2014年秋季学期新版新人教版九年级数学上册第二十一章、一元二次方程单元复习卷1

合集下载

2014秋季新人教版九年级上数学第二十一章一元二次方程导学案【定稿】

2014秋季新人教版九年级上数学第二十一章一元二次方程导学案【定稿】

x 22.1 一元二次方程(1)学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重点难点:重点:一元二次方程的概念及其一般形式、和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.一、一元二次方程定义:问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ②问题 3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。

秋九年级数学上册 第21章 一元二次方程单元复习整合 (新版)新人教版-(新版)新人教版初中九年级上

秋九年级数学上册 第21章 一元二次方程单元复习整合 (新版)新人教版-(新版)新人教版初中九年级上

一元二次方程答知识专题复习专题一巧用一元二次方程及根的定义探究引路【例1】 若0=x 是关于x 的方程0823)2(22=-+++-m m x x m 的解,某某数m 的值,并讨论此方程解的情况.思路图示 0=x 为方程的解 0822=-+m m 求出m 的值 代入原方程验证.答案因0=x 是此方程的根,所以代入的0822=-+m m 解得21=m ,42-=m .当2=m 时,此方程是一元一次方程03=x ,所以0=x . 当4-=m 时,此方程是一元二次方程0362=+-x x , 解得01=x ,212=x . 归纳拓展求一元二次方程中的某一个字母的取值X 围时,将方程先化为一般式(有时已经是一般式,就不用转化),再根据一元二次方程的定义,使这个字母或含这个字母的代数式的值同时满足两条:二次项的系数不等于0且未知数的最高次数是2.或者已知一元二次方程的根求方程中某个字母的值时,所求出的字母的值也应满足两条:二次项的系数不等于0且未知数的最高次数是2.否则,应舍去不符合以上两条的这个字母的值.【迁移应用1】已知0=x 是一元二次方程023)2(22=-++-m x x m 的根,求m 的值.答案 ∵0=x 是方程的根,∴02030)2(2=-+⨯+⨯-m m . ∴022=-m解得2±=m 又∵02≠-m ∴2≠m ∴2-=m .专题二 一元二次方程的解法技巧与运用 探究引路【例2】解关于x 的方程02)1(2=+--a ax x a解析 此方程没指明是什么方程,也没指明a 的取值X 围,因此应分类讨论,分别求解. 答案 (1)当1=a 时,原方程是一元一次方程012=+-x , ∴21=x . (2)当1≠a 时,∵a a a a ac b 4)1(4)2(422=---=-=△. ①当0<a 时,原方程无实数解. ②当0=a 时,021==x x . ③当0>a 且1≠a 时,1121--=-+=a aa x a a a x ,.【例3】 解方程:(1)04424=+-x x ; (2)08736=--x x解析 “换元法”,可使高次方程化为二次方程达到逐步降次求解的目的. 答案 (1)设y x =2,则原方程可化为0442=+-y y∴221==y y .∴22=x ,2±=x ,即2221-==x x ,.(2)设y x =2,则原方程可化为0872=--y y , ∴11-=y ,82=y ,∴13-=x 或83=x∴2121=-=x x , 归纳拓展在解一元二次方程时,要观察方程的结构特点,在没给出解法要求时,可选取简单解法.要先看是否能用因式分解法或直接开平方法,否则就用公式法,一般不用配方法.【迁移应用2】 解方程04)1(5)1(222=+---x x . 答案 设y x =-12,则原方程可化为0452=+-y y ,解得4121==y y ,. 当112=-x 时,52=x ,∴5±=x ,∴21=x ,22-=x .当112-=-x 时,22=x ,∴2±=x ,∴51=x ,52-=x .∴原方程的解为:21=x ,22-=x ,53=x ,54-=x .专题三一元二次方程在日常生活中的应用 探究引路【例4】润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油为36千克。

人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。

初中数学人教版九年级上册第二十一章 一元二次方程单元复习-章节测试习题(6)

初中数学人教版九年级上册第二十一章 一元二次方程单元复习-章节测试习题(6)

章节测试题1.【题文】已知关于x的一元二次方程(a+c)x2-2bx+(a-c)=0,其中a、b、c 分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【答案】见解答.【分析】(1)把x=1代入方程得a+c-2b+a-c=0,整理得a=b,从而可判断三角形的形状;(2)根据判别式的意义得△=(-2b)2-4(a+c)(a-c)=0,即b2+c2=a2,然后根据勾股定理可判断三角形的形状;(3)利用等边三角形的性质得a=b=c,方程化为x2-x=0,然后利用因式分解法解方程.【解答】解:(1)把x=1代入方程得a+c-2b+a-c=0,则a=b,∴△ABC为等腰三角形;(2)根据题意得△=(-2b)2-4(a+c)(a-c)=0,即b2+c2=a2,∴△ABC为直角三角形;(3)∵△ABC为等边三角形,∴a=b=c,∴方程化为x2-x=0,解得x1=0,x2=1.2.【答题】将一元二次方程化为一般式后,二次项系数和一次项系数分别为()A. 3,-6B. 3,6C. 3,1D.【答案】A【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6.选A.3.【答题】方程(x+1)2=0的根是()A. x1=x2=1B. x1=x2=-1C. x1=-1,x2=1D. 无实根【答案】B【分析】根据平方根的意义,利用直接开平方法即可进行求解.【解答】(x+1)2=0,∴x+1=0,∴x1=x2=-1,选B.4.【答题】解一元二次方程x2+4x-1=0,配方正确的是()A. B.C. D.【答案】C【分析】根据一元二次方程的配方法即可求出答案.【解答】∵x2+4x-1=0,∴x2+4x+4=5,∴(x+2)2=5,选C.5.【答题】关于x的方程x2-3x+k=0的一个根是2,则常数k的值为()A. 1B. 2C. -1D. -2【答案】B【分析】根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.【解答】把x=2代入得,4-6+k=0,解得k=2.故答案为:B.6.【答题】定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是().A. B. C. D.【答案】A【分析】∵方程有两个相等的实数根,∴根的判别式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化简即可得到a与c的关系.【解答】∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根∴△=b2−4ac=0,又a+b+c=0,即b=−a−c,代入b2−4ac=0得(−a−c)2−4ac=0,即(a+c)2−4ac=a2+2ac+c2−4ac=a2−2ac+c2=(a−c)2=0,∴a=c选A7.【答题】若关于的一元二次方程有一个根为0,则的值()A. 0B. 1或2C. 1D. 2【答案】D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【解答】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,选D.8.【答题】若关于x的一元二次方程(a+1)x2+x+a2-1=0的一个解是x=0,则a的值为()A. 1B. -1C. ±1D. 0【答案】A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a+1)x2+x+a2-1=0为一元二次方程,即.【解答】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0为一元二次方程即.综上所述a=1.选A.9.【答题】将一元二次方程用配方法化成的形式为()A. B.C. D.【答案】A【分析】先移项得,x2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k的形式.【解答】移项,得x2-2x=3,配方,得x2-2x+1=3+1,即(x-1)2=4.选A.10.【答题】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A. 2根小分支B. 3根小分支C. 4根小分支D. 5根小分支【答案】B【分析】先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可.【解答】设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B.11.【答题】关于x的方程(m+n)x2+-(m-n)x=0(m+n≠0)的二次项系数与一次项系数的和为,差为2,则常数项为()A. B. C. D.【答案】A【分析】二次项系数与一次项系数的和为,差为2列方程组求出m、n的值,然后可求出常数项.【解答】由题意得,解之得,∴.选A.12.【答题】若代数式的值是,则的值为()A. 7或-1B. 1或-5C. -1或-5D. 不能确定【答案】A【分析】首先把方程化为一般形式x2-6x+5-12=0,即x2-6x-7=0,用因式分解法求解.【解答】∴解得:选A.13.【答题】如果关于x的一元二次方程(m-3)x2+3x+m2-9=0有一个解是0,那么m的值是()A. -3B. 3C. ±3D. 0或-3【答案】A【分析】把X=0代入方程(m-3)x+3x+m-9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【解答】把x=0代入方程(m-3)x+3x +m-9=0中得:m-9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,选A14.【答题】若方程是关于的一元二次方程,则的取值范围是______.【答案】m≠1【分析】将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.【解答】原方程可化为:,∵方程是关于的一元二次方程,∴,即,故答案为:.15.【答题】已知是一元二次方程的一根,则该方程的另一个根为______.【答案】-2【分析】由于该方程的一次项系数是未知数,∴求方程的另一解根据根与系数的关系进行计算即可.【解答】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.16.【答题】在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的解为______.【答案】3或-7【分析】本题考查了新定义、一元二次方程的解法.【解答】据题意得,∵(x+2)*5=(x+2)2-52∴x2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.17.【答题】若方程的两根,则的值为______.【答案】5【分析】根据根与系数的关系求出,代入即可求解.【解答】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.18.【题文】已知关于的方程.(1)为何值时,此方程是一元一次方程?(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【答案】(1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;【分析】(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m的值;(2)根据一元二次方程的定义可得≠0,可得m的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.【解答】解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m.19.【题文】选择适当方法解下列方程:(1)(用配方法);(2);(3);(4).【答案】(1),;(2),;(3),;(4),.【分析】本题考查了一元二次方程的解法.【解答】解:,移项得:,配方得:,即,∴,∴,;,移项,得,,或,,;,∵,,,∴,∴,∴,;.,,或,,.20.【题文】已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.【答案】(1)见解答;(2),方程的另一个根是.【分析】(1)由方程的各系数结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m的一元一次方程,解方程求出m的值,将其代入原方程得出关于x的一元二次方程,结合根与系数的关系得出方程的另一个解.【解答】解:(1)证明:∵在关于x的方程中,,∴不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0 解得:,∴原方程为:∴∵∴∴,方程的另一个根是.。

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。

人教版九年级数学上册第二十一章一元二次方程专题复习

人教版九年级数学上册第二十一章一元二次方程专题复习

一元二次方程复习(1)一、复习目标:1.能说出一元二次方程的概念。

2会用直接开平方法、配方法、公式法、因式分解法解简单的一元二次方程。

3.能由已知一元二次方程的一根去求另一根.4.会用根的判别式判断一元二次方程的根的情况5.会用一元二次方程根与系数的关系解决有关问题.二、知识回顾,展示交流(疏理知识点)1、一元二次方程的概念 ,一般形式 。

2、一元二次方程的解法:(1) (2) (3) (4)3、一元二次方程 20(0)ax bx c a ++=≠根的判别式:△= 当 △>0时,方程有 实数当△=0时,方程有 实数根当△<0时,方程有 实数根;4、根与系数的关系如果一元二次方程20(0)ax bx c a ++=≠有两个实数根12,x x ,那么1212.x x x x += 常见式子的变形:222121212()2x x x x x x +=+-; 12121211x x x x x x ++= 三、基础训练考点一、一元二次方程的概念1、下列方程中,是关于x 的一元二次方程的是 ( ).A .3(x +1)2=2(x +1)B .211x x +-2=0 C .ax 2+bx +c =0D .X 2+2x =x 2-1 考点二:一元二次方程根的概念2. 如果在-1是方程x 2+mx -1=0的一个根,那么m 的值为( )A .-2B .-3C .0D .2考点三:一元二次方程的解法。

3. 方程2(3)5(3)x x x -=-的解是( )12553 3, 322A xB xC x xD x ⋅=⋅=⋅==⋅=-4、解下列方程(1)2)32(-x -25=0 (2)x 2+2x-3=0(3)2x 2-7x-2=0 (4)3x (2x+1)=4x+2考点四:一元二次方程根的判别式5、 当_________m 时,方程032)1(2=+++-m mx x m 有两个实数根;变式:当_________m 时,方程032)1(2=+++-m mx xm 有实数根考点五:一元二次方程根与系数的关系 6、方程0132=+-x x 的两根是21,x x ;则:=+2111x x ,=+2221x x 四、拓展延伸7、关于x 的一元二次方程x 2+kx+4k 2-3=0的两个实数根分别是x 1、x 2, 且满足x 1+x 2=x 1x 2,求k 的值8、(2014湖北十堰)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值五、小结反思。

最新人教版九年级数学上册第二十一章 《一元二次方程》本章整合

最新人教版九年级数学上册第二十一章 《一元二次方程》本章整合

本章整合知识建构⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⇔<-⇔=-⇔>-⎪⎪⎩⎪⎪⎨⎧-±-=≠=++题列一元二次方程解应用方程列实数根根方程有两个相等的实数数根方程有两个不相等的实根的判别式因式分解法公式法配方法一元一次方程的解法一般形成次的整式方框次为含有一个未知数的最高定义一元二次方程04040424:)0(0:2:22222ac b ac b ac b a ac b b x a c bx ax 数学趣闻一元高次方程的求根公式与数学家我们知道:一元二次方程ax 2+bx+c=0可用一元二次方程公式来求得解,这个公式早在公元9世纪已由中亚细亚的阿尔·花拉子模给出.一元三次方程ax 3+bx 2+cx+d=0有求根公式吗?有.一元三次方程是1504年意大利数学家巴巧利引起的,他说:“x 3+mx=n ,x 3+n=mx 之不可解,正像化圆为方问题一样.”谁知此问题提出不久,数学家费罗就解出来了,他将方法透露给自己的学生菲俄.1539年,塔尔塔利亚被卡尔丹的至诚之心所动,就把方法传授给他.卡尔丹没有遵守自己的诺言,而是写成一本书,1545年在纽伦堡出版发行.在书中,卡尔丹公布了一元三次方程的解法,并声称是自己的发明.于是人们就将一元三次方程的求根公式称为“卡尔丹公式”. 一元四次方程ax 4+bx 3+cx 2+dx+e=0的求根公式由卡当的学生弗拉利找到了.一元三次、四次方程求根公式找到后,人们又在努力寻找一元五次方程求根公式.一元五次及五次以上方程可能没有公式解(求根公式)?这一点被年轻的挪威数学家阿贝尔于1824年所证实.换句话说,他证明了:n≥5时,一元n 次方 程没有公式解(即无求根公式).而代数方程可解性问题的完满解决应归功于法国数学奇才伽罗华,他的成果被后人称之为伽罗华理论.当伽罗华17岁时,就着手研究数学中最困难的n 次方程求解问题.伽罗华在前人研究成果的基础上,利用群论的方法,从系统结构的整体上彻底解决了根式解的难题.伽罗华的重大创作在生前始终没有机会发表.直到1846年,也就是他死后14年,法国数学家刘维尔才着手整理后,首次发表于刘维尔主编的《数学杂志》上,自此,伽罗华的重大贡献才逐渐为人们所了解.。

九年级数学上册第二十一章一元二次方程知识点总结(超全)(带答案)

九年级数学上册第二十一章一元二次方程知识点总结(超全)(带答案)

九年级数学上册第二十一章一元二次方程知识点总结(超全)单选题1、一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=15答案:C分析:先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.解:∵x2-8x-1=0,∴x2-8x=1,∴x2-8x+16=17,∴(x-4)2=17.故选C.小提示:本题考查了解一元二次方程—配方法,熟练掌握当二次项系数为1时,配一次项系数一半的平方是关键.2、关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.−1B.−4C.−4或1D.−1或4答案:A分析:通过根与系数之间的关系得到α+β=−2m+2,αβ=m2−m,由α2+β2=(α+β)2−2αβ可求出m的值,通过方程有实数根可得到[2(m−1)]2−4(m2−m)≥0,从而得到m的取值范围,确定m的值.解:∵方程x2+2(m−1)x+m2−m=0有两个实数根α,β,∴α+β=−2(m−1)=−2m+2,1=m2−m,αβ=m2−m1∵α2+β2=(α+β)2−2αβ,α2+β2=12∴(−2m+2)2−2(m2−m)=12,整理得,m2−3m−4=0,解得,m1=−1,m2=4,若使x2+2(m−1)x+m2−m=0有实数根,则[2(m−1)]2−4(m2−m)≥0,解得,m≤1,所以m=−1,故选:A.小提示:本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.3、关于x的方程2x2−mx−3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定答案:A分析:根据根的判别式的判断方程根的数量即可.解:△=(−m)2−4×2×(−3)=m2+24>0,故方程有两个不相等的实数根,故选:A.小提示:本题考查根据一元二次方程的根的判别式判断一元二次方程的根的数量,能够熟练应用根的判别式是解决本题的关键.4、一元二次方程2x2+x−1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A分析:根据Δ=b2−4ac即可判断.解:∵a=2,b=1,c=−1,∴Δ=b2−4ac=12−4×2×(−1)=1+8=9>0,∴一元二次方程2x2+x−1=0有两个不相等的实数根.故选:A.小提示:本题主要考查利用判别式来判断一元二次方程根的个数:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根,掌握利用判别式判断方程根的方法是解题的关键.5、设x1,x2是关于x的一元二次方程x2+x+n=mx的两个实数根.若x1<x2<0,则()A.{m>1,n>0B.{m>1,n<0C.{m<1,n>0D.{m<1,n<0答案:C分析:先将一元二次方程化成一般式,再根据根与系数关系得出x1+x2=-(1-m)=m-1,x1x2=n,,然后根据x1< x2<0,得出m-1<0,n>0,即可求解.解:∵x2+x+n=mx,∴x2+(1-m)x+n=0,∵x1,x2是关于x的一元二次方程x2+x+n=mx的两个实数根.∴x1+x2=-(1-m)=m-1,x1x2=n,∵x1<x2<0,∴x1+x2<0,x1x2>0,∴m-1<0,n>0,∴m<1,n>0,故选:C.小提示:本题考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系“x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0),则x1+x2=-ba ,x1x2=ca”是解题的关键.6、已知x=a是一元二次方程x2−2x−3=0的解,则代数式2a2−4a的值为()A.3B.6C.﹣3D.﹣6答案:B分析:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,再变形,得a2-2a=3,然后方程两边同乘以2,即可求解.解:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,∴a2-2a=3,∴2a2-4a=6,故选:B.小提示:本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.7、若x=−2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是()A.0,−2B.0,0C.−2,−2D.−2,0答案:B分析:直接把x=−2代入方程,可求出m的值,再解方程,即可求出另一个根.解:根据题意,∵x=−2是一元二次方程x2+2x+m=0的一个根,把x=−2代入x2+2x+m=0,则(−2)2+2×(−2)+m=0,解得:m=0;∴x2+2x=0,∴x(x+2)=0,∴x1=−2,x=0,∴方程的另一个根是x=0;故选:B小提示:本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.8、某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则第天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100−2x)=1800B.(20+x)(100−2x)=18000.5×2)=1800D.x[100−2(x−20)]=1800C.x(100−x−200.5答案:C分析:根据销售额=售价乘以销售量列方程,求解即可;×2)kg,依题意得:解:设销售单价应为x元/kg,则销售量为(100−x−200.5×2)=1800依题意得:x(100−x−200.5故选:C小提示:此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程9、方程x2−1=0的解是()A.x1=x2=1B.x1=0,x2=1C.x1=1,x2=−1D.x1=0,x2=−1答案:C分析:先移项,再两边开平方可得解.解:由原方程可得:x2=1,两边开平方可得:x1=1,x2=−1,故选:C.小提示:本题考查一元二次方程的应用,熟练掌握一元二次方程的求解方法是解题关键.10、如图,把长40cm,宽30cm的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm(纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3B.4C.4.8D.5答案:D)cm,再根据去除阴影部分的面积为950cm2,列一元分析:观察图形可知阴影部分小长方形的长为(x+40−2x2二次方程求解即可.解:由图可得出,40×30−2x 2−2x ⋅(x +40−2x 2)=950 整理,得,x 2+20x −125=0解得,x 1=5,x 2=−25(不合题意,舍去).故选:D .小提示:本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键. 填空题11、关于x 的一元二次方程2x 2+4mx +m =0有两个不同的实数根x 1,x 2,且x 12+x 22=316,则m =__________. 答案:−18##-0.125 分析:根据根与系数的关系得到x 1+x 2=-2m ,x 1x 2=m 2,再由x 12+x 22=316变形得到(x 1+x 2)2-2x 1x 2=316,即可得到4m 2-m =316,然后解此方程即可.解:根据题意得x 1+x 2=-2m ,x 1x 2=m 2,∵x 12+x 22=316, ∴(x 1+x 2)2-2x 1x 2=316, ∴4m 2-m =316, ∴m 1=-18,m 2=38,∵Δ=16m 2-8m >0, ∴m >12或m <0时, ∴m =38不合题意,所以答案是:−18.小提示:本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a . 12、关于x 的方程(k −1)x |k|+1−x +5=0是一元二次方程,则k =________.分析:直接利用一元二次方程的定义得出最高次数为2,最高次项系数不为0进而求出即可.解:∵关于x的方程(k−1)x|k|+1−x+5=0是一元二次方程,∴{k−1≠0①|k|+1=2②由①得:k≠1,由②得:k=±1,所以k=−1.所以答案是:−1小提示:此题主要考查了一元二次方程的定义,正确把握次数与系数是解题关键.13、一元二次方程(x−2)(x+7)=0的根是_________.答案:x1=2,x2=−7分析:由两式相乘等于0,则这两个式子均有可能为0即可求解.解:由题意可知:x−2=0或x+7=0,∴x1=2或x2=−7,所以答案是:x1=2或x2=−7.小提示:本题考查一元二次方程的解法,属于基础题,计算细心即可.14、若关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,则m+n的值是___.答案:1分析:根据一元二次方程解的定义把x=1代入到mx2+nx−1=0(m≠0)进行求解即可.解:∵关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,∴m+n−1=0,∴m+n=1,所以答案是:1.小提示:本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.15、若m,n是一元二次方程x2+2x+1=0的两个实数根,则m2+4m+2n的值是______分析:先根据一元二次方程的解的定义得到m2+2m+1=0,则m2+2m=-1,根据根与系数的关系得出m+n=-2,再将其代入整理后的代数式计算即可.解:∵m是一元二次方程x2+2x+1=0的根,∴m2+2m+1=0,∴m2+2m=-1,∵m、n是一元二次方程x2+2x+1=0的两个根,∴m+n=-2,∴m2+4m+2n=m2+2m+2m+2n=-1+2×(-2)=-5.所以答案是:-5.,小提示:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-bax1x2=c.也考查了一元二次方程的解.a解答题16、某商场于今年年初以每件40元的进价购进一批商品.当商品售价为60元时,一月份销售64件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到100件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销,经调查发现,该商品每降价2元,销售量增加20件,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售,商场获利2240元?答案:(1)二、三这两个月的月平均增长率为25%(2)该店应按原售价的九折出售分析:(1)设二、三这两个月的月平均增长率为a,根据增长率公式列方程解答;(2)设商品应降价x元,根据售价乘以数量列一元二次方程解答.(1)解:设二、三这两个月的月平均增长率为a,根据题意可得:64(1+a)2=100,解得:a 1=14,a 2=−94(不合题意舍去)答:二、三这两个月的月平均增长率为25%;(2)设商品应降价x 元,根据题意,得(60−x −40)(100+x 2×20)=2240, 化简,得x 2−10x +24=0,解得x 1=4,x 2=6,∵要尽可能让利于顾客,∴每千克核桃应降价6元,此时,售价为:60−6=54(元),5460×100%=90%,答:该店应按原售价的九折出售.小提示:此题考查了一元二次方程的实际应用,正确掌握增长率问题计算公式a (1+x )2=b ,以及销售问题的计算公式是解题的关键.17、已知x 1,x 2是关于x 的一元二次方程x 2-4mx +4m 2-9=0的两实数根.(1)若这个方程有一个根为-1,求m 的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m 的取值范围;(3)已知Rt △ABC 的一边长为7,x 1,x 2恰好是此三角形的另外两边的边长,求m 的值.答案:(1)m 的值为1或-2(2)-2<m <1(3)m =√624或m =4924 分析:(1)把x =-1代入方程,列出m 的一元二次方程,求出m 的值;(2)首先用m 表示出方程的两根,然后列出m 的不等式组,求出m 的取值范围;(3)首先用m 表示出方程的两根,分直角△ABC 的斜边长为7或2m +3,根据勾股定理求出m 的值.(1)解:∵x 1,x 2是一元二次方程x 2-4mx +4m 2-9=0的两实数根,这个方程有一个根为-1,∴将x =-1代入方程x 2-4mx +4m 2-9=0,得1+4m +4m 2-9=0. 解得m =1或m =-2.∴m 的值为1或-2.(2)解:∵x 2-4mx +4m 2=9,∴(x -2m )2=9,即x -2m =±3. ∴x 1=2m +3,x 2=2m -3.∵2m +3>2m -3,∴{2m +3>−12m −3<−1解得-2<m <1.∴m 的取值范围是-2<m <1.(3)解:由(2)可知方程x 2-4mx +4m 2-9=0的两根分别为2m +3,2m -3.若Rt △ABC 的斜边长为7,则有49=(2m +3)2+(2m -3)2.解得m =±√624. ∵边长必须是正数,∴m =√624. 若斜边为2m +3,则(2m +3)2=(2m -3)2+72.解得m =4924.综上所述,m =√624或m =4924. 小提示:本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.18、解方程:(1)(2x ﹣1)2=(3﹣x )2;(2)x 2−√2x −14=0. 答案:(1)−2或43 (2)√2+√32或√2−√32分析:(1)先移项,用平方差公式进行因式分解,然后求解即可;(2)先配方,然后直接开平方计算求解即可.(1)解:(2x −1)2=(3−x )2 (2x −1)2−(3−x )2=0 (2x −1+3−x )(2x −1−3+x )=0 (x +2)(3x −4)=0∴x +2=0或3x −4=0解得x =−2或x =43∴方程的解为−2或43.(2)解:x 2−√2x −14=0 (x −√22)2=14+12∴x −√22=√32或x −√22=−√32解得x =√2+√32或x =√2−√32∴方程的解为√2+√32或√2−√32. 小提示:本题考查了解一元二次方程.解题的关键在于用适当的方式进行求解.。

最新人教版九年级数学上册第二十一章 一元二次方程 复习2

最新人教版九年级数学上册第二十一章 一元二次方程 复习2

教学反思
(1)本节课为复习课,所以首先要让学生了 解本章的知识体系,该掌握哪些知识点,所以 教学的展开都以问题的解决为中心,使教学过 程成为在老师指导下学生的一种自主探索的学 习活动过程,在探索中体现数学思想方法的渗 透、应用,巩固知识内容.
(2)本章的内容,关键是在经历和体验知识 的形成与应用过程中,体会方程是刻画现实世 界的一个有效的数学模型,一元二次方程是初 中阶段最重要的方程,它是解答数学问题的重 要工具和方法,并且对学习函数,尤其是二次 函数的综合问题起着决定性作用,它在中考试 题中占有一定的比例.
章末复习
R· 九年级上册
新课导入
通过对一元二次方程这章的学习,你掌 握了哪些知识?这些知识点间又有哪些联系 呢?如何运用这些知识解决问题呢?
(1)梳理本章的知识结构网络,回顾与复习本章知识. (2)能选择适当的方法,快速、准确地解一元二次方 程,知道一元二次方程根的判别式和一元二次方程根与系 数的关系,并能利用它们解决有关问题. (3)列一元二次方程解决实际问题. (4)进一步加深对方程思想、分类思想、转化思想 (即降次)的理解与运用. (1)一元二次方程的解法; (Байду номын сангаас)列一元二次方程解决实际问题.
5. 解下列方程: x2-2x=0; 2x+2=0. 解:分解因式得:
x(x-2)=0 x=0或x-2=0 x1=0,x2=2
x 2-
解:x2-2x+1=-1 (x-1)2=-1 方程无解
6. 某商店经销一种销售成本为每千克40元的水产 品,据市场分析,若以每千克50元销售,一个月能 售出500kg,销售单价每涨1元,月销售量就减少 10kg,针对这种水产品情况,商店想在月销售成 本不超过10000元的情况下,使得月销售利润达到 8000元,销售单价应为多少?

新版新人教版九年级数学上册第21章一元二次方程小结与复习课件

新版新人教版九年级数学上册第21章一元二次方程小结与复习课件
售出4件. (1)若公司每天的销售价为x元,则每天的销售量为
多少? (2)如果物价部门规定这种零件的销售价不得高于 每件28元,该公司想要每天获得150元的销售利润,
销售价应当为多少元?
解析 本题为销售中的利润问题,其基本本数量关系用表析分如
下:设公司每天的销售价为x元.
单件利润 销售量(件) 每星期利润(元)
解得 x1=1.8 (舍去), x2=0.2=20%. 答:平均每次下调的百分率是20%.
例8 为了响应市委政府提出的建设绿色家园的号召,我 市某单位准备将院内一个长为30m,宽为20m的长方形空 地,建成一个矩形的花园,要求在花园中修两条纵向平 行和一条弯折的小道,剩余的地方种植花草,如图所示, 要是种植花草的面积为532m2,,那么小道的宽度应为多 少米?(所有小道的进出口的宽度相等,且每段小道为 平行四边形)
考点讲练
考点一 一元二次方程的定义
例1 若关于x的方程(m-1)x2+mx-1=0是一元二次方程, 则m的取A值范围是( )
A. m≠1 B. m=1 C. m≥1 D. m≠0
解析 本题考查了一元二次方程的定义,即方程中必须保证有二 次项(二次项系数不为0),因此它的系数m-1≠0,即m≠1,故选A.
一元二次方程的解法 直接开平方法 配方法 公式法 因式分解
适用的方程类型 (x+m)2=n(n ≥ 0)
x2 + px + q = 0 (p2 - 4q ≥0) ax2 + bx +c = 0(a≠0 , b2 - 4ac≥0)
(x + m) (x + n)=0
三、一元二次方程在生活中的应用 列方程解应用题的一般步骤:
mA. 4

初中数学人教版九年级上册第二十一章 一元二次方程单元复习-章节测试习题(5)

初中数学人教版九年级上册第二十一章 一元二次方程单元复习-章节测试习题(5)

章节测试题1.【答题】若m是一元二次方程x2+x-1=0的一个根,则2m2+2m+2019的值是()A. 2018B. 2019C. 2020D. 2021【答案】D【分析】利用一元二次方程的解的定义得到m2+m=2,再把2m2+2m+2019变形为2(m2+m)+2019,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+x-1=0的一个根.∴m2+m-1=0,即m2+m=1,∴2m2+2m+2019=2(m2+m)+2019=2×1+2019=2021.选D.2.【答题】已知关于x的方程(x-1)(x-2)=m2,则该方程的解的情况是()A. 方程有两个相等的实数根B. 方程有两个不相等的实数根C. 方程没有实数根D. 无法判断【答案】B【分析】方程整理后,表示出根的判别式,判断即可.【解答】解:方程整理得:x2-3x+2-m2=0,∵△=9-4(2-m2)=4m2+1>0,∴方程有两个不相等的实数根,选B.3.【答题】已知关于x的一元二次方程(k-1)x2-2x+2=0有两个不相等的实数根,则k的取值范围值是()A. B. C. 且k≠1 D. 且k≠1【答案】C【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2-4ac=4-8(k-1)=12-8k>0,且k-1≠0,解得:且k≠1.选C.4.【答题】用配方法解下列方程时,配方错误的是()A. x2-2x-99=0化为(x-1)2=100B. x2+8x+9=0化为(x+4)2=25C. 2x2-7x-4=0化为D. 3x2-4x-2=0化为【答案】B【分析】将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【解答】解:A、x2-2x-99=0化为(x-1)2=100,故本选项正确;B、x2+8x+9=0化为(x+4)2=7,故本选项错误;C、2x2-7x-4=0化为,故本选项正确;D、3x2-4x-2=0化为,故本选项正确;选B.5.【答题】关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A. B.C. D.【答案】D【分析】利用判别式的意义得到22-4k≥0,解不等式得到k的范围,然后利用数轴表示不等式解集的方法可对各选项进行判断.【解答】解:根据题意得△=22-4k≥0,解得k≤1.选D.6.【答题】新型冠状病毒肺炎疫情防控期间,某小区在某商场对“84”消毒液进行抢购.第一天销售量达到100瓶,第二天、第三天销售量连续增长,第三天销售量达到500瓶,且第二天与第三天的增长率相同,设增长率为x,根据题意列方程为()A. 100(1+x)2=500B. 100(1+x2)=500C. 500(1-x)2=100D. 100(1+2x)=500【答案】A【分析】设增长率为x,根据第一天及第三天的销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长率为x,根据题意得:100(1+x)2=500.选A.7.【答题】已知三角形的两边长为4和5,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 11B. 12C. 11或12D. 15【答案】C【分析】求出方程的解,根据三角形的三边关系定理看看是否符合,再求出三角形的周长即可.【解答】解:x2-5x+6=0,(x-2)(x-3)=0,x-2=0,x-3=0,x1=2,x2=3,根据三角形的三边关系定理,第三边是2或3都行,①当第三边是2时,三角形的周长为2+4+5=11;②当第三边是3时,三角形的周长为3+4+5=12;选C.8.【答题】某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A. (40+x)(600-10x)=10000B. (40+x)(600+10x)=10000C. x[600-10(x-40)]=10000D. x[600+10(x-40)]=10000【答案】A【分析】根据总利润=单台利润×月销售量,即可得出关于x的一元二次方程.【解答】解:售价上涨x元后,该商场平均每月可售出(600-10x)个台灯,依题意,得:(40+x)(600-10x)=10000,选A.9.【答题】对于任意的实数x,代数式x2-5x+10的值是一个()A. 正数B. 负数C. 非负数D. 不能确定【答案】A【分析】原式配方后,利用非负数的性质判断即可.【解答】解:原式,则代数式的值是一个正数,选A.10.【答题】若代数式x2+6x+8可化为(x+h)2+k的形式,则h=______,k=______.【答案】3 -1【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.【解答】解:x2+6x+8=x2+6x+9-1=(x+3)2-1,则h=3,k=-1.故答案为:3,-1.11.【答题】如果关于x的一元二次方程3x2-5x+m=0的两实数根互为倒数,则m 的值为______.【答案】3【分析】根据根与系数的关系,由两根的积为1可以求出m的值.【解答】解:设方程的两根分别是x1和x2,则:∵关于x的一元二次方程3x2-5x+m=0的两实数根互为倒数,∴x1•x2==1,∴m=3.故答案为:3.12.【答题】五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是______cm2.【答案】9【分析】设小长方形的长为xcm,宽为ycm,根据大长方形的周长结合图形可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据正方形的面积公式即可得出结论.【解答】解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=-9(舍去),则x=3.∴3×3=9(cm2).故答案为:9.13.【答题】代数式2x2-4x+1的最小值为______.【答案】-1【分析】先利用配方法将代数式2x2-4x+1转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:2x2-4x+1=2(x2-2x+1)-2+1=2(x-1)2-1,∵2(x-1)2≥0,∴2x2-4x+1的最小值是-1,故答案为:-1.14.【题文】用适当的方法解下列方程:(1)2(x-1)2=18;(2)x2-2x=2x+1;(3)(3y-1)(y+1)=4;(4)x(2x+3)=2x+3.【答案】见解答.【分析】(1)根据直接开方法即可求出答案;(2)根据配方法即可求出答案;(3)根据因式分解法即可求出答案;(4)根据因式分解法即可求出答案.【解答】解:(1)方程两边除以2,得:(x-1)2=9,则x-1=3或-3,则x1=4,x2=-2;(2)原方程可整理为:x2-4x+4=5,则(x-2)2=5,则x-2=或-,解得:x1=2+,x2=2-;(3)整理,得:3y2+2y-5=0,分解因式得:(y-1)(3y+5)=0,则y-1=0或3y+5=0,解得:y1=1,y2=-;(4)移项,得:x(2x+3)-(2x+3)=0,分解因式得:(2x+3)(x-1)=0,则2x+3=0或x-1=0,解得:x1=-,x2=1.15.【题文】已知正数x是一元二次方程x2+2x-3=0的解,先化简再求值:(x-2)2+(x+3)(x-3).【答案】-7【分析】用因式分解法求出方程的正数解,再化简求值即可得出答案.【解答】解:x2+2x-3=0,分解因式得:(x-1)(x+3)=0,则x-1=0或x+3=0,解得:x1=1,x2=-3,∵x是正数,∴x=1,∴(x-2)2+(x+3)(x-3)=x2-4x+4+x2-9,=2x2-4x-5,当x=1时,原式=2×1-4-5=-7.16.【题文】已知关于x的方程:(1-m)x2-2x+1=0.(1)当m为何值时,方程有实数根.(2)若方程有两实数根x1、x2,且x12+x22+3x1x2=0,求m的值.【答案】(1)m≥0时,方程有实数根,(2)5【分析】(1)分两种情况:当1-m=0;1-m≠0,根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【解答】解:(1)当1-m=0,即m=1时,-2x+1=0,解得;1-m≠0,△=(-2)2-4(1-m)≥0,即m≥0,且m≠1时,方程有实数根.综上所述,当m≥0时,方程有实数根.(2)由根与系数的关系得:,.又∵,∴,即,化简得:4=1-m,解得:m=5,经检验,m是方程的解,故m=5.17.【题文】已知关于x的一元二次方程x2-(2a+2)x+2a+1=0.(1)求证:不论a取何实数,该方程都有两个实数根:(2)若该方程两个根x1,x2满足x12-x22=0,求a的值【答案】见解答.【分析】(1)表示出根的判别式,配方后得到根的判别式大于等于0,进而确定出方程总有两个实数根;(2)先求出方程的两根为x1=2a+1,x2=1,再代入x12-x22=0,得到关于a的方程,解方程即可求解.【解答】解:(1)证明:(1)△=(2a+2)2-4×(2a+1)=4a2,∵a2≥0,∴4a2≥0,∴不论a取任何实数,该方程都有两个实数根;(2)x2-(2a+2)x+2a+1=0,(x-2a-1)(x-1)=0,x1=2a+1,x2=1,∵x12-x22=0,∴(2a+1)2-12=0,解得:a=0或a=-1.18.【题文】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:(1)未降价之前,某商场衬衫的总盈利为______元.(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利______元,平均每天可售出______件(用含x的代数式进行表示)(3)请列出方程,求出x的值.【答案】见解答.【分析】(1)利用销量20×每件的利润即可;(2)每件的盈利=原利润-降价;销量=原销量+多售的数量;(3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【解答】解:(1)20×45=900,故答案为:900;(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利(45-x)元,平均每天可售出(20+4x)件,故答案为:(45-x);(20+4x);(3)由题意得:(45-x)(20+4x)=2100,解得:x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.19.【题文】某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图1、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图1,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.【答案】见解答.【分析】①设道路的宽为x米.长应该为35-2x,宽应该为20-2x;那么根据草坪的面积为600m2,即可得出方程.②如果设路宽为xm,草坪的长应该为35-x,宽应该为20-x;那么根据草坪的面积为600m2,即可得出方程.③如果设路宽为xm,草坪的长应该为35-2x,宽应该为20-x;那么根据草坪的面积为540m2,即可得出方程.【解答】解:①设道路的宽为x米.依题意得:(35-2x)(20-2x)=600;②设道路的宽为x米.依题意得:(35-x)(20-x)=600;③设道路的宽为x米.依题意得:(35-2x)(20-x)=540.20.【题文】列方程解应用题:北京大兴国际机场,是建设在北京市大兴区与河北省廊坊市广阳区之间的超大型国际航空综合交通枢纽.机场主体工程占地多在北京境内,70万平米航站楼,客机近机位92个.2019年9月25日,北京大兴国际机场正式投入运营.据调查,10月大兴机场载客量约为112万人,12月载客量约为175万人,若10月到12月载客量的月增长率相同,求每月载客量的平均月增长率?【答案】25%【分析】设每月载客量的平均月增长率为x,由题意即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每月载客量的平均月增长率为x,依题意,得:112(1+x)2=175,解得:x1=0.25=25%,x2=-2.25(不合题意,舍去).答:每月载客量的平均月增长率为25%.。

第二十一章 一元二次方程数学九年级上册单元复习一遍过(人教版)

第二十一章 一元二次方程数学九年级上册单元复习一遍过(人教版)

每天的销售价为x元.
单件利润 销售量(件)正源自销售432涨价销售
x-20
32-2(x-24)
其等量关系是:总利润=单件利润×销售量.
每星期利润(元) 128 150
课堂检测
考点4 实际问题与一元二次方程—销售利润问题
某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现 当销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就 少售出4件.
解:(1)2.6(1+x)² (2)由题意可得4+2.6(1+x)²=7.146 解得,x1=10%,x2=-2.1(不合题意,舍去)
答:可变成本平均每年增长10%.
课堂检测
考点4 实际问题与一元二次方程—增长(降低)率问题
菜农小王种植的某种蔬菜,计划以每千克5元的价格对外批发销售. 由于部分菜农盲目扩大种植,造成该种蔬菜滞销.小王为了加快销售, 减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销 售.求平均每次下调的百分率是多少?
答:售价应当为25元.
知识梳理
考点4 实际问题与一元二次方程—面积问题
如图:要利用一面墙(墙长为25米)建羊圈,用100米的
围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求
羊圈的边长AB和BC的长各是多少米? 解:设AB长是xm,依题意得: (100-4x)x=400.
25米
A
D
解得x1=20,x2=5.
B
C
当x=20时,100-4x=20<25
当x=5时,100-4x=80>25 x=5(舍去).
答:羊圈的边长AB和BC的长各是20m,20m.
课堂检测

人教版九年级上册数学第二十一章一元二次方程单元达标测试题(含答案)

人教版九年级上册数学第二十一章一元二次方程单元达标测试题(含答案)

人教版九年级上册数学第二十一章一元二次方程单元达标测试题(含答案)一、选择题1.下列是一元二次方程的是A. B. C. D.2.一元二次方程的解是()A. B. C. D.3.已知关于x的一元二次方程有一个根为,则a的值为()A. 0B.C. 1D.4.关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A. m=4B. m=2C. m=2或m=﹣2D. m=﹣25.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠06.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A. 12B. 13C. 14D. 12或147.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根9.一元二次方程的解为()A. B. x1=0,x2=4 C. x1=2,x2=-2 D. x1=0,x2=-410.若x1·x2是一元一次方程的两根,则x1·x2的值为()A. -5B. 5C. -4D. 411.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3012.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.二、填空题13.已知x= 是关于x的方程的一个根,则m=________.14.已知,是关于的一元二次方程的两个实数根,且,则的值为________.15.已知关于的方程有两个不相等的实数根,则的取值范围是________.16.把方程用配方法化为的形式,则m=________,n=________.17.如图,是一个简单的数值运算程序.则输入x的值为________.18.关于x的一元二次方程有两个不相等的实数根,则m的最小整数值是________.19.一元二次方程(x﹣3)(x﹣2)=0的根是________.20.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是________.21.某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡78张,设这个小组的同学共有x人,可列方程:________.22.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为________.三、计算题23.用适当的方法解方程(1)x2﹣3x=0(2)x2+4x﹣5=0(3)3x2+2=1﹣4x24.解下列方程.(1)x2﹣2x﹣2=0(2)3x(x﹣2)=x﹣2四、解答题25.关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.26.已知关于x的一元二次方程有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且,求m的值.27.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.28.如图,某校准备一面利用墙,其余—面用篱笆围成一个矩形花辅ABCD.已知旧墙可利用的最大长度为13 m,篱笆长为24 m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m 2时,求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78 m2,请你判断能否围成这样的花圃?如果能,求BC的长;如果不能,请说明理由.29.如图,等边三角形ABC的边长为6cm,点P自点B出发,以1cm/s的速度向终点C运动;点Q自点C出发,以1cm/s的速度向终点A运动.若P,Q两点分别同时从B,C两点出发,问经过多少时间△PCQ的面积是2 cm2?参考答案一、选择题1. A2. C3. D4. D5. B6. B7. A8. A9. B 10. A 11. A 12. C二、填空题13. 1 14. -2 15. 且16. ;17.,218. 0 19. x1=3,x2=2 20. -2 21. x2﹣x﹣78=0 22. x(x+12)=864三、计算题23. (1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(3)3x2+2=1﹣4x,3x2+4x+1=0,(3x+1)(x+1)=0,3x+1=0,x+1=0,x1=,x2=﹣1.24. (1)解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,则x﹣1=± ,∴x1=1+ ,x2=1﹣(2)解:∵3x(x﹣2)=x﹣2,∴3x(x﹣2)﹣(x﹣2)=0,则(x﹣2)(3x﹣1)=0,∴x﹣2=0或3x﹣1=0,解得x1=2,x2=.四、解答题25. 解:∵关于x的方程x2-2x+2m-1=0有实数根,∴b2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴此时二次方程为:x2-2x+1=0,则(x-1)2=0,解得:x1=x2=1.26. 解:①根据题意得:,解得:,②根据题意得:,,,解得:,(不合题意,舍去),∴m的值为.27.解:设原来的两位数的个位数字为x,则十位数字为(x+2),根据题意,得(10x+x+2)2=10(x+2)+x+138.解得x1=- (舍去),x2=1.答:原来的两位数为3128. (1)解:(1)根据题意得:BC=24-2x则(24-2x)x=70解得:x1=5,x2=7当x1=5时,BC=14x2=7时,BC=10墙可利用的最大长度为13m,BC=14舍去.答:BC的长为10m.(2)解:依题意可知:(24-2x)·x=78即x2-12x+39=0△=122-4×1×39<0方程无实数根答:不能围成这样的花圃.29.解:设经过xs△PCQ的面积是2 cm2,由题意得(6﹣x)× x=2解得:x1=2,x2=4,答:经过2s或4s△PCQ的面积是2 cm2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=420、解:(1)<1>()()x x +-=110,所以x x 1211=-=,<2>()()x x +-=210,所以x x 1221=-=,<3>()()x x +-=310,所以x x 1231=-=,…… <n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。

新人教版九年级上册第二十一章一元二次方程21章复习课(精品有答案)

新人教版九年级上册第二十一章一元二次方程21章复习课(精品有答案)

新人教版九年级数学上册第二十一章一元二次方程章末复习学案设计学习目标1.了解一元二次方程的有关概念.2.能运用直接开平方法、配方法、公式法、因式分解法解一元二次方程.3.会根据根的判别式判断一元二次方程的根的情况.4.知道一元二次方程的根与系数的关系,并会运用它解决有关问题.5.能运用一元二次方程解决简单的实际问题.6.了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.7.经历运用知识、技能解决问题的过程.学习过程一、知识网络二、专题练习专题一:一元二次方程的有关定义及根1.若(a-3)+4x+5=0是关于x的一元二次方程,则a的值为()A.3B.-3C.±3D.无法确定2.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015-a-b的值是()A.2 020B.2 008C.2 014D.2 0123.一元二次方程2x2-3x-2=0的二次项系数是,一次项系数是,常数项是.归纳:1.一元二次方程满足的条件:2.一元二次方程的项的系数包括它前面的符号,一次项的系数和常数项可以为0.3.根能使方程左右两边相等,已知一个根,可代入然后求出方程中的字母系数.专题二:一元二次方程的解法1.解方程x2-2x-1=0.2.若将方程x2+6x=10化为(x+m)2=19的形式,则m= .3.解方程(x-3)2-9=0.归纳:专题三:一元二次方程的根的判别式及根与系数的关系1.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根2.若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断3.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解4.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.85.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.3归纳:(一)根的判别式的应用1.根的判别式的作用:2.一元二次方程的根的情况取决于Δ=b2-4ac的符号.(1)当Δ=b2-4ac>0时,.(2)当Δ=b2-4ac=0时,.(3)当Δ=b2-4ac<0时,.(4)对于以上三种情况,反之也成立.3.已知一根求另一个根.(二)求含根的代数式的值.成立的前提条件是Δ≥0.1.两根的倒数和:+=;2.两根的平方和:+=(x1+x2)2-2x1x2.专题四:一元二次方程的应用某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点A,B以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l(cm)与时间t(s)满足关系:l=0.5t2+1.5t(t≥0),乙以4 cm/s的速度匀速运动,半圆的长度为21 cm.(1)甲运动4 s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?归纳:一元二次方程解应用题的六个步骤练习:1.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是()A.100 m2B.64 m2C.121 m2D.144 m22.为响应“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498 m2,绿化150 m2后,为了更快地完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?(2)在绿化工作中有一块面积为170 m2的矩形场地,矩形的长比宽的2倍少3 m,请问这块矩形场地的长和宽各是多少米?三、达标检测1.下列方程中,一定是一元二次方程的是()A.ax2+bx+c=0B.0.5x2=0C.3x2+2y-=0D.x2+-5=02.方程a2-4a-7=0的解是.3.下列一元二次方程有两个相等实数根的是()A.x2+3=0B.x2+2x=0C.(x+1)2=0D.(x+3)(x-1)=04.关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1,x2,且有x1-x1x2+x2=1-a,则a的值是()A.1B.-1C.1或-1D.25.我国政府为解决老百姓看病难问题,决定下调药品的价格.某种药经过两次降价,由每盒60元调至48.6元,则每次降价的百分率为.参考答案二、专题练习专题一:1.B 2.A 3.2 -3 -2专题二:1.x=1±;3;3.x1=6,x2=0专题三:1.C;2.A;3.B;4.C;5.B;归纳:(一)2.(1)方程有两个不相等的实数根.(2)方程有两个相等的实数根.(3)方程没有实数根.专题四:(1)14 cm(2)3 s (3)7 s练习:1.B;2.(1)22 m2;(2)长为17 m,宽为10 m.三、达标检测1.B;2.a=2±3.C4.B5.10%。

人教版数学九年级上册第二十一章 基础复习题含答案

人教版数学九年级上册第二十一章 基础复习题含答案

第二十一章 21.1一元二次方程一、单选题(每小题只有一个正确答案) 1.下列是一元一次方程的是( ) A .2230x x --= B .25x y += C .112x x+= D .10x +=2.若x=2是关于x 的一元二次方程x 2-mx+8=0的一个解.则m 的值是( ) A .6B .5C .2D .-63.一元二次方程4x 2﹣1=5x 的二次项系数、一次项系数、常数项分别为( ) A .4﹣﹣1﹣5B .4﹣﹣5﹣﹣1C .4﹣5﹣﹣1D .4﹣﹣1﹣﹣54.若方程(m ﹣1)x 2﹣4x =0是关于x 的一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≠0D .m ≥15.已知a 是方程22430x x --=的一个根,则代数式224a a -的值等于( ) A .3B .2C .0D .16.关于x 的一元二次方程(a 2﹣1﹣x 2+x﹣2=0是一元二次方程,则a 满足( ﹣ A .a≠1B .a≠﹣1C .a≠±1D .为任意实数7.已知n 是方程2210x x --=的一个根,则2367n n --的值为( ) A .-5B .-4C .-3D .-28.把一元二次方程()2(3)31x x x +=-化成一般形式,正确的是( ﹣ A .22790x x --= B .2 2590x x --=C .24790x x ++= D .2 26100x x --=二、填空题9.请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为﹣2.则你构造的一元二次方程是_____.10.已知方程ax 2+bx +c =0的一个根是﹣1,则a ﹣b +c =_____.11.已知1x =-是方程20(0)ax bx c b ++=≠=_____. 12.方程(n ﹣3)x |n |﹣1+3x +3n =0是关于x 的一元二次方程,n =_____.13.关于x 的一元二次方程220(0)ax bx a ++=≠的解是1x =,那么2020a b --的值是________________.三、解答题14.若m 是一元二次方程||120a x x ---=的一个实数根. (1)求a 的值;(2)不解方程,求代数式()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭的值. 15.当k 取何值时,关于x 的方程2(5)(2)50k x k x -+++=: (1)是一元一次方程? (2)是一元二次方程?16.一元二次方程()2(1)10a x b x c -+-+=化为一般形式后为22310x x --=,试求a bc+的值.参考答案1.D 2.A 3.B 4.A 5.A 6.C 7.B 8.A 9.2x 2﹣8=0 10.0 11.1 12.-3 13. 解:一元二次方程220(0)ax bx a ++=≠的解是1x =∴ 20a b ++=,即2a b +=-()20202020a b a b --=-+∴ 20202020(2)2022a b --=--=14. 解:(1)由于||120a x x ---=是关于x 的一元二次方程, 所以||12a -=, 解得3a =±;(2)由(1)知,该方程为220x x --=, 把x m =代入,得220m m --=, 所以22m m -=,① 由220m m --=,得210m m--=, 所以21m m-=,② 把①和②代入()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭, 得()2212(11)4m m m m ⎛⎫-⋅-+=⨯+= ⎪⎝⎭, 即()2214m m m m ⎛⎫-⋅-+= ⎪⎝⎭. 15. 解:(1)∵原方程是关于x 的一元一次方程, ∴k -5=0,k+2≠0, 解得:k=5;(2)∵原方程是关于x 的一元二次方程, ∴k -5≠0, 解得:k≠5.16.解:原方程可化为:ax2−(2a−b)x+a−b+c=0,由题意得,a=2,2a−b=3,a−b+c=−1,解得:a=2,b=1,c=−2,∴21322a bc++==--.21.2 解一元二次方程一.选择题1.若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0 B.m≤0 C.m>0 D.m≥02.用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8 B.(x﹣3)2=10 C.(x﹣6)2=10 D.(x﹣6)2=8 3.一元二次方程4x2﹣2x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8 B.10 C.12 D.145.已知a、b为实数,则a2+ab+b2﹣a﹣2b的最小值为()A.﹣2 B.﹣1 C.1 D.26.方程2x2=1的解是()A.B.C.D.7.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,698.三角形的两边长分别为4和5,第三边的长是方程x2﹣12x+20=0的根.则三角形的周长()A.19 B.11成19 C.13 D.119.一元二次方程x2=2x的根为()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣2 10.方程x(x﹣5)=x﹣5的根是()A.x=5 B.x=0 C.x1=5,x2=0 D.x1=5,x2=1 11.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根12.关于方程x2﹣6x﹣15=0的根,下列说法正确的是()A.两实数根的和为﹣6 B.两实数根的积为﹣15C.没有实数根D.有两个相等的实数根二.填空题13.在实数范围内定义一种运算“*”,其运算法则为a*b=a2﹣ab.根据这个法则,下列结论中正确的是.(把所有正确结论的序号都填在横线上)①*=2﹣;②若a+b=0,则a*b=b*a;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1=,x2=.14.已知x为实数,且满足(2x2+3)2+2(2x2+3)﹣15=0,则2x2+3的值为.三.解答题15.解下列方程.(1)x2+2x﹣35=0(2)4x(2x﹣1)=1﹣2x16.解方程:(1)﹣=2(2)2x2﹣2x﹣1=017.(1)已知:a(a+1)﹣(a2+b)=3,a(a+b)+b(b﹣a)=13,求代数式ab的值.(2)已知等腰△ABC的两边分别为a、b,且a、b满足a2+b2﹣6a﹣14b+58=0,求△ABC 的周长.18.已知关于x的一元二次方程(x﹣m)2+2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m的值.参考答案一.选择题1.解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.2.解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.3.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.4.解:根据题意得x1+x2=5,x1x2=6,所以(x1+1)(x2+1)=x1x2+x1+x2+1=6+5+1=12.故选:C.5.解:a2+ab+b2﹣a﹣2b=a2+(b﹣1)a+b2﹣2b=a2+(b﹣1)a++b2﹣2b﹣=(a+)2+(b﹣1)2﹣1≥﹣1,当a+=0,b﹣1=0,即a=0,b=1时,上式不等式中等号成立,则所求式子的最小值为﹣1.故选:B.6.解:2x2=1,∴x2=,∴x=,故选:B.7.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.8.解:∵x2﹣12x+20=0,∴x=2或x=10,当x=2时,∵2+4>5,∴能组成三角形,∴三角形的周长为2+4+5=11,当x=10时,∵4+5<10,∴不能组成三角形,故选:D.9.解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2,故选:C.10.解:∵x(x﹣5)﹣(x﹣5)=0,∴(x﹣5)(x﹣1)=0,则x﹣5=0或x﹣1=0,解得x=5或x=1,故选:D.11.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.12.解:∵a=1,b=﹣6,c=﹣15,∴△=b2﹣4ac=(﹣6)2﹣4×1×(﹣15)=96>0,∴该方程有两个不相等的实数根.设方程x2﹣6x﹣15=0的两根分别为m,n,则m+n=﹣=6,mn==﹣15.故选:B.二.填空题13.解:*=()2﹣×=2﹣,①正确;若a+b=0,则a=﹣b,∴a*b=a2﹣ab=b2﹣ba=b*a,②正确;(x+2)*(x+1)=(x+2)2﹣(x+2)(x+1)=x+2,③错误;(x+3)*1=(x+3)2﹣(x+3)=x2+5x+6,∴(x+3)*1=1即为方程x2+5x+6=1,化简得x2+5x+5=0,解得x1=,x2=,④正确.故答案为:①②④14.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:3三.解答题15.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,16.解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),解得:x=15,检验:当x=15时,x﹣7≠0,所以x=15是原方程的解,即原方程的解是x=15;(2)2x2﹣2x﹣1=0,b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,x=,x1=,x2=.17.解:(1)a(a+1)﹣(a2+b)=3,a2+a﹣a2﹣b=3,a﹣b=3,两边同时平方得:a2﹣2ab+b2=9①,a(a+b)+b(b﹣a)=13,a2+ab+b2﹣ab=13,a2+b2=13②,把②代入①得:13﹣2ab=9,13﹣9=2ab,∴ab=2;(2)a2+b2﹣6a﹣14b+58=0,a2﹣6a+9+b2﹣14b+49=0,(a﹣3)2+(b﹣7)2=0,∴a﹣3=0,b﹣7=0,∴a=3,b=7,当3为腰时,三边为3,3,7,因为3+3<7,不能构成三角形,此种情况不成立,当7为腰时,三边为7,7,3,能构成三角形,此时△ABC的周长=7+7+3=17.18.(1)证明:(x﹣m)2+2(x﹣m)=0,原方程可化为x2﹣(2m﹣2)x+m2﹣2m=0,∵a=1,b=﹣(2m﹣2),c=m2﹣2m,∴△=b2﹣4ac=[﹣(2m﹣2)]2﹣4(m2﹣2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=4代入原方程,得:(4﹣m)2+2(4﹣m)=0,即m2﹣10m+24=0,解得:m1=4,m2=6.故m的值为4或6.21.3实际问题与一元二次方程一.选择题1.某小组新年互送新年贺卡共30张,则这个小组的成员个数是()A.3B.5C.6D.102.某市2015年旅游收入为2亿元.2017年旅游收入达到2.88亿元,则该市2016年、2017年旅游收入的年平均增长率为()A.2%B.4.4%C.20%D.44%3.工会组织篮球比赛庆五一,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,则这次参加比赛的球队个数为()A.12个B.11个C.9个D.10个4.某超市一月份的营业额为24万元,三月份的营业额为36万元,设每月的平均增长率为x,则下列所列方程正确的是()A.24(1﹣x)2=36B.36(1﹣x)2=24C.24(1+x)2=36D.36(1+x)2=245.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.若苗圃园的面积为72平方米,则x为()A.12B.10C.15D.86.有一人患了流感,经过两轮传染后共有81人患了流感;设每轮传染中平均一个人传染x 个人,则所列方程正确的是()A.x(x﹣1)=81B.x(x+1)=81C.2=817.一个直角三角形的两条直角边的和是14cm,面积是24cm2,则其斜边长为()A.2cm B.10cm C.8cm D.4cm8.如图,某农场计划利用一面墙(墙的长度不限)为一条边,另三边用总长58米的篱笆围成一个面积为200平方米的矩形场地.若设该矩形的宽为x米,则可列方程为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=2009.用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x 米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.10.在一幅长200cm,宽160cm的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的78%.设装饰纹边的宽度为xcm,则可列方程为()A.×78%=200×160B.×78%=200×160C.×78%=200×160D.×78%=200×160二.填空题11.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有个班级.12.某商品进价为25元,当每件售价为50元时,每天能售出100件,经市场调查发现,每件售价每降低1元,则每天可多售出5件,店里每天的利润要达到1500元.若设店主把该商品每件售价降低x元,求解可列方程为.13.某药品经过两次降价,每瓶零售价由200元降为128元.已知两次降价的百分率相同,设每次降价的百分率为x,则x的值是.(结果写成百分数的形式)14.某农机厂四月份生产零件100万个,若该厂五、六月份每月的增长率相同,第二季共生产零件365万个,设该厂每月增长率为x,那么满足的方程是.15.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽且互相垂直的道路,剩余部分作为耕地为551平方米.若设道路宽为x米,则可列方程为.三.解答题16.如图是一张长10dm,宽6dm矩形纸板,将纸板四个角各剪去一个相同边长的正方形,然后将四周突出部分折起,可制成一个无盖方盒.若要制作一个底面积是32dm2的一个无盖长方体纸盒,求剪去的正方形边长.17.某商店销售甲、乙两种零食,甲零食每袋成本为5元,乙零食每袋成本为7元.甲零食现在的售价为10元,每天卖出30袋;售价每提高1元,每天少卖出2袋.乙零食现在的售价为14元,每天卖出6袋;售价每降低1元,每天多卖出4袋.假定甲、乙两种零食每天卖出的袋数的和不变(和为36袋),且售价均为整数.(1)当甲零食的售价提高2元,则甲零食每天卖出袋,乙零食的售价为元;(2)当甲零食的售价提高多少元时,销售这两种零食当天的总利润是268元?18.某生物实验室需培育一群有益菌,现有90个活体样本,经过两轮培植后,总和达36000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?19.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a%,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a%,选择清汤火锅的人均消费增长了,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a的值.参考答案与试题解析一.选择题1.【解答】解:设这个小组有x名成员,则小组内每名成员需送出(x﹣1)张贺卡,根据题意得:x(x﹣1)=30,解得:x1=6,x2=﹣5(不合题意,舍去).故选:C.2.【解答】解:设该市2016年、2017年旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故选:C.3.【解答】解:设这次参加比赛的球队有x个,根据题意得:x(x﹣1)=45,解得:x1=10,x2=﹣9(不合题意,舍去).故选:D.4.【解答】解:设每月的平均增长率为x,根据题意列方程得,24(1+x)2=36.故选:C.5.【解答】解:根据题意得:x×(30﹣2x)=72解得:x1=12,x2=3当x=12时,30﹣2x=6<18当x=3时,30﹣2x=24>18(不合题意舍去)故选:A.6.【解答】解:设每轮传染中平均一个人传染x个人,根据题意得:(1+x)2=81.故选:D.7.【解答】解:设这个直角三角形的两直角边为a、b,斜边为c,根据题意得a+b=14,ab=24,即ab=48,∴c2=a2+b2=(a+b)2﹣2ab=142﹣2×48=100,开平方,得c=10,即斜边长为10cm.故选:B.8.【解答】解:设该矩形的宽为x米,则可列方程为:x(58﹣2x)=200.故选:D.9.【解答】解:设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选:C.10.【解答】解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(160+2x)cm,根据题意得:×78%=200×160.故选:B.二.填空题(共5小题)11.【解答】解:设共有x个班级参加比赛,根据题意得:=6,整理得:x2﹣x﹣6=0,即(x﹣3)(x+2)=0,解得:x=3或x=﹣2(舍去).则共有3个班级球队参加比赛.故答案为:3.12.【解答】解:原来售价为每件50元,进价为每件25元,利润为每件25元,又每件售价降价x元后,利润为每件(25﹣x)元.每降价1元,每星期可多卖出5件,所以每件售价降低x元,每星期可多卖出5x件,现在的销量为(100+5x).根据题意得:(25﹣x)×(100+5x)=1500,故答案为:(25﹣x)×(100+5x)=1500.13.【解答】解:设每次降价的百分率为x,根据题意得:200(1﹣x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:每次降价的百分率为20%.故答案为:20%.14.【解答】解:设平均每月的增长率为x,则则五月份生产零件100(1+x)万个,六月份生产零件100(1+x)(1+x)万个,故可得:100+100(1+x)+100(1+x)2=365.故答案为:100+100(1+x)+100(1+x)2=365.15.【解答】解:设修建的路宽应为x米根据等量关系列方程得:30×20﹣(20x+30x﹣x2)=551,故答案是:30×20﹣(20x+30x﹣x2)=551.三.解答题(共4小题)16.【解答】解:设剪去的正方形边长为xdm,则做成的长方形纸盒的底面长为(10﹣2x)dm,宽为(6﹣2x)dm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7.∵6﹣2x>0,∴x<3,∴x=1.答:剪去的正方形边长为1dm.17.【解答】解:(1)甲零食的售价提高2元,则甲零食每天卖出30﹣2×2=26(袋),则乙销售了10袋,乙零食的售价为14﹣4=10(元).故答案为:26,10;(2)设甲零食的售价提高x元时,销售这两种零食当天的总利润是268元,由题意得,(5+x)(30﹣2x)+(6+2x)(14﹣﹣7)=268,∴3x2﹣31x+76=0,解得x1=4,x2=,∵售价均为整数,∴x=4.答:甲零食的售价提高4元时,销售这两种零食当天的总利润是268元.18.【解答】解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,依题意,得:90(1+x)2=36000,解得:x1=19,x2=﹣21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)36000×(1+19)=720000(个).答:按照这样的分裂速度,经过三轮培植后有720000个有益菌.19.【解答】解:(1)设有x人选择清汤火锅,则有(2500﹣x)人选择红汤火锅,依题意,得:2500﹣x≤1.5x,解得:x≥1000.答:至少有1000人选择清汤火锅.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章过关自测卷
(100分,45分钟)
一、选择题(每题3分,共21分)
1.下列方程是关于x 的一元二次方程的是( )
A.ax 2+bx +c =0
B.211x x
=2 C.x 2+2x =y 2-1
D.3(x +1)2=2(x +1)
2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( )
A.a =0
B.b =0
C.c =0
D.c ≠0
3.一元二次方程x 2-2x -1=0的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
4.方程x 2+6x =5的左边配成完全平方式后所得方程为( )
A.(x +3)2=14
B.(x -3)2=14
C.(x +6)2=12
D.以上答案都不对
5.已知x =2是关于x 的方程32
x 2-2a =0的一个根,则2a -1的值是( )
A.3
B.4
C.5
D.6
6.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()
A.3(1+x)2=5
B.3x2=5
C. 3(1+x%)2=5
D. 3(1+x) +3(1+x)2=5
7.使代数式x2-6x-3的值最小的x的取值是()
A.0
B.-3
C.3
D.-9
二、填空题(每题3分,共18分)
8.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为________.
9.如果方程ax2+2x+1=0有两个不等实数根,则实数a的取值范围是____________.
10.已知α、β是一元二次方程x2-4x-3=0的两实数根,则代数式(α-3)(β-3)=________.
11.在一幅长50 cm,宽30 cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm2,设金色纸边的宽为x cm,那么x满足的方程为________________.
图1
12.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭
的值为________. 13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.
三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)
14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..
,并选择你认为适当的方法解这个方程.
①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.
15.已知关于x 的方程x 2+kx -2=0的一个解与方程
11
x x +-=3的解相同. (1)求k 的值;
(2)求方程x 2+kx -2=0的另一个解.
16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.
(1)当每间商铺的年租金定为13万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:
设当单价从38元/千克下调到x元/千克时,销售量为y千克.
(1)根据上述表格中提供的数据,通过在直角坐标系中描点、连线等方法,猜测并求出y与x的函数解析式;
(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)
19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.
(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?
图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?
参考答案及点拨
一、1.D 2.C 3.B 4.A 5.C 6.A 7.C
二、8.1 9.a <1且a ≠0 10.-6 11.x 2+40x -75=0 12. 13
13.6或10或12
三、14. 解:①x 1,2x 1,2=1x 1=0,x 2=3;④x 1,2=1±
点拨:①可选择公式法,②选择直接开平方法,③选择因式分解法,④选择配方法;任选一题即可.
15. 解:(1)k =-1. (2)方程的另一个解为x =-1.
16. 解:(1)∵方程有两个不相等的实数根,
∴(-3)2-4(-k )>0.即4k >-9,解得,k >-94

(2)若k 是负整数,则k 只能为-1或-2.如果k =-1,原方程为
x 2-3x +1=0.解得x 1=32+,x 2=32. 点拨:(2)题答案不唯一.
17. 解:(1)∵30 000÷5 000=6,∴能租出24间.
(2)设每间商铺的年租金增加x 万元,则
(30-0.5x )×(10+x )-(30-0.5x )×1-0.5
x ×0.5=275, 整理得2 x 2-11x +5=0,∴ x =5或x =0.5,∴ 每间商铺的年租金定为10.5万元或15万元.
18. 解:在直角坐标系中描点、连线略.易知y 与x 满足一次函数关系.
(1)设y 与x 之间的函数解析式是y =kx +b (k ≠0).
根据题意,得20k+b=86,
35k+b=56.解得k=-2,b=126.
所以,所求的函数解析式是y=-2x+126.
(2)设这一天的销售价为x元/千克.
根据题意,得(x-20)(-2x+126)=780.整理后,得x2-83x+1 650=0.解得x1=33,x2=50.
答:这一天的销售价应为33元/千克或50元/千克.
19. 解:(1)如答图1,设P、Q两点从出发开始到x秒时四边形PBCQ 的面积为33 cm2,得AP=3x cm,CQ=2x cm,所以PB=16-3x(cm).
=33,
因为(PB+CQ)×BC×1
2
=33,解得x=5,
所以(16-3x+2x)×6×1
2
所以P、Q两点从出发开始到5秒时四边形PBCQ的面积为33 cm2.
答图1
(2)设P、Q两点从出发开始到y秒时,点P和点Q间的距离是10 cm.如答图1,
过点Q作QE⊥AB于E,得EB=QC=2y cm,EQ=BC=6 cm,所以PE=PB -BE=PB-QC=16-3y-2y=16-5y(cm),
在直角三角形PEQ中,PE2+EQ2=PQ2,得
(16-5y)2+62=102,
即25y2-160y+192=0,
解得y1=8
5,y2=24
5
,经检验均符合题意.
所以P、Q两点从出发开始到8
5秒或24
5
秒时,点P和点Q间的距离
是10 cm.。

相关文档
最新文档