2005年高考浙江省数学试题(文科)_2

合集下载

2005年高考浙江理科数学试题及答案

2005年高考浙江理科数学试题及答案

2005年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第Ⅰ卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++++∞→2321limnnn( )A .2B .1C .21 D .0 2.点(1,-1)到直线01=+-y x 的距离是( )A .21 B .23 C .22 D .2233.设=⎪⎩⎪⎨⎧>+≤--=)]21([,1||,11,1||,2|1|)(2f f x xx x x f 则( )A .21B .134C .59-D .41254.在复平面内,复数2)31(1i ii+++对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是 ( )A .74B .121C .-74D .-1216.设α、β为两个不同的平面,l 、m 为两条不同的直线,且βα⊂⊂m l ,. 有如下两个命 题:①若m l //,//则βα;②若.,βα⊥⊥则m l 那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题7.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边 界的阴影部分)是( )A .B .C .D .8.已知4-<k ,则函数)1(cos 2cos -+=x k x y 的最小值是 ( )A .1B .-1C .12+kD .12+-k9.设})(|{}.7,6,5,4,3{},5,4,3,2,1{),(12)(P n f N n P Q P N n n n f ∈∈===∈+=记, P Q n f N n Q (},)(|{则∈∈=)Q Q ( =)P( )A .{0,3}B .{1,2}C .{3,4,5}D .{1,2,6,7}10.已知向量a ≠e ,|e |=1满足:对任意∈t R ,恒有|a -t e |≥|a -e |. 则 ( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 11.函数∈+=x x x y (2R ,且)2-≠x 的反函数是 .12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E(如图).现将△ADE 沿DE 折起,使二面角A —DE —B 为45°,此时点A 在平面BCDE 内的射影恰为点B , 则M 、N 的连线与AE 所成角的大小等于 . 13.过双曲线)0,0(12222>>=-b a by ax 的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于 . 14.从集合{O ,P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O 、Q 和数字0至多只出现一个的不同排法种 数是 (用数字作答).三、解答题:本大题共6小题,每小题14分,共84分. 解答应写出文字说明,证明过程或演算步骤.15.已知函数.cos sin sin 3)(2x x x x f +-=(Ⅰ)求)625(πf 的值;(Ⅱ)设ααπαsin ,2341)2(),,0(求-=∈f 的值.NDABC16.已知函数)xgf和的图象关于原点对称,且.(x()f+=x)2(2xx (Ⅰ)求函数)g的解析式;(x(Ⅱ)解不等式.|1fxg≥xx)|)((--17.如图,已知椭圆的中心在坐标原点,焦点F 1、F 2在x 轴上,长轴A 1A 2的长为4,左准线x l 与轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线11),1|(|:l P x m x l 为>=上的动点,使21PF F ∠最大的点P 记为Q ,求点Q的坐标(用m 表示).18.如图,在三棱锥P —ABC 中,,,kPA BC AB BC AB ==⊥点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC.(Ⅰ)求证OD//平面PAB ; (Ⅱ)当21=k 时,求直线PA 与平面PBC 所成角的大小;(Ⅲ)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?BCPDAo19.袋子A 和B 中装有若干个均匀的红球和白球, 从A 中摸出一个红球的概率是31,从B中摸出一个红球的概率为p .(Ⅰ)从A 中有放回地摸球, 每次摸出一个, 有3次摸到红球即停止. ( i ) 求恰好摸5次停止的概率; ( ii ) 记5次之内 (含5次) 摸到红球的次数为ξ, 求随机变量ξ的分布列及数学期望E ξ.(Ⅱ)若A 、B 两个袋子中的球数之比为1∶2,将A 、B 中的球装在一起后, 从中摸出一个红球的概率是52, 求p 的值.20.设点)2.(),0,(1-n n n n n x P x A 和抛物线),(:2*∈++=N n b x a x y C n n n 其中n n n x n a ,21421----=由以下方法得到:)2,(,1221x P x 点=在抛物线1121:b x a x y C ++=上,点A 1(x 1,0)到P 2的距离是A 1到C 1上的最短距离,……,点)2,(11n n n x P ++在抛物线上n n n b x a x y C ++=2:上,点1)0,(+n n n P x A 到的距离是A n到C n 上点的最短距离. (Ⅰ)求12C x 及的方程; (Ⅱ)证明}{n x 是等差数列.数学试题(理科)参考答案一.选择题:本题考查基本知识和基本运算。

2005年高考理科数学浙江卷试题及答案

2005年高考理科数学浙江卷试题及答案

2005年高考理科数学浙江卷试题及答案布谷鸟第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn++++ =( ) (A) 2 (B) 4 (C) 21(D)02.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)23.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题(C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( )(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e|,则 (A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________.13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲N线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤 15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x .(Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小;(Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)n n n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P+的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005年高考理科数学浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 22f x x x=+ 11sin 224f ααα⎛⎫∴=+=⎪⎝⎭ 216sin 4sin 110αα--=,解得sinα=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡⎤-⎢⎥⎣⎦(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,, OA OB OC ∴== ,OP ABC ⊥ 又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角. 又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠=在中,APBC ∴ PA 与平面所成的角为 (Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影 ∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴= ,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心方法二:OP ABC ⊥ 平面,,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,222A a B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设OP h =,则()0,0,P h (Ⅰ) D 为PC的中点,1,0,42OD a h ⎛⎫∴=- ⎪ ⎪⎝⎭,又1,0,,,//2PA h OD PA OD PA ⎫=-∴=-∴⎪⎪⎝⎭,OD PAB ∴ 平面∥(Ⅱ)12k =,即2,,,0,PA a h PA ⎫=∴=∴=⎪⎪⎝⎭ , 可求得平面PBC的法向量1,1,n ⎛=- ⎝,cos ,||||PA n PA n PA n ⋅∴〈〉==⋅设PA 与平面PBC 所成的角为θ,则sin |cos ,|PA n θ=〈〉= , (Ⅲ)PBC ∆的重心1,3G h ⎛⎫⎪ ⎪⎝⎭,1,3OG h ⎛⎫∴= ⎪ ⎪⎝⎭ ,,OG PBC OG PB ⊥∴⊥平面,又2211,,0,63PB h OG PB a h h ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴==,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力满分14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭ (ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n k k k n n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-= ⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ0 1 2 3 P 32243 80243 80243 17243ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球 由122335m mp m +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=, 即()()()222122127270x x x b x -+-+-= 又()22,2P x 在1C 上,222127x x b∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+(Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P 令()()()222n n n g x x x x a x b =-+++则()()()()2222n n n ng x x x x a x b x a '=-++++ 由题意得()10n g x +'=即()()()21112220n n n n n n n x x x a x b x a +++-++++=又1212n n n n n x a x b ++=++ , ()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-,①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-,则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

2005年高考.浙江卷.理科数学试题精析详解

2005年高考.浙江卷.理科数学试题精析详解

浙江省2005年高考试题数学(理工类)第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.limn →∞2123nn++++L =( ) (A) 2 (B) 4 (C) 21(D)0解:2221(1)11212lim lim lim 22n n n n n n n n n →∞→∞→∞++++⋅⋅⋅+===,选(C) 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C)解:点(1,-1)到直线x-y+1=0的距离2=,选(D) 3.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 2541解:f[f(12)]=f[|12-1|-2]=f[-32]=2114313131()24==+-,选(B)4.在复平面内,复数1ii++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限解:1i i ++(1+3i )2=12i --i=32-i,故在复平面内,复数1ii++(1+3i )2对应的点为(32-故选(B)5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -121解:(1-x )5+(1-x )6+(1-x )7+(1-x )8=5459(1)[1(1)](1)(1)1(1)x x x x x x------=--,(1-x)5中x 4的系数为455C =,-(1-x)9中x 4的系数为-49126C =-,-126+5=-121,故选(D)6.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题 解:命题②有反例,如图中平面α∩平面β=直线n,l ,m αβ⊂⊂ 且l ∥n,m ⊥n,则m ⊥l,显然平面α不垂直平面β 故②是假命题;命题①显然也是假命题, 因此本题选(D)7.设集合A ={(x ,y )|x ,y ,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )解:由题意可知0010.111x y x y x y x y x y x y x y y x >⎧⎪>⎪⎪-->⎨+>--⎪⎪--+>⎪--+>⎩得102102112x y x y ⎧<<⎪⎪⎪<<⎨⎪⎪<+<⎪⎩由此可知A 所表示的平面区域(不含边界的阴影部分)是(A )8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +1解:y =cos2x +k (cos x -1)=2cos 2x+ k (cos x -1)-1,当cosx=1时,y=1,当cosx ≠1时,cosx-1<0,则y>2cos 2x-4(cos x -1)-1=2(cosx-1)2+1≥1,故y 的最小值为1,选(A)9.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C){3,4,5} (D){1,2,6,7}解:^P ={0,1,2},N ð^P ={n ∈N|n ≥2},Q ∧={1,2,3},N ðQ ∧={n ∈N|n=0或n ≥4}, 故P ∧∩N ðQ ∧={0},Q ∧∩N ðP ∧={3},得(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)={0,3},选(A)10.已知向量a r ≠e r ,|e r |=1,对任意t ∈R ,恒有|a r -t e r |≥|a r -e r|,则 (A) a r ⊥e r (B) a r ⊥(a r -e r ) (C) e r ⊥(a r -e r ) (D) (a r +e r )⊥(a r -e r )解:由|a r -t e r |≥|a r -e r |得|a r -t e r |2≥|a r -e r|2展开并整理得222210,,(2)480t aet ae t R ae ae -+-≥∈=-+-≤r r r r r r r r V 由得,得()0e a e -=r r r ,即()a a e ⊥-r r r,选(C)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分。

2005年浙江省高考数学试卷及答案(文科)

2005年浙江省高考数学试卷及答案(文科)

绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π 2.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 3.点(1,-1)到直线10x y -+=的距离是( )A .21 B . 32C .2D .24.设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )A . 12-B .0C .12D .1 5.在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )A .5-B .5C .-10D .106.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.377.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题8.已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是 A .{}2,3 B .{}1,6- C .{}2 D .{}69.函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .110.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )A .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2005年高考数学文科全国卷2 试题及答案

2005年高考数学文科全国卷2 试题及答案

【试题答案】2005年普通高等学校招生全国统一考试文科数学试题(必修+选修I)参考答案一. 选择题:1. C2. D3. B4. B5. D6. C7. B 8. A 9. C 10. A 11. C 12. C二. 填空题:13. 216 14.15. 192 16. ①,④三. 解答题:17. 本小题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。

满分12分。

解法一:为第二象限的角,,所以所以为第一象限的角,,所以所以解法二:为第二象限角,,所以为第一象限角,,所以故所以18. 本小题主要考查相互独立事件概率的计算,运用概率知识解决实际问题的能力,满分12分。

解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(I)记“甲队胜三局”为事件A,“甲队胜二局”为事件B,则所以,前三局比赛甲队领先的概率为(II)若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜,所以,所求事件的概率为19. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。

满分12分。

(1)证明:成等差数列,即又设等差数列的公差为d,则这样从而这时是首项,公比为的等比数列(II)解:所以20. 本小题主要考查直线与平面垂直、直线与平面所成角的有关知识,及思维能力和空间想象能力,考查应用向量知识解决数学问题的能力。

满分12分。

方法一:(I)证明:连结EPDE在平面ABCD内,又CE=ED,PD=AD=BC为PB中点由三垂线定理得在中,又PB、FA为平面PAB内的相交直线平面PAB(II)解:不妨设BC=1,则AD=PD=1为等腰直角三角形,且PB=2,F为其斜边中点,BF=1,且与平面AEF内两条相交直线EF、AF都垂直平面AEF连结BE交AC于G,作GH//BP交EF于H,则平面AEF 为AC与平面AEF所成的角由可知由可知与平面AEF所成的角为方法二:以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系(1)证明:设E(a,0,0),其中,则C(2a,0,0),A(0,1,0),B(2a,1,0),P(0,0,1),F(a,,)又平面PAB,平面PAB,平面PAB(II)解:由,得可知异面直线AC、PB所成的角为又,EF、AF为平面AEF内两条相交直线平面AEF与平面AEF所成的角为即AC与平面AEF所成的角为 21. 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,满分12分。

2005年浙江省高考数学试卷及答案(文科)

2005年浙江省高考数学试卷及答案(文科)

绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π 2.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则P ICUQ=A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 3.点(1,-1)到直线10x y -+=的距离是( )A .21 B . 32C .22D .3224.设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )A . 12-B .0C .12D .1 5.在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )A .-6B .6C .-10D .106.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10 取到的次数138576131810119则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.377.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题8.已知向量(5,3)a x =-r ,(2,)b x =r ,且a b ⊥r r,则由x 的值构成的集合是A .{}2,3B .{}1,6-C .{}2D .{}69.函数y=ax 2+1的图象与直线y x =相切,则a =A .18B .14C .12D .110.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )121112oyx121112oyx121112oyx121112oyxA .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2005年高考理科数学(浙江卷)试题及答案

2005年高考理科数学(浙江卷)试题及答案

M
N
所成角的大小等于_________.
x2
13.过双曲线
a2
y2 b2
1(a>0,b>0)的左焦点且垂直于
A
B
x 轴的直线与双曲线相交于 M、N 两点,以 MN 为直径的圆恰好过双曲线的右顶点,则双曲 线的离心率等于_________. 14.从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取 2 个元素排成 一排(字母和数字均不能重复).每排中字母 O,Q 和数字 0 至多只能出现一个的不同排法 种数是_________.(用数字作答).
2-4n-
1 2n1

xn 由以下方法得到:
x1=1,点
P2(x2,2)在抛物线
C1:y=x2+a1x+b1
上,点
A1(x1,0)到
P 2
的距离是
A 1

C 1
上点的最短距离,…,点 Pn1 (xn1 , 2n ) 在抛物线 Cn :y=x2+an x+bn 上,点 An ( xn ,0)
到 Pn1 的距离是 An 到 Cn 上点的最短距离.
(Ⅰ)求函数 g(x)的解析式; (Ⅱ)解不等式 g(x)≥f(x)-|x-1|.
17.如图,已知椭圆的中心在坐标原点,焦点 F1, F2 在 x 轴上,长轴 A1A2 的长为 4,左
准线
l

x
轴的交点为
M,|MA |∶|A F |=2∶1.
1
11
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线 l1 :x=Байду номын сангаас(|m|>1),P 为 l1 上的动点,
三、解答题:本大题共 6 小题,每小题 14 分,共 84 分 解答应写出文字说明,证明过程 或演算步骤

数学_2005年浙江省杭州市高考数学二模试卷(文科)(含答案)

数学_2005年浙江省杭州市高考数学二模试卷(文科)(含答案)

2005年浙江省杭州市高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分) 1. 以下结论正确的是( )A 终边相同的角一定相等B 第一象限的角都是锐角C x 轴上的角均可表示为2kπ(k ∈Z)D y =sinx +cosx 是非奇非偶函数 2. (√x2√x)6的二项展开式中,常数项有( )A 0项B 1项C 3项D 5项3. 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( ) A −13B −3C 13D 34. 若a ,b ,c 是直角三角形的三边(c 为斜边),则圆x 2+y 2=2被直线ax +by +c =0所截得的弦长等于( ) A 1 B 2 C √3 D 2√35. “|2x −1|<3”是“(x+1)(x+3)(x−2)<0”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 6. 有一条信息,若1人得知后用1小时将其传给2人,这2人又用1小时分别传给未知此信息的另外2人,如此继续下去,要传遍100万人口的城市,理论上最少需要的时间约为( ) A 10天 B 2天 C 1天 D 半天7. P ={α|α=(−1, 1)+m(1, 2), m ∈R},Q ={β|β=(1, −2)+n(2, 3), n ∈R}是两个向量集合,则P ∩Q 等于( )A {(1, −2)}B {(−13, −23)}C {(−2, 1)}D {(−23, −13)} 8. 设函数f(x)={√1−x 2,(|x|≤1)|x|,(|x|>1),若方程f(x)=a 有且只有一个实根,则实数a 满足( )A a <0B 0≤a <1C a =1D a >19. 将棱长相等的正方体按如右图所示的形状摆放,从上往下依次为第1层,第2层,第3层….则第2005层正方体的个数是( ) A 4011 B 4009 C 2011015 D 200901010. 从6个教室中至少安排两个教室供学生上自修课,则可能安排的情况共有( ) A 15种 B 30种 C 56种 D 57种 11. 设F 1,F 2分别为曲线C 1:x 26+y 22=1的左、右焦点,P 是曲线C 2:x 23−y 2=1与C 1的一个交点,则cos∠F 1PF 2的值是( ) A 14 B 13 C 23 D −1312. 用32m 2 的材料制作一个长方体形的无盖盒子,如果底面的宽规定为2m ,那么这个盒子的最大容积可以是( )A 36m 3B 18m 3C 16m 3D 14m 3二、填空题(共4小题,每小题4分,满分16分)13. 若集合M={y|y=2x},N={y|y=log0.5√x2+1},则M∪N等于________.14. 已知sinα−cosα=12,则sin3α−cos3α的值是________.15. 已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆x2m +y2n=1的准线方程为________.16. 在下面4个平面图形中,是右面正四面体(侧棱和底面边长相等的正三棱锥)的展开图的序号有________.(把你认为正确的序号都填上)三、解答题(共6小题,满分74分)17. 一元二次方程mx2+(2m−3)x+(m−2)=0的两个实数根为tanα和tanβ.(1)求实数m的取值范围;(2)求tan(α+β)的取值范围及其最小值.18. △A1OB1,△A2B1B2,△A3B2B3,…,△A n B n−1B n均为等腰直角三角形,已知它们的直角顶点A1,A2,A3,…,A n在曲线xy=1(x>0)上,B1,B2,B3,…,B n在x轴上(如图),(1)求斜边OB1,B1B2,B2B3的长;(2)求数列OB1,B1B2,B2B3,…,B n−1B n的通项公式.19. 如图,三棱锥P−ABC中,PB⊥底面ABC于B,∠BCA=90∘,PB= BC=CA=4√2,点E,点F分别是PC,AP的中点.(1)求证:侧面PAC⊥侧面PBC;(2)求点P到平面BEF的距离;(3)求异面直线AE与BF所成的角的余弦.20. 袋里装有30个球,球面上分别记有1到30的一个号码,设号码为n的球重量为13n2−4n +443(克).这些球以等可能性(不受重量,号码的影响)从袋里取出.(1)如果任意取出1球,求其重量值大于号码数的概率.(2)如果同时任意取2球,试求他们重量的相同的概率.21. 已知点C(x, y)(x >0, y >0)在抛物线f(x)=4−x 2上(如图),过C 作CD // x 轴交抛物线于另一点D ,设抛物线与x 轴相交于A ,B 两点,试求x 为何值时,梯形ABCD 的面积最大,并求出面积的最大值.22.设双曲线x 24−y 2=1的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP (O 为坐标原点)分别交于Q 和R 两点.(1)证明:无论P 点在什么位置,总有|OP →|2=|OQ →⋅OR →|; (2)设动点C 满足条件:AC →=12(AQ →+AR →),求点C 的轨迹方程.2005年浙江省杭州市高考数学二模试卷(文科)答案1. D2. B3. A4. B5. A6. C7. B8. C9. C 10. D 11. B 12. C13. {y|y ∈R} 14. 1116 15. y =±2√2 16. ①②17. 解:(1)由方程有实根,得{△=(2m −3)2−4m(m −2)≥0m ≠0, 所以m 的取值范围为m ≤94且m ≠0;(2)由韦达定理tanα+tanβ=3−2m m,tanαtanβ=m−2m ,代入和角公式,得tan(α+β)=tanα+tanβ1−tanαtanβ=3−2m 2=32−m ≥32−94=−34,所以tan(α+β)的取值范围为[−34,32)∪(32,+∞),最小值为−34. 18. 解:(1)OB 1=2,B 1B 2=2(√2−1),B 2B 3=2(√3−√2). (2)解法1:B n−1B n =a n ,猜想出a n =B n−1B n =2(√n −√n −1) 当n =1时,由上已证猜想成立.假设n =k 时,猜想成立,即有a k =2(√k −√k −1), 设S k 是a n 的前k 项和,则有(S k +a k+12)⋅a k+12)⋅a k+12=1.∴ (S k−1+a k2)⋅a k 2=1. 两式相减,得a k+12+a k 2=2a k+1−2a k即a k+12+(√k −√k −1)=2a k+1−(√k +√k −1).∴ a k+12+4√ka k+1−4=0,解得a k+1=2(√k +1−√k),即n =k +1时,猜想也成立, 综合上述,所求的通项公式a n =B n−1B n =2(√n −√n −1). 解法2:设OB 1=a 1,B 1B 2=a 2,,B n−1B n =a n ,{a n }的前n 项和为S n.侧B n (S n , 0),∴ A n+1(S n +12a n+!,12a n+1).代入曲线方程得:(S n +12a n+1)(12a n+1)=1,且(12a 1)2=1,∴ 2S n a n+1+(a n+1)2=4,a 1=2,2S n (S n+1−S n )+(S n+1−S n )2=4,S 1=2. 化简得(S n+1)2−(S n )2=4,∴ (S n )2=(S 1)2+4(n −1)=4n ,∴ S n =2√n 所求的通项公式为a n =B n−1B n =2(√n −√n −1). 19. 解:(1)以BP 所在直线为z 轴,BC 所在直线y 轴,建立空间直角坐标系,由条件可设P(0, 0, 4√2),B(0, 0, 0),C(0, −4√2, 0),A(4√2, −4√2, 0); 则E(0, −2√2, 2√2),F(2√2, −2√2, 2√2),平面PBC 的法向量a →=(1, 0, 0),而PE →=(0,−2√2,−2√2), 因为a →⋅PE →=0,所以侧面PAC ⊥侧面PBC ;(2)证明:在等腰直角三角形PBC 中,BE ⊥PC ,又中位线EF // AC ,而由(1)AC ⊥平面PBC ,则EF ⊥平面PBC , ∴ EF ⊥PC ,所以PC ⊥平面BEF ,那么线段PE =12PC =4即为点P 到平面BEF 的距离.(3)由(1)所建坐标系,得 AE →=(−4 √2, 2 √2, 2 √2),BF →=(2 √2, −2 √2, 2 √2), ∴ AE →⋅BF →=−16,又|AE →|⋅|BF →|=24 √2, cos <AE →,BF →>=−√23,∴ AE 与 BF 所成的角的余弦值是√23. 20. 解:(1)由13n 2−4n +443>n 得:n 2−15n +44>0,从而n >11或n <4,由题意得n =1,2,3或12,13,…,30共22个数值. 所以所求概率为P 1=2230=1115;(2)设第m 号和第n 号球的重量相等,其中m <n , 则由13m 2−4m +443=13n 2−4n +443得:m +n =12,则(m, n)=(1, 11),(2, 10),(3, 9),(4, 8),(5, 7),(6, 6)共5种情况. 故所求的概率为P 2=5C 302=187.21. 解:令4−x 2=0,得A(−2, 0),B(2, 0),设C(x, y),又由对称性知D(−x, y). 设梯形面积为g(x),则梯形的面积g(x)=12(4+2x)⋅y =(2+x)(4−x 2)=−x 3−2x 2+4x +8,g′(x)=−3x 2−4x +4=−(3x −2)(x +2),令g′(x)=0,因x >0,得x =23, 当0<x <23时,g′(x)>0,g(x)单调递增;当x >23时,g′(x)<0,g(x)单调递减,∴ 当x =23时,g(x)有最大值,最大值为g(23)=25627.22. 解:(1)设OP:y =kx 与AR:y =12(x −2)联立,解得OR →=(21−2k ,2k1−2k ), 同理可得QR →=(21+2k ,2k1+2k ),所以|OQ →⋅OR →|=4+4k 2|1−4k 2|, 设OP →=(m, n),则由双曲线方程与OP 方程联立解得m 2=41−4k 2,n 2=4k 21−4k 2,所以|OP →|2=m 2+n 2=4+4k 21−4k 2=|OQ →⋅OR →|(点在双曲线上,1−4k 2>0);(2)∵ AC →=12(AQ →+AR →), ∴ 点C 为QR 的中点,设C(x, y),则有{x =21−4k 2y =2k 1−4k 2,消去k ,可得所求轨迹方程为x 2−2x −4y 2=0(x ≠0).。

2005年浙江省高考数学试卷及答案(理科)

2005年浙江省高考数学试卷及答案(理科)

糖果工作室 原创 欢迎下载!第 1 页 共 11 页绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.limn →∞2123nn ++++=( )(A) 2 (B) 4 (C)21(D)0 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)23.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1ii++(1+3i )2对应的点位于( ) (A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限 5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q∧={n ∈N |f (n )∈Q },则(P ∧∩NQ ∧)∪(Q ∧∩NP ∧)=( )(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7} 10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则(A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

宁波市2005年高中段招生考试数学试题及其参考答案

宁波市2005年高中段招生考试数学试题及其参考答案

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 宁波市2005年高中段招生考试数学试题及其参考答案一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求.) 1.-3的相反数是 ( ) A .13B .3C .13- D .-32. “天上星星有几颗,7后跟上22个0”这是国际天文学联合大会上宣布的消息,用科学技术法表示宇宙空间星星颗数为: ( )A .700×1020kmB .7×1023kmC .0.7×1023kmD .7×1022km 3.如图1,圆和圆的位置关系是 ( ) A .外离 B .相切 C .相交图1图 3 4. 不等式21x -<的解是 ( ) A 、x >1 B 、x >-1 C 、x <1 D 、x <-15. 如图2,AB//CD,2342B D ︒︒∠=∠= ,则E ∠= ( ) A .23º B .42º C .65º D .19º6. 一元二次方程2250x x +-=的两根的倒数和是 ( ) A .25B .25- C .52D . 52-7.若四边形的两条对角线相等,则顺次连结四边形各边中点所得的四边形是( ) A .梯形 B .矩形 C .菱形 D .正方形8.正比例函数y x =与反比例函数1y x=的图象相交于A,C 两点AB ⊥X 轴于B,CD ⊥X 轴于 于D,( 如图3)则四边形ABCD 的面积是 ( ) A .1 B .32C .2D .529.边长分别是3,4,5的三角形的内切圆和外接圆半径之比为( ) A .1:5 B .2:5 C .3:5 D . 4:510.一个袋中里有4个珠子,其中2个红色,2个兰色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是兰色珠子的概率是 ( )A .12B . 13C .14D .16二、填空题:(每小题3分,共24分) 11.因式分解:2218x -= .----------------------------精品word 文档 值得下载 值得拥有----------------------------------------------12.实数a 在数轴上的位置如图4=13. 如图5,ABC ∆内接圆于⊙O ,30B ∠=︒,AC=2㎝,则⊙O 半径的长为 ㎝B图5图6图414. 已知抛物线的解析式为23y x =-,则该抛物线的顶点坐标是15. 已知一个底面直径为10㎝,母线长为8cm 的圆锥形漏斗,则它的侧面积为________2cm ; 16.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为 分17.矩形纸片ABCD 中,AD=4㎝,AB=10㎝,按如图6方式折叠,使点B 与点D 重合,折痕为EF ,则DE= ㎝ 18.已知a b b c -=-=35,2221a b c ++=,则ab bc ac ++的值等于三、解答题(19.20题各5分,21.23题各6分,24,25题各8分,26题各10分,27题12分,共66分) 19.计算:2022(()3-+- 20.已知关于x 的方程323a x bx --=的解是x =2,其中0,a ≠且0b ≠,求代数式a bba -的值。

2005年高考理科数学(浙江卷)试题及答案

2005年高考理科数学(浙江卷)试题及答案

2005浙江卷试题及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn ++++=( )(A) 2 (B ) 4 (C )21(D )0 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2 (D)23.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A )21 (B )413 (C )-95 (D ) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D )第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A ) 74 (B) 121 (C ) -74 (D ) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A ) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C ) ①②都是真命题 (D ) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B ) (C ) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( )(A ) 1 (B ) -1 (C ) 2k +1 (D ) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩NQ ∧)∪(Q ∧∩NP ∧)=( )(A ) {0,3} (B){1,2} (C) (3,4,5} (D ){1,2,6,7} 10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 (A ) a ⊥e (B) a ⊥(a -e ) (C ) e ⊥(a -e ) (D ) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. ,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________.13.过双曲线22221x ya b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41-2,求sin α的值.16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x .N(Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到: x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)n n n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()1cos 2sin 2222f x x x =-+11sin 222242f ααα⎛⎫∴=+-=-⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤ 因此,原不等式的解集为11,2⎡-⎢⎣(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面 OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角.又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为(Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD,,,OB PC PC BD PB PC ⊥∴⊥∴=,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心A方法二:OP ABC ⊥平面,,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,222A a B C ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设OP h =,则()0,0,P h (Ⅰ)D 为PC 的中点,1,0,2OD h ⎛⎫∴=- ⎪ ⎪⎝⎭, 又21,0,,,//2PA a h OD PA OD PA ⎛⎫=-∴=-∴ ⎪⎪⎝⎭, OD PAB ∴ 平面∥(Ⅱ)12k =,即22,,,0,PA ah PA a ⎛⎫=∴=∴= ⎪ ⎪⎝⎭,可求得平面PBC 的法向量1,1,n ⎛=- ⎝, 210cos ,30||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则210sin |cos,|PA n θ=〈〉=, (Ⅲ)PBC ∆的重心1,3G h ⎛⎫ ⎪ ⎪⎝⎭,1,,663OG a a h ⎛⎫∴=- ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又222110,,,0,2632PB a h OG PB a h h a ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴==,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii )随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mpm +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=, 即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b ∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n n ng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++, ()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n nn nn xx a +++-+=下面用数学归纳法证明21n x n =-,①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-, 则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

浙江省2005年高三年级五校联考数学(文)

浙江省2005年高三年级五校联考数学(文)

浙江省2005年高三年级五校联考数学试卷(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题,共50分)注意事情项:每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,不能答在试题卷上。

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的中四选项中,只有一项是符合题目要求的) 1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则≥-+=≥= ( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.若αααααcos sin cos 3sin ,2tan +-=则的值是( )A .31-B .-35C .31 D .35 3.已知等比数列{a n }的前n 项和是S n ,S 5=2,S 10=6,则a 16+a 17+a 18+a 19+a 20=( )A .8B .12C .16D .244.已知b OB a OA ==, ,C 为线段AB 上距A 较近的于个三等分点,D 为线段CB 上距C 较近的一个三等分点,则用、表示的表达式为 ( )A .)54(91+ B .)79(161+ C .)2(31+ D .)3(41+ 5.已知y=f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -1,那么不等式f (x )<21的解集是 ( )A .{x |0<x <23}B .{x |-21<x <0}C .{x |-21<x <0或0<x <23} D .{x |x <-21或0≤x <23}6.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( ) A .2-=m B .3=m C .31=-=m m 或 D .23-==m m 或7.设函数f (x )是偶函数,且对于任意正实数x 满足f (2+x )=-2f (2-x ),已知f (-1)=4,那么f (-3)的值是 ( ) A .2 B .-2 C .8 D .-88.如图正面四体ABCD 中,E 为棱AD 的中点,则CE 与平面BCD 所成角的大小为( )A .30°B .32arcsinC .60°D .36arccos9.已知点M(m,n)在直线l :A x +By+C=0(AB ≠0) 的右下方,则Am+Bn+C 的值( )A .与A 同号,与B 同号 B .与A 同号,与B 异号C .与A 异号,与B 同号D .与A 异号,与B 异号10.已知点A(1,2),过点(5,-2)且斜率为k 的直线与抛物线y 2=4x 交于点B 、C ,那么△ABC的形状是 ( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .与k 的值有关第Ⅱ卷(非选择题,共100分)注意事项:用钢笔或圆珠笔直接答在试题卷上。

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn ++++=( )(A) 2 (B) 4 (C)21(D)0 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)2 3.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 (A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.N16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 22f x x x =+11sin 224f ααα⎛⎫∴=+= ⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡⎤-⎢⎥⎣⎦(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c=-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面,.PA PB PC ∴==E PE BC POE ⊥取BC 中点,连结,则平面OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角. 又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为 (Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影 ∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴=,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心方法二:OP ABC ⊥平面,,OA OC AB BC ==,A,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,222A a B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设OP h =,则()0,0,P h (Ⅰ)D 为PC 的中点,1,0,2OD h ⎛⎫∴=- ⎪ ⎪⎝⎭,又21,0,,,//2PA a h OD PA OD PA ⎛⎫=-∴=-∴⎪⎪⎝⎭, OD PAB ∴ 平面∥(Ⅱ)12k =,即22,,,0,PA a hPA ⎛⎫=∴=∴= ⎪⎪⎝⎭, 可求得平面PBC 的法向量1,1,n ⎛=- ⎝, 210cos ,||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则210sin |cos ,|PA n θ=〈〉=, (Ⅲ)PBC ∆的重心1,3G h ⎛⎫⎪ ⎪⎝⎭,1,3OG h ⎛⎫∴=- ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又222110,,,0,63PB a h OG PB a h h ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴=,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mp m +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=,即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n nng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++, ()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-, ①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-,则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

2005年高考理科数学浙江卷试题及答案

2005年高考理科数学浙江卷试题及答案

2005浙江卷试题及答案布谷鸟第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn++++ =( ) (A) 2 (B) 4 (C) 21(D)02.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)23.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e|,则 (A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.N16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 626ππ==225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 2222f x x x =-+11sin 222242f ααα⎛⎫∴=+-=-⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡⎤-⎢⎥⎣⎦(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,, OA OB OC ∴== ,OP ABC ⊥ 又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角. 又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为 (Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影 ∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴= ,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心A方法二:OP ABC ⊥ 平面,,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,222A a B C ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设OP h =,则()0,0,P h (Ⅰ) D 为PC 的中点,1,0,42OD a h ⎛⎫∴=- ⎪ ⎪⎝⎭ ,又1,0,,,//2PA h OD PA OD PA ⎫=-∴=-∴⎪⎪⎝⎭,OD PAB ∴ 平面∥(Ⅱ)12k =,即2,,,0,PA a h PA ⎫=∴=∴=⎪⎪⎝⎭ ,可求得平面PBC的法向量1,1,n ⎛=- ⎝ ,cos ,||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则sin |cos ,|PA n θ=〈〉= ,(Ⅲ)PBC ∆的重心1,3G h ⎛⎫ ⎪ ⎪⎝⎭,1,3OG h ⎛⎫∴= ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又2211,,0,63PB h OG PB a h h ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴=,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mp m +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=,即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n nng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++ ,()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-,①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-,则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

2005年浙江高考数学试题及答案(文)

2005年浙江高考数学试题及答案(文)

浙江省2005年高考数学(文科)一.选择题(共10题,每题5分,共50分)1.设集合A 、B ,则“A ∪B=∅”是“A ∩B=∅”的(A ) 充分但不必要条件 (B ) 必要但不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件 2.已知20个样本:12 8 15 12 13 10 12 10 14 9 10 13 14 12 14 12 11 12 13 14 那么频率为0。

1的范围是(A )7。

5~9。

5 (B )9.5~11。

5 (C)11.5~13.5 (D)13.5~15.5 3.函数log 错误!(1-2x +x 2)的大致图像是下列各图中的,则此函数f (x )= ()4.一个等差数列的项数为n ,若它的前3项与最后3项之和等于123,所有项之和为328,则n =(A) 14 (B )15 (C)16 (D )175.已知(x -y )n 展开式中第6项系数与第13项系数之和这0,若第k 项的系数最小,则k = (A )8 (B )9 (C)10 (D)11 6.关于x 的不等式错误!≥0的解集{x |-1≤x <2,或x ≥3},则点(a +b ,c )位于(A)第一象限 (B ) 第二象限 (C) 第三象限 (D ) 第四象限7.如图,已知正方体ABCD —A 1B 1C 1D 1中,则B 1C 1与平面A 1C 1D 所成的角为(A ) 错误! (B) 错误! (A) arccos 错误! (D ) arccos 错误!8.设F 1, F 2是椭圆错误!=1的焦点,P 2|=5,则cos ∠F 1PF 2=(A) -错误! (B) -错误! (D ) 错误! 9.( 3 +cot110°)cos50°=(A) 1 (B) 12(C) 2 (D ) 错误!10.下列四个函数中,满足|f (x )|≤|x |的是(A) f (x )=tan x (B ) f (x )=1-cos x (C ) f (x )=x (sin x +cos x ) (D) f (x )= cos x 二.填空题(共4小题,每小题4分,共16分)11.设错误!=(2, cos α), 错误!=( sin α,错误!) ,若错误!⊥错误!,则tan α= _________.12.直线l 经过抛物线y 2=8x 的焦点的与抛物线交于点A 、B ,若|AB |=16,则AB 中点的横坐标为_____.13.已知OA 、OB 、OC 两两垂直,OA =OC =1,O 到平面ABC 的距离为错误!,则体积V 0—ABC =______.A C 114.现有八盏灯排成2行,每行4盏,每盏灯显示红、绿颜色中的一种,则恰有两列上下颜色相同的排法共有__________种(用数字作答). 三.解答题(共6小题,每小题14分,共84分)15. 已知函数f (x )=(k -1)x 3+x 2+2(k -1)x 是偶函数(Ⅰ)求实数k 的值;(Ⅱ)解不等式f (x ) +2 x 〈3(|x +1|-1). 16.已知函数f (x )= 错误!sin2 x +sin 2 x -错误!, x 为实数.(Ⅰ)求函数f (x )的单调区间;(Ⅱ)求函数f (x )在[0,错误!π]上的最大值和最小值.17.如图直三棱柱ABC —A 1B 1C 1中,已知AC ⊥BC ,AC =BC =CC 1=1,点D ,E 分别是AC 1、A 1B 1的中点.(Ⅰ)求异面直线AE 与BD 所成的角; (Ⅱ)求二面角E -AD —B 的大小. 18.在一次游戏中,甲乙两组向一个气球射击,每给两人,甲组每人的命中率为0。

2005年高考理科数学(浙江卷)试题及答案

2005年高考理科数学(浙江卷)试题及答案

2005浙江卷试题及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn ++++=( )(A) 2 (B ) 4 (C )21(D)0 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21(B) 32(C) 2 (D )23.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A )21 (B )413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A ) 第一象限 (B ) 第二象限 (C) 第三象限 (D )第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A ) 74 (B) 121 (C) -74 (D ) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C ) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A ) (B ) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( )(A) 1 (B) -1 (C) 2k +1 (D ) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩NQ ∧)∪(Q ∧∩NP ∧)=( )(A) {0,3} (B ){1,2} (C) (3,4,5} (D ){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 (A) a ⊥e (B ) a ⊥(a -e ) (C) e ⊥(a -e ) (D ) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. ,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________.13.过双曲线22221x ya b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.N17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到: x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)n n n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力14分解:(1)25125sin,cos 6262ππ==, 225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 22f x x x =+ 11sin 224f ααα⎛⎫∴=+=⎪⎝⎭216sin 4sin 110αα--=,解得1sin8α±=()0,,sin 0απα∈∴>故1sin 8α+=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则00000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤ 因此,原不等式的解集为11,2⎡-⎢⎣(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面 OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角.又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为(Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴=,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心方法二:OP ABC ⊥平面,,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)A设,AB a =则,0,0,0,,0,222A a B C ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设OP h =,则()0,0,P h (Ⅰ)D 为PC 的中点,1,0,42OD a h ⎛⎫∴=- ⎪ ⎪⎝⎭, 又21,0,,,//22PA a h OD PA OD PA ⎛⎫=-∴=-∴⎪ ⎪⎝⎭, OD PAB ∴ 平面∥(Ⅱ)12k =,即22,,,0,2PA ah PA a ⎛⎫=∴=∴= ⎪ ⎪⎝⎭, 可求得平面PBC 的法向量1,1,n ⎛=- ⎝, 210cos ,30||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则210sin |cos ,|30PA n θ=〈〉=, (Ⅲ)PBC ∆的重心1,663G a h ⎛⎫-⎪ ⎪⎝⎭,1,,663OG a a h ⎛⎫∴=- ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又222110,,,0,2632PB a h OG PB a h h a ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴==,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力满分14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii )随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk k n n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=(Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mpm +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=, 即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b ∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n n ng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n n n n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++, ()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-, ①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-, 则当1n k =+时,由()*知()111220k k k k k xx a +++-+=,又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++,即1n k =+时,等式成立由①②知,等式对*n N ∈成立, 故{}n x 是等差数列。

2005年高考浙江理科数学试题及答案

2005年高考浙江理科数学试题及答案

2005浙江卷试题及答案源头学子小屋第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn ++++ =( )(A) 2 (B) 4 (C) 21(D)02.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32 3.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e|,则 (A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 13.过双曲线22221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.N16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 22f x x x =+11sin 224f ααα⎛⎫∴=+= ⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡⎤-⎢⎥⎣⎦(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,aMA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,02122221202||tan 11yk k F PF k k m y -∴∠==≤=+-+ 0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,, OA OB OC ∴== ,OP ABC ⊥ 又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF ODPBC ∴∠ 是与平面所成的角. 又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中, PBC ∴ PA 与平面所成的角为 (Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影 ∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴= ,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心A方法二:OP ABC ⊥平面,,OA OC ABBC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,222A a BC ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设OP h =,则()0,0,P h (Ⅰ) D 为PC 的中点,1,0,42OD a h ⎛⎫∴=- ⎪ ⎪⎝⎭ ,又1,0,,,//2PA h OD PA ODPA ⎫=-∴=-∴⎪⎪⎝⎭,OD PAB ∴ 平面∥(Ⅱ)12k =,即2,,,0,PA a h PA⎫=∴=∴=⎪⎪⎝⎭ ,可求得平面PBC 的法向量1,1,n ⎛=- ⎝ ,cos ,||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则sin |cos ,|PA n θ=〈〉= ,(Ⅲ)PBC ∆的重心1,3G h ⎛⎫ ⎪ ⎪⎝⎭, 1,3OG h ⎛⎫∴= ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又2211,,0,63PB h OG PB a h h ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭, PA a ∴=,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mp m +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=,即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n nng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++ ,()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-,2005年高考数学试卷及答案 王新敞 新疆奎屯市第一高级中学 E-mail: wxckt@ 第11页 (共11页) ①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-, 则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年高考浙江省数学试题(文科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 函数y = sin ( 2x +6π)的最小正周期是 (A)2π(B) π(C)2π(D)4π(2) 设全集U= {1, 2, 3, 4, 5, 6, 7}, P = {1, 2, 3, 4, 5}, Q = {3, 4, 5, 6, 7}, 则 P ⋂ (CuQ) = (A) {1, 2 } (B) {3, 4, 5 } (C) {1, 2, 6, 7 } (D) {1, 2, 3, 4, 5 } (3) 点(1, -1)到直线x – y + 1 = 0的距离是 (A)12(B)32(C)2(D)2(4) 设 ()|1|||f x x x =--, 则1[()]2f f = (A) 12-(B) 0(C)12(D) 1(5) 在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5 (B) 5 (C) -10 (D) 10(6) 从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:(A) 0.53 (B) 0.5(C) 0.47(D) 0.37(7) 设α、β 为两个不同的平面,,l m 为两条不同的直线,且 l α⊂, m β⊂。

有如下两个命题: ① 若 //αβ,则//l m ;②若l m ⊥,则αβ⊥. 那么(A )①是真命题,②是假命题 (B )①是假命题,②是真命题 (C )①②都是真命题(D )①②都是假命题(8)已知向量(5,3)x α=-, (2,)b x =,且a b ⊥,则由x 的值构成的集合是 (A) {2,3}(B) {-1, 6}(C) {2}(D) {6}(9)函数21y ax =+的图像与直线y x =相切,则a =(A)18(B)14(C)12(D) 1(10) 设集合 A = {(,)|,,1x y x y x y --是三角形的三边长}, 则A 所表示的平面区域(不含边界的阴影部分)是(A) (B) (C) (D)第II 卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

(11) 函数2xy x =+(x R ∈,且2x ≠-)的反函数是_______________. (12)设M 、N 是直角梯形ABCD 两腰的中点,DE AB ⊥于E (如图)。

现将ADE 沿DE 折起,使二面角A-DE-B 为45,此时点A 在平面BCDE 内的射影恰为点B , 则M 、N 的连线与AE 所成角的大小等于____________.(13) 过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_____________.(14) 从集合{P, Q, R, S}与 {1, 2, 3, 4, 5, 6, 7, 8, 9} 中各任取2个元素排成一排(字母和数字均不能重复)。

每排中字母Q 和数字0至多出现一个的不同排法种数是_____________(用数字作答)。

三.解答题:本大题共6小题,每小题14分,共84分。

解答应写出文字说明,证明过程或演算步骤。

(15)已知函数()2sin cos cos 2f x x x x =+.(I ) 求 ()4f π的值;(II )设(0,)απ∈, ()2f α=求sin a 的值。

(16)已知实数,,a b c 成等差数列, 1,1,4a b c +++成等比数列,且15a b c ++=。

求,,a b c 。

(17)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是1/3,从B 中摸出一个红球的概率为p. (I )从A 中有放回地摸球,每次摸出一个,共摸5次。

求:(i )恰好有3次摸到红球的概率; (ii )第一次、第三次、第五次均摸到红球的概率。

(II )若A 、B 两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是2/5,求p 的值。

N ABC C(18)如图,在三棱锥P-ABC 中,AB BC ⊥, 12AB BC PA ==, 点O,D分别是,AC PC 的中点,OP ⊥底面ABC . (I)求证OD 平面PAB ;(II )求直线OD 与平面PBC 所成角的大小。

(19) 如图,已知椭圆的中心在坐标原点,焦点1F 、2F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M,111||:||2:1MA A F =。

(I )求椭圆的方程;(II )若点P在直线l 上运动,求12F PF ∠(20) 已知函数()f x 和()g x 的图象关于原点对称,且()f x =22x x +。

(I)求函数()g x 的解析式;(II )若()()()1h x g x f x λ=-+在[-1,1]上是增函数,求实数λ的取值范围。

数学试题(文科)参考答案一.选择题:本题考查基本知识和基本运算。

每小题5分,满分50分。

(1)B (2)A (3)D (4)D (5)C (6)A (7)D(8)C (9)B (10)A二.填空题:本题考查基本知识和基本运算。

每小题4分,满分16分。

(11) 2(1xy x R x=∈-, 且1)x ≠ (12) 90(13) 2 (14) 5832 三.解答题(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力。

满分14分。

解:(I)()sin 2cos 2f x x x =+ ,()sin cos 1422f πππ∴=+=BCPDAo(II)()sin cos 22f ααα=+=, 1sin()42πα∴+=,cos()4πα+=sin sin()44ππαα=+-=12= (0,)απ∈ sin 0α∴>故sin α=(16) 本题主要考查等差、等比数列的基本知识,考查运算及推理能力。

满分14分。

解:由题意,得 15a b c ++= ① 2a c b += ②2(1)(4)(1)a c b ++=+③由①,②两式,解得5b = 将10c a =-代入③,整理得213220a a -+=解得 2a =或11a = 故2a =,5,8b c == 或11,5,1a b c ===-经验算,上述两组数符合题意。

(17)本题主要考查排列组合、相互独立事件同时发生的概率等基本知识,同时考查学生的逻辑思维能力。

满分14分。

解: (I)(i ) 332512()()33C ⨯⨯=1410279⨯⨯=40243(ii )31()3=127(II )设袋子A中有m 个球,则袋子B中有2 m 个球由122335m mpm +=得1330p =(18) 本题主要考查空间线面关系、空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力。

满分14分。

解:方法一:(I) O、D分别为AC 、PC 的中点。

∴//OD PA又PA ⊂平面PAB . ∴OD //平面PAB .(II) AB BC ⊥,OA OC =∴,OA OB OC == 又 OP ⊥平面ABC ∴PA PB PC ==.BCP DAoF取BC 中点E,连结PE ,则BC ⊥平面POE . 作OF PE ⊥于F,连结DF ,则OF ⊥平面PBC , ∴ODF ∠是OD 与平面PBC 所成的角。

在Rt ODF中,sin OF ODF OD ∠==∴OD 与平面PBC所成的角为方法二:OP ⊥平面ABC ,,,OA OC AB BC ==,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图),设,AB a =则,0,0)A,,0)B,(,0,0)C . 设OP h =, 则(0,0,)P h (I) D 为PC 的中点,∴OD →=1(,0,)42h -,又(,0,)2PA h →=-, ∴OD →=-12PA →∴OD →//PA →∴OD //平面PAB .(II) 2PA a =,∴h =, ∴OD →=(,0,)44a a -, 可求得平面PBC的法向量(n →=-,∴cos ,30||||OD nOD n OD n →→→→→→<>==设OD 与平面PBC 所成的角为θ,则sin |cos ,|OD n θ→→=<>=∴OD 与平面PBC所成的角为arcsin30。

(19)本题主要考查椭圆的几何性质、椭圆方程,两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力。

满分14分。

EBCPDAo解:(I)设椭圆方程为22221y x a b +=(0a b >>),半焦距为c, 则21||a MA a c=-,11||A F a c =-, 由题意,得2a a c-=2()a c -, 2a = 4 222a b c =+. 解得 2,1a b c ===故椭圆方程为22143y x += (II )设P(004,),0y y -≠ 则直线PF1的斜率013y k =-,直线2PF 的斜率025yk =-。

12102F PF PF M π<∠<<∴12F PF ∠为锐角。

∴021*******||tan |||115y k k F PF k k y -∠==++≤=. 当|0y 即0y =±12tan F PF ∠取到最大值,此时12F PF ∠最大。

故12F PF ∠的最大值为(20)本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力。

满分14分。

解:(I)设函数()y f x =的图象上的任一点00(,)Q x y 关于原点的对称点为(,)P x y , 则00,2x x+= 0x x =-. 即 0y y =-. 002y y+=,点00(,)Q x y 在函数()y f x =的图象上.∴22,y x x -=-即22,y x x =-+ 故g(x)=22x x -+.(II)由()()|1|g x f x x ≥--可得。

2|2|1|0x x --≤当x ≥1时,221|0x x -+≤此时不等式无解。

当1x <时2210x x -+≤∴112x -≤≤因此,原不等式的解集为[-1,12] (III) 2()(1)2(1) 1.h x x x λλ=-++-+① 当1λ=-时,()h x =41x +在[-1,1]上是增函数,∴1λ=-②当1λ≠-时,对称轴的方程为11x λλ-=+ (i) 当1λ<-时,11λλ-+1≤-,解得1λ<-。

相关文档
最新文档