(全国通用版)2020版高考数学总复习 专题六 统计与概率 6.2 概率、统计解答题课件 理
概率与统计知识点总结
概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
2020版高考数学大二轮专题突破文科通用版课件:6.2.2 统计与概率
受.现从这6人中随机抽取2人接受采访.
-11-
考向一 考向二 考向三 考向四
员工 项目 子女教育 继续教育 大病医疗 住房贷款利息 住房租金 赡养老人
ABCDEF
○ ○ ×○ ×○ ××○ × ○ ○ ×××○ ×× ○ ○ ×× ○ ○ ××○ × ×× ○ ○ ×× ×○
-20-
考向一 考向二 考向三 考向四
解 (1)第1组的频数为100×0.100=10人,所以①处应填的数为100(10+20+20+10)=40,从而第2组的频数为14000 =0.400,因此②处应填
的数为1-(0.100+0.400+0.200+0.100)=0.200. 频率分布直方图如图所示.
(2)①从已知的6人中随机抽取2人的所有可能结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{ C,E},{C,F},{D,E},{D,F},{E,F},共15种.
②由表格知,符合题意的所有可能结果为
{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E ,F},共11种. 所以,事件 M 发生的概率 P(M)=1115.
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365 天计算,同一组中的数据以这组数据所在区间中点的值作代-8- 表.)
考向一 考向二
解 (1)
考向三
考向四
高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】
专题六 概率与统计
强 化 训 练 2 (2013·成 都 市 诊 断 性 检 测 ) 已 知 集 合 {(x ,
2x+y-4≤0 y)|x+y≥0 }表示的平面区域为 Ω,若在区域 Ω 内任取一
x-y≥0
点 P(x,y),则点 P 的坐标满足不等式 x2+y2≤2 的概率为( A )
栏目 导引
专题六 概率与统计
【解】因玩具是均匀的,所以玩具各面朝下的可能性相等, 出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1), (2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5), (5,1),(5,2),(5,3),(5,5)共 16 种. (1)事件“m 不小于 6”包含其中(1,5),(2,5),(3,5),(3, 3),(5,1),(5,2),(5,3),(5,5)共 8 个基本事件,所以 P(m≥6)=186=12.
3π A. 32
3π B. 16
π
π
C.32
D.16
栏目 导引
专题六 概率与统计
【解析】 作出不等式组
2x+y-4≤0 x+y≥0 表示的平面区域,如图三角形 x-y≥0
ABO,且有
A(43,
43),B(4,-4),所以 S△ABO=12×4 3 2×4 2=136,点 P 的坐
标满足不等式 x2+y2≤2 的面积 S 扇形=14×π ( 2)2=π2 ,
3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道 乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.
栏目 导引
专题六 概率与统计
【解】(1)将 4 道甲类题依次编号为 1,2,3,4;2 道乙类 题依次编号为 5,6.任取 2 道题,基本事件为:{1,2},{1, 3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2, 6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共 15 个,而且这些基本事件的出现是等可能的.用 A 表示“都 是甲类题”这一事件,则 A 包含的基本事件有{1,2},{1, 3},{1,4},{2,3},{2,4},{3,4},共 6 个,所以 P(A) =165=25. (2)基本事件同(1),用 B 表示“不是同一类题”这一事件, 则 B 包含的基本事件有{1,5},{1,6},{2,5},{2,6}, {3,5},{3,6},{4,5},{4,6},共 8 个,所以 P(B)=185.
高考数学复习重点及方法一、时间安排
高考数学复习重点及方法一、时间安排高考数学复习重点及方法一、时间安排1:第一阶段为重点知识的强化与巩固阶段,时间为3月1日—3月27日。
2:第二阶段是对于综合题型的解题方法与解题能力的训练,时间为3月28日—4月16日。
高考数学复习重点及方法二、专题复习重点根据高考对知识点的考察我们可以归类为七大模块,并且针对每一个模块,新东方一对一胡凯丽老师为同学们一一详解:专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
专题六 概率统计专题复习
专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。
2020高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
6.其他离散型随机变量分布列问题(频率估计概率,方案选择,随机变量取值意义,与其他知识结合)
解题思路及步骤
注意事项
写出随机变量可能取值
这类题重点考查是否理解随机变量取每一个值的意义
求出随机变量取每个值的概率 注意对随机变量所取的值表示多种的情况,多数情况由频率估计估计概率
写出分布列 求数学期望
检验所有概率之和是否等于 1 通过数学期望进行决策
PX
k
C2k
C 2k 8
C120
, (k
0,1,2) EX
,
3 2 10
0.6
(2)Y 的可能取值为 0,1,2,3,根据题意 Y~B(3,0.2),所以 Y 分布列为:
PY k C3k 0.2k 1 0.23k , (k 0,1,2,3) , EY 3 0.2 0.6
3
(3)Z 的可能取值为 0,1,2,3,根据题意 Z~B(3,0.2),所以 Z 分布列为:
,且各件产品是否为不合格品相互独立. (1)记 20 件产品中恰有 2 件不合格品的概率为 ,求 的最大值点 . (2)现对一箱产品检验了 20 件,结果恰有 2 件不合格品,以(1)中确定的 作为 的值.已知每件产品 的检验费用为 2 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 25 元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 ,求 ; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
法,故概率为
,选 C.
典例 3: (2014 全国 2 卷理科 5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是 0.75,连续
两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( )
高考数学二轮复习7大专题汇总
高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。
这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。
一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。
不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。
自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。
专题二:数列。
以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。
向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。
大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。
此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。
空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。
专题五:分析几何。
(通用版)2020版高考数学大二轮复习专题六统计与概率6.3.1统计与统计案例课件理
(通用版)2020版高考数学大二轮复习专题六统计与概率6.3.1统计与统计案例课件理6.3统计与概率大题,-2-,-3-,-4-,-5-,-6-,-7-,1.变量间的相关关系1如果散点图中的点从整体上看大致分布在一条直线的附近,那么我们说变量x和y具有线性相关关系.2线性回归方程若变量x与y具有线性相关关系,有n个样本数据xi,yii1,2,,n,则回归方程为,-8-,2.独立性检验对于取值分别是x1,x2和y1,y2的分类变量X和Y,其样本频数列联表是,-9-,3.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则PXk,k0,1,2,,m,其中mminM,n,且nN,MN,n,M,NN*.4.二项分布一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验中事件A发生的概率为p,则PXkpkqn-k,其中0p1,pq1,k0,1,2,,n,称X服从参数为n,p的二项分布,记作XBn,p,且EXnp,DXnp1-p.,-10-,5.正态分布一般地,如果对于任意实数ab,随机变量X满足PaXb,xdx,则称X的分布为正态分布.正态分布完全由参数和确定,因此正态分布常记作N,2.如果随机变量X服从正态分布,则记为XN,2.满足正态分布的三个基本概率的值是P-X0.6826;P-2X20.9544;P-3X30.9974.,-11-,6.离散型随机变量的分布列.期望.方差1设离散型随机变量X 可能取的不同值为x1,x2,,xi,,xn,X取每一个值xii1,2,,n的概率PXxipi,则称下表为离散型随机变量X的分布列.2EXx1p1x2p2xipixnpn为X的均值或数学期望.3DXx1-EX2p1x2-EX2p2xi-EX2pixn-EX2pn叫做随机变量X的方差.4均值与方差的性质EaXbaEXb;EEE;DaXba2DX.,6.3.1统计与统计案例,-13-,考向一,考向二,考向三,考向四,样本的数字特征的应用例1xx全国卷2,文19某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.1分别估计这类企业中产值增长率不低于40的企业比例.产值负增长的企业比例;2求这类企业产值增长率的平均数与标准差的估计值同一组中的数据用该组区间的中点值为代表.精确到0.01,-14-,考向一,考向二,考向三,考向四,-15-,考向一,考向二,考向三,考向四,解题心得1在预测总体数据的平均值时,常用样本数据的平均值估计,从而做出合理的判断.2平均数反映了数据取值的平均水平,标准差.方差描述了一组数据围绕平均数波动的大小.标准差.方差越大,数据的离散程度越大,越不稳定.,-16-,考向一,考向二,考向三,考向四,对点训练1为迎接即将举行的集体跳绳比赛,高一年级对甲.乙两个代表队各进行了6轮测试,测试成绩单位次/分钟如下表1补全茎叶图,并指出乙队测试成绩的中位数和众数;2试用统计学中的平均数.方差知识对甲.乙两个代表队的测试成绩进行分析.,-17-,考向一,考向二,考向三,考向四,-18-,考向一,考向二,考向三,考向四,利用回归方程进行回归分析例2xx新疆乌鲁木齐二模,理19某互联网公司为了确定下季度的前期广告投入计划,收集了近6个月广告投入量x单位万元和收益y单位万元的数据如表他们分别用两种模型ybxa,yaebx分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值,-19-,考向一,考向二,考向三,考向四,-20-,考向一,考向二,考向三,考向四,1根据残差图,比较模型,的拟合效果,应选择哪个模型并说明理由;2残差绝对值大于2的数据被认为是异常数据,需要剔除剔除异常数据后求出1中所选模型的回归方程;若广告投入量x18时,该模型收益的预报值是多少,-21-,考向一,考向二,考向三,考向四,-22-,考向一,考向二,考向三,考向四,解题心得在求两变量的回归方程时,由于的公式比较复杂,求它的值计算量比较大,为了计算准确,可将这个量分成几个部分分别计算,最后再合成,这样等同于分散难点,各个攻破,提高了计算的准确度.,-23-,考向一,考向二,考向三,考向四,对点训练2xx山东德州一模,理20改革开放以来,我国经济持续高速增长.如图给出了我国2003年至xx年第二产业增加值与第一产业增加值的差值以下简称为产业差值的折线图,记产业差值为y单位万亿元.1求出y关于年份代码t的线性回归方程;2利用1中的回归方程,分析2003年至xx年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34亿元;3结合折线图,试求出除去xx年产业差值后剩余的9年产业差值的平均值及方差结果精确到0.1.,-24-,考向一,考向二,考向三,考向四,-25-,考向一,考向二,考向三,考向四,-26-,考向一,考向二,考向三,考向四,-27-,考向一,考向二,考向三,考向四,样本的相关系数的应用例3xx四川宜宾二模,理18艾滋病是一种危害性极大的传染病,由感染艾滋病病毒HIV病毒引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能.下表是近八年来我国艾滋病病毒感染人数统计表,-28-,考向一,考向二,考向三,考向四,1请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;2请用相关系数说明能用线性回归模型拟合y 与x的关系;,-29-,考向一,考向二,考向三,考向四,3建立y关于x的回归方程系数精确到0.01,预测xx年我国艾滋病病毒感染人数.,-30-,考向一,考向二,考向三,考向四,解1我国艾滋病病毒感染人数的折线图如图所示.,-31-,考向一,考向二,考向三,考向四,-32-,考向一,考向二,考向三,考向四,-33-,考向一,考向二,考向三,考向四,解题心得对于样本的相关系数的应用的题目,题目一般都给出样本xi,yii1,2,,n的相关系数r的表达式,以及有关的数据,解决这类题的关键是在有关的数据中选择题目需要的数据代入公式即可.,-34-,考向一,考向二,考向三,考向四,对点训练3下图是我国xx年至xx年生活垃圾无害化处理量单位亿吨的折线图.1由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;2建立y关于t的回归方程系数精确到0.01,预测xx年我国生活垃圾无害化处理量.,-35-,考向一,考向二,考向三,考向四,-36-,考向一,考向二,考向三,考向四,-37-,考向一,考向二,考向三,考向四,-38-,考向一,考向二,考向三,考向四,统计图表与独立性检验的综合例4某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间单位min绘制了如下茎叶图,-39-,考向一,考向二,考向三,考向四,1根据茎叶图判断哪种生产方式的效率更高并说明理由;2求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表3根据2中的列联表,能否有99的把握认为两种生产方式的效率有差异,-40-,考向一,考向二,考向三,考向四,解1第二种生产方式的效率更高.理由如下由茎叶图可知用第一种生产方式的工人中,有75的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.由茎叶图可知用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.由茎叶图可知用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.,-41-,考向一,考向二,考向三,考向四,由茎叶图可知用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.以上给出了4种理由,学生答出其中任意一种或其他合理理由均可,-42-,考向一,考向二,考向三,考向四,解题心得有关独立性检验的问题解题步骤1作出22列联表;2计算随机变量K2的值;3查临界值,检验作答.,-43-,考向一,考向二,考向三,考向四,对点训练4“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出如图茎叶图.1根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小不要求计算出具体值,给出结论即可;,-44-,考向一,考向二,考向三,考向四,2若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下面22列联表,并据此样本分析是否有95的把握认为城市拥堵与认可共享单车有关;3若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有1人认可的条件下,此人来自B城市的概率是多少,-45-,考向一,考向二,考向三,考向四,解1A 城市评分的平均值小于B城市评分的平均值;A城市评分的方差大于B城市评分的方差.222列联表如下.,。
(完整版)高考数学概率和统计知识点,推荐文档
1 件是合格的概率;
(Ⅱ)若厂家发给商家 20 件产品中,其中有 3 件不合格,按合同规定该商家从中任取 2 件.
都进行检验,只有 2 件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数
的分布列及期望 E ,并求出该商家拒收这批产品的概率.
[解答过程](Ⅰ)记“厂家任取 4 件产品检验,其中至少有 1 件是合格品”为事件 A
一般地,设离散型随机变量 可能取的值为 x1 , x2 ,……, xi ,……, 取每一个值 xi (
i 1,2,……)的概率 P( xi )= Pi ,则称下表.
x1 x2 … xi …
P
P1 P2 … Pi …
为随机变量 的概率分布述两个性质:
本,则指定的某个个体被抽到的概率为
.
专业 知识分享
完美 WORD 格式
1.
P 5 1 .
[解答过程] 20 提示: 100 20
例 3.接种某疫苗后,出现发热反应的概率为 0.80.现有 5 人接种该疫苗,至少有 3 人出现
发热反应的概率为__________.(精确到 0.01)
[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以
P A 1 P A 1 0.24 0.9984
用对立事件 A 来算,有
(Ⅱ) 可能的取值为 0,1, 2 .
P
0
C127 C220
136 190 ,
P
1
C31C117 C220
51
190 ,
P
2
C32 C220
3 190
0
1
2
136
E
0 136
P
1
【精品推荐】2020高考数学(理科)二轮专题复习课标通用版 课件 专题6 概率与统计第1部分 专题6 第1讲 Word
C
1 3
=12(种),所以符合题意的安排方法有90-30-30+12
=42(种).故选C项.
• 3.(x+1)(x-2)6的展开式中x4的系数为( ) • A.-100 B.-15 • C.35 D.220 • 答案 A
解析
由二项式定理得(x-2)6展开式的通项Tr+1=C
r 6
(-2)rx6-r,所以x3的系数为C
(2)由(1)知,n=5,则(1+
3 )n=(1+
3
)5=C
0 5
+C
1 5
3+C25( 3)2+C35( 3)3+C45( 3)4+C55( 3)5=a+b 3.因为
a,b∈N*,所以a=C
0 5
+3C
2 5
+9C
4 5
=76,b=C
1 5
+3C
3 5
+
9C55=44,从而a2-3b2=762-3×442=-32.
• 解析 由条件(x+2)x9=a0+a1(x+1)+a2(x+1)2+…+a10(x +1)10,令x=0,则有a0+a1+a2+…+a10=0,再令x=-1, 则有a0=-1,所以a1+a2+…+a10=0-(-1)=1.
• 答案 1
7.(2019·四川南充适应性考试)如果 x2-21x n的展开 式中只有第4项的二项式系数最大,那么展开式中的所
答案 8x6
专题跟踪检测
因为
ax+bx
n展开式的通项公式为Tr+1=C
r 8
(ax)8-r
b x
r=C
r 8
a8-rbrx8-2r,令8-2r=0,则r=4.所以T5=C
4 8
a4b4=70,
解得ab=1或ab=-1(舍),当ab=1时,由a+b=2得a=
2020高考数学高考大题专项六 高考中的概率与统计
2016年的数据(时间变量t的值依次为1,2,…,7)建立模型
②:y=99+17.5t.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额 的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
学生序号 i
1234567
数学成绩 xi 物理成绩 yi
60 65 70 75 85 87 90 70 77 80 85 90 86 93
随堂巩固
-5-
题型一
题型二
题型三
题型四
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同
学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列
随堂巩固
-4-
题型一
题型二
题型三
题型四
相关关系的判断及回归分析 例1(2018黑龙江模拟,19)班主任为了对本班学生的考试成绩进行 分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7 的样本进行分析. (1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写 出算式即可,不必计算出结果) (2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如 下表:
=
1.
35
∴ξ 的分布列为
ξ
0
1
2
3
P
4 35
18 35
12 35
1 35
题型一
题二
题型三
题型四
随堂巩固
-7-
∴Eξ=0×
345+1×
1385+2×
1325+3×
2020年高考数学二轮复习回归教材基础知识总结-专题6概率与统计
2020年高考数学二轮复习回归教材基础知识总结-专题6概率与统计1.分类加法计数原理完成一件事,可以有n 类办法,在第一类办法中有m 1种方法,在第二类办法中有m 2种方法,…,在第n 类办法中有m n 种方法,那么完成这件事共有N =m 1+m 2+…+m n 种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n 个步骤,缺一不可,做第一步有m 1种方法,做第二步有m 2种方法,…,做第n 步有m n 种方法,那么完成这件事共有N =m 1×m 2×…×m n 种方法(也称乘法原理).3.排列(1)排列的定义:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用A m n 表示.(3)排列数公式:A m n =n (n -1)(n -2)…(n -m +1).(4)全排列:n 个不同元素全部取出的一个排列,叫做n 个元素的一个全排列,A n n =n ·(n -1)·(n-2)·…·2·1=n !.排列数公式写成阶乘的形式为A m n =n !(n -m )!,这里规定0!=1. 4.组合(1)组合的定义:从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用C m n 表示.(3)组合数的计算公式:C m n =A m n A m m =n !m !(n -m )!=n (n -1)(n -2)…(n -m +1)m !,由于0!=1,所以C 0n =1.(4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1n . 5.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *). 这个公式叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C k n(k ∈{0,1,2,…,n })叫做二项式系数.式中的C k n a n -k b k 叫做二项展开式的通项,用T k +1表示,即展开式的第k +1项:T k +1=C k n a n -k b k . 6.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n . 7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n . (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项+12n T 的二项式系数最大.当n 是奇数时,那么其展开式中间两项1+12n T -和1+12n T +的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n .二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 8.概率的计算公式(1)古典概型的概率计算公式P (A )=事件A 包含的基本事件数m 基本事件总数n. (2)互斥事件的概率计算公式P (A ∪B )=P (A )+P (B ).(3)对立事件的概率计算公式P (A )=1-P (A ).(4)几何概型的概率计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). (5)条件概率公式P (B |A )=P (AB )P (A ). 9.抽样方法简单随机抽样、分层抽样、系统抽样.(1)从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为n N. (2)分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.10.统计中四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按从大到小(或从小到大)排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ). (4)方差与标准差方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 标准差:s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 11.离散型随机变量(1)离散型随机变量的分布列的两个性质①p i ≥0(i =1,2,…,n );②p 1+p 2+…+p n =1.(2)期望公式E (X )=x 1p 1+x 2p 2+…+x n p n .(3)期望的性质①E (aX +b )=aE (X )+b ;②若X ~B (n ,p ),则E (X )=np ;③若X 服从两点分布,则E (X )=p .(4)方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差为D (X ).(5)方差的性质①D (aX +b )=a 2D (X );②若X ~B (n ,p ),则D (X )=np (1-p );③若X 服从两点分布,则D (X )=p (1-p ).(6)独立事件同时发生的概率计算公式 P (AB )=P (A )P (B ).(7)独立重复试验的概率计算公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n .12.线性回归(1)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ), 其中⎩⎪⎨⎪⎧ b ^=∑i =1n (x i -x )(y i -y )∑i =1n (x i -x )2,a ^=y -b ^ x .(2)相关系数r 具有如下性质:①|r |≤1;②|r |越接近于1,x ,y 的线性相关程度越高;③|r |越接近于0,x ,y 的线性相关程度越弱.13.独立性检验利用随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.14.正态分布如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是①P (μ-σ<X ≤μ+σ)≈0.682 7;②P (μ-2σ<X ≤μ+2σ)≈0.954 5;③P (μ-3σ<X ≤μ+3σ)≈0.997 3.1.关于两个计数原理应用的注意事项(1)分类加法计数原理和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.(2)混合问题一般是先分类再分步.(3)分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.2.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.3.排列、组合问题的求解方法与技巧(1)特殊元素优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题排除法处理.(7)分排问题直排处理.(8)“小集团”排列问题先整体后局部.(9)构造模型.(10)正难则反,等价条件.4.二项式定理应用时的注意点(1)区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.(2)运用通项求展开式的一些特殊项,通常都是由题意列方程求出k,再求所需的某项;有时需先求n,计算时要注意n和k的取值范围及它们之间的大小关系.(3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.(4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a,b.5.应用互斥事件的概率加法公式时,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.6.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.7.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.8.要注意概率P(A|B)与P(AB)的区别(1)在P(A|B)中,事件A,B发生有时间上的差异,B先A后;在P(AB)中,事件A,B同时发生.(2)样本空间不同,在P(A|B)中,事件B成为样本空间;在P(AB)中,样本空间仍为Ω,因而有P(A|B)≥P(AB).9.易忘判定随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误.10.涉及求分布列时,要注意区分是二项分布还是超几何分布.。
高三数学专题复习:第一部分专题六第一讲
1,2,3,4,5可构成不重复的五位“波浪数”的个数为
( )
A.20 B.18 C.16 D.11
栏目 导引
第一部分•专题突破方略
解析:(1)选 D.由题意应分两类:①2 名销售员与 1 名技术员,有 C2C1=40(种)方案;②1 名销售员与 2 5 4 名技术员,有 C1C2=30(种)方案.综上共有 40+30 5 4 =70(种)方案,故选 D. (2)选 C.由题意可得, 十位和千位只能是 4、 或者 3、 5 5.若十位和千位排 4、5,则其他位置任意排 1、2、3, 则这样的数有 A2A3=12(个);若十位和千位排 5、3, 2 3 这时 4 只能排在 5 的一边且不能和其他数字相邻, 1、 2 在其余位置上任意排列,则这样的数有 A2 A 2 = 2 2 4(个),综上,共有 16 个.
第一部分•专题突破方略
专题六 概率与统计、推理与证明、 计数原理、算法初步、复数
第一部分•专题突破方略
第一讲
计数原理、二项式定理
栏目 导引
第一部分•专题突破方略
主干知识整合
1.分类计数原理和分步计数原理 如果每种方法都能将规定的事件完成,则要用 分类计数原理将方法种数相加;如果需要通过
若干步才能将规定的事件完成,则要用分步计
栏目 导引
第一部分•专题突破方略
变式训练 3
如果(3x- 3
1
) 的展开式中二项
n
x2
1 式 系 数 之和 为 128, 则 展开 式 中 3 的 系数 是 x ( A.7 C.21 ) B.-7 D.-21
栏目 导引
第一部分•专题突破方略
解析:选 C.由已知:2 =128,n=7, 5 r 7- r -1 r r 7- r r 7- r 由 Tr+ 1=C7(3x) · ( ) =C7· (-1) · 3 , 3 x 3 2 x 5 令 7- r=-3,得 r=6, 3 1 6 1 6 故 3的系数为 C7· · 3 (-1) =21,故选 C. x
2020高考数学(文科)专题复习课标 : 专题6 统计与概率 专题6 第2讲
n 个个体,总体就需要分成 n 个组,则分段间隔为Nn(N 为
总体容量),首先确定在第一组中抽取的个体的号码数,
再从后面的每组中按规则抽取每个个体.
3.深刻理解各种抽样方法的特点和适用范围.无论
哪种抽样方法,每一个个体被抽到的概率都等于样本容
量与总体容量的比值.
高考二轮专题复习
返回目录
1.(2019·全国卷Ⅰ)某学校为了解1 000名新生的身 体素质,将这些学生编号为1,2,…,1 000,从这些新 生 中 用 系 统 抽 样 方 法 等 距 抽 取 100 名 学 生 进 行 体 质 测 验.若46号学生被抽到,则下面4名学生中被抽到的是
(3)众数:最高的矩形的中点的横坐标.
高考二轮专题复习
返回目录
4.方差的计算与含义 计算方差首先要计算平均数,然后再按照方差的计 算公式进行计算,方差和标准差是描述一个样本和总体 的波动大小的特征数,标准差和方差大说明波动大. 5.茎叶图的优点是可以保留原始数据,而且可以 随时记录新的数据,这能给数据的记录和表示都带来方 便.
为了预测该地区 2018 年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据 2000 年至 2016 年的数据(时间变量 t 的值依次为 1,2,…,17)建立模型
①:^y=-30.4+13.5t;根据 2010 年至 2016 年的数据(时
卷Ⅱ,19 间变量 t 的值依次为 1,2,…,7)建立模型②:^y=99+17.5t.
(b)从计算结果看,相对于2016年的环境基础设施投 资额220亿元,由模型①得到的预测值226.1亿元的增幅 明显偏低,而利用模型②得到的预测值的增幅比较合 理,说明利用模型②得到的预测值更可靠.
2020届高考数学(文)二轮复习全程方略课件:专题六 概率与统计(2) 概率 Word版含答案
[例 3] (2017·合肥质检)一企业从某条生产线上随机
抽取 100 件产品,测量这些产品的某项技术指标值 x,得
到如下的频率分布表:
x
[11, 13)
[13, 15)
[15, 17)
[17, [19, 19) 21)
[21, 23]
频 数
2
12
34
38
10
4
(1)作出样本的频率分布直方图,并估计该技术指标 值 x 的平均数和众数;
(2)若 x<13 或 x≥21,则该产品不合格.现从不合格 的产品中随机抽取 2 件,求抽取的 2 件产品中技术指标值 小于 13 的产品恰有 1 件的概率.
解:(1)频率分布直方图为如图.
估计平均数为-x =12×0.02+14×0.12+16×0.34+ 18×0.38+20×0.10+22×0.04=17.08.
由频率分布直方图知,当 x∈[17,19)时,矩形面积 最大,因此估计众数为 18.
(2)记技术指标值 x<13 的 2 件不合格产品为 a1,a2, 技术指标值 x≥21 的 4 件不合格产品为 b1,b2,b3,b4.
则从这 6 件不合格产品中随机抽取 2 件包含如下基本 事件(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2, b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1, b4),(b2,b3),(b2,b4),(b3,b4),共 15 个基本事件.
[变式训练] (2017·韶关调研)某校高一年级学生全
部参加了体育科目的达标测试,现从中随机抽取 40 名学 生的测试成绩,整理数据并按分数段[40,50),[50,60), [60,70),[70,80),[80,90),[90,100]进行分组,假 设同一组中的每个数据可用该组区间的中点值代替,则 得到体育成绩的折线图如下.@
2020届高考数学统计与概率
高考数学统计与概率分布列一、随机抽样:抽签法和随机数法(超过总体号码或出现重复号码的数字舍去.) 分层抽样:总体是由差异明显的几个部分组成系统抽样:当总体中的个体数不能被样本容量整除时,可先用简单随机抽样的方法从总体中剔除几个个体再编号二、古典概型与几何概型 三、用样本估计总体 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 常见结论:(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的. 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3.茎叶图茎叶图是统计中来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. 4.极差、中位数、众数、平均数、标准差、方差标准差s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定. 四、相关关系1、当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.相关系数r =∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2∑ni =1(y i -y )2.2、线性回归方程回归方程为y ^=b ^x +a ^,则b ^=∑ni =1 (x i -x )·(y i -y )∑ni =1 (x i -x )2=∑ni =1x i y i -n x y ∑n i =1x 2i -n (x )2;a ^=y -b ^x .a ^=y --b ^x -,其中b ^是回归方程的斜率,a ^是在y 轴上的截距,(x -,y -)称为样本点的中心. 3、独立性检验K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量),则利用独立性检验判断表来判断“X 与Y 的关系”. 五、分布列1、0-1分布 E (X )=p D (X )=p (1-p )2、超几何分布(不放回不重复)如果X 服从参数为n ,M ,N ,记作X ~H (n ,M ,N )(超几何分布),其数学期望E (X )=nMN .3、二项分布(有放回,n 次独立性重复实验) X ~B (n ,p ),E (X )=np D (X )=np (1-p )4、正态分布: 若X ~N (μ,σ2),则X 的均值与方差分别为:E (X )=μ,D (X )=σ2. ①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x =μ对称;③曲线与x 轴之间的面积为1;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. ⑤三个常用数据P (μ-σ<X ≤μ+σ)≈0.682 6 P (μ-2σ<X ≤μ+2σ)≈0.954 4 P (μ-3σ<X ≤μ+3σ)≈0.997 4.5、均值(期望值)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 偏离程度 E (aX +b )=aE (X )+b .方差D (X )=∑i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均 D (aX +b )=a 2D (X )注意:P 为事件发生成功的概率,可以表示为没抓住,没取到,没达到的概率例题:1、利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )2、某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )3、总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481410个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是( )5、(2019·辽宁师范大学附属中学模拟)某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为86、(2018·青岛三中期中)已知数据x1,x2,…,x n的平均数x=5,方差s2=4,则数据3x1+7,3x2+7,…,3x n+7的平均数和标准差分别为( )A.15,36 B.22,6 C.15,6 D.22,367、(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是()8、在区间[0,π]上随机取一个数x,则事件“sin x+cos x≥22”发生的概率为________.9、(2019·郑州模拟)已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为()10、(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是()11、老师计划在晚自习19:00~20:00解答同学甲、乙的问题,预计解答完一个学生的问题需要20分钟.若甲、乙两人在晚自习的任意时刻去问问题是互不影响的,则两人独自去时不需要等待的概率是( )12、点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )13、(2019·广东清远一模)已知袋子中放有若干个大小和形状相同的小球,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“a +b =2”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求使x 2+y 2>(a -b )2恒成立的概率. 14、对于下列表格所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155.则实数m 的值为( )15、 (2019济宁一中)已知变量x ,y 的一组数据如下表:若在依据表中数据所画的散点图中,所有样本点(x i ,y i )(i =1,2,3,4,5)都集中在曲线y =12x 2-a 附近,则a =( )16、离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( ) 17、设离散型随机变量X 的分布列为(1)求随机变量Y =2X +1(2)求随机变量η=|X -1|的分布列; (3)求随机变量ξ=X 2的分布列.18、为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和期望值.19、已知随机变量X 服从正态分布N (2,32),且P(X ≤1)=0.30,则P (2<X <3)等于( ) 20、设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为( ) 21、设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )22、已知三个正态分布密度函数f i (x)=12πσi·e-x -μi 22σ2i(x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3 (B)μ1>μ2=μ3,σ1=σ2<σ3 (C)μ1=μ2<μ3,σ1<σ2=σ3 (D)μ1<μ2=μ3,σ1=σ2<σ323、京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值; (2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.24、随机变量X 的可能取值为0,1,2,若P(X =0)=15,E(X)=1,则D(X)=( )25、(2016·全国卷Ⅲ)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确 到0.01),预测2016年我国生活垃圾无害化 处理量. 附注:参考数据:,7140.17i i i t y ==∑,721()0.55ii y y =-=∑,7≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑, 回归方程$$y ab =+$ 中斜率和截距的最小二乘估计公式分别为:$ay bt =-$, 26、为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中综合得分k 的范围节排器等级节排器利润率k ≥85 一级品 a 75≤k <85 二级品 5a 2 70≤k <75三级品a 2(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;(2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望E (ξ); ②从长期来看,骰子哪种型号的节排器平均利润较大?。
【精品推荐】2020高考数学(理科)二轮专题复习课标通用版 课件 专题6 概率与统计第1部分 专题6 第2讲 Word
2019·全 国卷Ⅰ,
15 2019·全 国卷Ⅱ,
3.(2019·全国卷Ⅱ)11分制乒乓
球比赛,每赢一球得1分,当某 局打成10∶10平后,每球交换发 球权,先多得2分的一方获胜, 该局比赛结束.甲、乙两位同学 进行单打比赛,假设甲发球时甲
验的概率
18 2017·天
津卷,16
得分的概率为0.5,乙发球时甲 得分的概率为0.4,各球的结果 相互独立.
物的变化.每一“重卦”由从下到上排列的6个爻组成,爻 分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦
中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A.156
B.3112
C.2312
D.1116
答案 A
解析 由题知,每一爻有2种情况,一重卦的6爻有26
种情况,其中6爻中恰有3个阳爻的情况有C
2017·全国卷
Ⅰ,2
典例回顾
在不超过30的素数中,随机
选取两个不同的数,其和等
于30的概率是( )
A.112
B.114
C.115
D.118
• 答案 C
解析 根据题意可得小于30的素数有
2,3,5,7,11,13,17,19,23,29,共10个.随机选取两个数共有
C
2 10
=
10×9 2
2020版高考数学复习专项六高考中的概率与统计理北师大版
高考大题专项六高考中的概率与统计1.(2019河北衡水中学一模,18)某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x在[100,150]内,且其频率y满足y=10a-(其中10n≤x<10(n+1),n∈N+).(1)求a的值;(2)请画出这20名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组区间的中点值作代表);(3)将此样本的频率估计为总体的概率,随机调查4名该校的大一理工科新生,记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的均值.2.(2018山东青岛调研,18)近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:表1根据以上数据,绘制了如下图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与y=c·d x(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2.表2已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.参考数据:其中v i=lg y i,v i3.(2019广东化州一模,18)2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000]五组,并作出如下频率分布直方图.(1)台风后居委会号召小区居民为台风重灾区捐款,记者调查的100户居民捐款情况如下表格,在下面表格空白处填写正确数字,并说明是否有95%的把握认为捐款数额多于或少于500元和自身经济损失是否到4 000元有关?(2)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4 000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,均值E ξ和方差D ξ.参考公式:χ2=-,其中n=a+b+c+dP (χ2>k 0) 0.050 0.010k 0 3.841 6.6354.(2018长春质量监测一,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25 ℃,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20 ℃,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的均值达到最大值?5.(2019广东省六校第一次联考,19)某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1 000辆纯电动汽车,统计其出厂续驶里程R,得到频率分布直方图如下图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市每辆纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得到如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下使用新设备产生的日利润.(日利润=日收入-日维护费用)6.2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1 000人的得分数据,其频率分布直方图如图所示:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1 000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布求P(50.5<Z<94);(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:①得分不低于μ可获赠2次随机话费;得分低于μ,则只有1次;②每次赠送的随机话费和对应概率如下:现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:14.5.若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=68.3%,P(μ-2δ<Z<μ+2δ)=95.4%.参考答案高考大题专项六高考中的概率与统计1.解 (1)由题意知: ≤n≤ 4,所以n的取值为10,11,12,13,14,代入y=10a-,可得(10a-0.5)+(10a-0.55)+(10a-0.6)+(10a-0.65)+(10a-0.7)=1,解得a=0.08.(2)由(1),得y=0.3,0.25,0.2,0.15,0.1,频率分布直方图如图:这40名新生的高考数学分数的平均数为105×0.30+115×0.25+125×0.20+135×0.15+145×0.10=120.(3)由题意可知,ξ=0,1,2,3,4,且“高考数学分数不低于130分”的概率为0.15+0.1=0.25,所以ξ~B4,4,所以Eξ=4×4=1.2.解 (1)根据散点图判断, =c·d x适宜作为扫码支付的人数y关于活动推出天数x的回归方程类型.(2)∵ =c·d x,两边同时取常用对数得:lg y=lg(c·d x)=lg c+lg d·x;设lg y=v,∴v=lg c+lg d·x.∵ =4,=1.54,x=140,∴lg d=-x- x=5 .-4.544 -4=0.25,把样本中心点(4,1.54)代入v=lg c+lg d·x,得:lg c=0.54,∴v=0.54+0.25x,∴lg y=0.54+0.25x,∴y关于x的回归方程式为y=100.54+0.25x=100.54×(100.25)x=3.47×100.25x.把x=8代入上式,得y=3.47×102=347;活动推出第8天使用扫码支付的人次为3 470.(3)记一名乘客乘车支付的费用为Z,则Z的取值可能为:2,1.8,1.6,1.4;P(Z=2)=0.1;P(Z=1.8)=0.3×=0.15;P(Z=1.6)=0.6+0.3×=0.7,P(Z=1.4)=0.3×=0.05.分布列为:所以,一名乘客一次乘车的平均费用为:2×0.1+1.8×0.15+1.6×0.7+1.4×0.05=1.66(元).3.解 (1)由频率分布直方图可知,在抽取的100人中,经济损失不超过4 000元的有0.7×100=70人,经济损失超过4 000元的有100-70=30人,则表格数据如下χ2=-≈4.762,由于4.762>3.841,所以有95%的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4 000元有关. (2)由频率分布直方图可知抽到自身经济损失超过4 000元的居民的频率为0.3,将频率视为概率.由题意知ξ的可能取值有0,1,2,3,ξ~B3,,P (ξ=0)= 0× 3= 4; P (ξ=1)= 1× 2=44; P (ξ=2)= 2× 1= ; P (ξ=3)=3×= .从而ξ的分布列为E ξ=np=3×=0.9, D ξ=np (1-p )=3××=0.63.4.解 (1)由题意知,X 所有的可能取值为200,300,500,由表格数据知,P(X=200)==0.2,P(X=300)==0.4,P(X=500)= 54=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑 ≤n≤5 .当 ≤n≤5 时,若最高气温不低于25,则Y=6n-4n=2n.若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此EY=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当 ≤n<300时,若最高气温不低于20,则Y=6n-4n=2n.若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的均值达到最大值,最大值为520元.5.解 (1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为3×0.2+4×0.5+4.5×0.3=3.95(万元).(2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为30×100+4×900=6 600(辆).可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为25×(6 000×0.2+6 600×0.8)-500×100-80×900=40 000(元).若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为30×200+4×400=7 600(辆);可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为25×(6 000×0.2+7 000×0.3+7 600×0.5)-500×200-80×400=45 500(元).6.解 (1)EZ=35×0.025+45×0.15+55×0.2+65×0.25+75×0.225+85×0.1+95×0.05=65,∴μ=65,δ=≈ 4.5,∴P(50.5<Z<79.5)=68.3%,P(36<Z<94)=95.4%,∴P(79.5<Z<94)= 5.4-.=13.55%,∴P(50.5<Z<94)=P(50.5<Z<79.5)+P(79.5<Z<94)=68.3%+13.55%=81.85%.(2)P(Z<μ)=P(Z≥μ)=,X的可能取值为10,20,30,40,P(X=10)=×=,P(X=20)=×+××=,P(X=30)=××+××=,P(X=40)=××=.故X的分布列为。