逐点比较插补原理的实现
逐点比较法
对于位于直线上方的Pi’点,有 Fi=YiXe -XiYe>0
对于位于直线上的Pi点,有 Fi=YiXe -XiYe=0 对于位于直线下方的Pi”点,有 Fi=YiXe -XiYe<0 Y Pi’ A (Xe、Ye) Pi (Xi,Yi) o Pi” X
2. 进给控制 当Fi>0时,向+X方向进给一步,使动点接近直线OA; 当Fi<0时,向+Y方向进给一步,使动点接近直线OA; 当Fi=0时,向任意方向进给一步,但通常归于Fi>0 处理;
逐点比较法第一象限的顺圆弧插补算法
当动点Pi(Xi,Yi)位于圆弧上时有 Xi2+Yi2-R2=0
Y B
当Pi点在圆弧外侧时,则OPi大于圆弧半径R,即(Xb,Yb) F<0 Ri 2 2 2 Xi +Yi -R >0 当Pi点在圆弧内侧时,则OPi小于圆弧半径R,即 Xi2+Yi2-R2<0
1 2 3 4 5 6 7 8
F0=0 F1<0 F2<0 F3<0 F4>0 F5<0 F6>0 F7>0
-Y +X +X +X -Y +X -Y -Y
F1 F0 2Y0 1 7
F2 F1 2 X 1 1 6
F3 F2 2 X 2 1 3
F4 F3 2 X 3 1 2
表3-2 圆弧插补过程
步数 起点 偏差判别 坐标进给 偏差计算 坐标计算 终点判别
F0 0
X0=0,Y 0=4 X1=0,Y 1=3 X2=1,Y 2=3 X3=2,Y 3=3 X4=3,Y 4=3 X5=3,Y 5=2 X6=4,Y 6=2 X7=4,Y 7=1 X8=4,Y 8=0
直线逐点比较插补原理的实现
逐点比较插补原理的实现1 数字程序控制基础数字程序控制,就是计算机根据输入的指令和信息,控制生产机械按规定的工作程序、运动轨迹、运动距离和运动速度等规律自动地完成工作的自动控制。
世界上第一台数控机床是1992年由MIT伺服机构实验室开发出来的,主要的目的是为了满足高精度和高效率加工复杂零件的需要一般来说,三维轮廓零件,即使二维轮廓零件的的加工也是很困难的,而数控机床则很容易实现早期的数控(NC)以数字电路技术为基础,现在的数控(CNC)以计算机技术为基础。
数控系统由输入装置、输出装置、控制器、插补器等四部分组成。
随着计算机技术的发展,开环数字程序控制得到了广泛的应用,如各类数控机床、线切割机低速小型数字绘图仪等,它们都是利用开环数字程序控制原理实现控制的设备。
开环数字程序控制的结构如图1.1所示。
图1.1 开环数字程序控制的结构图这种结构没有反馈检测元件,工作台由步进电机驱动。
步进电机接收驱动电路发来的指令作相应的运动,把刀具移动到与指令脉冲相当的位置,至于刀具是否到达了指令脉冲规定的位置,它不作任何检查,因此这种控制的可靠性和精度基本上由步进电机和传动装置来决定。
开环控制结构简单、可靠性高、成本低、易于调整和维护等,应用最为广泛。
2 步进电机控制技术步进电机又叫脉冲电机,它是一种将电脉冲信号转换为角位移的机电式数模转换器。
在开环数字程序控制系统中,输出部分常采用它作为驱动元件。
步进电机接收计算机发来的指令脉冲,控制步进电机作相应的转动,步进电机驱动数控系统的工作台或刀具。
显然,指令脉冲的总数就决定了数控系统的工作台或刀具的总移动量,指令脉冲的频率就决定了移动的速度。
因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。
2.1 步进电机的工作原理步进电机的工作就是步进转动。
在一般的步进电机工作中,电源都是采用单极性的直流电源。
要使步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。
3.1数控插补原理(2)逐点比较法
开始 初始化 Xe→X,Ye→Y 0→Fi ,N =|Xe|+|Ye|
Y 进给方向:+X
F≥0 N 进给方向: +Y
Fi- Ye → Fi+1
Fi+ Xe → Fi+1
N = N -1
N =0
N
Y 结束
继续
逐点比较法Ⅰ象限直线插补流程图
例题:设欲加工第一象限直线OE,起点为坐标原点,
终点坐标为Xe=4,Ye=3,用逐点比较法插补之,并画出
+Y F6 F5 2Y5 1 4
-X F7 F6 2X6 1 1
8
F7>0
-X
F8 F7 2X7 1 0
坐标计算
X0=4,Y0=0 X1=3,Y1=0 X2=3,Y2=1 X3=3,Y3=2 X4=3,Y4=3 X5=2,Y5=3 X6=2,Y6=4 X7=1,Y7=4
X8=0,Y8=4
Fi 0, 朝 x 增大方向, Fi1 Fi ye Fi 0, 朝 y 增大方向, Fi1 Fi xe
5.2 脉冲增量插补 其它象限插补流程:
3.逐点比较法Ⅰ象限逆圆插补
(1)基本原理
①偏差判别 关键:寻找偏差函数F(x,y)
当动点N(Xi,Yi)位于圆弧上时有下式成立
Y
E(XeYe) Nˊ
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧外侧时,有下式成立
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧内侧时,有下式成立
O
N(Xi,Yi) R
N〞 S(XSYS)
X
X i2 Yi2 Xe2 Ye2 R2
I象限逆圆与动点之间的关系
逐点比较法
即
Fi1 Fi X e
6
在插补计算、进给的同时还要进行终点判别。常用终点判 别方法是:
设置一个长度计数器,从直线的起点走到终点,刀具沿
X 轴应走的步数为X e,沿Y 轴走的步数为Ye,计数器中存入 X和Y两坐标进给步数总和∑=∣Xe∣+∣Ye∣,当X 或Y
坐标进给时,计数长度减一,当计数长度减到零时,即∑= 0时,停止插补,到达终点。
终点判别:判断是否到达终点,若到 达x ,结束插补;否则,继续以上四个
步骤(如图3-3所示)。
图3-3 逐点比较法工作循环图
3
2. 直线插补
图3-4所示第一象限直线OE为给定轨迹,其方程为
XeY-XYe=0
(3-1)
P(X,Y)为动点坐标,与直线的关系有三种情况:
(1)若P1点在直线上方,则有XeY-XYe>0 E (2) 若P点在直线上,则有 XeY-XYe=0
2.由偏差方程确定加工动点引起的偏 差符号(若要计算偏差量,则偏差方程系数不能简 化)。
3.下一步插补方向确定原则:向使加 工偏差减小、并趋向轨迹终点的方向插补
.(将偏差等于零的情况并入偏差大于零的情况)。
4.关于插补量:每次插补一个脉冲当 量的位移
12
3. 圆弧插补
在圆弧加工过程中,可用动点到圆心的距离来描述刀具位置与 被加工圆弧之间关系。
b) 逆圆弧
图3-9 第一象限顺、逆圆弧
14
偏差递推简化:对第一象限顺圆,Fi≥0,动点Pi(Xi,Yi)应 向-Y向进给,新的动点坐标为(Xi+1,Yi+1),且Xi+1=Xi,Yi +1=Yi-1,则新点的偏差值为:
15
若Fi<0时,沿+X向前进一步,到达(Xi+1,Yi)点,新点
逐点比较法计算
第二节逐点比较法插补(数控基础第三章插补计算原理、刀具半径补偿与速度控制)发布:2009-7-19 19:24 | 作者:唐义| 来源:本站| 查看:6次| 字号: 小中大逐点比较法的基本原理是被控对象在按要求的轨迹运动时,每走一步都要与规定的轨迹进行比较,由此结果决定下一步移动的方向。
逐点比较法既可以作直线插补又可以作圆弧插补。
这种算法的特点是,运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,而且输出脉冲的速度变化小,调节方便,因此在两坐标数控机床中应用较为普遍。
一、逐点比较法直线插补1.逐点比较法的直线插补原理在图3-1所示平面第一象限内有直线段以原点为起点,以为终点,直线方程为:改写为:如果加工轨迹脱离直线,则轨迹点的、坐标不满足上述直线方程。
在第一象限中,对位于直线上方的点,则有:对位于直线下方的点B,则有:因此可以取判别函数来判断点与直线的相对位置,为当加工点落在直线上时,;当加工点落在直线上方时,;当加工点落在直线下方时,。
我们称为“直线插补偏差判别式”或“偏差判别函数”,的数值称为“偏差”。
例如图3-2待加工直线,我们运用下述法则,根据偏差判别式,求得图中近似直线(由折线组成)。
若刀具加工点的位置处在直线上方(包括在直线上),即满足≥0时向轴方向发出一个正向运动的进给脉冲(),使刀具沿轴坐标动一步(一个脉冲当量δ),逼近直线;若刀具加工点的位置处在直线下方,即满足<0时,向轴发出一个正向运动的进给脉冲(),使刀具沿轴移动一步逼近直线。
但是按照上述法则进行运算判别,要求每次进行判别式运算——乘法与减法运算,这在具体电路或程序中实现不是最方便的。
一个简便的方法是:每走一步到新加工点,加工偏差用前一点的加工偏差递推出来, 这种方法称“递推法”。
若≥0时,则向轴发出一进给脉冲,刀具从这点向方向迈进一步,新加工点的偏差值为根据式(3-1)及式(3-2)可以看出,新加工点的偏差值完全可以用前一点的偏差递推出来。
逐点比较法的概念基本原理及特点
逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。
(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。
1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。
(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。
终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。
逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。
逐点比较插补算法设计
学院毕业论文(设计) 2015 届机械设计制造及其自动化专业 13 班级题目逐点比较插补算法设计姓名学号 1指导教师职称教授二О一五年五月二十一日摘要逐点比较法是数控加工中常用的插补方法,通过控制刀具每次移动的位置与理想位置的误差函数进而实现零件加工,鉴于VB编程简单、直观,采用VB可以实现逐点比较插补原理的相关程序设计及加工过程虚拟化。
插补技术是机床数控系统的核心技术,逐点比较法可以实现直线和圆弧插补算法,其算法的优劣直接影响零件直线和圆弧轮廓的加工精度和加工速度。
文章在传统的逐点比较直线插补与圆弧插补算法的基础上,提出以八方向进给取代传统的四方向进给,研究了偏差最小的走步方向的实现方法,同时研究了保证数控机床坐标进给连续的偏差递推计算过程。
结果表明,新算法可以提高零件轮廓的逼近精度且减少了插补计算次数,从而提高了零件直线和圆弧轮廓的加工精度和加工速度。
关键词数控;插补;逐点比较;逼近;偏差函数The algorithm design of point-to-point comparisonAuthor: LI Zhiyuan Tutor: Chen LiangjiAbstractAbstract: The algorithm of point-to-point comparison is a typical plugging method in processing of numerical control,manufacturing parts by controlling error function between the position the cutting tool moves to and the perfect program is simple and visual,which can visualize the programming and processing of The algorithm of point-to-point comparison. Interpolation technology is the core technology of machine tool’s CNC system. The algorithm of point-to-point comparison can achieve the algorithms of linear and circular algorithm of point-to-point comparisonlinear and circular interpolation affects the machining accuracy and rate on the conventional algorithm of point-to-point comparison linear and circular interpolation,it was put forward in the article that feed in eight directions takes place of feed in four directions,the achievement method of feed direction was researched that can result in the least deviation,the deviation recursive calculation process was researched that can ensure a continuous CNC coordinate result showed that the approximation accuracy of parts’ contour was improved and the number of interpolation calculation was reduced by use of new algorithm,and then the machining accuracy and rate of parts’ linear and circular contour was improved. Keywords:CNC;interpolation;point-to-point comparison ;error function目录第一章绪论0设计与研究的重要性0本设计的主要工作0第二章逐点比较法1基准脉冲插补1逐点比较法1逐点比较法直线插补算法2逐点比较法圆弧插补8第三章逐点比较法算法的改进16改进的逐点比较直线插补算法 17改进的逐点比较圆弧插补算法 20第4章V B插补程序代码23逐点比较法直线插补的程序设计方案23程序实现23工作界面23源程序代码24逐点比较法圆弧插补V B程序26第五章结论29参考文献31第一章绪论在现代制造系统中数控系统占有非常重要地位,数控技术是一门不仅具有理论性而且具有实践性的多学科融合技术。
逐点比较法直线插补
3.2.1 逐点比较法直线插补
• 逐点比较法插补: 每走一步都要和给定轨迹上 的坐标值进行比较,看这点在给定轨迹的上方 或下方,或是给定轨迹的里面或外面,从而决 定下一步的进给方向。比较一次,决定下一步 走向,以便逼近给定轨迹,即形成逐点比较插 补。 • 加工精度: 逐点比较法规定的加工直线或圆弧 之间的最大误差为一个脉冲当量,因此只要把 脉冲当量(每走一步的距离即步长)取得足够 小,就可达到加工精度的要求。
3.2 插补原理
•在CNC数控机床上,各种曲线轮廓加工都是通过插补计算实现的, 插补计算的任务就是对轮廓线的起点到终点之间再密集的计算出有 限个坐标点,刀具沿着这些坐标点移动,用折线逼近所要加工的曲 线。 •插补方法可以分为两大类:脉冲增量插补和数据采样插补。 •脉冲增量插补是控制单个脉冲输出规律的插补方法,每输出一个脉 冲,移动部件都要相应的移动一定距离,这个距离就是脉冲当量, 因此,脉冲增量插补也叫做行程标量插补。如逐点比较法、数字积 分法。该插补方法通常用于步进电机控制系统。 •数据采样插补,也称为数字增量插补,是在规定的时间内,计算出 个坐标方向的增量值、刀具所在的坐标位置及其他一些需要的值。 这些数据严格的限制在一个插补时间内计算完毕,送给伺服系统, 再由伺服系统控制移动部件运动,移动部件也必须在下一个插补时 间内走完插补计算给出的行程,因此数据采样插补也称作时间标量 插补。数据采样插补采用数值量控制机床运动,机床各坐标方向的 运动速度与插补运算给出的数值量和插补时间有关。该插补方法是 用于直流伺服电动机和交流伺服电动机的闭环或半闭环控制系统。 •数控系统中完成插补工作的部分装置称为插补器。
Fm<0 x
注意:起点偏差F0=0
偏差公式简化
x y xy y Fm ye y ( x 1 ) y Fm 0 Fm 1 x e m me e e m m e
(二)逐点比较法圆弧插补
(二)逐点比较法圆弧插补
逐点比较法圆弧插补是数控加工中常用的一种圆弧插补方法,其原理是通过逐点比较给定的圆弧路径与机床实际移动轨迹的差异,不断调整目标点的加工速度和轨迹实现精细的加工。
1.将给定的圆弧路径分割成若干个目标点,通常每隔一定距离取一个目标点。
2.根据目标点之间的距离和已知的转速,计算每个目标点的加工速度。
3.将目标点逐个输入数控系统,根据当前位置和目标点的位置计算运动轨迹和加工速度。
4.在运动过程中不断比较实际轨迹和目标轨迹之间的误差,根据误差大小调整加工速度,保证加工精度。
5.重复步骤3和4,直到完成整个圆弧的加工。
逐点比较法圆弧插补的优点是在加工过程中能够动态地调整加工速度,避免加工误差的累积。
同时,它对系统精度要求不高,能够适应各种数控系统。
不过,逐点比较法圆弧插补的缺点也是比较明显的。
由于每个目标点的加工速度独立计算,导致加工过程中产生了较大的速度变化,容易引起加工表面的纹路和不良的表面质量。
因此,在实际应用中,需要根据加工要求和机床精度选择合适的加工方法,并进行适当的加工优化。
逐点比较法直线插补程序
逐点比较法直线插补程序
一、实验目的
1、进一步理解逐点比较法直线插补的原理
2、掌握在计算机环境中完成直线逐点比较法插补的软件实现方法。
二、实验设备
1、计算机及其操作系统
2、VB 6.0软件
三、实验原理
机床数控系统依据一定方法确定刀具运动轨迹,进而产生基本廓形曲线,如直线、圆弧等。
其它需要加工的复杂曲线由基本廓形逼近,这种拟合方式称为“插补”(Interpolation)。
“插补”实质是数控系统根据零件轮廓线型的有限信息(如直线的起点、终点,圆弧的起点、终点和圆心等),在轮廓的已知点之间确定一些中间点,完成所谓的“数据密化”工作。
四、实验方法
本次实验是在VB6.0环境下完成了直线逐点比较法插补的软件实现。
软件中实现,主要分为两部分,一是人际交互,用户采集数据和演示其插补过程;二是插补的计算过程,此为这次实验的核心。
逐点比较法的插补有四个工作节拍:偏差判别、进给、偏差计算和终点判别,第一象限直线插补的偏差判别公式如下:
Fi = Xe Yi -Y e Xi
Fi≥0时,偏差判别公式为Fi+1= Fi-Y e,向X正方向进给
Fi< 0时,偏差判别公式为Fi+1= Fi+Xe,向Y正方向进给
其工作流程图如下所示:
根据流程编写合理的界面和控制主程序代码。
插补算法逐点比较
插补算法逐点比较插补算法(Interpolation Algorithm)是一种数学方法,用于在已知数据点之间估算出未知位置的数值。
插补算法可以用于各种领域,包括图像处理、信号处理、数据分析和数值模拟等。
其中最常见的插补算法有逐点比较插补算法(Point-by-Point Interpolation)。
逐点比较插补算法是一种简单但有效的插补方法。
它基于以下原理:在已知数据点之间进行插值时,可以使用已知点之间的线性关系来估算未知位置的数据。
逐点比较插补算法的基本思想是,对于每个未知位置,找到其左右邻近的已知数据点,并根据这两个点之间的线性关系来估算未知位置的数值。
具体而言,逐点比较插补算法的步骤如下:1.对于每个未知位置,找到其左右邻近的已知数据点。
一般来说,已知数据点的数量决定了插值结果的精度,因此选择合适的邻近点对很重要。
2.根据已知数据点之间的线性关系,计算未知位置的数值。
常用的插值方法有线性插值、多项式插值和样条插值等。
3.重复步骤2,直到所有未知位置的数值都被估算出来。
逐点比较插补算法的优点是简单易懂,计算速度快。
但是它也存在一些限制和不足之处。
首先,逐点比较插补算法只能在已知数据点之间进行插值,无法对超出这个范围的数据进行估算。
因此,它在处理边界问题时存在局限性。
其次,逐点比较插补算法对噪声和异常值比较敏感。
由于插值过程中是根据已知数据点之间的线性关系来估算未知位置的数值,如果存在噪声或异常值,将会对插值结果产生较大的影响。
另外,逐点比较插补算法的插值结果不一定满足各种数学性质和约束条件。
例如,插值结果可能不是连续的、不满足二阶导数连续等。
因此,在一些应用中,可能需要使用其他更高级的插值方法。
综上所述,逐点比较插补算法是一种简单而实用的插值方法。
它基于已知数据点之间的线性关系,通过逐点比较来估算未知位置的数值。
逐点比较插补算法在很多领域中都有广泛的应用,但也存在一些限制和不足。
因此,在实际应用中,需根据具体情况选择合适的插值方法,以达到所需的精度和效果。
逐点比较法第一象限直线圆弧插补
逐点比较法第一象限直线,圆弧插补编程逐点比较法是以折线来逼近给定的轨迹,就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。
逐点比较法以折线来逼近直线或圆弧,其最大的偏差不超过一个最小设定单位。
只要将脉冲当量取得足够小,就可以达到精度要求。
逐点比较插补法在脉冲当量为0.01mm,系统进给速度小于3000mm/min时,能很好的满足要求。
一、逐点比较法直线插补如下图所示设直线 oA 为第一象限的直线,起点为坐标原点o (0 , 0) ,终点坐标为, A( ) , P() 为加工点。
若 P 点正好处在直线 oA 上,由相似三角形关系则有即点在直线 oA 上方 ( 严格为直线 oA 与 y 轴正向所包围的区域 ) ,则有即若 P 点在直线 oA 下方 ( 严格为直线 oA 与 x 轴正向所包围的区域 ) ,则有图 3 — 1 逐点比较法第一象限直线插补即令则有:①如,则点 P 在直线 oA 上,既可向 +x 方向进给一步,也可向 +y 方向进给一步;②如,则点 P 在直线 oA 上方,应向 +x 方向进给一步,以逼近oA 直线;③如,则点 P 在直线 oA 下方,应向 +y 方向进给一步,以逼近 oA 直线一般将及视为一类情况,即时,都向 +x 方向进给一步。
当两方向所走的步数与终点坐标相等时,停止插补。
这即逐点比较法直线插补的原理。
对第一象限直线 oA 从起点 ( 即坐标原点 ) 出发,当 F 时, +x 向走一步;当 F<0 时,y 向走一步。
特点:每一步都需计算偏差,这样的计算比较麻烦。
递推的方法计算偏差:每走一步后新的加工点的偏差用前一点的加工偏差递推出来。
采用递推方法,必须知道开始加工点的偏差,而开始加工点正是直线的起点,故。
下面推导其递推公式。
设在加工点 P( ) 处,,则应沿 +x 方向进给一步,此时新加工点的坐标值为新加工点的偏差为即若在加工点 P( ) 处,,则应沿 +y 方向进给一步,此时新加工点的坐标值为,新加工点的偏差为即综上所述,逐点比较法直线插补每走一步都要完成四个步骤 ( 节拍 ) ,即:(1) 位置判别根据偏差值大于零、等于零、小于零确定当前加工点的位置。
第五章 运动控制插补原理及实现
运动控制插补原理及实现数控系统加工的零件轮廓或运动轨迹一般由直线、圆弧组成,对于一些非圆曲线轮廓则用直线或圆弧去逼近。
插补计算就是数控系统根据输入的基本数据,通过计算,将工件的轮廓或运动轨迹描述出来,边计算边根据计算结果向各坐标发出进给指令。
数控系统常用的插补计算方法有:逐点比较法、数字积分法、时间分割法、样条插补法等。
逐点比较法,即每一步都要和给定轨迹上的坐标值进行比较,视该点在给定规矩的上方或下方,或在给定轨迹的里面或外面,从而决定下一步的进给方向,使之趋近给定轨迹。
直线插补原理图3—1是逐点比较法直线插补程序框图。
图中n是插补循环数,L是第n个插补循环中偏差函数的值,Xe,Y。
是直线的终点坐标,m是完成直线插补加工刀具沿X,y轴应走的总步数。
插补前,刀具位于直线的起点,即坐标原点,偏差为零,循环数也为零。
在每一个插补循环的开始,插补器先进入“等待”状态。
插补时钟发出一个脉冲后,插补器结束等待状态,向下运动。
这时每发一个脉冲,触发插补器进行一个插补循环。
所以可用插补时钟控制插补速度,同时也可以控制刀具的进给速度。
插补器结束“等待”状态后,先进行偏差判别。
若偏差值大于等于零,刀具的进给方向应为+x,进给后偏差值成为Fm-ye;若偏差值小于零,刀具的进给方向应为+y,进给后的插补值为Fm+xe。
进行了一个插补循环后,插补循环数n应增加l。
最终进行终点判别,若n<m,说明直线插补没有完毕,应继续进行插补;否则,表明直线加工完毕,应结束插补工作。
由上面的插补计算可知,每走一步,都要进行一下4个步骤(也称节拍)的算术运算或逻辑判断,其工作循环为:方向判定:根据插补值判定进给方向。
坐标进给:由判定方向向该坐标方向发一个进给脉冲。
偏差计算:每走一步到达新坐标点,按偏差公式计算新的偏差。
终点判别:若到达终点就结束插补计算;若未到达就重复上述循环步骤。
逐点比较法直线插补原理的实现
武汉理工大学华夏学院课程设计报告书题目:系名:专业班级:姓名:学号:指导教师:2011 年 6 月 14 日摘要本文主要讨论利用逐点比较法实现第一象限的直线插补。
所谓逐点比较插补,就是刀具或绘图笔每走一步都要和给点轨迹上的坐标值进行比较,看这点在给点轨迹的上方还是下方,从而决定下一步的进给方向。
对于本设计所要求的直线轨迹,如果该点在直线的上方,则控制步进电机向+X方向进给一步,如果该点在直线的下方,那么控制步进电机向+Y 轴方向进给一步。
如此,走一步、看一看,比较一次,决定下一步的走向,以便逼近给定轨迹,即形成逐点比较插补。
插补计算时,每走一步,都要进行以下四个步骤的计算过程,即偏差判别、坐标进给、偏差计算、终点判断。
设计具体算法时,首先根据直线轨迹参数,计算出偏差计算公式及递推公式。
由程序判断出偏差的正负号,从而决定坐标的进给方向,再根据递推公式计算出坐标进给后的偏差,若未到达终点,则返回偏差判别,如此循环。
可以根据起点和终点的坐标位置,计算出总的进给步数Nxy,X或Y的坐标每进给一步,这个值就减一,若Nxy=0,就到达了终点,这就是终点判别的方法。
设计任务及要求设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出各种曲线。
1)设计硬件系统,画出电路原理框图; 2)定义步进电机转动的控制字;3)推导出用逐点比较法插补绘制出下面曲线的算法; 4)编写算法控制程序线; 5)撰写设计说明书。
每人选一个曲线,曲线均为第一象限,屏幕左下角为坐标原点,箭头表示曲线绘制的方向,直线参数为:起点、终点坐标。
圆弧参数为:起点、终点坐标和半径。
直线一: 直线二:直线三 直线四圆弧一 圆弧二X YOXY O X Y OXYOX Y OXY O目录1 设计任务和要求 (1)2 设计步骤 (1)2.1 硬件设计 (1)2.1.1 接口示意图 (1)2.1.2 方案论证 (2)2.1.3 单片机与8255的接口 (3)2.1.4 硬件接线原理图 (3)2.1.5 元件清单 (4)2.2 软件设计 (5)2.2.1 软件设计原理 (5)2.2.2 8255的初始化编程 (6)2.2.3 步进电机走步控制程序 (7)2.2.4 主程序 (8)2.3 运行调试 (9)2.3.1 系统安装调试 (9)2.3.2 结果验证 (9)3 课程设计体会 (10)参考文献 (10)附录一芯片资料 (11)附录二源程序 (12)逐点比较插补原理的实现1 设计任务和要求设计一个微型计算机控制步进电机系统,该系统利用微型机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补原理绘制出如下图所示的目标曲线。
2单元 逐点比较法插补原理
表 2-4 逐点比较法逆圆弧插补运算过程
序号 偏差判别 坐标进给 偏差计算
坐标计算
1
F0=0
∆x
F1=02×4+1=7 x1=3,y1=3
2
F1=7<0 +∆y
F2=7+2×3+1=0 x2=3,y2=4
3
F2=0
∆x
F3=02×3+1=5 x3=2,y3=4
Fm ≥ 0 时: Fm 1 Fm 2 xm 1 xm 1 xm 1 ym 1 ym Fm 0 时: Fm 1 Fm 2 xm 1 xm 1 xm ym 1 ym 1
令瞬时加工点为 m(xm, ym) ,它与圆心的距离 为 Rm 加工点可能在三种情况出现,即圆弧上、 圆弧外、 圆弧内。当动点m位于圆弧上时有
Rm2 xm2 ym2
R2 x02 y02
图2-6 第一象限逆圆
三、圆弧插补:
偏差判别
Fm Rm2 R2 xm2 ym2 R2
坐标进给
偏差计算
1
F0 0
2
F1 0
3
F2 0
4
F3 0
5
F4 0
6
F5 0
7
F6 0
8
F7 0
9
F8 0
10
F9 0
11
F10 0
12
F11 0
13
F12 0
14
F13 0
x
F1 F0 ye 0 6 6
y
F2 F1 xe 6 10 4
偏差计算公式
轮廓插补原理——逐点比较法
第二节 逐点比较法逐点比较法的基本原理是,在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具沿着坐标轴向减小偏差的方向进给,且只有一个方向的进给。
也就是说,逐点比较法每一步均要比较加工点瞬时坐标与规定零件轮廓之间的距离,依此决定下一步的走向,如果加工点走到轮廓外面去了,则下一步要朝着轮廓内部走;如果加工点处在轮廓的内部, 则下一步要向轮廓外面走,以缩小偏差,周而复始,直至全部结束,从而获得一个非常接近于数控加工程序规定轮廓的刀具中心轨迹。
逐点比较法既可实现直线插补,也可实现圆弧插补。
其特点是运算简单直观,插补过程的最大误差不超过一个脉冲当量,输出脉冲均匀,而且输出脉冲速度变化小,调节方便,但不易实现两坐标以上的联动插补。
因此,在两坐标数控机床中应用较为普遍。
一般来讲,逐点比较法插补过程每一步都要经过如图3-1所示的四个工作节拍:(1)偏差判别 判别刀具当前位置相对于给定轮廓的偏差情况,即通过偏差值符号确定加工点处在理想轮廓的哪一侧,并以此决定刀具进给方向。
(2)坐标进给 根据偏差判别结果,控制相应坐标轴进给一步,使加工点向理想轮廓靠拢,从而减小其间的偏差。
(3)偏差计算 刀具进给一步后,针对新的加工点计算出能反映其偏离理想轮廓的新偏差,为下一步偏差判别提供依据。
(4)终点判别 每进给一步后都要判别刀具是否达到被加工零件轮廓的终点,若到达了则结束插补,否则继续重复上述四个节拍的工作,直至终点为止。
一、逐点比较法I 象限直线插补(一)基本原理设第一象限直线OE ,起点为坐标原点O(0,0),终点为E (X e ,Y e ),另有一个动点为N (X i ,Y i ),如图3-2所示。
其中,各个坐标值均是以脉冲当量为单位的整数,以便于后面的推导与讲解,并且在脉冲增量式插补算法中都是这样约定的。
ee i i X Y X Y = (3-1a ) 即 X e Y i —X i Y e =0 (3-1b ) 当动点N 处于直线OE 的下方N ′处时,直线N O '的斜率小于直线OE 的斜率,从而有ii X Y <e e X Y (3-2a )即 X e Y i —X i Y e <0 (3-2b ) 当动点N 处于直线OE 的上方N ″处时,直线N O ''的斜率大于直线OE 的斜率,从而有ee i i X Y X Y > (3-3a ) 即 X e Y i —X i Y e >0 (3-3b ) 由上述关系可以看出,表达式(X e Y i —X i Y e )的符号就能反映出动点N 相对直线OE 的偏离情况,为此取偏差函数F 为F =X e Y i —X i Y e (3-4)根据上述过程可以概括出如下关系:当F =0时,动点N (X i ,Y i )正好处在直线OE 上;当F >0时,动点N (X i ,Y i )落在直线OE 上方区域;当F <0时,动点N (X i ,Y i )落在直线OE 下方区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1设计任务及要求 (1)2方案比较及认证 (2)3设计原理 (4)3.1硬件原理 (4)3.2硬件原理 (5)4软件系统 (9)4.1软件思想 (9)4.2流程图 (9)4.3源程序 (9)5调试记录及结果分析 (10)5.1界面设置 (10)5.2调试记录 (10)5.3结果分析 (11)6心得体会 (13)7 参考资料 (14)附录 (15)1设计任务及要求设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出如下曲线。
课程设计的主要任务:1.设计硬件系统,画出电路原理框图; 2.定义步进电机转动的控制字;3.推导出用逐点比较法插补绘制出下面曲线的算法;4.编写算法控制程序,参数由键盘输入,显示器同时显示曲线;5. 撰写设计说明书。
课程设计说明书应包括:设计任务及要求;方案比较及认证;系统滤波原理、硬件原理,电路图,采用器件的功能说明;软件思想,流程,源程序;调试记录及结果分析;参考资料;附录:芯片资料,程序清单;总结。
XYO2方案比较及认证本次课程设计内容为设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出第一象限逆圆弧。
数字程序控制主要应用于机床的自动控制,如用于铣床、车床、加工中心、以及线切割等的自动控制中。
采用数字程序控制的机床叫数控机床,它能加工形状复杂的零件、加工精度高、生产效率高、便于改变加工零件品种等优点,是实现机床自动化的一个重要发展方向。
本次课程设计采用逐点比较法插补原理以及作为数字程序控制系统输出装置的步进电机控制技术进行第一象限圆弧插补。
第一象限圆弧如图2-1所示。
图2-1 第一象限逆圆弧针对以上设计要求,采用步进电机插补原理进行逐步逼近插补。
硬件方面,步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
逐点比较法是以阶梯折线来逼近直线或圆弧等曲线,它与规定的加工直线或圆弧之间的最大误差为一个脉冲当量,因此只要把脉冲当量(每走一步的距离即步长)取得足够小,就可以达到精度的要求。
以下为课程设计要求插补的第一象限逆圆弧。
图3-3为第一象限逆圆弧。
XYO软件方面,运用Visual Basic 6.0应用软件,首先制作相应的界面,进行参数设置,其次,在界面中设置相应的command1,存放相应程序,画出x轴和y轴的以及相应的箭头作出正方向,并且执行相应起点和终点的参数,定出圆心,画出相应的四分之一圆弧。
作出圆弧后,通过相应的计算分析得出圆弧插补计算的五个步骤,即偏差判断、坐标进给、偏差计算、坐标计算、终点判断。
软件调试及其结果分析,其中包括界面设置,调试记录以及结果分析三个方面,对软件程序进行调试和完善,实现步进电机插补原理。
3硬件设计原理3.1硬件原理步进电机通对计算机进行控制,进而进行数模转换,由伺服电机驱动电路驱动伺服电机,带动工作台进行逐步比较插补,逐步逼近给定轨迹。
流程如图3.1所示。
图3-1 开环数字程序控制随着计算机技术的发展,开环数字程序控制得到了广泛的应用,如各类数控机床、线切割机低速小型数字绘图仪等,它们都是利用开环数字程序控制原理实现控制的设备。
其结构亦如图3-1所示。
这种结构没有反馈检测元件,工作台由步进电机驱动。
步进电机接收驱动电路发来的指令作相应的运动,把刀具移动到与指令脉冲相当的位置,至于刀具是否到达了指令脉冲规定的位置,它不作任何检查,因此这种控制的可靠性和精度基本上由步进电机和传动装置来决定。
图3-2为两台三相步进电机控制接口示意图,选定由PA0、PA1、PA2通过驱动电路来控制x轴步进电机,由PB0、PB1、PB2通过驱动电路来控制y轴步进电机,并假定数据输出为“1”时,相应的绕组通电;数据输出为“0”时,相应绕组断电。
图3-2 两台三相步进电机控制接口示意图步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
以下为步进电机三相六拍工作方式,其输出字表如表3-1。
表3-1步进电机三相六拍工作方式输出字表3.2硬件原理本次课程设计内容为设计一个计算机控制步进电机系统,该系统利用PC机的并口输出控制信号,其信号驱动后控制X、Y两个方向的三相步进电机转动,利用逐点比较法插补绘制出第一象限逆圆弧。
、逐点比较法是以阶梯折线来逼近直线或圆弧等曲线,它与规定的加工直线或圆弧之间的最大误差为一个脉冲当量,因此只要把脉冲当量(每走一步的距离即步长)取得足够小,就可以达到精度的要求。
以下为课程设计要求插补的第一象限逆圆弧。
图3-3为第一象限逆圆弧。
图3-3 第一象限逆圆弧以下就以第一象限为例进行分析。
(1) 偏差计算公式设要加工逆圆弧AB ,圆心在原点,起点坐标A(x0,Y0),终点坐标(xe,Ye),半径R 。
瞬时加工点M(xm,Ym),它距圆心Rm ,则可用R 与Rm 来反映偏差。
由图3-2可知:由此定义偏差公式为:若Fm =0,M 点在圆弧上; 若Fm >0,M 点在圆弧外; 若Fm <0,M 点在圆弧内。
第一象限逆圆弧的插补原理是:从圆弧起点出发,若Fm>=0,沿-X 方向走一步,并计算新偏差;当Fm<0时,沿+Y 方向走一步,并计算新偏差。
如此一步一步计算与进给,并在到达终点时停止计算。
但以上Fm 计算式比较复杂,可以考虑用递推公式: ① 当Fm ≥0时,Xm+1=Xm-1Ym+1=Ym Fm+1=Fm-2Xm+1222Ym Xm Rm +=222Yo Xo R +=22222R Ym Xm R Rm Fm -+=-=②当Fm<0时,Xm+1=XmYm+1=Ym+1Fm+1=Fm+2Ym+1(2)终点判断方法①设置Nx,NY两个计数器,初值设为|Xe-Xo|,|Ye-Yo|在不同的坐标轴进给时对应的计数器减一,两个计数器均减到零时,到达终点。
②用一个计数器NxY ,初值设为Nx+NY,无论在哪个坐标轴进给,Nxy 计数器减一,计数器减到零时,到达终点。
(3) 插补计算过程圆弧插补计算比直线插补计算过程要多一个环节,即要计算加工瞬时坐标。
故圆弧插补计算为五个步骤即偏差判断、坐标进给、偏差计算、坐标计算、终点判断。
通过以上的分析计算,可以得出以下四个象限的顺圆弧(SR)和逆圆弧(NR)的圆弧插补计算公式和进给方向。
其插补进算公式及其进给方向如表3-1所示。
表3-2 圆弧插补计算公式和进给方向由于本次课程设计的设计要求为第一象限逆圆弧,以逆圆弧为例分析,通过以上计算结果分析,通过绘图,的出相应四个象限圆弧插补的对称关系。
以下为四个象限圆弧插补的对称关系,当Fm大于等于零或者小于零时,分别对应的偏差判别,偏差计算,进给方向,坐标计算等等。
以下为根据表3-2得出的相应四个象限的插补对应关系,从图中可以推出其对应的具体进给方向,如图3-4所示。
图3-4 四个象限逆圆弧插补的对称关系4软件系统4.1软件思想本次课程设计采用VB软件进行编程与界面制作,软件的设计制作包括如下几方面:1.坐标的取值与计算,即设计中所插补的圆弧所位于象限的确定。
2.圆心所在坐标的确定。
3.圆弧半径的选择。
4.通过所选半径及其圆心,确定圆弧起点坐标与终点坐标的选择。
5.逐步逼近,圆弧插补的实现。
4.2流程图4.3源程序如附录所示5调试记录及结果分析5.1界面设置运用Visual Basic 6.0应用软件,制作如下界面。
其中参数设置包括:半径q的设置,起点坐标设置(起点x轴y轴参数),终点坐标设置((终点x轴y轴参数)。
另外,先不要设置“作图”执行程序,其中存放其相关程序。
相应参数输入界面设置如图5-1所示。
图5-1 参数输入界面设置5.2调试记录通过Visual Basic 6.0应用软件界面设置及其相应的程序编辑,通过执行程序,在相应picture区域定出原点坐标,作出相应坐标轴以及坐标轴的x轴和y轴的方向,进而作出相应圆弧(同时定义原点的坐标),实现以上步骤之后,通过程序控制,通过插补原理实现完整的插补过程,逐步逼近圆弧。
以下为实际运行中的步进电机圆弧插补,通过调试得出以下结果。
图5-2为相应调试结果。
图5-2 步进电机插补过程调试结果5.3结果分析通过以上界面设置,通过相应参数输入,首先输入相应半径参数q,其次进行起点坐标输入,包括起点x轴坐标输入及其y轴坐标输入,进而进行重点坐标输入,其中包括重点x轴坐标输入及其y轴坐标输入。
进而进行作图命令,步进电机插补过程如右图picture 所示。
以上图5-2所示步进电机插补过程调试,圆心坐定为(1 ,1),参数输入相应参数输入为q=5,相应计算所得四分之一圆弧起点坐标为(6 ,1),相应终点坐标为(1 ,6),点击“作图”按钮,在picture中实现圆心为(1 ,1),起点坐标为(6 ,1),终点坐标为(1 ,6)的圆弧插补。
根据步进电机插补原理,偏差判别是为:该圆弧为第一象限圆弧,第一象限圆弧插补Fm判别式,有如下关系:22222RYmXmRRmFm-+=-=1.当Fm≥0时,Xm+1=Xm-1Ym+1=YmFm+1=Fm-2Xm+12.当Fm<0时,Xm+1=XmYm+1=Ym+1Fm+1=Fm+2Ym+1由起点及其终点,可得终点判断Nxy=10,另外令圆心(1 ,1)为新建坐标系原点,可得一下圆弧插补过程,如表5-1所示。
表5-1 圆弧插补计算过程根据以上圆弧插补过程,实现完整的圆弧插补过程。
6心得体会微机控制原理技术是一门很有趣的课程,任何一个计算机系统都是一个复杂的整体,学习危机控制原理是要涉及到整体的每一部分。
通过讨论其控制原理时又要涉及到各部件之间控制的工作原理,不仅较深入理解计算机控制的工作原理。
所以,在循序渐进的课堂教学过程中,我总是处于“学会了一些新知识,弄清了一些原来保留的问题,又出现了一些新问题”的循环中,直到课程结束时,才把保留的问题基本搞清楚。
学习该门课程知识时,其思维方法也和其它课程不同,该课程偏重于工程思维,具体地说,在了解了微机基本原理的同时,必须学会各种控制技术的应用,其创造性劳动在于如何用计算机的有关技术实现计算机的控制,设计实用的电路和系统,再配上相应的应用程序,完成各种控制应用项目。