历年高考文科数学解答大题分类归纳

合集下载

2012-2021十年全国高考数学(文科)真题分类汇编解析 逻辑与推理(解析版)

2012-2021十年全国高考数学(文科)真题分类汇编解析  逻辑与推理(解析版)

2012-2021十年全国高考数学(文科)真题分类汇编解析逻辑与推理(解析版)一、选择题1.(2021年全国高考乙卷文科)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是 ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A解析:由于1sin 1x -≤≤,所以命题p 为真命题; 由于0x ≥,所以||e 1x ≥,所以命题q 真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2019年高考数学课标Ⅲ卷文科)记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【答案】A【解析】作出等式组6,20x y x y +⎧⎨-⎩的平面区域为D .在图形可行域范围内可知: 命题:(,)p x y D ∃∈,29x y +;是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,212x y +.是假命题,则q ⌝真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p q⌝∨假;③p q∨真;②p q∧⌝真;④p q⌝∧⌝假;故答案①③真,正确.故选:A.3.(2019年高考数学课标Ⅱ卷文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点评】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.(2017年高考数学课标Ⅱ卷文科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .【考点】推理【点评】推理实际考查数据处理能力,从众多数据中,挑选关键数据进行分类讨论,一般利用反证法、类比法、分析法得到结论.5.(2013年高考数学课标Ⅰ卷文科)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是: ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】B解析:由指数函数的性质知,命题p 是假命题.而命题q 是真命题.故选B .考点:(1)命题真假的判断;(2)真值表的运用难度:B备注:高频考点二、填空题6.(2016年高考数学课标Ⅱ卷文科)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_________.【答案】()1,3【解析】由题意得:丙不拿()2,3,若丙()1,2,则乙()2,3,甲()1,3满足,若丙()1,3,则乙()2,3,甲()1,2不满足,故甲()1,3,7.(2014年高考数学课标Ⅰ卷文科)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【答案】A解析:∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.考点:1.简单的逻辑关系;难度:A。

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

A. {0}
B. {1}
【解析】∵ A {x | x 1} ,∴ A B {1,2} .
C. {1, 2}
D. {0,1, 2}
【答案】C
7(2017 全国 I 卷文 1)已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.
A
B=
x|x
3
2
B. A B
C.
A
B
x|x
a
|
0、| b
|
0
.

D.
6

(a
b)
b
,∴
(a
b)
b
a
b
|
b
|2
0
,即
a
b
|
b
|2
.

a
与b
之间的夹角为
,则
cos
|
aa||bb
|
|
|b |2 a || b
|
| |
ba
| |
,∵ |
a
|
2|
b
| ,∴
cos
1 2
.
∵ 0 π ,∴ π . 3
【答案】B 3.(2019 全国 II 卷文 3)已知向量 a=(2,3),b=(3,2),则|a-b|=
【解析】 (1 i)(2 i) 3 i .
C. 3 i D. 3 i
【答案】D 7.(2017 全国 I 卷文 3)下列各式的运算结果为纯虚数的是
A. i(1 i)2
B. i2 (1 i)
C. (1 i)2
D. i(1 i)
【解析】A: i(1 i)2 i 2i 2 ,B: i2 (1 i) (1 i) i 1,

高考数学文科题型全归纳

高考数学文科题型全归纳

高考数学文科题型全归纳高考,是每个学子心中的一道坎。

而在高考数学文科中,有很多种题型,而每种题型的考察对象和难点都不一样。

下面,本文将分别介绍高考数学文科中的各种题型的考察内容及难点,以便考生备考时能有所依据。

一、函数题函数题是高考数学文科中比较重要的一种题型,它主要考察学生对函数的理解和运用能力。

而在解题过程中,学生不仅需要熟练掌握函数的概念、性质和基本应用,还需要深入理解函数的运动特征和变化规律,才能够顺利完成题目。

二、解析几何解析几何是高考数学文科中比较重要的一种题型,而它主要考察学生对几何知识的理解和积累,特别是各种几何定理和图形的性质。

同时,在解析几何的过程中,学生还需要熟练掌握平面直角坐标系、空间直角坐标系和向量的相关知识及其运用方法。

三、概率论与数理统计概率论与数理统计是高考数学文科中比较基础、但也比较重要的一种题型。

它主要考察学生对概率、统计学的基本概念和方法的掌握和运用能力。

而在解题过程中,学生除了需要掌握基本的计算方法之外,还需要独立思考,合理运用概率论、数理统计理论和方法,处理各种实际问题。

四、数列题数列题是高考数学文科中比较基础、但也比较重要的一种题型。

它主要考察学生对数列的概念、性质和应用的掌握和运用能力。

而在解题过程中,学生需要熟练掌握数列的各种性质和运算,分析数列的变化规律,找出其中的规律和特点,灵活运用数列的性质和公式解题。

五、三角函数三角函数是高考数学文科中比较重要的一种题型,而它主要考察学生对三角函数及其基本概念和性质的掌握和运用能力。

同时,在解题过程中,学生还需要熟练掌握三角函数的各种公式、定理和运算法则,以及灵活应用这些数学工具解决实际问题。

综上所述,高考数学文科中的各种题型内容不同、难点不同,所以考生在备考时需要注重练习,把握每种题型的特点和规律,逐渐提高自己的题解能力。

高考文科数学试题解析分类汇编__1

高考文科数学试题解析分类汇编__1

2013年高考解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文2))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考课标Ⅰ卷(文9))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;函数()(1cos )sin f x x x =-为奇函数,所以图象关于原点对称,所以排除B.02x π<<时,()0f x >,排除A. ()(1cos )sin 1222f πππ=-=,排除D,选C.3 .(2013年高考四川卷(文6))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A43129312543ππππ==+=T ,所以π=T ,所以πωπ=2,2=ω,)42sin(2)(+=x x f ,所以πϕπk =+-⨯)3(2,所以32ππϕ+=k ,又22πϕπ<<-,所以3πϕ-=,选A.4 .(2013年高考湖南(文5))在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于A .3π B .4π C .6πD .12π【答案】A本题考查正弦定理的应用。

由正弦定理得得2sin sin 3A B B =,即3sin A =,以为三角形为锐角ABC ∆,所以3A π=,选A.5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B6 .(2013年高考陕西卷(文9))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+又A C B B C C B sin )sin(cos sin cos sin =+=+。

历年高考文科数学解答大题分类归纳

历年高考文科数学解答大题分类归纳

历年高考函数大题分类归纳一、函数大题1.(本小题满分13分)2011设()nx mx x x f ++=2331.(1)如果()()32--'=x x f x g 在2-=x 处取得最小值5-,求()x f 的解析式; (2)如果()+∈<+N n m n m ,10,()x f 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间()b a ,的长度为a b -) 解:(1)已知()nx mx x x f ++=2331,()n mx x x f ++=∴22' 又()()()322322'-+-+=--=n x m x x x f x g 在2-=x 处取极值, 则()()()3022222'=⇒=-+-=-m m g ,又在2-=x 处取最小值-5.则()()()25342222=⇒-=-+⨯-+-=-n n g ()x x x x f 233123++=∴ (2)要使()nx mx x x f ++=2331单调递减,则 ()022'<++=∴n mx x x f 又递减区间长度是正整数,所以()022'=++=n mx x x f 两根设做a ,b 。

即有: b-a 为区间长度。

又()()+∈-=-=-+=-N n m n m n m ab b a a b ,2444222又b-a 为正整数,且m+n<10,所以m=2,n=3或,5,3==n m 符合。

2.(本小题满分12分)2010设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由.解: 2()186(2)2f x x a x a '=+++(1)由已知有12()()0f x f x ''==,从而122118ax x ==,所以9a =; (2)由2236(2)418236(4)0a a a ∆=+-⨯⨯=+>, 所以不存在实数a ,使得()f x 是R 上的单调函数.3.(本小题满分12分)2009 设函数329()62f x x x x a =-+-(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围解:(1)'2()3963(1)(2)f x x x x x =-+=--, 因为(,)x ∈-∞+∞,'()f x m ≥, 即239(6)0x x m -+-≥恒成立, 所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34-(2) 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;所以 当1x =时,()f x 取极大值5(1)2f a =-;当2x =时,()f x 取极小值 (2)2f a =-;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >.4.已知函数4322411()(0)43f x x ax a x a a =+-+> 2008 (1)求函数()y f x =的单调区间;(2)若函数()y f x =的图像与直线1y =恰有两个交点,求a 的取值范围.解:(1)因为322()2(2)()f x x ax a x x x a x a '=+-=+- 令()0f x '=得1232,0,x a x x a =-== 由0a >时,()f x '在()0f x '=根的左右的符号如下表所示所以()f x 的递增区间为(2,0)(,)a a -+∞与;()f x 的递减区间为(2)(0)a a -∞-,与,(2)由(1)得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值 4()(0)f x f a ==极大值要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或41a <,即a >01a ≤<. 5.(本小题满分12分)2007已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩ ≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()1f x >. 解:(1)因为01c <<,所以2c c <;由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()1f x >+得, 当102x <<时,解得142x <<;当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 6.(本小题满分12分) 2006已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a 、b 的值及函数()f x 的单调区间;(2)若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.解:322(1)(),()32,f x x ax bx c f x x ax b '=+++=++22124()0,(1)320,3931,2,2()32(32)(1),():f a b f a b a b f x x x x x f x ''-=-+==++==-=-'=--=+-由得函数的单调区间如下表所以函数()f x 的递增区间为(,)3-∞-与(1,)+∞; 递减区间为(,1)3-. [][]32221(2)()222221,2,,(),327(2)2,(2)2.()(1,2),(2)2,1 2.f x x x x c x x f x c f c f c f x c x c f c c c =--+∈-=-=+=+=+∈-=+-当时为极大值而则为最大值要使恒成立只须解得或<> <>7.(本小题满分12分)2005已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.二、三角函数1.(本小题满分12分)2011在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=. (1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=正弦定理得:)sin(cos sin cos sin cos sin 3C B C B B C A A +=+=及:A A A sin cos sin 3=所以31cos =A 。

专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题04  导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点

(2017-2019)最新高考文科数学真题总结归类专题(含解析)

(2017-2019)最新高考文科数学真题总结归类专题(含解析)

(2017-2019)最新高考文科数学真题总结归类专题(含解析)专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U B A =I ð{6,7}. 故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解. 2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-I . 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)A B =-+∞U . 故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-I ð. 故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I UA .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件; 由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得U ∩U ={0,2}. 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】∵U ={1,3,5,7},U ={2,3,4,5},∴U ∩U ={3,5}. 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I . 故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A=,{1,0,2,3}=∈-≤<R,B=-,{|12}C x x则()A B C=U IA.{1,1}-B.{0,1}C.{1,0,1}-D.{2,3,4}【答案】C【解析】由并集的定义可得:U∪U={−1,0,1,2,3,4},结合交集的定义可知:(U∪U)∩U={−1,0,1}.故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.(2)等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件.18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式U 3>8可得U >2, 求解绝对值不等式|U |>2可得U >2或U <−2,据此可知:“U 3>8”是“|U |>2” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当U =4,U =1,U =1,U =14时,U ,U ,U ,U 不成等比数列,所以不是充分条件; 当U ,U ,U ,U 成等比数列时,则UU =UU ,所以是必要条件.综上所述,“UU =UU ”是“U ,U ,U ,U 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“U ⇒U ”以及“U ⇒U ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<I I .故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U . 故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I , 故A B I 中元素的个数为2. 所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =U , 所以{}()1,2,4A B C =U I . 故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =U (1,2)-. 故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I . 故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =I .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.【答案】1,−1(答案不唯一)【解析】使“若U >U ,则1U <1U ”为假命题,则使“若U >U ,则1U ≥1U ”为真命题即可,只需取U =1,U =−1即可满足,所以满足条件的一组U ,U 的值为1,−1(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。

山东省2010年—2012年高考试题(文科数学)分类整理

山东省2010年—2012年高考试题(文科数学)分类整理

山东省2010年—2012年高考试题(文科数学)分类整理一、 集合与简易逻辑:2010年:(一个小题5分)(1) 已知全集U R =,集合{}240M x x =-≤,则U C M =( ) A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或2011年:(两个小题10分)1、(2011•山东)设集合 M={x|(x+3)(x ﹣2)<0},N={x|1≤x≤3},则M∩N=( )A 、[1,2)B 、[1,2]C 、(2,3]D 、[2,3]考点:交集及其运算。

分析:根据已知条件我们分别计算出集合M ,N ,并写出其区间表示的形式,然后根据交集运算的定义易得到A∩B 的值.解答:解:∵M={x|(x+3)(x ﹣2)<0}=(﹣3,2)N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合M ,N ,并用区间表示是解答本题的关键.5、(2011•山东)已知a ,b ,c∈R,命题“若a+b+c=3,则a 2+b 2+c 2≥3”的否命题是( )A 、若a+b+c≠3,则a 2+b 2+c 2<3B 、若a+b+c=3,则a 2+b 2+c 2<3C 、若a+b+c≠3,则a 2+b 2+c 2≥3D 、若a 2+b 2+c 2≥3,则a+b+c=3考点:四种命题。

分析:若原命题是“若p ,则q”的形式,则其否命题是“若非p ,则非q”的形式,由原命题“若a+b+c=3,则a 2+b 2+c 2≥3”,我们易根据否命题的定义给出答案.解答:解:根据四种命题的定义,命题“若a+b+c=3,则a 2+b 2+c 2≥3”的否命题是“若a+b+c≠3,则a 2+b 2+c 2<3”故选A点评:本题考查的知识点是四种命题,熟练掌握四种命题的定义及相互之间的关系是解答本题的关键. 2012年:(两个小题10分) (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。

历年高考文科数学解答大题分类归纳

历年高考文科数学解答大题分类归纳

历年高考文科数学解答大题分类归纳Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT历年高考函数大题分类归纳一、函数大题1.(本小题满分13分)2011设()nx mx x x f ++=2331.(1)如果()()32--'=x x f x g 在2-=x 处取得最小值5-,求()x f 的解析式;(2)如果()+∈<+N n m n m ,10,()x f 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间()b a ,的长度为a b -) 解:(1)已知()nx mx x x f ++=2331,()n mx x x f ++=∴22' 又()()()322322'-+-+=--=n x m x x x f x g 在2-=x 处取极值, 则()()()3022222'=⇒=-+-=-m m g ,又在2-=x 处取最小值-5. 则()()()25342222=⇒-=-+⨯-+-=-n n g ()x x x x f 233123++=∴ (2)要使()nx mx x x f ++=2331单调递减,则 ()022'<++=∴n mx x x f 又递减区间长度是正整数,所以()022'=++=n mx x x f 两根设做a ,b 。

即有: b-a 为区间长度。

又()()+∈-=-=-+=-N n m n m n m ab b a a b ,2444222又b-a 为正整数,且m+n<10,所以m=2,n=3或,5,3==n m 符合。

2.(本小题满分12分)2010设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数若存在,求出a 的值;若不存在,说明理由.解: 2()186(2)2f x x a x a '=+++(1)由已知有12()()0f x f x ''==,从而122118ax x ==,所以9a =;(2)由2236(2)418236(4)0a a a ∆=+-⨯⨯=+>, 所以不存在实数a ,使得()f x 是R 上的单调函数. 3.(本小题满分12分)2009设函数329()62f x x x x a =-+-(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围解:(1)'2()3963(1)(2)f x x x x x =-+=--, 因为(,)x ∈-∞+∞,'()f x m ≥, 即239(6)0x x m -+-≥恒成立, 所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34-(2) 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;所以 当1x =时,()f x 取极大值5(1)2f a =-;当2x =时,()f x 取极小值 (2)2f a =-;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >.4.已知函数4322411()(0)43f x x ax a x a a =+-+> 2008 (1)求函数()y f x =的单调区间;(2)若函数()y f x =的图像与直线1y =恰有两个交点,求a 的取值范围. 解:(1)因为322()2(2)()f x x ax a x x x a x a '=+-=+- 令()0f x '=得1232,0,x a x x a =-== 由0a >时,()f x '在()0f x '=根的左右的符号如下表所示所以()f x 的递增区间为(2,0)(,)a a -+∞与;()f x 的递减区间为(2)(0)a a -∞-,与,(2)由(1)得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或41a <,即a >01a ≤<. 5.(本小题满分12分)2007已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+. 解:(1)因为01c <<,所以2c c <;由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<12x <<;当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 6.(本小题满分12分) 2006已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a 、b 的值及函数()f x 的单调区间;(2)若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 解:所以函数()f x 的递增区间为(,)3-∞-与(1,)+∞; 递减区间为(,1)3-.7.(本小题满分12分)2005已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.二、三角函数1.(本小题满分12分)2011在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=. (1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=正弦定理得:及:A A A sin cos sin 3=所以31cos =A 。

高考文科数学解析分类汇编集

高考文科数学解析分类汇编集

2012年高考文科数学解析分类汇编:不等式一、选择题1 .(2012年高考(重庆文))已知2log 3log a =+2log 9log b =-3log 2c =则a,b,c 的大小关系是( )A .a b c =<B .a b c =>C .a b c <<D .a b c >>2 .(2012年高考(重庆文))不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞[来源:数理化网]3 .(2012年高考(浙江文))若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是 ( )A .245B .285C .5D .64 .(2012年高考(天津文))已知 1.20.2512,(),2log 22a b c -===,则,,a b c 的大小关系为 ( )A .c b a <<B .c a b <<C .b a c <<D .b c a <<5 .(2012年高考(天津文))设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为 ( )A .5-B .4-C .2-D .36 .(2012年高考(四川文))若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A .12B .26C .28D .337 .(2012年高考(陕西文))小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则( )A .B .C2a b+ D .v=2a b+ 8 .(2012年高考(山东文))设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-9 .(2012年高考(辽宁文))设变量x,y 满足10,020,015,x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩…剟剟则2x +3y 的最大值为 ( )A .20B .35C .45D .5510.(2012年高考(课标文))当0<x ≤12时,4log xa x <,则a 的取值范围是( )A .(0,22) B .(22,1) C .(1,2) D .(2,2) 11.(2012年高考(课标文))已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3) 12.(2012年高考(湖南文))设 a >b >1,0c < ,给出下列三个结论:① c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__.[中*国教育@^出~版网、] ( )A .①B .① ②C .② ③D .① ②③13.(2012年高考(广东文))(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 ( )A .3B .1C .5-D .6-14.(2012年高考(福建文))若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为 ( )A .-1B .1C .32D .2 15.(2012年高考(大纲文))已知ln x π=,5log 2y =,12ze -=,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<16.(2012年高考(安徽文))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是 ( )A .3-B .0C .32D .3二、填空题17.(2012年高考(浙江文))设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.18.(2012年高考(四川文))设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若1=,则||1a b -<; ④若33||1a b -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)19.(2012年高考(上海文))满足约束条件2||2||≤+y x 的目标函数x y z -=的最小值是_________ .20.(2012年高考(陕西文))观察下列不等式213122+< 231151233++<,222111712344+++<照此规律,第五个...不等式为 。

2012-2021十年全国高考数学(文科)真题分类汇编解析 概率

2012-2021十年全国高考数学(文科)真题分类汇编解析  概率
A. B. C. D.
13.(2016年高考数学课标Ⅰ卷文科)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
14.(2015年高考数学课标Ⅰ卷文科)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从 中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A.0.01B.0.1C.1D.10
5.(2019年高考数学课标Ⅲ卷文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
6.(2019年高考数学课标Ⅱ卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
22.(2016年高考数学课标Ⅱ卷文科)(本小题满分12分)某险种的基本保费为 (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
保费
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
17.(2014年高考数学课标Ⅰ卷文科)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.
18.(2013年高考数学课标Ⅱ卷文科)从 中任意取出两个不同的数,其和为 的概率是_______。
三、解答题
19.(2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编(附答案)

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编(附答案)

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,△EAB,△FBC,△GCD,△HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明:EF//平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD CD,∠ADB ∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB BD 2,∠ACB 60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F ABC 的体积.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO ,求三棱锥P −ABC 的体积.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.。

文科数学高考真题分类汇编 三角函数的图象与性质答案

文科数学高考真题分类汇编 三角函数的图象与性质答案

将 y = f (x)的图像上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图像对应的
函数为 g (x ) ,则 g( x) = Asin x .

g
4
=
2
,则 g
4
=
Asin
4
=
2A= 2
2 ,即 A = 2 ,
所以
f
(x) = 2sin 2x ,则
f
3 8
=
2
sin
2
31.A【解析】 = 2 (x + ) [5 , 9 ] 不合题意 排除 D. 4 44
= 1 (x + ) [3 , 5 ] 合题意 排除 B,C. 4 44
另: (

)
2, (x +
) [
+
, +
]
[
, 3
]
2
42 4
4 22
得: + , + 3 1 5
2 42
42 2
4
32.B【解析】由于
4
4
2

=
k
+ 3
,所以
3
的最小正值是为

28
8
21.D【解析】函数 y
=
sin
x
的图象向左平移
个单位,得到函数
f
(x) =
sin( x +
)=
2
2
cos x 的图象, f (x) = cos x 为偶函数,排除 A; f (x) = cos x 的周期为2 ,排除 B;
因为 f ( ) = cos = 0 ,所以 f (x) = cos x 不关于直线 x = 对称,排除 C;故选 D.

山东省各地市2024年高考数学(文科)最新试题分类大汇编24:复数-推理与证明

山东省各地市2024年高考数学(文科)最新试题分类大汇编24:复数-推理与证明

【山东省济宁市邹城二中2024届高三其次次月考文】1.已知i 是虚数单位,=-+i i21( )A .i 5151+ B .i 5351+C .i 5153+D .i 5353-【答案】B【山东省济宁市邹城二中2024届高三其次次月考文】13.给出下列命题:命题1:点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2:点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3:点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .请视察上面命题,猜想出命题n (n 是正整数)为: .【答案】),(2n n ) 是直线y=nx 与双曲线yn y 3=的一个交点【山东省济宁市鱼台二中2024届高三11月月考文】6.设i z -=1(为虚数单位),则=+zz 22( )A .i --1B .i +-1C .i +1D . i -1【答案】D【山东省济宁市汶上一中2024届高三11月月考文】7、计算=+-i i13( )A 、i 21+B 、i 21-C 、i +2D 、 i -2【答案】B【山东省济南市2024届高三12月考】6.复数z 满意(12)7i z i -=+,则复数z 的共轭复数z =A.i 31+B. i 31-C. i +3D. i -3【答案】B【山东省济南市2024届高三12月考】16. )(x f 是定义在R 上恒不为0的函数,对随意x 、R ∈y 都有)()()(y x f y f x f +=,若))((,21*1N n n f a a n ∈==,则数列{}n a 的前n 项和n S 为A .12121+-=n n SB .1211+-=n n S C.n n S 211-= D .n n S 2121-=【答案】C【山东省济宁市重点中学2024届高三上学期期中文】11. 若复数3(R,12a iz a i i+=∈-是虚数单位),且z 是纯虚数,则|2|a i +等于( )A .5B .210C .25D .40 【答案】B【山东省济宁一中2024届高三第三次定时检测文】2.复数123,1z i z i =+=-,则复数12z z 在复平面内对应的点位于 ( ) A .第一象限 B .其次象限 C .第三象限 D .第四象限 【答案】A【山东省莱州一中2024届高三其次次质量检测】对于连续函数)(x f 和)(x g ,函数|)()(|x g x f -在闭区间[b a ,]上的最大值为)(x f 与)(x g 在闭区间[b a ,]上的“肯定差”,记为b x a x g x f ≤≤∆)).(),((则322221331≤≤-+∆x x)x ,x (= 【答案】103【山东省青州市2024届高三2月月考数学(文)】13.若复数312a ii-+(,a R i ∈为虚数单位)是纯虚数,则实数a 的值为 . 【答案】6【山东省青州市2024届高三2月月考数学(文)】15.在一次演讲竞赛中,10位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据(18)i x i ≤≤,在如图所示的程序框图中,x 是这8个数据中的平均数,则输出的2S 的值为_ ____【答案】15【山东省青州市2024届高三上学期期中文16.已知数列{}n a 中,11211,241n n a a a n +==+-,则n a = 。

高中文科数学高考解答题解法总结及专项训练资料

高中文科数学高考解答题解法总结及专项训练资料

高中文科数学高考解答题解法总结及专项训练资料高中文科数学高考解答题解题方法总结数学答题是高考数学试卷中的一类重要试题。

它们通常是高考的关键问题和期末问题,具有很好的层次区分和选择功能。

目前,高考答题已经从简单的综合型知识型转变为知识、方法和能力的综合型答题。

在高考考场上,答题是否做得好是高考成败的关键。

因此,如何解决高考准备中的问题,针对上述情况,本节讨论了解决数学问题的一般思维过程、问题解决程序和答案格式,即所谓的“答案模板”“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.【常见答题模板展示】模板一三角函数的图像与性质试题的特点:给定的三角函数被转换成只有一个函数名的三角函数(通常是y?Asin (?X?)?然后研究三角函数的性质,如单调性和奇偶性性、周期性、对称性、最值等.解决策略:观察三角函数中函数名称、角度和结构的差异,确定三角函数简化的方向ur31sinx?cosx),例1【河北省冀州市高三一轮复习检测一】已知向量m?(cos2x,22rurr31n?(1,sinx?cosx),设函数f(x)?mgn.22(I)当函数f(X)获得最大值时,求出X值的集合;(ⅱ)设a,b,c为锐角三角形abc的三个内角.若cosb?的值。

思路分析:(1)首先利用三角恒等式变换(如角度倍增公式、两个角度和差的正弦余弦公式)对其进行简化,然后利用三角函数的图像和性质,得到F(X)满足的求最大值的X值集;(二)从这个问题的意义上,我们可以得到sin(?2C)??31,f(c)拜托sina54?33.然后利用已知的条件求出角c的大小,然后根据具有相同角度的三角函数2的基本关系求出SINB,最后根据两个角之和分析的正弦公式得到结果:(I)f(x)?cos2x?(31sinx?cosx)222-1-313133?cos2x?(sin2x?cos2x?sinxcosx)??(?cos2x?sin2x)442244?13sin(2x?).要使f(x)取得最大值,须满足sin(2x?)取得最小值.?32232x2k??,k?z.?x?k??,k?z.?当f(x)取得最大值时,x取值的集合为3212?,k?z}.12{x|x?k??点评:高考中对三角函数图像和性质的考查主要集中在三角函数解析式的确定以及三角函数的周期性、单调性和对称性。

高考文科数学大题解析全

高考文科数学大题解析全

高考文科数学一轮复习大题篇----导数的综合应用【归类解析】题型一 证明不等式【解题指导】 (1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数. 【例】设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x .(1)解 由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知,f (x )在x =1处取得极大值也为最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .【训练】已知函数f (x )=x ln x -e x +1. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:f (x )<sin x 在(0,+∞)上恒成立. (1)解 依题意得f ′(x )=ln x +1-e x ,又f (1)=1-e ,f ′(1)=1-e ,故所求切线方程为y -1+e =(1-e)(x -1),即y =(1-e)x . (2)证明 依题意,要证f (x )<sin x , 即证x ln x -e x +1<sin x , 即证x ln x <e x +sin x -1.当0<x ≤1时,e x +sin x -1>0,x ln x ≤0, 故x ln x <e x +sin x -1,即f (x )<sin x .当x >1时,令g (x )=e x +sin x -1-x ln x , 故g ′(x )=e x +cos x -ln x -1. 令h (x )=g ′(x )=e x +cos x -ln x -1, 则h ′(x )=e x -1x -sin x ,当x >1时,e x -1x >e -1>1,所以h ′(x )=e x -1x -sin x >0,故h (x )在(1,+∞)上单调递增.故h (x )>h (1)=e +cos 1-1>0,即g ′(x )>0, 所以g (x )在(1,+∞)上单调递增, 所以g (x )>g (1)=e +sin 1-1>0, 即x ln x <e x +sin x -1,即f (x )<sin x . 综上所述,f (x )<sin x 在(0,+∞)上恒成立. 题型二 不等式恒成立或有解问题【解题指导】 利用导数解决不等式的恒成立问题的策略 (1)首先要构造函数,利用导数求出最值,求出参数的取值范围. (2)也可分离变量,构造函数,直接把问题转化为函数的最值问题. 【例】已知函数f (x )=1+ln xx.(1)若函数f (x )在区间⎝⎛⎭⎫a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围.【解】 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln xx2, 令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以x =1为函数f (x )的极大值点,且是唯一极值点, 所以0<a <1<a +12,故12<a <1,即实数a 的取值范围为⎝⎛⎭⎫12,1. (2)当x ≥1时,k ≤x +11+ln xx 恒成立,令g (x )=x +11+ln xx (x ≥1),则g ′(x )=⎝⎛⎭⎫1+ln x +1+1x x -x +11+ln xx 2=x -ln xx2.再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,所以h (x )≥h (1)=1,所以g ′(x )>0,所以g (x )为单调增函数,所以g (x )≥g (1)=2, 故k ≤2,即实数k 的取值范围是(-∞,2].【训练】已知函数f (x )=ax +ln x ,x ∈[1,e],若f (x )≤0恒成立,求实数a 的取值范围. 【解】 ∵f (x )≤0,即ax +ln x ≤0对x ∈[1,e]恒成立, ∴a ≤-ln xx,x ∈[1,e].令g (x )=-ln xx ,x ∈[1,e],则g ′(x )=ln x -1x 2,∵x ∈[1,e],∴g ′(x )≤0,∴g (x )在[1,e]上单调递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e .∴实数a 的取值范围是⎝⎛⎦⎤-∞,-1e . 题型三 求函数零点个数【解题指导】 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题. (2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数.【解】 令F (x )=f (x )-g (x ) =-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-x -1x -mx ,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点. 【训练】设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解】 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型四 根据函数零点情况求参数范围【解题指导】 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】已知函数f (x )=2ln x -x 2+ax (a ∈R ).若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 【解】 g (x )=2ln x -x 2+m , 则g ′(x )=2x-2x =-2x +1x -1x.因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e ≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e). g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 【训练】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解】 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x2=x +3x -1x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:x ⎝⎛⎭⎫1e ,11 (1,e) h ′(x ) - 0 +h (x )极小值又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证:f (x )≤g (x ). 【证明】 令F (x )=f (x )-g (x )=ln x +x -x e x +1(x >0), 则F ′(x )=1x +1-e x -x e x =1+x x -(x +1)e x=(x +1)⎝⎛⎭⎫1x -e x .令G (x )=1x -e x ,可知G (x )在(0,+∞)上为减函数,且G ⎝⎛⎭⎫12=2-e>0,G (1)=1-e<0,∴存在x 0∈⎝⎛⎭⎫12,1,使得G (x 0)=0,即1x 0-0e x =0. 当x ∈(0,x 0)时,G (x )>0,∴F ′(x )>0,F (x )为增函数; 当x ∈(x 0,+∞)时,G (x )<0, ∴F ′(x )<0,F (x )为减函数. ∴F (x )≤F (x 0)=ln x 0+x 0-x 00e x+1,又∵1x 0-0e x =0,∴1x 0=0e x,即ln x 0=-x 0,∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).2.已知f (x )=e x -ax 2,若f (x )≥x +(1-x )·e x 在[0,+∞)恒成立,求实数a 的取值范围. 【解】 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x , 即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0, ∴h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,a 的取值范围为(-∞,1].3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 【解】 (1)因为f ′(x )=a -e x ,x ∈R . 当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞). (2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x ,则ax ≤ln x x ,即a ≤ln xx 2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max , 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e . 4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解】 f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0), 易知当x ∈(0,+∞)时,ln x ≤x -1, 则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1). 当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意.当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减, f (x )≤f (1)=0,显然不合题意,a ≤0舍去.当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x -1)-⎝⎛⎭⎫1-1x =⎝⎛⎭⎫x -1x (2ax -1), ∵0<a <12,∴12a>1.当x ∈⎣⎡⎦⎤1,12a 时,f ′(x )≤0恒成立, ∴f (x )在⎣⎡⎭⎫1,12a 上单调递减, ∴当x ∈⎣⎡⎭⎫1,12a 时,f (x )≤f (1)=0, 显然不合题意,0<a <12舍去.综上可得,a ∈⎣⎡⎭⎫12,+∞.5.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.【解】 因为f (x )为偶函数,且当x ≥0时,f (x )=2e x , 所以f (x )=2e |x |,对于x ∈[1,k ],由f (x +m )≤2e x 得2e |x+m |≤2e x ,两边取以e 为底的对数得|x +m |≤ln x +1,所以-x -ln x -1≤m ≤-x +ln x +1在[1,k ]上恒成立, 设g (x )=-x +ln x +1(x ∈[1,k ]), 则g ′(x )=-1+1x =1-xx ≤0,所以g (x )在[1,k ]上单调递减, 所以g (x )min =g (k )=-k +ln k +1,设h (x )=-x -ln x -1(x ∈[1,k ]),易知h (x )在[1,k ]上单调递减, 所以h (x )max =h (1)=-2,故-2≤m ≤-k +ln k +1, 若实数m 存在,则必有-k +ln k ≥-3,又k >1,且k 为整数,所以k =2满足要求,故整数k 的最小值为2. 7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解】 f ′(x )=(x )′ln x +x ·1x =x ln x +22x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.8.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数. 【解】 (1)f ′(x )=-1x 2+e x e =x 2e x -ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞,画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.9.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.【解】 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.【解】 (1)∵g (x )=x +e 2x ≥2e 2=2e(x >0),当且仅当x =e 2x 时取等号,∴当x =e 时,g (x )有最小值2e.∴要使g (x )=m 有零点,只需m ≥2e. 即当m ∈[2e ,+∞)时,g (x )=m 有零点.(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图象有两个不同的交点. 如图,作出函数g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1 =-(x -e)2+m -1+e 2, ∴其对称轴为x =e , f (x )max =m -1+e 2.若函数f (x )与g (x )的图象有两个交点,则m -1+e 2>2e ,即当m >-e 2+2e +1时,g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).11.已知函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解】 当x 从0的右侧趋近于0时,f (x )→+∞, 所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能. 故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,即只需当x ∈⎝⎛⎭⎫0,14时,a >3-2ln xx -1恒成立.令h (x )=3-2ln xx -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x-2x -12,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14, 则m ′(x )=-21-x x 2<0,于是在⎝⎛⎭⎫0,14上, m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0, 所以h ′(x )>0在⎝⎛⎭⎫0,14上恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数, 所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2, 所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.高考文科数学一轮复习大题篇----概率统计题型一 概率与统计的综合应用【例】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 【解】 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000;若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【思维升华】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【训练】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【解】(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030. (2)根据频率分布直方图,可知成绩不低于60分的频率为1-10×(0.005+0.010)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,故所求概率P (M )=715.题型二 概率与统计案例的综合应用【例】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:P (χ2≥k 0) 0.100 0.050 0.010 k 02.7063.8416.635χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)将2×2列联表中数据代入公式计算,得 χ2=100×60×10-20×10270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)设这5名数学系的学生喜欢甜品的为a 1,a 2,不喜欢甜品的为b 1,b 2,b 3,从5名数学系的学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. Ω由10个基本事件组成,且这些基本事件出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)},A 由7个基本事件组成,因而P (A )=710.【思维升华】 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.【训练】某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(1)分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;(2)根据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计 男生 女生 合计附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2,其中n =a +b +c +d . P (χ2≥k 0)0.500 0.400 0.250 0.150 0.100 k 0 0.455 0.708 1.323 2.072 2.706 P (χ2≥k 0) 0.050 0.025 0.010 0.005 0.001 k 03.8415.0246.6357.87910.828【解】 (1)由条件知,抽取的男生有105人,女生有180-105=75(人).男生选择社会科学类的频率为45105=37,女生选择社会科学类的频率为4575=35.由题意,知男生总数为1 200×105180=700,女生总数为1 200×75180=500,所以估计选择社会科学类的人数为 700×37+500×35=600.(2)根据统计数据,可得列联表如下:选择自然科学类选择社会科学类总计 男生 60 45 105 女生 30 45 75 总计9090180则χ2=180×60×45-30×452105×75×90×90=367≈5.142 9>5.024, 所以在犯错误的概率不超过0.025的前提下能认为科类的选择与性别有关.专题突破训练1.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P (χ2≥k 0) 0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)由已知得,样本中有25周岁以上(含25周岁)组工人60名,25周岁以下组工人40名.所以样本中日平均生产件数不足60的工人中,25周岁以上(含25周岁)组工人有60×0.005×10=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.005×10=2(人),记为B 1,B 2. 从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上(含25周岁)组”中的生产能手有60×(0.02+0.005)×10=15(人),“25周岁以下组”中的生产能手有40×(0.032 5+0.005)×10=15(人), 据此可得2×2列联表如下:生产能手 非生产能手总计 25周岁以上(含25周岁)组 15 45 60 25周岁以下组15 25 40 总计3070100所以得χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2=100×15×25-15×45260×40×30×70=2514≈1.79. 因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.2.某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东、西部各5个城市,得到观看该节目的人数的统计数据(单位:千人),并画出如下茎叶图,其中一个数字被污损.(1)求东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数的概率;(2)该节目的播出极大地激发了观众对成语知识学习积累的热情,现从观看节目的观众中随机统计了4位观众学习成语知识的周均时间(单位:小时)与年龄(单位:岁),并绘制了如下对照表:根据表中数据,试求回归直线方程y ^=b ^x +a ^,并预测年龄为55岁的观众周均学习成语知识的时间. 参考公式:b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^ =y -b ^x .【解】 (1)设被污损的数字为a ,则a 有10种情况. 由88+89+90+91+92>83+83+87+90+a +99, 得a <8,∴有8种情况使得东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数, 所求概率为810=45.(2)由表中数据,计算得x =35,y =3.5,b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=525-4×35×3.55 400-4×352=0.07,a ^=y -b ^ x =3.5-0.07×35=1.05. ∴y ^=0.07x +1.05.当x =55时,y ^=4.9.即预测年龄为55岁的观众周均学习成语知识的时间为4.9小时.3.长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n 张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案. 方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免,利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).【解】 (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F ,设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab ,ac ,ad ,aE ,aF ,bc ,bd ,bE ,bF ,cd ,cE ,cF ,dE ,dF ,EF ,共15种.其中,2张小票均来自[400,500)元区间的有ab ,ac ,ad ,bc ,bd ,cd ,共6种, ∴P (A )=25.(2)方法一 由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元).方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元).∵220<228,∴方案一的优惠力度更大.方法二由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元).方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).∵55>47,∴方案一的优惠力度更大.4.某校高三期中考试后,数学教师对本次全部数学成绩按1∶30进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a,b的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值大于10的概率.【解】(1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人,∴a=0.1,b=3.成绩在[70,90)内的样本数为0.25×20=5.∴成绩在[90,110)内的样本数为20-2-5-5=8.估计这次考试全校高三学生数学成绩的及格率为P=1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差的绝对值大于10的结果为(100,116),(100,118),(100,128),(102,116),(102,118),(102,128),(106,118),(106,128),(106,118),(106,128),(116,128),共11个,∴P(A)=1121.0高考文科数学一轮复习大题篇----立体几何题型一平行、垂直关系的证明【例】如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.【证明】(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵AD⊂平面ABC,∴AD⊥CC1.又∵AD⊥DE,DE∩CC1=E,DE,CC1⊂平面BCC1B1,∴AD⊥平面BCC1B1.∵AD⊂平面ADE,∴平面ADE⊥平面BCC1B1.(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1.∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1.又∵B1C1∩CC1=C1,B1C1,CC1⊂平面BCC1B1,∴A1F⊥平面BCC1B1.又∵AD⊥平面BCC1B1,∴A1F∥AD.∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.【思维升华】(1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.【训练】】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A ⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.【证明】(1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面P AD,又PD ⊂平面P AD , 所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以PD ⊥平面P AB . 又PD ⊂平面PCD , 所以平面P AB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC ,因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形, 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .题型二 立体几何中的计算问题【例】如图,在多面体ABCA 1B 1C 1中,四边形ABB 1A 1是正方形,△A 1CB 是等边三角形,AC =AB =1,B 1C 1∥BC ,BC =2B 1C 1.(1)求证:AB 1∥平面A 1C 1C ; (2)求多面体ABCA 1B 1C 1的体积.(1)【证明】 如图,取BC 的中点D ,连接AD ,B 1D ,C 1D , ∵B 1C 1∥BC ,BC =2B 1C 1,∴BD ∥B 1C 1,BD =B 1C 1,CD ∥B 1C 1,CD =B 1C 1, ∴四边形BDC 1B 1,CDB 1C 1是平行四边形, ∴C 1D ∥B 1B ,C 1D =B 1B ,CC 1∥B 1D , 又B 1D ⊄平面A 1C 1C ,C 1C ⊂平面A 1C 1C , ∴B 1D ∥平面A 1C 1C .在正方形ABB 1A 1中,BB 1∥AA 1,BB 1=AA 1, ∴C 1D ∥AA 1,C 1D =AA 1, ∴四边形ADC 1A 1为平行四边形, ∴AD ∥A 1C 1.又AD ⊄平面A 1C 1C ,A 1C 1⊂平面A 1C 1C , ∴AD ∥平面A 1C 1C ,∵B 1D ∩AD =D ,B 1D ,AD ⊂平面ADB 1, ∴平面ADB 1∥平面A 1C 1C ,又AB 1⊂平面ADB 1,∴AB 1∥平面A 1C 1C . (2)【解】 在正方形ABB 1A 1中,A 1B =2, ∵△A 1BC 是等边三角形,∴A 1C =BC =2,∴AC 2+AA 21=A 1C 2,AB 2+AC 2=BC 2,∴AA 1⊥AC ,AC ⊥AB .又AA 1⊥AB ,∴AA 1⊥平面ABC , ∴AA 1⊥CD ,易得CD ⊥AD ,又AD ∩AA 1=A ,∴CD ⊥平面ADC 1A 1.易知多面体ABCA 1B 1C 1是由直三棱柱ABD -A 1B 1C 1和四棱锥C -ADC 1A 1组成的, 直三棱柱ABD -A 1B 1C 1的体积为12×⎝⎛⎭⎫12×1×1×1=14,四棱锥C -ADC 1A 1的体积为13×22×1×22=16,∴多面体ABCA 1B 1C 1的体积为14+16=512.【思维升华】 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练】如图,已知多面体P ABCDE 的底面ABCD 是边长为2的菱形,P A ⊥底面ABCD ,ED ∥P A ,且P A =2ED =2.(1)证明:平面P AC ⊥平面PCE ;(2)若∠ABC =60°,求三棱锥P -ACE 的体积. (1)【证明】 如图,连接BD ,交AC 于点O , 设PC 的中点为F ,连接OF ,EF .易知O 为AC 的中点, 所以OF ∥P A ,且OF =12P A .因为DE ∥P A ,且DE =12P A ,所以OF ∥DE ,且OF =DE , 所以四边形OFED 为平行四边形, 所以OD ∥EF ,即BD ∥EF .因为P A⊥平面ABCD,BD⊂平面ABCD,所以P A⊥BD.因为四边形ABCD是菱形,所以BD⊥AC.因为P A∩AC=A,P A,AC⊂平面P AC,所以BD⊥平面P AC.因为BD∥EF,所以EF⊥平面P AC.因为EF⊂平面PCE,所以平面P AC⊥平面PCE.(2)【解】因为∠ABC=60°,所以△ABC是等边三角形,所以AC=2.又P A⊥平面ABCD,AC⊂平面ABCD,所以P A⊥AC.所以S△P AC=12P A×AC=2.因为EF⊥平面P AC,所以EF是三棱锥E-P AC的高.易知EF=DO=BO=3,所以三棱锥P-ACE的体积V三棱锥P-ACE=V三棱锥E-P AC=13S△P AC×EF=13×2×3=233.题型三立体几何中的探索性问题【例】如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四边形BDEF 为正方形,且平面BDEF⊥平面ABCD.(1)求证:DF⊥CE;(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG∥平面EFC?并说明理由.(1)【证明】连接EB.∵在梯形ABCD中,∠BAD=∠ADC=90°,AB=AD=1,DC=2,∴BD=2,BC=2,∴BD2+BC2=CD2,∴BC ⊥BD .又∵平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,BC ⊂平面ABCD , ∴BC ⊥平面BDEF ,∴BC ⊥DF .又∵正方形BDEF 中,DF ⊥EB ,且EB ,BC ⊂平面BCE ,EB ∩BC =B , ∴DF ⊥平面BCE .又∵CE ⊂平面BCE ,∴DF ⊥CE .(2)【解】 在棱AE 上存在点G ,使得平面OBG ∥平面EFC ,且AG GE =12.理由如下:连接OG ,BG ,在梯形ABCD 中,∠BAD =∠ADC =90°,AB =1,DC =2, ∴AB ∥DC ,∴AO OC =AB DC =12.又∵AG GE =12,∴OG ∥CE .又∵正方形BDEF 中,EF ∥OB ,且OB ,OG ⊄平面EFC ,EF ,CE ⊂平面EFC , ∴OB ∥平面EFC ,OG ∥平面EFC . 又∵OB ∩OG =O ,且OB ,OG ⊂平面OBG , ∴平面OBG ∥平面EFC .【思维升华】 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.【训练】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考函数大题分类归纳一、函数大题1.(本小题满分13分)2011设()nx mx x x f ++=2331.(1)如果()()32--'=x x f x g 在2-=x 处取得最小值5-,求()x f 的解析式; (2)如果()+∈<+N n m n m ,10,()x f 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间()b a ,的长度为a b -) 解:(1)已知()nx mx x x f ++=2331,()n mx x x f ++=∴22' 又()()()322322'-+-+=--=n x m x x x f x g 在2-=x 处取极值, 则()()()3022222'=⇒=-+-=-m m g ,又在2-=x 处取最小值-5. 则()()()25342222=⇒-=-+⨯-+-=-n n g ()x x x x f 233123++=∴ (2)要使()nx mx x x f ++=2331单调递减,则 ()022'<++=∴n mx x x f 又递减区间长度是正整数,所以()022'=++=n mx x x f 两根设做a ,b 。

即有: b-a 为区间长度。

又()()+∈-=-=-+=-N n m n m n m ab b a a b ,2444222又b-a 为正整数,且m+n<10,所以m=2,n=3或,5,3==n m 符合。

2.(本小题满分12分)2010设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由.解: 2()186(2)2f x x a x a '=+++(1)由已知有12()()0f x f x ''==,从而122118ax x ==,所以9a =; (2)由2236(2)418236(4)0a a a ∆=+-⨯⨯=+>, 所以不存在实数a ,使得()f x 是R 上的单调函数. 3.(本小题满分12分)2009设函数329()62f x x x x a=-+-(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围解:(1) '2()3963(1)(2)f x x x x x =-+=--,因为(,)x ∈-∞+∞,'()f x m ≥, 即239(6)0x x m -+-≥恒成立, 所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34-(2) 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;所以 当1x =时,()f x 取极大值5(1)2f a =-;当2x =时,()f x 取极小值 (2)2f a =-;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >.4.已知函数4322411()(0)43f x x ax a x a a =+-+> 2008 (1)求函数()y f x =的单调区间;(2)若函数()y f x =的图像与直线1y =恰有两个交点,求a 的取值范围.解:(1)因为322()2(2)()f x x ax a x x x a x a '=+-=+- 令()0f x '=得1232,0,x a x x a =-== 由0a >时,()f x '在()0f x '=根的左右的符号如下表所示所以()f x 的递增区间为(2,0)(,)a a -+∞与;()f x 的递减区间为(2)(0)a a -∞-,与, (2)由(1)得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值 要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或41a <,即a >01a ≤<. 5.(本小题满分12分)2007已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+. 解:(1)因为01c <<,所以2c c <;由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<;当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 6.(本小题满分12分) 2006已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a 、b 的值及函数()f x 的单调区间;(2)若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.解:所以函数()f x 的递增区间为(,)3-∞-与(1,)+∞; 递减区间为(,1)3-.7.(本小题满分12分)2005已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.二、三角函数1.(本小题满分12分)2011在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=. (1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=正弦定理得: 及:A A A sin cos sin 3=所以31cos =A 。

(2)由332cos cos =+C B 332cos )cos(=+--C C A π展开易得: 36sin 3sin 2cos =⇒=+C C C 正弦定理:23sin sin =⇒=c C c A a 2.(本小题满分12分)2010已知函数2()(1cot )sin 2sin()sin()44f x x x x x ππ=+-+-.(1)若tan 2α=,求()f α;(2)若[,]122x ππ∈,求()f x 的取值范围.解:(1)2()sin sin cos cos 2f x x x x x =++1cos 21sin 2cos 222x x x -=++由tan 2α=得2222sin cos 2tan 4sin 2sin cos 1tan 5ααααααα===++, 222222cos sin 1tan 3cos 2sin cos 1tan 5ααααααα--===-++,所以3()5f α=. (2)由(1)得111()(sin 2cos 2))22242f x x x x π=++=++ 由[,]122x ππ∈得552[,]4124x πππ+∈,所以sin(2)[4x π+∈从而11())[0,2422f x x π=++∈. 3.(本小题满分12分)2009在△ABC 中,,,A B C 所对的边分别为,,a b c ,6A π=,(12c b =.(1)求C ;(2)若1CB CA ⋅=a ,b ,c .解:(1)由(12c b += 得1sin 2sin b Bc C =+=则有55sin()sincos cos sin 666sin sin C C CCC ππππ---==11cot 22C =+得cot 1C = 即4C π=.(2)由1CB CA ⋅=推出cos 1ab C =+;而4C π=,即得132ab =+则有12(12sin sin c b a c A C=⎪⎪⎪+=⎨⎪⎪=⎪⎩ 解得12a b c ⎧=⎪⎪=+⎨⎪=⎪⎩4.(本小题满分12分) 2008已知1tan 3α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值;(2)求函数())cos()f x x x αβ=-++的最大值.解:(1)由cos β=(0,)βπ∈ 得tan 2β=,sin β=于是tan()αβ+=12tan tan 3121tan tan 13αβαβ-++==-+.(2)因为1tan ,(0,)3ααπ=-∈所以sin αα== ()f x5.(本小题满分12分)2007如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =π[π)2x ∈,时,求0x 的值. 解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===.(2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =. 所以点P的坐标为0π22x ⎛- ⎝.又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 46x ⎛⎫-= ⎪⎝⎭ 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.6.(本小题满分12分) 2006在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知sin A = (1)求22tan sin 22B C A++的值; (2)若2,ABC a S ∆==b 的值。

相关文档
最新文档