精选江苏专用2018版高考数学专题复习专题7不等式第44练简单的线性规划问题练习文

合集下载

高考数学一轮复习 专题7_4 基本不等式及应用(组)与简单的线性规划问题(讲)

高考数学一轮复习 专题7_4 基本不等式及应用(组)与简单的线性规划问题(讲)

第04节 基本不等式及其应用【考纲解读】【知识清单】基本不等式1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、20,0)112a b a b a b+≤≤>>+ 对点练习【2018重庆铜梁县联考】函数y=log a (x+2)﹣1(a >0,a≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中m >0,n >0,则 + 的最小值为( ) A. 3+2B. 3+2C. 7D. 11【答案】A【考点深度剖析】基本不等式是不等式中的重要内容,它的应用范围几乎涉及高中数学的所有章节,它在高考中往往是大小判断、求取值范围以及最值等几方面的应用. 【重点难点突破】考点1利用基本不等式证明不等式【1-1】不已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥ 【解析】∵a 、b 、c 都是正数∴0a b +≥> (当且仅当a b =时,取等号)0b c +≥> (当且仅当b c =时,取等号)0c a +≥ (当且仅当c a =时,取等号)∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥.【1-2】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【解析】∵0a >,0b >,1a b +=, ∴11+=1+=2+a b b a a a +.同理,11+=2+a b b .∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥ ⎪⎝⎭,当且仅当b a a b =,即1a=b=2时取“=”.∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 【领悟技法】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等. 【触类旁通】 【变式一】求证:47(3)3a a a +≥>-考点2 利用基本不等式求最值【2-1】【2017天津,理12】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22a b ==时取等号). 【2-2】【2018河北大名第一中学模拟】已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2))【答案】D【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2), 根据韦达定理,可得: 2123x x a =,x 1+x 2=4a , 那么:a∵a <0,∴-(4a4a故选:D .【2-3】【2018有两个不等的实根1x 和2x ,则12x x +的取值范围是( ) A. ()1,+∞ B. C. ()2,+∞ D. ()0,1【答案】C【领悟技法】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.注意:形如y =x +ax(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解. 【触类旁通】【变式一】【2017届浙江杭州高三二模】设函数()()2,f x x ax b a b R =++∈的两个零点为1x , 2x ,若122x x +≤,则( )A. 1a ≥B. 1b ≤C. 22a b +≥D. 22a b +≤ 【答案】B【解析】12x x +≥=,所以2≤ ,则1b ≤ ,故选择B.【变式二】【2018河南师范大学附属中模拟】对于使()f x M ≤成立的所有常数M 中,我们把M 的最小值叫做()f x 的上确界,若正数,a b R ∈且1a b +=,则为( )【答案】A考点3 基本不等式的实际应用【3-1】【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 . 【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【3-2】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为( )A.6B.4 D.【答案】C【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以EB =,AE y =.AB EB AE =+y ≥,即≤4,所以4xy ≤,所以绿地面积最大值为4,故选C .【3-3】 (2015·大理模拟)某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.【领悟技法】用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 【触类旁通】【变式】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【解析】(1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]).y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.【易错试题常警惕】易错典例:已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1y)的最小值为________.[错解] 错解一:因为对a >0,恒有a +1a≥2,从而z =(x +1x )(y +1y)≥4,所以z 的最小值是4. 错解二:z =2+x 2y 2-2xyxy=(2xy +xy )-2≥22xy·xy -2=2(2-1),所以z 的最小值是2(2-1).易错分析:错解的错误原因是等号成立的条件不具备.温馨提示:1.在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各项的值相等时,等号成立.2.多次使用均值不等式解决同一问题时,要保持每次等号成立条件的一致性和不等号方向的一致性.。

江苏专用2020版高考数学专题复习专题7不等式第44练简单的线性规划问题练习文

江苏专用2020版高考数学专题复习专题7不等式第44练简单的线性规划问题练习文

单的线性规划问题练习文的取值范围为 ___________ .2. (2016 •辽宁大连八中月考)已知0是坐标原点,&+Q4,点尸(一 1,1),若点M (x, y )为平而区域上的一个动点,则不•莎的取值范 j<4 国是 _______ .3. (2017 •昆明质检)某校今年计划招聘女教师&名,男教师&名,若a, b 满足不等式组 2a —妙5, < a —虑2, 设这所学校今年计划招聘教师最多x 名,则x= ___________ •.a<7,2x —4. (2016 •沈阳质检)已知实数x, y 满足g+QO,若目标函数z=—mx-\-y 的最大值为一2也+10,最小值为一2m —2、则实数m 的取值范国是&-y+2M0, 5. (2016・泰州模拟)设变量满足约朿条件[丄丫一y~4W0, >0)的最小值为13,则实数k=___________ ・6. (2016 •贵州七校联考)一个平行四边形的三个顶点的坐标分别为(-1,2), (3, 4), (4,一2),点(上0在这个平行四边形的内部或边上,则z=2w — 5y 的最大值是 _________ ・(江苏专用)2018版高考数学专题复习专题 7不等式第44练简若目标函数z=x+ky{kx+y —2W0,7. (2015 -重庆改编)若不等式组R+2y-220,」一y+2皿204等于亍则e 的值为 _______8. (2015 •陕西改编)某企业生产甲、乙两种产品均需用乩万两种原料.已知生产1吨每种 产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为32・Y —y —4W0,10. (2017 -辽宁五校联考)已知月,万是平面区域“+卩一220, /一2卄420 n — (3, —2),则力的最大值是 ____________ ・2丫一卄1鼻0, 11. (2016 •全国丙卷)设X, y 满足约朿条件R — 2y-lW0,则z=2x+3y-5的最小值为 __________ .xPm,12. (2016 •泰州中学期初考试)设 亦R,实数x, y 满足忖〜十刃, 若 ”3丫一2y —6W0,2y|W18,则实数也的取值范围是 _________________ .A r >0,13. (2016 •扬州中学月考)已知点满足不等式组”20,若恒成立,■2JV +J W2,则实数a 的取值范围是 __________ •14. (2016 •绍兴一模)已知函数 g=A2x 、点集.片{Q, y ):f3+f (y )W2}, A={(x, y ) ! f3 -f (y ) 20},则如A •所构成平而区域的而积为 ________ ・答案精析表示的平而区域为三角形,且其而枳万元、4万元,则该企业每天可获得的最大利润为.9. (2016 •扬州模拟)已知实数x 、 y 满足):?Uo则z=2卄p 的最大值为内的两个动点,向量万1.(-7, 24)2.[0, 4]&+舜4,解析由题意预・药件一x+y,作出不等式组表示的平而区域,如图中△磁内部(含边界),作直线2:— x+y=0,平移直线厶直线过月(2,2)时,一x+y=0,过Q(0, 4)时,一%+y=4,所以一w+y的取值范用是[0,4]・3.13解析如图所示,画岀约束条件所表示的区域,即可行域,作直线2: b+a=0,平移直线厶再由a,bWN,可知当a=6, b=7时,.g = a+b=13・4.[-1,2]解析可行域如图所示,月(一2, 2), 5(2, 一2), C(2, 10).在点6■处z取得最大值,在点万处z取得最小值,观察得直线y=^+z的斜率m的取值范围为mW [-1, 2].5. 5 或丁xp+220,解析作出不等式组{心一厂4£0, 表示的平而区域,如图所示,可知z=x+ky{k>乂+舜30)过点城,为或殆肖时取得最小值,所以討条=13或£+|&=13,解得Q5或罕.6.20解析平行四边形的对角线互相平分,如图,当以月C为对角线时,由中点坐标公式得月Q的中点为3(另0),也是勿的中点,可知顶点2的坐标为(0. —4)・同理,当以氏为对角线时,得2的坐标为(8, 0),当以曲为对角线时,得2的坐标为(一2, 8),由此作岀Q,卩)所在的平而区域,如图中阴影部分所示,由图可知当目标函数z=2.v-5y经过点2(0, — 4)时,取得最大值,最大值为2X0-5X (-4)=20.7. 1解析不等式组表示的区域如图,易求丛B. G。

2018版高考数学文江苏专用大一轮复习讲义文档 第七章

2018版高考数学文江苏专用大一轮复习讲义文档 第七章

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数,当两个正数相等时两者相等. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D );若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ). (2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D );若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ). (3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81.2.(教材改编)若0<x <1,则x (3-2x )的取值范围是____________. 答案 (0,324]解析 由0<x <1知3-2x >0,故x (3-2x )=12·2x (3-2x ) ≤12·2x +(3-2x )2=324,当且仅当x =34时,上式等号成立.∴0<x (3-2x )≤324.3.(教材改编)当点(x ,y )在直线x +3y -2=0上移动时,函数z =3x +27y +3的最小值是____. 答案 9解析 z =3x +33y +3≥23x ·33y +3=23x +3y+3=232+3=9,当且仅当3x =33y ,即x =1,y=13时,z 取最小值. 4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______. 答案 2 2解析 因为x 2+2y 2≥2x 2·2y 2=22xy =22, 当且仅当x =2y 时取等号, 所以x 2+2y 2的最小值为2 2.5.(教材改编)①若x ∈(0,π),则sin x +1sin x ≥2;②若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b ;③若x ∈R ,则⎪⎪⎪⎪x +4x ≥4.其中正确结论的序号是________. 答案 ①③解析 ①因为x ∈(0,π),所以sin x ∈(0,1], 所以①成立;②只有在lg a >0,lg b >0, 即a >1,b >1时才成立; ③⎪⎪⎪⎪x +4x =|x |+⎪⎪⎪⎪4x ≥2|x |·⎪⎪⎪⎪4x =4,当且仅当x =±2时“=”成立.题型一 利用基本不等式求最值 命题点1 通过配凑法利用基本不等式例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.答案 (1)23 (2)1 (3)23+2解析 (1)x (4-3x )=13·(3x )(4-3x )≤13·[3x +(4-3x )2]2=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. (3)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.命题点2 通过常数代换法利用基本不等式例2 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.答案 4解析 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 引申探究1.条件不变,求(1+1a )(1+1b )的最小值.解 (1+1a )(1+1b )=(1+a +b a )(1+a +b b )=(2+b a )·(2+ab )=5+2(b a +ab )≥5+4=9.当且仅当a =b =12时,取等号.2.已知a >0,b >0,1a +1b =4,求a +b 的最小值.解 由1a +1b =4,得14a +14b =1.∴a +b =(14a +14b )(a +b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1. 当且仅当a =b =12时取等号.3.将条件改为a +2b =3,求1a +1b 的最小值.解 ∵a +2b =3, ∴13a +23b =1, ∴1a +1b =(1a +1b )(13a +23b )=13+23+a 3b +2b 3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,取等号.思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.(2)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.方法二 由x +3y =5xy ,得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15) ≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2, ∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b=a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b=a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0,∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 题型二 基本不等式的实际应用例3 (1)设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg z 4lg x +lg zlg y 的最小值为________.(2)(2016·江苏苏州暑假测试)设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与点A ,B 重合),且点P 到平面ACD ,平面BCD 的距离分别为x ,y ,则3x +1y 的最小值是____.答案 (1)98(2)2+ 3解析 (1)由题意得z 2=xy ,lg x >0,lg y >0, ∴lg z 4lg x +lg z lg y =12(lg x +lg y )4lg x +12(lg x +lg y )lg y =18+lg y 8lg x +12+lg x 2lg y =58+lg y 8lg x +lg x 2lg y ≥58+2116=98, 当且仅当lg y 8lg x =lg x2lg y ,即lg y =2lg x ,即y =x 2时取等号.(2)过点A 作AO ⊥平面BCD 于点O ,则O 为△BCD 的重心,所以OB =23×32×6=2,所以AO =(6)2-(2)2=2. 又V P —BCD +V P —ACD =V A —BCD , 所以13S △BCD ·y +13S △ACD ·x =13S △BCD ·2,即x +y =2.所以3x +1y =12(3x +1y )(x +y )=12(4+x y +3yx)≥2+3, 当且仅当x =3-3,y =3-1时取等号.思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.(1)设x ,y >0,且x +y =4,若不等式1x +4y≥m 恒成立,则实数m 的最大值为_____.(2)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 答案 (1)94(2)8解析 (1)1x +4y =(1x +4y )(x +y 4)=14(5+y x +4x y )≥14(5+2×2)=94,当且仅当y =2x =83时等号成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18,∵x +25x≥2x ·25x=10, ∴y x =18-(x +25x )≤18-10=8, 当且仅当x =25x ,即x =5时,取等号.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 若不等式x +2xy ≤a (x +y )对任意的实数x ,y ∈(0,+∞)恒成立,则实数a 的最小值为________. 答案5+12解析 由题意得a ≥x +2xyx +y=1+2yx 1+y x 恒成立.令t =y x (t >0),则a ≥1+2t 1+t 2,再令1+2t =u (u >1),则t =u -12,故a ≥u 1+⎝⎛⎭⎫u -122=4u +5u -2.因为u +5u ≥25(当且仅当u =5时等号成立),故u +5u -2≥25-2,从而0<4u +5u -2≤425-2=5+12,故a ≥5+12,即a min =5+12.命题点2 求参数值或取值范围例5 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 (1)12 (2)[-83,+∞)解析 (1)由3a +1b ≥ma +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +a b +6≥29+6=12(当且仅当9b a =ab 时等号成立), ∴m ≤12,∴m 的最大值为12.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173,∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(2016·江苏三校联考)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x5万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元, 依题意得(8-t -251×0.2)t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,该商品每件定价最高为40元. (2)依题意知,x >25,且ax ≥25×8+50+16(x 2-600)+15x ,等价于a ≥150x +16x +15(x >25).由于150x +16x ≥2150x ×16x =10, 当且仅当150x =x6,即x =30时等号成立,所以a ≥10.2.当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.8.利用基本不等式求最值典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x (x <0)的值域为________.错解展示解析 (1)∵x >0,y >0,∴1=1x +2y ≥22xy, ∴xy ≥22,∴x +y ≥2xy =42, ∴x +y 的最小值为4 2.(2)∵2x +3x ≥26,∴y =1-2x -3x ≤1-2 6.∴函数y =1-2x -3x(x <0)的值域为(-∞,1-26].答案 (1)42 (2)(-∞,1-26] 现场纠错解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y)=3+y x +2xy ≥3+22(当且仅当y =2x 时取等号),∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故函数y =1-2x -3x (x <0)的值域为[1+26,+∞). 答案 (1)3+22 (2)[1+26,+∞)纠错心得 利用基本不等式求最值时要注意条件:一正二定三相等;多次使用基本不等式要验证等号成立的条件.1.(教材改编)已知a ,b ∈R ,且ab >0,则下列不等式中,恒成立的序号是________. ①a 2+b 2>2ab ; ②a +b ≥2ab ; ③1a +1b >2ab ; ④b a +a b ≥2. 答案 ④解析 因为a 2+b 2≥2ab ,当且仅当a =b 时,等号成立,所以①错误;对于④,因为ab >0,所以b a +a b≥2b a ·ab=2.对于②,③,当a <0,b <0时,明显错误. 2.(教材改编)用长为16 cm 的铁丝围成一个矩形,则所围成的矩形的最大面积是_____ cm 2. 答案 16解析 设矩形长为x cm(0<x <8),则宽为(8-x )cm ,面积S =x (8-x ).由于x >0,8-x >0,可得S ≤(x +8-x 2)2=16,当且仅当x =8-x ,即x =4时,S max =16.所以矩形的最大面积是16 cm 2.3.(3-a )(a +6)(-6≤a ≤3)的最大值为________. 答案 92解析(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6即a =-32时,等号成立.4.(2016·盐城模拟)函数y =x 2+2x 2+1的最小值为______.答案 2解析 y =x 2+1+1x 2+1=x 2+1+1x 2+1≥2,当且仅当x 2+1=1x 2+1,即x =0时,y 取到最小值2.5.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ____log a t +12(填“>”“≥”“≤”或“<”).答案 ≤解析 因为a 2+a -2>0,所以a <-2或a >1, 又a >0,所以a >1,因为t >0,所以t +12≥t ,所以log a t +12≥log a t =12log a t .6.设f (x )=x 2+x +1,g (x )=x 2+1,则f (x )g (x )的取值范围是________.答案 [12,32]解析 f (x )g (x )=x 2+x +1x 2+1=1+xx 2+1,当x =0时,f (x )g (x )=1;当x >0时,f (x )g (x )=1+1x +1x ≤1+12=32;当x <0时,x +1x =-[(-x )+(-1x )]≤-2,则f (x )g (x )=1+1x +1x ≥1-12=12.∴f (x )g (x )∈[12,32]. 7.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是________.答案 4解析 2a 2+1ab +1a (a -b )-10ac +25c 2=(a -5c )2+a 2-ab +ab +1ab +1a (a -b )=(a -5c )2+ab +1ab +a (a -b )+1a (a -b )≥0+2+2=4,当且仅当a -5c =0,ab =1,a (a -b )=1时,等号成立, 即取a =2,b =22,c =25时满足条件. 8.(2016·南京一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为_____. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时取等号). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12 (当且仅当x =-2y 时取等号). 综上可知4≤x 2+4y 2≤12.9.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小值为_____.答案 4解析 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy =x 2+y 2xy +2≥2+2=4,当且仅当x =y 时,等号成立.10.某民营企业的一种电子产品,2015年的年产量在2014年基础上增长率为a ;2016年计划在2015年的基础上增长率为b (a ,b >0),若这两年的平均增长率为q ,则q 与a +b2的大小关系是________. 答案 q ≤a +b 2解析 设2014年的年产量为1,则2016年的年产量为(1+a )(1+b ), ∴(1+q )2=(1+a )(1+b ), ∴1+q =(1+a )(1+b )≤1+a +1+b 2=1+a +b2, ∴q ≤a +b2,当且仅当a =b 时,取“=”.11.(2016·泰州模拟)已知a >b >1且2log a b +3log b a =7,则a +1b 2-1的最小值为______.答案 3解析 因为2log a b +3log b a =7,所以2(log a b )2-7log a b +3=0,解得log a b =12或log a b =3,因为a >b >1,所以log a b ∈(0,1),故log a b =12,从而b =a ,因此a +1b 2-1=a +1a -1=(a -1)+1a -1+1≥3,当且仅当a =2时等号成立.12.(2016·南通模拟)设实数x ,y 满足x 24-y 2=1,则3x 2-2xy 的最小值是________.答案 6+4 2解析 方法一 因为x 24-y 2=1,所以3x 2-2xy =3x 2-2xy x 24-y 2=3-2y x 14-(y x)2,令k =y x ∈(-12,12),则3x 2-2xy =3-2k 14-k 2=4(3-2k )1-4k 2,再令t =3-2k ∈(2,4),则k =3-t 2,故3x 2-2xy =4t-t 2+6t -8=4-(t +8t)+6≥46-28=6+42,当且仅当t =22时等号成立. 方法二 令t =3x 2-2xy ,则y =3x 2-t 2x ,代入方程x 24-y 2=1并化简得8x 4+(4-6t )x 2+t 2=0,令u =x 2≥4,则8u 2+(4-6t )u +t 2=0在[4,+∞)上有解,从而由⎩⎪⎨⎪⎧Δ=(4-6t )2-32t 2≥0,6t -416>0,得t 2-12t +4≥0,解得t ≥6+42,当取得最小值时,u =2+322满足题意.方法三 因为x 24-y 2=1=(x 2+y )(x2-y ),所以令x 2+y =t ,则x 2-y =1t,从而⎩⎨⎧x =t +1t,y =12(t -1t ),则3x 2-2xy =6+2t 2+4t2≥6+42,当且仅当t 2=2时等号成立.13.(2016·江苏)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是____. 答案 8解析 在△ABC 中,A +B +C =π, sin A =sin[π-(B +C )]=sin(B +C ), 由已知,sin A =2sin B sin C , ∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得: tan B +tan C =2tan B tan C .又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C=tan B +tan Ctan B tan C -1.∴tan A (tan B tan C -1)=tan B +tan C . 则tan A tan B tan C -tan A =tan B +tan C , ∴tan A tan B tan C =tan A +tan B +tan C =tan A + 2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22, ∴tan A tan B tan C ≥8.14.已知函数f (x )=x 2+3x -a (x ≠a ,a 为非零常数).(1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值. 解 (1)f (x )<x ,即x 2+3x -a <x ,整理为(ax +3)(x -a )<0. 当a >0时,(x +3a)(x -a )<0,∴解集为{x |-3a <x <a };当a <0时,(x +3a )(x -a )>0,解集为{x |x >-3a 或x <a }.(2)设t =x -a ,则x =t +a (t >0). ∴f (x )=t 2+2at +a 2+3t=t +a 2+3t +2a≥2t ·a 2+3t+2a=2a 2+3+2a . 当且仅当t =a 2+3t ,即t =a 2+3时,等号成立, 即f (x )有最小值2a 2+3+2a . 依题意有:2a 2+3+2a =6, 解得a =1.。

2018版高中数学苏教版必修五学案3.3.3 简单的线性规划问题(一)

2018版高中数学苏教版必修五学案3.3.3 简单的线性规划问题(一)

.简单的线性规划问题(一)
学习目标.了解线性规划的意义.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.
引例已知,满足条件①
该不等式组所表示的平面区域如图,求+②
的最大值.
以此为例,试通过下列问题理解有关概念.
知识点一线性约束条件
在上述问题中,不等式组①是一组对变量、的约束条件,这组约束条件都是关于、的次不等式,故又称线性约束条件.
知识点二目标函数
在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量、的次解析式,这样的目标函数称为线性目标函数.
知识点三线性规划问题
一般地,在线性约束条件下求的最大值或最小值问题,通常称为线性规划问题.
知识点四可行解、可行域和最优解
满足线性约束条件的解(,)叫.作出约束条件所表示的平面区域,这一区域称为可行域.其中,使目标函数取得最大值或最小值的可行解叫线性规划问题的最优解.在上述问题的图中,阴影部分叫,阴影区域中的每一个点对应的坐标都是一个,其中能使②式取最大值的可行解称为.
类型一最优解问题
命题角度问题存在唯一最优解
例已知,满足约束条件
该不等式组所表示的平面区域如图,
求+的最大值.。

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质3.不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd.④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质 若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m (b -m >0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若ab>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)一个非零实数越大,则其倒数就越小.( × ) (5)a >b >0,c >d >0⇒a d >bc .( √ )(6)若ab >0,则a >b ⇔1a <1b.( √ )1.(教材改编)已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是______________. 答案 a >-b >b >-a解析 ∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .2.(教材改编)若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的____________条件. 答案 充分不必要 解析a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.(2016·南京模拟)若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是________. ①a -b >0; ②a 3+b 3>0; ③a 2-b 2<0; ④a +b <0.答案 ④解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立, 当b <0时,a +b <0成立,∴a +b <0.4.如果a ∈R ,且a 2+a <0,则a ,a 2,-a ,-a 2的大小关系是________________. 答案 a <-a 2<a 2<-a 解析 由a 2+a <0得a <-a 2, ∴a <0且a >-1,∴a <-a 2<a 2<-a .5.(教材改编)若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为___________.答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝⎛⎭⎫a -122+12<12. 即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1), 又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)若a =ln 33,b =ln 44,c =ln 55,则a ,b ,c 的大小关系为________.答案 c <b <a解析 方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .(2)已知a >0,试比较a 与1a的大小.解 因为a -1a =a 2-1a =(a -1)(a +1)a,因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a; 当a =1时,(a -1)(a +1)a =0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ;当a =1时,a =1a;当0<a <1时,a <1a.思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是________.(2)若a =1816,b =1618,则a 与b 的大小关系为________. 答案 (1)A ≥B (2)a <b 解析 (1)∵A ≥0,B ≥0, A 2-B 2=a +2ab +b -(a +b ) =2ab ≥0, ∴A ≥B .(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618,即a <b . 题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式中一定成立的是________. ①ab >ac; ②c (b -a )<0; ③cb 2<ab 2;④ac (a -c )>0.(2)若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有________.答案 (1)① (2)①④解析 (1)由c <b <a 且ac <0知c <0且a >0. 由b >c 得ab >ac 一定成立.(2)因为1a <1b <0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b , 因为b <0,所以ab <b 2.因此正确的是①④.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是________. 答案 3解析 方法一 ∵a >0>b ,c <d <0, ∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), ∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确. 方法二 取特殊值. 题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立 例3 已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b .其中一定成立的不等式为________.答案 ①②③解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数, ∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b , ∴(a -b )2-(a -b )2 =2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36, a 3+b 3<2a 2b ,④不成立. 方法二 令a =3,b =2,可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18. 引申探究1.将已知条件改为-1<x <y <3,求x -y 的取值范围. 解 ∵-1<x <3,-1<y <3, ∴-3<-y <1,∴-4<x -y <4. 又∵x <y ,∴x -y <0,∴-4<x -y <0, 故x -y 的取值范围为(-4,0).2.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为(-32,232).思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等. (2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是________.①1a -b >1b; ②a 2<ab ; ③|b ||a |<|b |+1|a |+1; ④a n >b n .(2)设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是________. 答案 (1)③ (2)①②③解析 (1)(特值法)取a =-2,b =-1,逐个检验,可知①,②,④均不正确; ③中,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立.(2)由不等式性质及a >b >1知1a <1b ,又c <0,∴c a >cb ,①正确;构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是减函数, 又a >b >1,∴a c <b c ,②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.6.利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ②①+②得3≤2a ≤6,∴6≤4a ≤12, 又由①可得-2≤-a +b ≤-1, ③②+③得0≤2b ≤3,∴-3≤-2b ≤0, 又f (-2)=4a -2b ,∴3≤4a -2b ≤12, ∴f (-2)的取值范围是[3,12]. 答案 [3,12] 现场纠错解析 方法一 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.(教材改编)当x >1时,x 3与x 2-x +1的大小关系为______________. 答案 x 3>x 2-x +1 解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1) =(x -1)(x 2+1). 又∵x >1,故(x -1)(x 2+1)>0, ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.2.(2016·镇江模拟)若6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是__________.答案 (9,30)解析 ∵c =a +b ≤3a 且c =a +b ≥3a2,∴9<3a2≤a +b ≤3a <30.3.已知x >y >z ,x +y +z =0,则下列不等式成立的是________. ①xy >yz; ②xz >yz ; ③xy >xz; ④x |y |>z |y |.答案 ③解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0, 又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的________条件. 答案 充分不必要解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立; 由a <b ⇒a -b <0,当0=a <b 时⇏(a -b )·a 2<0,必要性不成立. 5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是__________.答案 (-π6,π)解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.6.已知a ,b ,c ∈R ,那么下列命题中正确的是________. ①若a >b ,则ac 2>bc 2; ②若a c >bc,则a >b ;③若a 3>b 3且ab <0,则1a >1b ;④若a 2>b 2且ab >0,则1a <1b .答案 ③解析 当c =0时,可知①不正确; 当c <0时,可知②不正确;对于③,由a 3>b 3且ab <0,知a >0且b <0, 所以1a >1b 成立,③正确;当a <0且b <0时,可知④不正确.7.若a >b >0,则下列不等式中一定成立的是________. ①a +1b >b +1a ;②b a >b +1a +1; ③a -1b >b -1a ;④2a +b a +2b >ab. 答案 ①解析 取a =2,b =1,排除②与④;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a-1a >b -1b ⇔a +1b >b +1a ,但g (a )>g (b )未必成立. 8.若a >b >0,则下列不等式一定不成立的是________. ①1a <1b; ②log 2a >log 2b ; ③a 2+b 2≤2a +2b -2; ④b <ab <a +b2<a .答案 ③解析 ∵(a -1)2+(b -1)2>0(由a >b >0,a ,b 不能同时为1), ∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2, ∴③一定不成立. 9.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是____________. 答案 ⎝⎛⎭⎫12,74解析 当n 为奇数时,2n (1-a )<3n -1,1-a <13×⎝⎛⎭⎫32n 恒成立,只需1-a <13×⎝⎛⎭⎫321,∴a >12.当n为偶数时,2n (a -1)<3n -1,a -1<13×⎝⎛⎭⎫32n 恒成立,只需a -1<13×⎝⎛⎭⎫322,∴a <74.综上,12<a <74.10.已知a ,b ,c ,d 均为实数,有下列命题 ①若ab >0,bc -ad >0,则c a -db>0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确的命题是________. 答案 ①②③解析 ∵ab >0,bc -ad >0, ∴c a -d b =bc -ad ab >0,∴①正确; ∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -db >0,即bc -ad ab >0,∴ab >0,∴③正确.故①②③都正确.11.(教材改编)一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为____________. 答案 8(x +19)>2 200解析 因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19) km ,则在8天内它的行程为8(x +19) km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.12.已知-1<2x -1<1,则2x -1的取值范围是________.答案 (1,+∞)解析 -1<2x -1<1⇒0<x <1⇒1x >1⇒2x >2⇒2x-1>1. 13.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是__________(用区间表示). 答案 [3,8]解析 ∵z =-12(x +y )+52(x -y ),∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 14.已知m ∈R ,a >b >1,f (x )=mxx -1,试比较f (a )与f (b )的大小.解f(x)=m(1+1x-1),f(a)=m(1+1a-1),f(b)=m(1+1b-1).由a>b>1,知a-1>b-1>0.∴1a-1<1b-1,∴1+1a-1<1+1b-1.①当m>0时,m(1+1a-1)<m(1+1b-1),f(a)<f(b).②当m=0时,f(a)=f(b)=0.③当m<0时,m(1+1a-1)>m(1+1b-1),f(a)>f(b).综上所述,当m>0时,f(a)<f(b);当m=0时,f(a)=f(b);当m<0时,f(a)>f(b).。

江苏专用2018版高考数学大一轮复习第七章不等式7.3二元一次不等式(组)与简单的线性规划问题课件文

江苏专用2018版高考数学大一轮复习第七章不等式7.3二元一次不等式(组)与简单的线性规划问题课件文
2--1 此时kCM= =3, 1-0
因此k≥3,即k∈[3,+∞).
x-y+5≥0, (2)(2016· 江苏徐州四校模拟)若不等式组 y≥a, 表示的平面区域是 0≤x≤2
[5,7) 一个三角形及其内部,则a的取值范围是_______.
答案 解析
不等式x-y+5≥0和0≤x≤2表示的平面区域如图所示.
x≥0, 4 例1 (1)不等式组 x+3y≥4, 所表示的平面区域的面积等于____. 3 3x+y≤4 答案 解析
由题意得不等式组表示的平面区域如图阴影部分,
4 A(0, ),B(1,1),C(0,4), 3
则△ABC的面积为1×1×8=4. 2 3 3
x-y+5<0, (2)(教材改编)画出二元一次不等式组 x+y≥0, 表示的平面区域. x≤3 解答
命题点2 含参数的平面区域问题
x+y-2≤0, 例 2 (1)(2015· 重庆改编 ) 若不等式组 x+2y-2≥0, 表示的平面区域为 x-y+2m≥0 4 1 答案 解析 三角形,且其面积等于 ,则m的值为____.
3
2m+2 则图中A点纵坐标yA=1+m,B点纵坐标yB= , 3 C点横坐标xC=-2m, 1 1 ∴S△ABD=S△ACD-S△BCD=2×(2+2m)×(1+m)-2× 2 2m+2 m+1 4 ∴m=1或m=-3, (2+2m)× 3 = 3 =3, 又∵当m=-3时,不满足题意,应舍去,∴m=1.
3.重要结论
画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1) 直线定界:不等式中无等号时直线画成虚线,有等号时直线画成 实线; (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点, 则特殊点常选取(0,1)或(1,0)来验证.

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

4 x+x
≥ 480+ 320×2
x·4= 480+ 320×2 x
4= 1760, 当 且 仅 当
x= 4, 即 x
x= 2 时 , ymin=
1760.
故当池底长为 2 m 时,这个水池的造价最低,最低造价为 1760元.
题组二 常错题
5.若 x>-1,则 x+x+4 1的最小值为________.
2.一段长为 40 m 的篱笆围成一个矩形菜园,则菜园的最大面积是________. 【解析】设矩形菜园的长为 x m,宽为 y m,则 2(x+y)=40,即 x+y=20,∴ 矩形的面积 S=xy≤
( ) x+y 2 2 =100,当且仅当 x=y=10时,等号成立,此时菜园的面积最大,最大的面积是 100 m2 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,选用最合理(够.用且浪费
基本不等式及其应用在高考中是一个必考的知识点,在处理最值时是一种非常行之有效的工具,在 使用时一定多观察所给代数式的形式,和基本不等式成立的条件.
考点 1 利用基本不等式证明不等式
【重点难点突破】
【1-1】不已知 a 、 b 、 c 都是正数,求证: (a b)(b c)(c a) 8abc
考点 3 基本不等式的实际应用 利用基本不等式求解实际应用题的方法
(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较 长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.
(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求 解,此时可根据变量的范围用对应函数的单调性求解.
2
2
推论: ab a2 b2 ( a,b R ) 2

2018全国高考数学真题线性规划部分整理(附详细答案解析)

2018全国高考数学真题线性规划部分整理(附详细答案解析)

2018高考全国卷及自主招生数学高考真题线性规划专题真题整理(附答案解析)1.(18全国卷I,文数14,理数13题)若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为.解析:不等式组220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩所表示可行域如图中阴影部分所示。

目标函数32z x y =+可化为31y x z =-+,作3y x =-即320x y +=图象,32z x y =+的最大值点应为使3122y x z =-+的截距最大的点,由图易知为点(2,0)。

∴把(2,0)代入32z x y =+得max 32206z =⨯+⨯=。

答案:62.(18全国卷Ⅱ,文数、理数14)若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z x y =+的最大值为.解析:不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,表示的可行域如图中阴影部分所示。

目标函数z x y =+可化为y x z =-+,作y x =-即0x y +=的图象(虚线所示),易知z x y =+中z 取最大值的点应为使y x z =-+截距最大的点,为点()5,4A ,把()5,4A 坐标代入z x y =+中得max 549z =+=答案:93.(18全国卷Ⅲ,文数15)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.解析:不等式组23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,所表示的可行域如右图中阴影部分所示,目标函数13z x y =+可化为33y x z =-+,作出函数3y x =-即30x y +=的图象(图中虚线所示),易知13z x y =+的最大值点为33y x z =-+在y 轴截距的最大值点,为点()2,3A ,把()2,3A 代入目标函数13z x y =+中,得max 12333z =+⨯=答案:34.(18年北京卷文数13、理数12)若x ,y 满足12x y x +≤≤,则2y x -的最小值是.解析:不等式12x y x +≤≤等价于12y x y x ≥+⎧⎨≤⎩,其可行域如图中阴影部分所示。

(江苏专用)2018版高考数学专题复习 专题7 不等式 第44练 简单的线性规划问题练习 文

(江苏专用)2018版高考数学专题复习 专题7 不等式 第44练 简单的线性规划问题练习 文

(江苏专用)2018版高考数学专题复习 专题7 不等式 第44练 简单的线性规划问题练习 文的取值范围为____________.2.(2016·辽宁大连八中月考)已知O 是坐标原点,点P (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥4,x ≤2,y ≤4上的一个动点,则OP →·OM →的取值范围是________.3.(2017·昆明质检)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.4.(2016·沈阳质检)已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +6≥0,x +y ≥0,x ≤2,若目标函数z =-mx +y 的最大值为-2m +10,最小值为-2m -2,则实数m 的取值范围是____________.5.(2016·泰州模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x +y ≥3,若目标函数z =x +ky (k>0)的最小值为13,则实数k =________.6.(2016·贵州七校联考)一个平行四边形的三个顶点的坐标分别为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是________.7.(2015·重庆改编)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为______.8.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为________万元.9.(2016·扬州模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为________.10.(2017·辽宁五校联考)已知A ,B 是平面区域⎩⎪⎨⎪⎧2x -y -4≤0,x +y -2≥0,x -2y +4≥0内的两个动点,向量n =(3,-2),则AB →·n 的最大值是________.11.(2016·全国丙卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.12.(2016·泰州中学期初考试)设m ∈R ,实数x ,y 满足⎩⎪⎨⎪⎧x ≥m ,2x -3y +6≥0,3x -2y -6≤0,若|x +2y |≤18,则实数m 的取值范围是______________.13.(2016·扬州中学月考)已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.14.(2016·绍兴一模)已知函数f (x )=x 2-2x ,点集M ={(x ,y )|f (x )+f (y )≤2},N ={(x ,y )|f (x )-f (y )≥0},则M ∩N 所构成平面区域的面积为______.答案精析 1.(-7,24) 2.[0,4]解析 由题意OA →·OM →=-x +y ,作出不等式组⎩⎪⎨⎪⎧x +y ≥4,x ≤2,y ≤4表示的平面区域,如图中△ABC 内部(含边界),作直线l :-x +y =0,平移直线l ,直线过A (2,2)时,-x +y =0,过C (0,4)时,-x +y =4,所以-x +y 的取值范围是[0,4].3.13解析 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0, 平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x max =a +b =13.4.[-1,2]解析 可行域如图所示,A (-2,2),B (2,-2),C (2,10).在点C 处z 取得最大值,在点B 处z 取得最小值,观察得直线y =mx +z 的斜率m 的取值范围为m ∈[-1,2].5.5或294解析 作出不等式组⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x +y ≥3表示的平面区域,如图所示,可知z =x +ky (k >0)过点A (12,52)或B (75,85)时取得最小值,所以12+52k =13或75+85k =13,解得k =5或294.6.20 解析平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为(32,0),也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图中阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20. 7.1解析 不等式组表示的区域如图,易求A ,B ,C ,D 点的坐标分别为A (2,0),B (1-m ,1+m ), C (2-4m 3,2+2m3),D (-2m,0). ∴S △ABC =S △ABD -S △ACD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=m +23=43, ∴m +1=2或-2(舍),∴m =1.8.18解析 设甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示,可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元). 9.8解析 作出不等式组对应的平面区域如图所示.由z =2x +y ,得y =-2x +z .平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点C 时,在y 轴上的截距最大,此时z 最大.由⎩⎪⎨⎪⎧x -2y +1=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2),此时z =2×3+2=8. 10.10 解析设A (x 1,y 1),B (x 2,y 2),AB →=(x 2-x 1,y 2-y 1),则AB →·n =3(x 2-x 1)-2(y 2-y 1)=3x 2-2y 2-(3x 1-2y 1).令z =3x -2y ,画出不等式组表示的平面区域(如图中阴影部分所示),可知z max =6,z min =-4,则AB →·n 的最大值为z max -z min =10.11.-10解析 作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时,z 取得最小值,z min =2×(-1)+3×(-1)-5=-10. 12.[-3,6]解析 令z =x +2y ,由|x +2y |≤18⇒-18≤x +2y ≤18,画出可行域如图,由线性规划知识可得,当直线y =-12x +12z 经过点A (6,6)时,z 取得最大值,当直线y =-12x +12z 经过点B (m ,3m -62)时,z 取得最小值.由m +3m -6=-18,得m =-3,又由图易知,m ≤6,所以-3≤m ≤6.13.(-∞,3]解析 不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +y ≤2表示的平面区域是以O (0,0),A (0,2),B (1,0)为顶点的三角形内部(含边界). 由题意得⎩⎪⎨⎪⎧0+0≤3,0+2≤3,a +0≤3,所以a ≤3.14.2π解析 由f (x )+f (y )=x 2-2x +y 2-2y ≤2, 得(x -1)2+(y -1)2≤4,于是点集M ={(x ,y )|f (x )+f (y )≤2}表示的平面区域是以(1,1)为圆心,2为半径的圆面. 同理,由f (x )-f (y )=x 2-2x -y 2+2y ≥0, 可得(x -y )(x +y -2)≥0,即⎩⎪⎨⎪⎧x -y ≥0,x +y -2≥0或⎩⎪⎨⎪⎧x -y ≤0,x +y -2≤0.于是点集N ={(x ,y )|f (x )-f (y )≥0}表示的平面区域就是不等式组所表示的平面区域. 所以M ∩N 所构成的平面区域如图所示,所以S =12·π·r 2=2π.。

(新)江苏版2018年高考数学一轮复习专题7.3二元一次不等式组与简单的线性规划问题测

(新)江苏版2018年高考数学一轮复习专题7.3二元一次不等式组与简单的线性规划问题测

专题7.3 二元一次不等式(组)与简单的线性规划问题一、填空题1.若x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -y +3≥0,y ≥-1,则z =3x +y 的最大值为________2.(2017·河南八市高三质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函数z =6x +2y 的最小值是10,则z 的最大值是________【解析】由z =6x +2y ,得y =-3x +z2,作出不等式组所表示可行域的大致图形如图中阴影部分所示,由图可知当直线y =-3x +z2经过点C 时,直线的纵截距最小,即z =6x +2y 取得最小值10,由⎩⎪⎨⎪⎧6x +2y =10,x =2,解得⎩⎪⎨⎪⎧x =2,y =-1,即C (2,-1),将其代入直线方程-2x +y +c =0,得c =5,即直线方程为-2x +y +5=0,平移直线3x +y =0,当直线经过点D 时,直线的纵截距最大,此时z 取最大值,由⎩⎪⎨⎪⎧-2x +y +5=0,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即D (3,1),将点D 的坐标代入目标函数z =6x +2y ,得z max =6×3+2=20.3.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为________4.(2017·安徽江南十校联考)若x ,y满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为________【解析】作出可行域如图所示,设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2.5.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=________6.(2017·山东济南三校联考)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为________【解析】约束条件表示的可行域如图中阴影部分所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.7.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________.【解析】约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x 得A 点坐标为(1,2),∴m的最大值是1.【答案】18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫-53,59.已知x ,y 满足⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0,则x +y -6x -4的取值范围是________.【答案】⎣⎢⎡⎦⎥⎤1,137【解析】不等式组⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0表示的平面区域如图所示,因为x +y -6x -4=x -4+y -2x -4=1+y -2x -4,而y -2x -4表示平面区域内的点与点A (4,2)连线的斜率, 由图知斜率的最小值为0,最大值为k AB =-4-2-3-4=67,所以1+y -2x -4的取值范围是⎣⎢⎡⎦⎥⎤1,137,即x +y -6x -4的取值范围是⎣⎢⎡⎦⎥⎤1,137.10.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.【答案】21【解析】作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍. 由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max =21.二、解答题11.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?。

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支。

以下是整理的简单的线性规划问题专题训练,请考生练习。

一、填空题1.(____广东高考改编)若变量_,y满足约束条件,则z=2_+y的最大值等于________.[解析] 作出约束条件下的可行域如图(阴影部分),当直线y=-2_+z经过点A(4,2)时,z取最大值为10.[答案] 102.(____扬州调研)已知_,y满足约束条件则z=3_+4y的最小值是________.[解析] 可行区域如图所示.在P处取到最小值-17.5.[答案] -17.53.已知实数_,y满足若z=y-a_取得最大值时的最优解(_,y)有无数个,则a=________.[解析] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z=y-a_取得最大值时的最优解(_,y)有无数个,则直线z=y-a_必平行于直线y-_+1=0,于是有a=1.[答案] 14.(____山东高考改编)在平面直角坐标系_Oy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为________.[解析] 线性约束条件表示的平面区域如图所示(阴影部分).由得A(3,-1).当M点与A重合时,OM的斜率最小,kOM=-.[答案] -5.(____陕西高考改编)若点(_,y)位于曲线y=|_|与y=2所围成的封闭区域内,则2_-y的最小值是________.[解析] 曲线y=|_|与y=2所围成的封闭区域如图阴影部分所示.当直线l:y=2_向左平移时,(2_-y)的值在逐渐变小,当l通过点A(-2,2)时,(2_-y)min=-6.[答案] -66.已知点P(_,y)满足定点为A(2,0),则||sinAOP(O为坐标原点)的最大值为________.[解析] 可行域如图阴影部分所示,A(2,0)在_正半轴上,所以||sinAOP即为P 点纵坐标.当P位于点B时,其纵坐标取得最大值.[答案]7.(____兴化安丰中学检测)已知不等式组表示的平面区域S的面积为4,若点P(_,y)S,则z=2_+y的最大值为________.[解析] 由约束条件可作图如下,得S=a2a=a2,则a2=4,a=2,故图中点C(2,2),平移直线得当过点C(2,2)时zma_=22+2=6.[答案] 68.(____江西高考)_,yR,若|_|+|y|+|_-1|+|y-1|2,则_+y的取值范围为________.[解析] 由绝对值的几何意义知,|_|+|_-1|是数轴上的点_到原点和点1的距离之和,所以|_|+|_-1|1,当且仅当_[0,1]时取=.同理|y|+|y-1|1,当且仅当y[0,1]时取=.|_|+|y|+|_-1|+|y-1|2.而|_|+|y|+|_-1|+|y-1|2,|_|+|y|+|_-1|+|y-1|=2,此时,_[0,1],y[0,1],(_+y)[0,2].[答案] [0,2]二、解答题9.(____四川高考改编)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.[解] 设生产甲产品_桶,乙产品y桶,每天利润为z元,则且z=300_+400y.作出可行域,如图阴影部分所示.作直线300_+400y=0,向右上平移,过点A时,z=300_+400y取最大值,由得A(4,4),zma_=3004+4004=2 800.故公司共可获得的最大利润为2 800元.10.(____安徽高考改编)已知实数_,y满足约束条件(1)求z=_-y的最小值和最大值;(2)若z=,求z的取值范围.[解] 作约束条件满足的可行域,如图所示为ABC及其内部.联立得A(1,1).解方程组得点B(0,3).(1)由z=_-y,得y=_-z.平移直线_-y=0,则当其过点B(0,3)时,截距-z最大,即z最小;当过点A(1,1)时,截距-z最小,即z最大.zmin=0-3=-3;zma_=1-1=0.(2)过O(0,0)作直线_+2y=3的垂线l交于点N.观察可行域知,可行域内的点B、N到原点的距离分别达到最大与最小.又|ON|==,|OB|=3.z的取值范围是.简单的线性规划问题专题训练及答案的所有内容就是这些,希望对考生复习数学有帮助。

2018版高考数学(江苏专用理科)专题复习:专题7 不等式 第44练 Word版含解析

2018版高考数学(江苏专用理科)专题复习:专题7 不等式 第44练 Word版含解析

1.(2016·北京朝阳区第一次模拟)已知不等式组⎩⎨⎧x ≥0,y ≤x ,2x +y -9≤0所表示的平面区域为D .若直线y =a (x +1)与区域D 有公共点,则实数a 的取值范围是________.2.(2016·辽宁大连八中月考)已知O 是坐标原点,点P (-1,1),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥4,x ≤2,y ≤4上的一个动点,则OP →·OM→的取值范围是________.3.(2017·昆明质检)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎨⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.4.已知实数x ,y 满足条件⎩⎨⎧x ≥2,x +y ≤4,-2x +y +c ≥0,若目标函数z =3x +y 的最小值为5,则其最大值为________.5.(2016·泰州模拟)设变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,4x -y -4≤0,x +y ≥3,若目标函数z =x+ky (k >0)的最小值为13,则实数k =________.6.(2016·贵州七校联考)一个平行四边形的三个顶点的坐标分别为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是________.7.(2015·重庆改编)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为______.8.已知x ,y 满足约束条件⎩⎨⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为________.9.(2016·扬州模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为________.10.(2017·辽宁五校联考)已知A ,B 是平面区域⎩⎨⎧2x -y -4≤0,x +y -2≥0,x -2y +4≥0内的两个动点,向量n =(3,-2),则AB →·n 的最大值是________.11.(2015·课标全国Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.12.(2016·泰州中学期初考试)设m ∈R ,实数x ,y 满足⎩⎨⎧x ≥m ,2x -3y +6≥0,3x -2y -6≤0,若|x +2y |≤18,则实数m 的取值范围是______________.13.(2016·扬州中学月考)已知点x ,y 满足不等式组⎩⎨⎧x ≥0,y ≥0,2x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.14.(2016·绍兴一模)已知函数f (x )=x 2-2x ,点集M ={(x ,y )|f (x )+f (y )≤2},N ={(x ,y )|f (x )-f (y )≥0},则M ∩N 所构成平面区域的面积为______.答案精析1.(-∞,34] 2.0,4]解析由题意OA →·OM →=-x +y ,作出不等式组⎩⎨⎧x +y ≥4,x ≤2,y ≤4表示的平面区域,如图中△ABC 内部(含边界),作直线l :-x +y =0,平移直线l ,直线过A (2,2)时,-x +y =0,过C (0,4)时,-x +y =4,所以-x +y 的取值范围是0,4].3.13解析 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0, 平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x max =a +b =13.4.10解析 画出不等式组表示的平面区域,如图阴影部分所示.作直线l :y =-3x ,平移l ,从而可知当x =2,y =4-c 时,z 取得最小值,z min =3×2+4-c =10-c =5,所以c =5,当x =4+c 3=3,y =8-c3=1时,z 取得最大值,z max =3×3+1=10.5.5或294解析作出不等式组⎩⎨⎧x -y +2≥0,4x -y -4≤0,x +y ≥3表示的平面区域,如图所示,可知z =x +ky (k>0)过点A (12,52)或B (75,85)时取得最小值,所以12+52k =13或75+85k =13,解得k =5或294.6.20 解析平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为(32,0),也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图中阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20.7.1解析 不等式组表示的区域如图,易求A ,B ,C ,D 点的坐标分别为A (2,0),B (1-m ,1+m ),C (2-4m 3,2+2m3),D (-2m,0).∴S △ABC =S △ABD -S △ACD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=(m +1)23=43, ∴m +1=2或-2(舍),∴m =1. 8.4解析 线性约束条件所表示的可行域如图阴影部分所示.由⎩⎨⎧ x -y -1=0,2x -y -3=0,解得⎩⎨⎧x =2,y =1, 所以z =ax +by 在A (2,1)处取得最小值, 故2a +b =25, a 2+b 2=a 2+(25-2a )2 =(5a -4)2+4≥4. 9.8解析 作出不等式组对应的平面区域如图所示.由z =2x +y ,得y =-2x +z .平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点C 时,在y 轴上的截距最大,此时z 最大.由⎩⎨⎧ x -2y +1=0,x -y -1=0,解得⎩⎨⎧x =3,y =2, 即C (3,2),此时z =2×3+2=8. 10.10 解析设A (x 1,y 1),B (x 2,y 2),AB →=(x 2-x 1,y 2-y 1),则AB →·n =3(x 2-x 1)-2(y 2-y 1)=3x 2-2y 2-(3x 1-2y 1).令z =3x -2y ,画出不等式组表示的平面区域(如图中阴影部分所示),可知z max =6,z min =-4,则AB →·n 的最大值为z max -z min =10. 11.3解析 作出题中不等式组表示的平面区域,如图.y x =y -0x -0表示(0,0)与(x ,y )两点连线的斜率.结合图形,可知k OA 最大.又因为A (1,3),所以yx 的最大值为3-01-0=3.12.-3,6]解析 令z =x +2y ,由|x +2y |≤18⇒-18≤x +2y ≤18,画出可行域如图,由线性规划知识可得,当直线y =-12x +12z 经过点A (6,6)时,z 取得最大值,当直线y =-12x +12z 经过点B (m ,3m -62)时,z 取得最小值.由m +3m -6=-18,得m =-3,又由图易知,m ≤6,所以-3≤m ≤6.13.(-∞,3]解析不等式组⎩⎨⎧x ≥0,y ≥0,2x +y ≤2表示的平面区域是以O (0,0),A (0,2),B (1,0)为顶点的三角形内部(含边界).由题意得⎩⎨⎧0+0≤3,0+2≤3,a +0≤3,所以a ≤3.14.2π解析 由f (x )+f (y )=x 2-2x +y 2-2y ≤2, 得(x -1)2+(y -1)2≤4,于是点集M ={(x ,y )|f (x )+f (y )≤2}表示的平面区域是以(1,1)为圆心,2为半径的圆面. 同理,由f (x )-f (y )=x 2-2x -y 2+2y ≥0, 可得(x -y )(x +y -2)≥0, 即⎩⎨⎧ x -y ≥0,x +y -2≥0或⎩⎨⎧x -y ≤0,x +y -2≤0.于是点集N ={(x ,y )|f (x )-f (y )≥0}表示的平面区域就是不等式组所表示的平面区域. 所以M ∩N 所构成的平面区域如图所示,所以S =12·π·r 2=2π.。

2018年高考数学一轮复习讲练测江苏版专题7.3 二元一次不等式组与简单的线性规划问题讲 含解析

2018年高考数学一轮复习讲练测江苏版专题7.3 二元一次不等式组与简单的线性规划问题讲 含解析

【最新考纲解读】【考点深度剖析】江苏新高考对不等式知识的考查要求较高,整个高中共有8个C 能级知识点,本章就占了两个,高考中以填空题和解答题的形式进行考查,涉及到数形结合、分类讨论和等价转化的思想,着重考查学生基本概念及基本运算能力.经常与其它章节知识结合考查,如与函数、方程、数列、平面解析几何知识结合考查. 【课前检测训练】 【判一判】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( )1. ×2. √3. ×4. √ 【练一练】1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C. 2.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( ) A .3 B.52C .2D .2 2答案 C解析 因为直线x -y =-1与x +y =1互相垂直,所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故|AB |=2,|AC |=22, 其面积为12×|AB |×|AC |=2.4.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32 D .2答案D5.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨). 答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据所以不难看出,x≥0,y≥0,200x+300y≤1 400,200x+100y≤900.【题根精选精析】考点1二元一次不等式(组)表示平面区域【1-1】不等式组错误!未找到引用源。

江苏专用2018年高考数学总复习专题7.2二元一次不等式组与简单的线性规划试题含解析20171001

江苏专用2018年高考数学总复习专题7.2二元一次不等式组与简单的线性规划试题含解析20171001

专题7.2 二元一次不等式(组)与简单的线性规划【三年高考】1. 【2016高考江苏12】已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,,, 则22x y +的取值范围是 .【答案】4[,13]5【考点】线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围.2. 【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .D . 【答案】A 【解析】【考点】应用线性规划求最值【名师点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大。

3.【2017天津,理2】设变量,x y满足约束条件20,220,0,3,x yx yxy+≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y=+的最大值为(A)23(B)1(C)32(D)3【答案】D【考点】线性规划【名师点睛】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题. 4.【2017山东,理4】已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】试题分析:由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C.【考点】 简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.【2017课标1,理13】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,就越小所以,当直线直线32z x y =-过点A 时,取得最小值 所以取得最小值为3(1)215⨯--⨯=- 【考点】线性规划.【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.6.【2016高考浙江理数改编】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │= .【答案】【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据题目中的定义确定AB 的值.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.7.【2016年高考北京理数改编】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为 .【答案】4 【解析】试题分析:作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4.考点:线性规划.【名师点睛】可行域是封闭区域时,可以将端点代入目标函数,求出最大值与最小值,从而得到相应范围.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.8.【2016年高考四川理数改编】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的 .(在必要不充分条件、充分不必要条件、充要条件、既不充分也不必要条件中选填) 【答案】必要不充分条件 【解析】试题分析:画出可行域(如图所示),可知命题q 中不等式组表示的平面区域ABC ∆在命题p 中不等式表示的圆盘内,故是必要不充分条件.考点:1.充分条件、必要条件的判断;2.线性规划.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考,本题条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得结论. 9.【2016高考浙江文数改编】若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是 .考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据可行域的特点确定取得最值的最优解,代入计算.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.10.【2016高考新课标3理数】若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为_____________. 【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y =+经过点1(1,)2A 时取得最大值,即max 13122z =+=.考点:简单的线性规划问题.【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果. 11.【2016高考山东理数改编】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是 .【答案】10 【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC =. 考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.12.【2015高考重庆,文10】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为__________________. 【答案】1【解析】如图,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为ABC ∆,且其面积等于43,再注意到直线:20AB x y +-=与直线:20BC x y m -+=互相垂直,所以ABC ∆是直角三角形,易知,(2,0),(1,1)A B m m -+,2422(,)33m m C -+;从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43,化简得:2(1)4m +=,解得3m =-,或1m =,检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去,所以1m =.13.【2015高考四川,文9】设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为_______________.【答案】252【解析】画出可行域如图 在△ABC 区域中结合图象可知 当动点在线段AC 上时xy 取得最大 此时2x +y =10xy =12(2x ·y )≤21225()222x y +=当且仅当x =52,y =5时取等号,对应点(52, 5)落在线段AC 上,故最大值为252.【2018年高考命题预测】纵观2017各地高考试题,对二元一次不等式(组)与线性规划及简单应用这部分的考查,主要考查二元一次不等式(组)表示的平面区域、目标函数的最优解问题、与最优解相关的参数问题,高考中一般会以选填题形式考查.从近几年高考试题来看,试题难度较低,属于中低档试题,一般放在选择题的第5-7题或填空题的前两位.从近几年的高考试题来看,二元一次不等式(组)表示的平面区域(的面积),求目标函数的最值,线性规划的应用问题等是高考的热点,题型既有选择题,也有填空题,难度为中、低档题.主要考查平面区域的画法,目标函数最值的求法,以及在取得最值时参数的取值范围.同时注重考查等价转化、数形结合思想.对二元一次不等式(组)表示的平面区域的考查,关键明确二元等式表示直线或曲线,而二元不等式表示直线或曲线一侧的平面区域,以小题形式出现.对目标函数的最优解问题的考查,首先要正确画出可行域,明确目标函数的几何意义,以小题形式出现.对与最优解相关的参数问题,在近几年的高考中频频出现,并且题型有所变化,体现“活”“变”“新”等特点,在备考中予以特别关注.故预测2018年高考仍将以目标函数的最值,特别是含参数的线性规划问题,线性规划的综合运用是主要考查点,重点考查学生分析问题、解决问题的能力.【2018年高考考点定位】高考对二元一次不等式(组)与线性规划及简单应用的考查有以下几种主要形式:一是不等式(组)表示的平面区域;二是线性目标函数最优解问题;三是非线性目标函数最优解问题;四是线性规划与其他知识的交汇. 【考点1】不等式(组)表示的平面区域 【备考知识梳理】二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线上的点(x ,y )的坐标满足:0=++C By Ax ;②直线一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ;③直线另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线). 由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 【规律方法技巧】由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧. 2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤:①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断;③确定要画不等式所表示的平面区域. 【考点针对训练】1.若点(),x y P 满足约束条件022x x y a x y ≥⎧⎪-≤⎨⎪+≤⎩,且点(),x y P 所形成区域的面积为12,则实数a 的值为 . 【答案】8【解析】由题意作出其平面区域,∵点(),x y P 所形成区域的面积为12,∴0a >,由2x y a -=,令x =0得2ay =-, 由22x y a x y -=+=⎧⎨⎩解得44,212832312a a a x S a ++=∴=⨯+⨯=∴=(),.2.设不等式组310060360x y x y x y +-≥⎧⎪--≤⎨⎪+-≤⎩表示的平面区域为D ,若函数log a y x =(10≠>a a 且)的图象上存在区域D 上的点,则实数的取值范围是____________. 【答案】[)+∞⋃⎥⎦⎤ ⎝⎛,321,0【考点2】线性目标函数最优解问题 【备考知识梳理】【规律方法技巧】线性目标函数z Ax By C =++(A,B 不全为0)中,当0B ≠时,A z Cy x B B-=-+,这样线性目标函数可看成斜率为AB-,且随变化的一组平行线,则把求的最大值和最小值的问题转化为直线与可行域有公共点,直线在轴上的截距的最大值最小值的问题.因此只需先作出直线Ay x B=-,再平行移动这条直线,最先通过或最后通过的可行域的顶点就是最优解.特别注意,当B>0时,的值随着直线在y 轴上的截距的增大而增大;当B<0时,的值随着直线在y 轴上的截距的增大而减小.通常情况可以利用可行域边界直线的斜率来判断.对于求整点最优解,如果作图非常准确可用平移求解法,也可以取出目标函数可能取得最值的可行域内的所有整点,依次代入目标函数验证,从而选出最优解,最优解一般在可行域的定点处取得,若要求最优整解,则必须满足x ,y 均为整数,一般在不是整解的最优解的附近找出所有可能取得最值的整点,然后将整点分别代入目标函数验证选出最优整解. 【考点针对训练】1.已知实数,x y 满足50,220,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则目标函数z x y =-的最小值为 ▲ .【答案】3-【解析】可行域为一个三角形及其内部,其三个顶点坐标分别为(1,0),(5,0),(1,4)A B C -,当目标函数过点(1,4)C 时z 取最小值3-.2.已知点(x ,y)的坐标满足条件302602290x y a x y x y --<⎧⎪+->⎨-+>⎪⎩,且x ,y 均为正整数.若4x -y 取到最大值8,则整数a的最大值为___________. 【答案】5【考点3】非线性规划问题【备考知识梳理】1.距离型:形如z=(x-a)2+(y-b)2.2.斜率型:形如z =y -bx -a. 【规律方法技巧】对于非线性目标函数的最优解问题,关键要搞清目标函数的几何意义,利用数形结合思想求解. 【考点针对训练】1.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 .【答案】8【解析】作出题设约束条件表示的可行域,如图OAB ∆内部(含边界),再作直线:0l x y +=,向上平移直线,z x y =+增大,当过点(1,2)B 时,z x y =+取得最大值3,因此2x y+的最大值为8.2.已知实数、x y 满足242y xx y y ⎧≤⎪+≤⎨⎪≥-⎩,则22)2()1(-+-=y x z 的最小值为____________________.【考点4】线性规划问题与其他知识交汇 【备考知识梳理】线性规划问题与其他知识交叉融合,不仅体现了高中数学常用的数学思想方法,比如数形结合思想,转化与化归思想,而且体现了学生综合分析问题的能力,逻辑思维能力以及解决实际问题的能力. 【规律方法技巧】线性规划问题可以和概率、向量、解析几何等交汇考查,关键是通过转化,最终转化为线性规划问题处理. 【规律方法技巧】1.已知不等式组⎪⎩⎪⎨⎧≤-≥-≥+224x y x y x ,表示的平面区域为D ,点)0,1(),0,0(A O .若点M 是D 上的动||OM 的最小值是____________________.【答案】1010 【解析】设点M 的坐标为(,)x y,则||OA OMOM ⋅=,根据约束条件画出可行域可知0x >,故||OA OMOM ⋅==,而y x 的几何意义为可行域的点与原点所确定直线的斜率,数形结合可知yx 1010.2.定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3}z x y x y=+-的取值范围是_______________. 【答案】[7,10]-【两年模拟详解析】1.【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知实数,满足则的取值范围是__________.【答案】(或)【解析】绘制不等式组表示的平面区域,目标函数表示可行域内的点与坐标原点连线的斜率,数形结合可得目标函数的取值范围是,写成区间的形式是.2.【南京市、盐城市2017届高三年级第一次模拟】已知实数,x y 满足0722x x y x y>⎧⎪+≤⎨⎪+≤⎩,则yx 的最小值是 . 【答案】34【解析】可行域为一个三角形ABC 及其内部(不含A,B ),其中(0,7),(0,1),(4,3)A B C ,则yx表示可行域上的点到原点连线的斜率,所以其最大值为34OC k = 3.【2017年第二次全国大联考江苏卷】实数,x y 满足01xy x y ≥⎧⎨+≤⎩,使z a x y =+取得最大值的最优解有两个,则z ax y =+的最小值为_______. 【答案】1-【解析】如下图所示,画出不等式组所表示的区域,∵z ax y =+取得最大值的最优解有两个,∴11a a -=⇒=-,∴当1x =,0y =或0x =,1y =-时,z ax y x y =+=-+有最小值1-.4. 【2017年第三次全国大联考江苏卷】已知等差数列}{n a 的首项,11-=a 若该数列恰有6项落在区间)8,21(内,则公差d 的取值范围是_____________.【答案】99[,)87【解析】设落在区间)8,21(内最小项为1+n a ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<+≤->⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤>+++9)6(9)5(23)1(23882121761d n d n d n nd a a a a n n n n ,所以⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+<+≤->>d n d n d n dn d 969523123,0,令32y d =,则15666n y n y n y n y >⎧⎪-≤⎪⎨+<⎪⎪+≥⎩,可行域为一个平行四边形ABCD 内部及部分边界线,)57,512(),1,1(C A,如图,所以5121≤<n ,而n ∈*N ,因此.99,437,47,2<≤≤<≤<=d y n5. 【盐城市2017届高三第三次模拟考试】设,x y 满足,则z x y =+的最大值为______. 【答案】1【解析】绘制不等式组所表示的可行域如图所示,由目标函数的几何意义可得,目标函数在线段AB 上取得最大值,考查点B点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.6.【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研】已知实数,满足则的取值范围是__________.【答案】(或)【解析】绘制不等式组表示的平面区域,目标函数表示可行域内的点与坐标原点连线的斜率,数形结合可得目标函数的取值范围是,写成区间的形式是.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.7.【2017届江苏如东高级中学等四校高三12月联考】已知实数x,y满足不等式组0,,40,yy xx y≥⎧⎪≤⎨⎪+-≤⎩则2z x y=-的最大值为__________.【答案】8【解析】试题分析:可行域为一个三角形ABC及其内部,其中(0,0),(2,2),(4,0)A B C,所以直线2z x y =-过点C 时取最大值8.考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.8. 【江苏省扬州中学高三数学月考试卷】已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________. 【答案】(-∞,3]【解析】不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2表示的平面区域是以(0,0),(0,2),(1,0)O A B 为顶点的三角形内部(含边界),由题意00302303a +≤⎧⎪+≤⎨⎪+≤⎩,所以3a ≤.9.【镇江市2016届高三年级第一次模拟考试】已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤2,x +y ≤8,x ≥1,则z =2x +y 的最小值是________. 【答案】1.【解析】作出不等式组⎩⎪⎨⎪⎧x -y≤2,x +y≤8,x ≥1,,其是由点()1,7A ,()1,1B -,()5,3C 围成的三角形区域(包含边界),对于目标函数z =2x +y ,转化为直线2y x z =-+,过点()1,1B -时,z 最小,即2111z =⨯-=.10.【盐城市2016届高三年级第三次模拟考试】已知实数,x y 满足约束条件152x x y x y ≥⎧⎪+≤⎨⎪-≤-⎩,则2123y x -+的最大值为 . 【答案】7511.【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】若实数,x y 满足约束条件1300x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则|3410|x y --的最大值为 .【答案】494【解析】1300x y x y y +≤⎧⎪-≥⎨⎪≥⎩表示一个三角形ABC 及其内部,其中13(1,0),(0,0),(,)44A B C ,且可行域在直线上方34100x y --=,因此|3410|3410x y x y --=-++,过点13(,)44C 时取最大值,为494. 12.【2016高考押题卷(2)【江苏卷】】某工厂用A ,B 两种配件分别生产甲、乙两种产品,每生产一件甲产品使用4个A 配件、耗时1小时,每生产一件乙产品使用4个B 配件、耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,每天生产甲、乙两种产品总耗时不超过8小时.若生产一件甲产品获利2万元,生产一件乙产品获利3万元,那么该工厂每天可获取的最大利润为________万元. 【答案】14【解析】由题意,设生产x 件甲产品,y 件乙产品,利润为z ,则有⎪⎪⎩⎪⎪⎨⎧∈≤≤≤+*,12416482Ny x y x y x ,目标函数为z =2x +3y,作出不等式组表示的平面区域,可知直线z =2x +3y 经过可行域内的点(4,2)时,z 取得最大值14,故该厂的日利润最大为14万元.13.【2016年第一次全国大联考【江苏卷】】设不等式组204020x y x y y ,,ì-+?ïïï+-?íïï-?ïïî表示的平面区域为D ,若指数函数(0,1)xy a a a =>≠的图象上存在区域D 上的点,则a 的取值范围是_______. 【答案】(0,1)[3)+∞,【解析】可行域D 为一个开放的区域,如图(阴影部分).当01a <<时,指数函数xy a =的图像与可行域D 恒有交点;当1a >时,需满足13a ≥,才能使指数函数xy a =的图像与可行域D 有交点;综上a 的取值范围是(0,1)[3)+∞,【一年原创真预测】1.设不等式组204020x y x y y ì-+?ïïï+-?íïï-?ïïî表示的平面区域为D ,若指数函数xy a =的图像上存在区域D 上的点,则a 的取值范围是__________________.【答案】(1]3,【入选理由】本题主要考了简单的线性规划,以及指数函数的图像等相关概念,体现了分类讨论的数学思想,意在考查学生的数形结合能力和计算能力.本题考查线性规划与函数图象性质的交汇,通过研究函数xy a =的性质,来确定a 的取值范围,这是线性规划问题涉及不多,故选此题.2.执行如图的程序框图,如果输入,x y R ∈,那么输出的S 的的最小值是_______________.C Bx,线性规划的应用.该题新颖独特,故选此题.3.已知不等式组202020x y y x y-+≥⎧⎪+≥⎨⎪++≤⎩表示的平面区域,则231x y z x +-=-的最大值 .【答案】7【入选理由】本题主要考查线性规划的应用等基础知识知识,意在考查学生的画图、用图,以及数形结合能力和计算能力.此题给出的目标函数231x y z x +-=-,似乎不好入手,但整理后2311211x y y z x x +--==+--,转化为斜率,就转化为常规题,高考线性规划问题的命题越来多变灵活,故选此题.。

2018版高考数学(江苏专用,理科)专题复习:专题7 不等式 第42练 Word版含解析

2018版高考数学(江苏专用,理科)专题复习:专题7 不等式 第42练 Word版含解析

1.(2016·镇江模拟)设A =12a +12b ,B =1a +b (a >0,b >0),则A ,B 的大小关系是________.2.(2017·河南六市第一次联考)若1a <1b <0,则下列结论不正确的是________.(填序号)①a 2<b 2;②ab <b 2;③a +b <0;④|a |+|b |>|a +b |.3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中,能使log b 1b <log a 1b<log a b 成立的条件的序号是________.4.(2016·济南模拟)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是________.(填序号)①1x 2+1>1y 2+1; ②ln(x 2+1)>ln(y 2+1); ③sin x >sin y ;④x 3>y 3.5.对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2;④若c >a >b >0,则a c -a >bc -b ;⑤若a >b ,1a >1b ,则a >0,b <0.其中真命题是________.(填序号)6.(2016·北京西城区模拟)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎨⎧ a ,a ≤b ,b ,a >b ,a ∨b =⎩⎨⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则下列结论正确的是________.①a ∧b ≥2,c ∧d ≤2; ②a ∧b ≥2,c ∨d ≥2;③a ∨b ≥2,c ∧d ≤2; ④a ∨b ≥2,c ∨d ≥2.7.若存在x 使不等式x -m e x >x 成立,则实数m 的取值范围为____________.8.设a >0,且a ≠1,P =log a (a 3-1),Q =log a (a 2-1),则P 与Q 的大小关系是________.9.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a (1+1a );②log a (1+a )>log a (1+1a );③a 1+a<a 1+1a ;④a 1+a >a 1+1a . 其中成立的是________.10.(2016·苏州模拟)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小关系是________.(用“>”连接)11.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是________. 12.(2017·辽宁五校联考)三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则b a 的取值范围是________.13.(2016·长沙模拟)已知a ,b ,c ∈{正实数},且a 2+b 2=c 2,当n ∈N ,n >2时,c n 与a n +b n 的大小关系为______________.(用“>”连接)14.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a,则A ,B ,C ,D 的大小关系是________.(用“>”连接)答案精析1.A >B 2.④ 3.② 4.④5.②③④⑤解析 ①中,c 的符号不确定,故ac 与bc 的大小关系也不能确定,故为假. ②中,由ac 2>bc 2知c ≠0,∴c 2>0,则a >b ,故为真.③中,由⎩⎨⎧ a <b ,b <0可得ab >b 2,由⎩⎨⎧ a <b ,a <0可得a 2>ab ,∴a 2>ab >b 2,故为真.④中,由a >b 得-a <-b ,∴c -a <c -b ,又c >a ,∴0<c -a <c -b ,∴1c -a >1c -b >0.又a >b >0,∴ac -a >bc -b ,故为真.⑤中,由a >b 得a -b >0,由1a >1b 得b -a ab >0,又b -a <0,∴ab <0,而a >b ,∴a >0,b <0,故为真.6.③解析 不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c .若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2.若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2.故③正确.7.(-∞,0)解析 由x -me x >x ,得-m >e x ×x -x (x >0),令f (x )=e x ×x -x (x >0),则-m >f (x )min ,f ′(x )=e x ×x +e x ×12x -1≥2×e x -1>0(x >0),所以f (x )为(0,+∞)上的增函数,所以f (x )≥f (0)=0,-m >0,m <0.8.P >Q解析 由题意可知a >1.∴(a 3-1)-(a 2-1)=a 2(a -1)>0,∴a 3-1>a 2-1,∴log a (a 3-1)>log a (a 2-1),即P >Q .9.②④解析 因为0<a <1,所以(1+a )-(1+1a )=(a +1)(a -1)a <0,则1+a <1+1a ,可知②④成立.10.z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .11.27解析 由4≤x 2y ≤9,得16≤x 4y 2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.又x =3,y =1满足条件,这时x 3y 4=27. ∴x 3y 4的最大值是27.12.23,32]解析 两个不等式同时除以a ,得⎩⎪⎨⎪⎧ 1≤b a +c a ≤2, ①b a ≤1+c a ≤2·b a ,②将②乘(-1),得⎩⎪⎨⎪⎧ 1≤b a +c a ≤2,-2·b a ≤-1-c a ≤-b a ,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.13.c n >a n +b n解析 ∵a ,b ,c ∈{正实数},∴a n >0,b n >0,c n >0.而a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,则⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.∵n ∈N ,n >2,∴(a c )n <(a c )2,(b c )n <(b c )2.∴a n +b n c n =(a c )n +(b c )n <a 2+b 2c 2=1.∴a n +b n <c n .14.C >A >B >D解析 由已知得-12<a <0,不妨取a =-14,这时A =1716,B =1516,C =43,D =45.由此猜测:C >A >B >D .∵C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a=-a [(a +12)2+34]1+a .又∵1+a >0,-a >0,(a +12)2+34>0,∴C >A .∵A -B =(1+a 2)-(1-a 2)=2a 2>0,∴A >B .∵B-D=1-a2-11-a=a(a2-a-1)1-a=a[(a-12)2-54]1-a.又∵-12<a<0,∴1-a>0.又∵(a-12)2-54<(-12-12)2-54<0,∴B>D.综上所述,C>A>B>D.。

(江苏版)备战2018高考数学模拟试卷分项 专题07 不等式

(江苏版)备战2018高考数学模拟试卷分项 专题07 不等式

第七章 不等式1. 【南师附中2017届高三模拟二】已知实数,x y 满足10{30 330x y x y x y -+≥+-≥--≤,则当2x y -取得最小值时, 22x y +的值为__________. 【答案】5 【解析】画出不等式组10{30 330x y x y x y -+≥+-≥--≤表示的区域如图,结合图形可知当动直线2y x z =-经过点()1,2A 时,在y 轴上的截距z -最大, 2z x y =-最小,此时22145x y +=+=,应填答案5。

2. 【启东中学2018届高三上学期第一次月考(10月)】已知x , y 满足约束条件0,{2, 0,x y x y y -≥+≤≥若z ax y =+的最大值为4,则a 的值为__________.【答案】2【解析】作为不等式组所对应的可行域,如上图阴影部分AOB ∆,则()()20,11A B ,,,若z ax y =+过A 时求得最大值为4,则24,2a a ==,此时目标函数为2z x y =+,变形为2y x z =-+,平移直线2y x z =-+,当经过A 点时,纵截距最大,此时z 有最大值为4,满足题意;若z ax y =+过B 时求得最大值为4,则14,3a a +==,此时目标函数为3z x y =+,变形为3y x z =-+,平移直线3y x z =-+,当经过A 点时,纵截距最大,此时z 有最大值为6,不满足题意,故2a =。

点睛:本题主要考查了线性规划的应用,属于中档题。

结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决此类问题的关键。

3. 【泰州中学2018届高三上学期开学考试】已知点满足,则的最大值为__________. 【答案】3点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.4. 【高邮市2018届高三期初文科】已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 . 【答案】3 【解析】试题分析:作不等式组210x y x y ≤⎧⎪≥⎨⎪-≥⎩表示的可行域,如图ABC ∆内部及边界(阴影);作直线:20l x y +=把直线l 平移到过点,A 此时2z x y =+取最小值;A 点坐标就是2z x y =+取最小值时的最优解,由方程组1y x y =⎧⎨-=⎩得(1,1).A 所以2x y +的最小值是3.考点:简单的线性规划.5.【淮安市淮海中学2018届高三上第一次调研】已知0x >, 0y >, 22x y +=,则22log 2log x y +的最大值为 .【答案】0【解析】∵x>0,y>0,x+y 2=2,∴22212x y xy ⎛⎫+≤= ⎪⎝⎭,∴222log 2log log 10x y +≤=. 故答案为:0.6.【启东中学2018届高三上学期第一次月考(10月)】若正实数,x y 满足2210x xy +-=,则2x y +的最小值为______.点睛:基本不等式的考察的一个主要考察方法就是判别式法,可以应用判别式法的题型基本特点:(1)题干条件是二次式;(2)问题是一次式(或可以化简为一次式)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(江苏专用)2018版高考数学专题复习 专题7 不等式 第44练 简单的线性规划问题练习 文的取值范围为____________.2.(2016·辽宁大连八中月考)已知O 是坐标原点,点P (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥4,x ≤2,y ≤4上的一个动点,则OP →·OM →的取值范围是________.3.(2017·昆明质检)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.4.(2016·沈阳质检)已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +6≥0,x +y ≥0,x ≤2,若目标函数z =-mx +y 的最大值为-2m +10,最小值为-2m -2,则实数m 的取值范围是____________.5.(2016·泰州模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x +y ≥3,若目标函数z =x +ky (k>0)的最小值为13,则实数k =________.6.(2016·贵州七校联考)一个平行四边形的三个顶点的坐标分别为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是________.7.(2015·重庆改编)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为______.8.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为________万元.9.(2016·扬州模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为________.10.(2017·辽宁五校联考)已知A ,B 是平面区域⎩⎪⎨⎪⎧2x -y -4≤0,x +y -2≥0,x -2y +4≥0内的两个动点,向量n =(3,-2),则AB →·n 的最大值是________.11.(2016·全国丙卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.12.(2016·泰州中学期初考试)设m ∈R ,实数x ,y 满足⎩⎪⎨⎪⎧x ≥m ,2x -3y +6≥0,3x -2y -6≤0,若|x +2y |≤18,则实数m 的取值范围是______________.13.(2016·扬州中学月考)已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.14.(2016·绍兴一模)已知函数f (x )=x 2-2x ,点集M ={(x ,y )|f (x )+f (y )≤2},N ={(x ,y )|f (x )-f (y )≥0},则M ∩N 所构成平面区域的面积为______.答案精析 1.(-7,24) 2.[0,4]解析 由题意OA →·OM →=-x +y ,作出不等式组⎩⎪⎨⎪⎧x +y ≥4,x ≤2,y ≤4表示的平面区域,如图中△ABC 内部(含边界),作直线l :-x +y =0,平移直线l ,直线过A (2,2)时,-x +y =0,过C (0,4)时,-x +y =4,所以-x +y 的取值范围是[0,4].3.13解析 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0, 平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x max =a +b =13.4.[-1,2]解析 可行域如图所示,A (-2,2),B (2,-2),C (2,10).在点C 处z 取得最大值,在点B 处z 取得最小值,观察得直线y =mx +z 的斜率m 的取值范围为m ∈[-1,2].5.5或294解析 作出不等式组⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x +y ≥3表示的平面区域,如图所示,可知z =x +ky (k >0)过点A (12,52)或B (75,85)时取得最小值,所以12+52k =13或75+85k =13,解得k =5或294.6.20 解析平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为(32,0),也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图中阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20. 7.1解析 不等式组表示的区域如图,易求A ,B ,C ,D 点的坐标分别为A (2,0),B (1-m ,1+m ), C (2-4m 3,2+2m3),D (-2m,0). ∴S △ABC =S △ABD -S △ACD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=m +23=43, ∴m +1=2或-2(舍),∴m =1.8.18解析 设甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示,可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元). 9.8解析 作出不等式组对应的平面区域如图所示.由z =2x +y ,得y =-2x +z .平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点C 时,在y 轴上的截距最大,此时z 最大.由⎩⎪⎨⎪⎧x -2y +1=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2),此时z =2×3+2=8. 10.10 解析设A (x 1,y 1),B (x 2,y 2),AB →=(x 2-x 1,y 2-y 1),则AB →·n =3(x 2-x 1)-2(y 2-y 1)=3x 2-2y 2-(3x 1-2y 1).令z =3x -2y ,画出不等式组表示的平面区域(如图中阴影部分所示),可知z max =6,z min =-4,则AB →·n 的最大值为z max -z min =10.11.-10解析 作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时,z 取得最小值,z min =2×(-1)+3×(-1)-5=-10. 12.[-3,6]解析 令z =x +2y ,由|x +2y |≤18⇒-18≤x +2y ≤18,画出可行域如图,由线性规划知识可得,当直线y =-12x +12z 经过点A (6,6)时,z 取得最大值,当直线y =-12x +12z 经过点B (m ,3m -62)时,z 取得最小值.由m +3m -6=-18,得m =-3,又由图易知,m ≤6,所以-3≤m ≤6.13.(-∞,3]解析 不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +y ≤2表示的平面区域是以O (0,0),A (0,2),B (1,0)为顶点的三角形内部(含边界). 由题意得⎩⎪⎨⎪⎧0+0≤3,0+2≤3,a +0≤3,所以a ≤3.14.2π解析 由f (x )+f (y )=x 2-2x +y 2-2y ≤2, 得(x -1)2+(y -1)2≤4,于是点集M ={(x ,y )|f (x )+f (y )≤2}表示的平面区域是以(1,1)为圆心,2为半径的圆面. 同理,由f (x )-f (y )=x 2-2x -y 2+2y ≥0, 可得(x -y )(x +y -2)≥0,即⎩⎪⎨⎪⎧x -y ≥0,x +y -2≥0或⎩⎪⎨⎪⎧x -y ≤0,x +y -2≤0.于是点集N ={(x ,y )|f (x )-f (y )≥0}表示的平面区域就是不等式组所表示的平面区域. 所以M ∩N 所构成的平面区域如图所示,所以S =12·π·r 2=2π.。

相关文档
最新文档