数是一项设计所追求的指标的数 学反映,因此对它最基本的要求是能够用 来评价设计的优劣,同时必须是设计变量 的可计算函数。选择目标函数是整个优化 设计过程中最重要的决策之一。
9
• 有些问题存在着明显的目标函数,例如一个没有 特殊要求的承受静载的梁,自然希望它越轻越好, 因此选择其自重作为目标函数是没有异议的。但 设计一台复杂的机器,追求的目标往往较多,就 目前使用较成熟的优化方法来说,还不能把所有 要追求的指标都列为目标函数,因为这样做并不 一定能有效地求解。因此应当对所追求的各项指 标进行细致的分析,从中选择最重要最具有代表 性的指标作为设计追求的目标。
步,它是取得正确结果的前提,下面将专门讨论 这个问题。
3
• 优化方法的选择取决于数学模型的特点, 例如优化问题规模的大小,目标函数和约 束函数的性态以及计算精度等。在比较各 种可供选用的优化方法时,需要考虑的一 个重要因素是计算机执行这些程序所花费 的时间和费用,也即计算效率。
4
• 正确地选择优化方法,至今还没有一定的原则。 通常认为,对于目标函数和约束函数均为显函数 且设计变量个数不太多的回题,惩罚函数法较好; 对于只含线性约束的非线性规划问题,最适宜采 用梯度投影法,对函数易于求导的问题,以可利 用导数信息的方法为好,例如可行方向法;对求导 非常困难的问题则应选用直接解法,例如复合形 法;对于高度非线性的函数,则应选用计算稳定性 较好的方法,例如BFGS变尺度法和内点惩罚函 数法相结合的方法。
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击Байду номын сангаас处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
第一节 应用技巧
• 一、机械优化设计的一般过程 • 机械优化设计的全过程一般可分为如下几个步骤: • 1)建立优化设计的数学模型。 • 2)选择适当的优化方法。 • 3)编写计算机程序。 • 4)准备必要的初始数据并上机计算。 • 5)对计算机求得的结果进行必要的分析。 • 其中建立优化设计数学模型是首要的和关键的一
7
1.设计变量的选择
• 机械设计中的所有参数都是可变的,但是将所有的设计参 数都列为设计变量不仅会使问题复杂化,而且是没有必要 的。例如材料的机械性能由材料的种类决定,在机械设计 中常用材料的种类有限,通常可根据需要和经验事先选定, 因此诸如弹性模量、泊松比、许用应力等参数按选定材料 赋以常量更为合理;另一类状态参数,如功率、温度、应 力、应变、挠度、压力、速度、加速度等则通常可由设计 对象的尺寸、载荷以及各构件间的运动关系等计算得出, 多数情况下也没有必要作为设计变量。因此,在充分了解 设计要求的基础上,应根据各设计参数对目标函数的影响 程度认真分析其主次,尽量减少设计变量的数目,以简化 优化设计问题。另外还应注意设计变量应当相互独立,否 则会使目标函数出现“山脊”或“沟谷”,给优化带来困 难。
11
• 若一项工程设计中追求的目标是相互矛盾 的,这时常常取其中最主要的指标作为目 标函数,而其余的指标列为约束条件。也 就是说,不指望这些次要的指标都达到最 优,只要它们不致于过劣就可以了。
• 在工程实际中,应根据不同的设计对象, 不同的设计要求灵活地选择某项指标作为 目标函数。以下的意见可作为选择时的参 考。
12
• 对于一般的机械,可按重量最轻或体积最小的要 求建立目标函数;对应力集中现象尤其突出的构件, 则以应力集中系数最小作为追求的目标,对于精 密仪器,应按其精度最高或误差最小的要求建立 目标函数。在机构设计中,当对所设计的机构的 运动规律有明确的要求时,可针对其运动学参数 建立目标函数;若对机构的动态特性有专门要求, 则应针对其动力学参数建立目标函数;而对于要求 再现运动轨迹的机构设计,则应根据机构的轨迹 误差最小的要求建立目标函数。
13
3.约束条件的确定
• 约束条件是就工程设计本身而提出的对设计变量 取值范围的限制条件。和目标函数一样,它们也 是设计变量的可计算函数。
• 如前所述,约束条件可分为性能约束和边界约 束两大类。性能约束通常与设计原理有关,有时 非常简单,如设计曲柄连杆机构时,按曲柄存在 条件而写出的约束函数均为设计变量的线性显函 数;有时却相当复杂,如对一个复杂的结构系统, 要计算其中各构件的应力和位移,常采用有限元 法,这时相应的约束函数为设计变量的隐函数, 计算这样的约束函数往往要花费很大的计算量。
相关文档
最新文档