离散数学第七章第七节
《离散数学》第七章 图的基本概念 讲稿
7.1 无向图及有向图一、本节主要内容无向图与有向图顶点的度数握手定理简单图完全图子图补图二、教学内容无序对: 两个元素组成的二元组(没有顺序),即无论a,b是否相同,(a,b )=(b, a )无序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合无向图与有向图定义无向图G=<V,E>, 其中(1) V∅≠为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义无向图G=<V,E>, 其中(1) V≠∅为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} 无向图与有向图(续)定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图右图是有向图,试写出它的V和E无向图与有向图(续)通常用G表示无向图, D表示有向图,也常用G泛指无向图和有向图,用ek表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是无向图G=<V,E>的一条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.无边关联的顶点称作孤立点.定义设无向图G=<V,E>, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el至少有一个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=〈vi,vj〉是有向图的一条边, vi,vj是ek端点,又称vi是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设无向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧<v,u>∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧<u,v>∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=<V ,E>为无向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和 悬挂顶点: 度数为1的顶点 悬挂边: 与悬挂顶点关联的边 G 的最大度∆(G)=max{d(v)| v ∈V} G 的最小度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=<V ,E>为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的入度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最大出度∆+(D), 最小出度δ+(D) 最大入度∆-(D), 最小入度δ-(D) 最大度∆(D), 最小度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3, δ-(D)=1, ∆(D)=5, δ(D)=3. 图论基本定理——握手定理定理 任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数. 握手定理(续)推论 在任何无向图和有向图中,度为奇数的顶点个数必为偶数. 证 设G=<V,E>为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=∅,由握手定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设无向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的入度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 入度序列:1,3,1,2 握手定理的应用例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解 不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点? 解 设G 有n 个顶点. 由握手定理, 4⨯3+2⨯(n-4)≥2⨯10 解得 n ≥8握手定理的应用(续)例3 给定下列各序列,哪组可以构成无向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平行边重数为2不是简单图e2和e3 是平行边,重数为2 e6和e7不是平行边不是简单图图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(<vi,vj>∈E1)当且仅当(f(vi),f(vj))∈E2(<f(vi),f(vj)>∈E2),并且,(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.图的同构(续)几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有非同构的无向简单图例2 判断下述每一对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构入(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶无向完全图Kn: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1n阶k正则图: ∆=δ=k 的n阶无向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶无向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图子图定义设G=<V,E>, G '=<V ',E '>是2个图(1) 若V '⊆V且E '⊆E, 则称G '为G的子图, G为G '的母图, 记作G '⊆G(2)若G '⊆G且G '≠ G(即V '⊂V 或E '⊂E),称G '为G的真子图(3) 若G '⊆G 且V '=V,则称G '为G的生成子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']子图(续)例画出K4的所有非同构的生成子图补图定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G≅G.若G ≅ G , 则称G 是自补图.例 画出5阶7条边的所有非同构的无向简单图首先,画出5阶3条边的所有非同构的无向简单图 然后,画出各自的补图7.2 通路、回路与图的连通性一、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路 无向连通图, 连通分支弱连通图, 单向连通图, 强连通图 点割集与割点边割集与割边(桥) 二、教学内容 通路与回路定义 给定图G=<V ,E>(无向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若∀i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. 又若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在无向图中,环是长度为1的圈, 两条平行边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条方向相反边构成长度为2的圈. 在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通 路,则从vi 到vj 存在长度小于等于n -1的通路.推论 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ≅≅例设与均为无向简单图,当且仅当路,则从vi到vj存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在vi到自身的回路,则一定存在vi到自身长度小于等于n的回路.推论在一个n阶图G中,若存在vi到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分支: V关于R的等价类的导出子图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔ p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔ u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三角不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, 如果存在顶点子集V'⊂V, 使p(G-V')>p(G),而且删除V'的任何真子集V''后(∀ V''⊂V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设无向图G=<V,E>, E'⊆E, 若p(G-E')>p(G)且∀E''⊂E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:Kn无点割集n阶零图既无点割集,也无边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v 或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔ u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示一、本节主要内容无向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵二、教学内容无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义 设无环有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ⨯m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义 设有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ⨯n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1100010111()0000101110M D -⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥-⎣⎦平行边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理 设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中 元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到自身长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论 设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度小于或等于l 的通路数, 为D 中长度小于或等于l 的回路数. 例 有向图D 如图所示, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多 少条?其中回路分别为多少条? (2) D 中长度小于或等于4的通路为多 少条?其中有多少条回路?12100010()00010010A D ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有向图的可达矩阵定义 设D=<V ,E>为有向图, V={v1, v2, …, vn}, 令称(pij)n ⨯n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对角线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例 右图所示的有向图D 的可达矩阵为7.4 最短路径及关键路径一、本节主要内容 最短路 关键路线二、教学内容对于有向图或无向图G 的每条边,附加一个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=<V,E,W>,G 中每条边的权都大于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1101110111110001P路中带权最小的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======⋃=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==⋃=-=+i i i i 号:第2步(r=2):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为一个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=<V ,E,W>是n 阶有向带权图1. D 是简单图2. D 中无环路3. 有一个顶点出度为0,称为发点;有一个顶点入度为0,称为收点4. 记边<vi, vj>的权为wij,它常常表示时间1. 最早完成时间:自发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ) ,i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n-∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的一条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,自发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。
离散数学第7章
1 v2e4v4e3v3e2v2
初级回路(圈)
2 v2e5v5e6v4e3v3e2v2
初级回路(圈)
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 复杂回路
…………
5、图中最短的回路。 如图:
6、性质。
定理:在一个
n
阶图中,若从顶点vi
到
v
存在
j
通路(vi vj ) ,则从 vi 到 vj 存在长度小于等于
n 1的通路。
推论:在一个
n
阶图中,若从顶点vi
到
v
存在
j
通路(vi vj ) ,则从 vi 到 vj 存在长度小于等于
n 1的初级通路。
6、性质。
定理:在一个 n 阶图中,若vi 到自身存在回路, 则从 vi 到自身存在长度小于等于n 的回路。 推论:在一个 n 阶图中,若vi 到自身存在一个 简单回路,则从vi到自身存在长度小于等于 n
如例1的(1)中,
v1
v5
e1与 v1, v2 关联的次数均为1, e1
e6
e2 与 v2 关联的次数为2, e2 v2 e4 e5
v4
边 e1, e4, e5, e6都是相邻的, v5 为孤立点,v4 为悬挂点,
e3 v3
e6 为悬挂边,e2 为环,e4, e5 为平行边,重数2,
G 为多重图。
孤立点——无边关联的点。
环——一条边关联的两个顶点重合,称此边
为环 (即两顶点重合的边)。
3、相关概念。 (2) 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。 (3) 平行边——关联于同一对顶点的若干条边
称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。
离散数学-第7章-图论廖学生用
05
图论中的优化问题
最短路径问题
总结词
最短路径问题是图论中一类经典的优化问题,旨在寻找图中 两个节点之间的最短路径。
详细描述
最短路径问题有多种算法,其中最著名的算法是Dijkstra算法 和Bellman-Ford算法。Dijkstra算法适用于带权重的有向图 或无向图,而Bellman-Ford算法适用于带权重的无向图。这 两种算法都能有效地找到最短路径,但时间复杂度和适用范 围有所不同。
03
图的遍历算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
06
图论的应用实例
社交网络分析
社交网络分析
图论在社交网络分析中有着广泛的应用。通过构建社交网络模型,可以研究人际关系、信 息传播、社区结构等方面的问题。例如,通过分析社交网络中的节点和边的关系,可以发 现社区结构、影响力传播路径、信息扩散规律等。
社交网络模型
社交网络模型通常由节点和边构成,节点代表个体或组织,边代表它们之间的关系。根据 实际需求,可以选择不同的社交网络模型,如社交关系网、信息传播网等。
力传播等。
生物信息学
交通运输
图论用于基因调控网络、 蛋白质相互作用网络等 生物信息学领域的研究。
图论用于交通路线的规 划和管理,如最短路径 算法、交通流量优化等。
离散数学左孝凌第七章
第七章 图论 7.1 图的基本概念
【例7.1.3】设图G=〈V,E〉如图7.1.3所示。
这里V={v1,v2,v3}, E={e1,e2,e3,e4,e5}, 其中e1=(v1,v2), e2=(v1,v3),e3=(v3,v3), e4=(v2,v3),e5=(v2,v3)。 在这个图中,e3是关联同一个结点的一条边,即自回路; 边e4和e5都与结点v2、v3关联,即它们是多重边。
第七章 图论 7.1 图的基本概念
图7.1.3
3.图G的分类 (1) 按G的结点个数和边数分为(n,m)图,即n个结点,m条边 的图; 特别地,(n,0)称为零图,(1,0)图称为平凡图。 (2)按G中关联于同一对结点的边数分为多重图和简单图; 多重图:含有平行边的图(如图7.1.3)。 简单图:不含平行边和自环的图。 (3)按G的边有序、无序分为有向图、无向图和混合图; 有向图:每条边都是有向边的图称为有向图(图 7.1.4(b)); 无向图:每条边都是无向边的图称为无向图; 混合图:既有无向边,又有有向边的图称为混合图。 本书主要研究无向图和有向图。
第七章 图论 7.1 图的基本概念
定理7.1.1图G=〈V,E〉中结点度数的总和等于 边数的两倍,即
V
deg( ) 2 E
证明 :因为每条边都与两个结点关联,所以加上一条 边就使得各结点度数的和增加2,由此结论成立。 推论:图G中度数为奇数的结点必为偶数个。
第七章 图论 7.1 图的基本概念
图7.1.1
第七章 图论 7.2 路与回路
例如在图7.2.1中,有连接v5 到v3的路v5e8v4e5v2e6v5e7v3,这 也是一条迹;路v1e1v2e3v3是一 条通路;路v1e1v2e3v3e4v2e1v1是 一条回路,但不是圈;路 v1e1v2e3v3e2v1是一条回路,也是 圈。 下面我们利用通路的概念解 决一个古老的著名问题。
离散数学课后习题答案第七章
第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。
与平凡图构成的非连通图中有4个结点3条边,但是它不是树。
3K 3.证明 必要性。
因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。
再证充分性。
因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。
4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。
5.解6个结点的所有不同构的树如图7-1所示。
图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。
⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。
综合⑴,⑵得知T 中至少有两片树叶。
7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。
图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。
⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。
,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。
其中T 2,T 5是图中的最小生成树。
9.解 最小生成树T 如图7-7所示,W (T )=18。
a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。
如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。
离散数学 第七章 图论
每一条边都是有向边 的图称有向图。
G′=<V′,E′>=<{v1′,v2′,v3′, v4′,v5′},{<v1′,v2′>,<v2′, v3′>,<v3′,v4′>,<v2′,v4′>}>
如果在图中一些边是有向 边,另一些边是无向边, 则称这个图是混合图。
G″=<V″,E″>=<{ v1″,v2″,v3″,
v4″,},{( v1″,v4″),(v2″,v4″),<v1″,
v3″>,<v3″,v4″>}>
11
在一个图中,若两个节点由一条有向 边或一条无向边相关联,则这两个节点 称为邻接点。
在一个图中不与任何节点相邻接的节 点,称为孤立节点。仅由孤立节点组成 的图称为零图,仅由一个孤立节点组成 的图称为平凡图。
证明 在Kn中,任意两点间都有边相连, n 个结点 中任取两点的组合数为:
Cn2
1 2
n(n
1)
故Kn的边数为 |E| = n(n-1)/2 。
21
注意:
如果在Kn中,对每条边任意确定一个方 向,就称该图为 n 个结点的有向完全图。 显然,它的边数也为 n(n-1)/2 。
给定任意一个含有 n 个结点的图 G ,总 可以把它补成一个具有同样结点的完全 图,方法是把那些没有联上的边添加上 去。
且E E ,V V ,则称 G 为 G 的子图。
例:如图 7-1.7 中 (b) 和 (c) 都是 (a) 的子图。
24
如果 G 的子图包含 G 的所有结点,则 称该子图为 G 的生成子图。 如图 7-1.8 中 (b) 和 (c) 都是 (a) 的生成子图。
最新离散数学 第2版 教学课件 尤枫 第07章 半群与群ppt课件
与
到W的半群同态。
群
证明 对于任意的a,b∈R,有
(g·f)(a*b) = g(f(a*b))
= g(f(a)f(b))
= g(f(a))g(f(b))
= (g·f)(a)(g·f)(b)
所以,g·f是从U到W的半群同态。
7.1半群与独异点
第 定理7-7 设U=<R,*>和V=<S,+>都是半群,则U和
因此,U是一个群。
7.2 群与子群
第 定义7-11 设U=<S,*>是一个群。若
7 章
(1) S为有限集合,则称U为有限群,
半
若|S|=n,则称U为n阶群;
群 与
(2) S为无限集合,则称U为无限群。
群
7.2 群与子群
第 定理7-9 群中不存在零元。
7 章
证明 设U=<S,*>是任意一个群,当群的阶为1时,
半
集合S中唯一的一个元素看作是群的幺元。
群 与
设|S|>1,且存在零元。因零元不存在逆元,
群 而群中每个元素都必须是可逆的,于是产生矛盾,
所以,群中不存在零元。
7.2 群与子群
第 定理7-10 幺元是群中唯一的一个幂等元。
7 章
证明 对于幺元e,因e2=e,故e是幂等元。
半
若a也是幂等元,即若a*a=a,则
群 与
e = a-1*a
群
= a-1*(a*a)
= (a-1*a)*a
= e*a
=a
这说明e是唯一的幂等元,证毕。
7.2 群与子群
第 定理7-11 设U=<S,*>是一个群,则对于任意的
7 章
《离散数学》课件-第七章 图的基本概念
• G1 G2。
• 显然,两图的同构是相互的,即G1同构 于G2,G2同构于G1。
• 由同构的定义可知,不仅结点之间要具 有一一对应关系,而且要求这种对应关 系保持结点间的邻接关系。对于有向图 的同构还要求保持边的方向。
V={a,b,c,d},E={e1,e2,e3,e4,e5,e6}
e1=(a,b), e2=(a,c), e3=(b,d), e4=(b,c), e5=(d,c), e6=(a,d).
它的图形如下图(a)或(b)所示:
a
a
b
d
b
d
c
c
(a)
(b)
如果有些边是有向边,另一些边是无向边, 图G称为混合图。
第七章 图的基本概念
– 7.1 无向图及有向图 – 7.2 通路、回路、图的连通性 – 7.3 图的矩阵表示 – 7.4 最短路径及关健路径
7.1 无向图和有向图
• 什么是图?可用一句话概括,即:图是用 点和线来刻划离散事物集合中的每对事 物间以某种方式相联系的数学模型。
Konigsberg(哥尼斯堡)七桥问题
为偶数.
定理7.2 在任何有向图中,所有结点的入度之 和必等于它们的出度之和.
证明:因为有向图中的每一条有向边都恰好对应 一个出度和一个入度.故所有结点的出度之 和恰好等于有向边的总数.同样地, 所有结 点的入度之和恰好也等于有向边的总数.因 此它们相等.
设V={v1,…,vn}为G的顶点集,则称{d(v1),…d(vn)} 为G的度数序列。
• 如果G2无孤立结点,且由E2所唯一确定,即 以E2为边集,以E2中边关联的结点全体为顶 点集,则称G2是边集E2的导出子图。
离散数学第七章
教学要点
马克思主义经典作家预见未来社会的 科学立场和方法
共产主义社会的基本特征 共产主义理想实现的历史必然性 共产主义理想实现的长期性 实现共产主义不能超越社会主义发展
阶段
共产主义远大理想与中国特色社会主 义共同理想的关系
2020/1/15
第一节 马克思主义经典作家对共产 主义社会的展望
2020/1/15
阅读文献
马克思和恩格斯:《共产党宣言》,《马克 思恩格斯选集》第1卷,人民出版社1995年 版。
恩格斯:《社会主义从空想到科学的发展》, 《马克思恩格斯选集》第3卷,人民出版社 1995年版。
高放、李景治、蒲国良主编:《科学社会主 义的理论与实践》,中国人民大学出版社 2005年版。
2020/1/15
总之,我们既要坚定资本主义 必然灭亡、共产主义必然胜利的 信心,同时也坚持科学态度,充 分尊重客观规律,在当前艰苦的 实践中坚定地为共产主义的实现 而奋斗
思考题:“两 个必然”与 “两个绝不会” 关系
2020/1/15
综合,“两个必然” 和 “ 两个决不 会 ”,认清共产主义实现的必然性以及时间 性、条件性.
二、实现共产主义是人类最伟大 的事业 实现共产主义是无产阶级解放
斗争的最终目标
2020/1/15
代表先进的生产力
无产阶级的优点
有科学社会主义理论的指导
有自己的政党马克思主义政党
2020/1/15
实现共产主义是全人类解放的 根本体现
工人阶级特殊的社会地位和历史 使命,决定了它只有解放全人类才能 使自己最后得到彻底解放。
2020/1/15
社会主义虽然是作为资本主义的对立面而产 生的,但不意味着社会主义一定要全盘排斥资 本主义。社会主义应该创造性地吸收和发展人 类已积累起来的一切文明成果,特别是资本主 义所创造的积极成果。这些先进的思想文化本 身并没有阶级性,是人类的共同财富。借鉴利 用资本主义是摆脱贫穷,谋求发展,赶超发达 资本主义国家的必经之路。
离散数学 第7章 图论基础(祝清顺版)
c
d
(b)
离散数学
第七章 图论基础
2007年8月20日
图的一些概念和规定
(n, m)图: 具有n个结点和m条边的图称为(n, m)图.
若|V|=n, 则称G为n阶图.
如果图G是一个(n, 0)图, 则称此图为零图, 即零图是仅 由一些孤立结点所组成的. 如果图G是一个(1, 0)图, 则称此图为平凡图, 即平凡图 是仅由一个孤立结点所组成的. v1 v2
的出度之和。
[证] 因为每一条边必给结点的入度之和增加1,给结点的
出度之和增加1。
所以,有向图中所有结点的入度之和等于边数,所有结
点的出度之和等于边数。
因此,所有结点的入度之和等于所有结点的出度之和。
离散数学
第七章 图论基础
2007年8月20日
例题
例5 设图G有n个结点,n+1条边,证明:G中至少有一个 结点度数≥3。 [证] 设图G中有n个结点分别为v1, v2,…, vn, 则由握手 定理:
e1 a e7 c e3 e3
e4
e2
e5
b e6 d
a e7 e5 c c e4 e1 e2 e6 b
离散数学
第七章 图论基础
2007年8月20日
例题
例2 设有4个城市: v1, v2, v3, v4, 其中, v1与v2之间, v2与 v4之间, v2与v3之间有直达航班, 试将此问题用图的方法表
图的定义 图的一些概念和规定 简单图和多重图 顶点的度数与握手定理 图的同构 完全图与正则图 子图与补图
离散数学 第七章 图论基础 2007年8月20日
图的概念
定义1 一个图G由非空结点集合V={v1, v2,…, vn}以及边 集合 E={e1, e2, …, em}所组成. 其中每条边可用一个结 点对表示, 亦即 ei=(vi1, vi2), i=1, 2, …, m.
离散数学第7章
SCHOOL OF MATHEMATICS AND PHYSICS
第七章
多项式
7.1 7.2 7.3 7.4 7.5 7.6
有限域
域的特征 素域 多项式的整除性 多项式的根 有理域上的多项式 分圆多项式 有限域
群环域的关系
域
整区 体 含壹环
交换环
无零因子环 环 交换群 群 半群
§7.1 域的特征
系数
都小于p,所以分子上的p不可能在约分中消掉,因 而中间各项的系数是 p的倍数。因此(a+b) p = ap+bp
结论3 设F的特征是质数p,则(a-b)p = ap-bp 证明:令c = a-b。由结论2, ap = (c+b)p = cp+bp = (a-b)p+bp, 从而(a-b)p = ap-bp
定理7.2.1
• 域F上х的多项式作成的环F[х]是整区。 • 证明:只要证明F[х]中无零因子。 • 若ƒ(х)≠0,g(х)≠0,则 • 次ƒ(х)≠ -∞,次g(х)≠ -∞, • 故 次 ƒ(х)g(х)= 次 ƒ(х)+ 次 g(х)≠-∞ , 因 而 ƒ(х)g(х)≠ 0。
• 结论:对ƒ(х )=q(х )g(х )+r(х ),g(х ) ≠0,次
• 例7.2.1 考察R2={0,1}上的4个矩阵: 0 0 1 0 0 1 • 0 = 0 0 , 1 = 0 1 , a = 1 1 , 1 1 b = 1 0 , • 则F={0,1,a,b}在矩阵加法、乘法下作成 一个域。设f(x),g(x) 是F上的多项式: • f(x) = ax3 + b x2 + ax + b • g(x) = x+1, • 下面求用g(x)去除f(x)所得的商式和余 式。
离散数学_第七章
xy(x∈A∧y∈A ∧(x y) ∧ <x,y> ∈ R < y, x > R)
反对称性的判定方法
R的关系矩阵为:
0 1 MR 0 1 0 0 0 0 1 1 0 0 0 0 1 1
R的关系图形如:
a
。 。
。 d 。 c
b
传递性:设R是集合A上的二元关系, 如果对于任意x,y,z∈A,每当xRy, yRz,就有xRz,则称关系R在A上是 传递的。 R在A上是传递的
逆关系:设R是从X到Y的二元关系, 如果将R中每序偶的元素顺序互换, 所得到的集合称为R的逆关系,记为 R-1 ,即 R-1={<y,x><x,y>∈R}
(R-1)-1 = R
G对F的右复合关系:设F,G为二元关系, G对F的右复合记作F。G,其中: F◦G={<x,z>| t( <x,t> ∈ F ∧ < t,z > ∈G)}
定理7.9 设R为A上的关系,则
(1)R在A上自反当且仅当IA ⊆R (2)R在A上反自反当且仅当R ∩ IA=
(3)R在A上对称当且仅当R=R-1 (4)R在A上反对称当且仅当R ∩ R-1 ⊆ IA (5)R在A上传递当且仅当R。R ⊆ R
7.5 关系的闭包
自反(对称、传递)闭包:设R是集合A上 的二元关系,如果有另一个关系R’满足: (1)R’是自反的(对称的、传递的); (2)R ⊆ R ’ ; (3)对A上任何自反的(对称的、传递的) 关系R’’,有R’ ⊆ R’’ 。 则称关系R’为R的自反(对称、传递)闭 包。 记作 r(R),s(R),t(R)
7.3 关系的运算
定义域、值域、域: 令R为二元关系,由<x,y> ∈R 的所有x组成的集合domR称为R的 定义域,即dom R={x|(y) ( <x,y> ∈R )}。
《离散数学》课件-第七章 图(A)
d
e6e3
b
e7
e5
c
14
握手定理
• 定理7.1.1 设图G=(V, E)为无向图或有向图,G有n个结点 v1,v2,…,vn,e条边(无向或有向), 则图G中所有结点的度数 之和为边数的两倍,即
n
d (vi ) 2e
i 1
• 证 图中每条边(包括环)均有两个端点, 所以在计算各顶点 • 度数之和时, 每条边均提供2度, m条边共提供2m度.
(1)(5,5,4,4,2,1)
(2)(5,4,3,2,2)
(3)(3,3,2,2,1,1) (4)(d1, d2 , , dn ), d1 d2
n
dn 1且 di为偶数 i 1
解 (1)根据握手定理的推论可知,不是图的结点度数序列,因为有 3个奇数。 (2)中有5个数,最大数是5,根据定理7.1.3,它不是简单图的结 点序列。
K5
正则图
• 根据握手定理,n阶k-正则图的边数 m nk。
2
• 当k为奇数时,n为偶数。 • 当k=0时,0-正则图就是n阶零图。 • n阶无向完全图是(n-1)-正则图。
环图和轮图
定义7.1.12 如果图G =(V,E)的结点集V={v1,v2,vn} (n3),边集E={(v1,v2),(v2,v3),( vn-1,vn), (vn,v1)},则称G为环图,记为Cn。下图是C3,C4 ,C5 ,C6。
19
实例
• 例4 证明不存在具有奇数个面且每个面都具有奇数条棱的 • 多面体.
证 用反证法. 假设存在这样的多面体, 作无向图G=<V,E>, 其中 V={v | v为多面体的面},
E={(u,v) | u,vV u与v有公共的棱 uv}. 根据假设, |V|为奇数且vV, d(v)为奇数. 这与握手定理的 推论矛盾.
离散数学屈婉玲第七章 ppt课件
离散数学屈婉玲第七章
6
笛卡儿积的性质
(1) 不适合交换律 AB BA (AB, A, B)
(2) 不适合结合律 (AB)C A(BC) (A, B, C)
(3) 对于并或交运算满足分配律 A(BC) = (AB)(AC) (BC)A = (BA)(CA) A(BC) = (AB)(AC) (BC)A = (BA)(CA)
(2) A在R下的像记作R[A], 其中
R[A]=ran(R↾A)
说明:
R在A上的限制 R↾A是 R 的子关系,即 R↾A R
A在R下的像 R[A] 是 ranR 的子集,即 R[A] ranR
离散数学屈婉玲第七章
19
实例
例7 设R={<1,2>,<1,3>,<2,2>,<2,4>,<3,2>}, 则
离散数学屈婉玲第七章
26
关系运算的性质
定理7.5 设F 为关系, A, B为集合, 则
(1) F ↾(A∪B) = F ↾A∪F ↾B
(2) F [A∪B] = F [A]∪F [B]
(3) F ↾(A∩B) = F ↾A∩F ↾B
(4) F [A∩B] F [A]∩F [B]
离散数学屈婉玲第七章
离散数学屈婉玲第七章
23
关系运算的性质
定理7.3 设R为A上的关系, 则 RIA= IAR=R
<x,y> <x,y>∈RIA
t (<x,t>∈R∧<t,y>∈IA) t (<x,t>∈R∧t=y∧y∈A) <x,y>∈R
离散数学屈婉玲第七章
24
关系运算的性质
离散数学第七章图的基本概念知识点总结docx
图论部分第七章、图的基本概念7.1 无向图及有向图无向图与有向图多重集合: 元素可以重复出现的集合无序积: A&B={(x,y) | x∈A∧y∈B}定义无向图G=<V,E>, 其中(1) 顶点集V¹∅,元素称为顶点(2) 边集E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2),(v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ,定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) 边集E为V´V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的通常用G表示无向图, D表示有向图, 也常用G泛指无向图和有向图, 用e k表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图空图: V=∅顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=<V,E>的一条边, 称v i,v j为e k的端点, e k与v i (v j)关联. 若v i ¹v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点.定义设无向图G=<V,E>, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l至少有一个公共端点, 则称e k,e l相邻.对有向图有类似定义. 设e k=áv i,v j〉是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.邻域和关联集顶点的度数设G=<V,E>为无向图, v∈V,v的度数(度) d(v): v作为边的端点次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边G的最大度∆(G)=max{d(v)| v∈V}G的最小度δ(G)=min{d(v)| v∈V}例如d(v5)=3, d(v2)=4, d(v1)=4,∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环设D=<V,E>为有向图, v∈V,v的出度d+(v): v作为边的始点次数之和v的入度d-(v): v作为边的终点次数之和v的度数(度) d(v): v作为边的端点次数之和d(v)= d+(v)+ d-(v)D的最大出度∆+(D), 最小出度δ+(D)最大入度∆-(D), 最小入度δ-(D)最大度∆(D), 最小度δ(D)例如d+(a)=4, d-(a)=1, d(a)=5,d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3,δ-(D)=1,∆(D)=5, δ(D)=3.握手定理定理任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.证G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度. 有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数.图的度数列设无向图G的顶点集V={v1, v2, …, v n}G的度数列: d(v1), d(v2), …, d(v n)如右图度数列:4,4,2,1,3设有向图D的顶点集V={v1, v2, …, v n}D的度数列: d(v1), d(v2), …, d(v n)D的出度列: d+(v1), d+(v2), …, d+(v n)D的入度列: d-(v1), d-(v2), …, d-(v n)如右图度数列:5,3,3,3出度列:4,0,2,1入度列:1,3,1,2例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?解不可能. 它们都有奇数个奇数.例2 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点?解设G有n个顶点. 由握手定理,4´3+2´(n-4)³2´10解得n³8例3 证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.证用反证法. 假设存在这样的多面体,作无向图G=<V,E>, 其中V={v | v为多面体的面},E={(u,v) | u,v∈V∧u与v有公共的棱∧u¹v}.根据假设, |V|为奇数且∀v∈V, d(v)为奇数. 这与握手定理的推论矛盾.多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的v i,v j∈V1,(v i,v j)∈E1(<v i,v j>∈E1)当且仅当(f(v i),f(v j))∈E2(<f(v i),f(v j)>∈E2),并且, (v i,v j)(<v i,v j>)与 (f(v i),f(v j))(<f(v i),f(v j)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构至今没有找到判断两个图同构的多项式时间算法完全图:n阶无向完全图K n: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1子图:定义设G=<V,E>, G '=<V ',E '>是两个图(1) 若V '⊆V且E '⊆E,则称G '为G的子图, G为G '的母图, 记作G '⊆G(2) 若G '⊆G 且V '=V,则称G '为G的生成子图(3) 若V '⊂V 或E '⊂E,称G '为G的真子图(4) 设V '⊆V 且V '¹∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '¹∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']补图:定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图K n的添加边组成的集合为边集的图,称为G的补图,记作 .若G≅ , 则称G是自补图.例对上一页K4的所有非同构子图, 指出互为补图的每一对子图, 并指出哪些是自补图.7.2 通路、回路、图的连通性简单通(回)路, 初级通(回)路, 复杂通(回)路定义给定图G=<V,E>(无向或有向的),G中顶点与边的交替序列Γ=v0e1v1e2…e l v l,(1) 若∀i(1≤i≤l), v i-1, v i是e i的端点(对于有向图, 要求v i-1是始点, v i是终点), 则称Γ为通路, v0是通路的起点, v l是通路的终点, l为通路的长度. 又若v0=v l,则称Γ为回路.(2) 若通路(回路)中所有顶点(对于回路, 除v0=v l)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).说明:表示方法①用顶点和边的交替序列(定义), 如Γ=v0e1v1e2…e l v l②用边的序列, 如Γ=e1e2…e l③简单图中, 用顶点的序列, 如Γ=v0v1…v l④非简单图中,可用混合表示法,如Γ=v0v1e2v2e5v3v4v5环是长度为1的圈, 两条平行边构成长度为2的圈.在无向简单图中, 所有圈的长度³3; 在有向简单图中, 所有圈的长度³2.在两种意义下计算的圈个数①定义意义下在无向图中, 一个长度为l(l³3)的圈看作2l个不同的圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈.在有向图中, 一个长度为l(l³3)的圈看作l个不同的圈.②同构意义下所有长度相同的圈都是同构的, 因而是1个圈.定理在n阶图G中,若从顶点v i到v j(v i¹v j)存在通路,则从v i到v j存在长度小于等于n-1的通路.推论在n阶图G中,若从顶点v i到v j(v i¹v j)存在通路,则从v i到v j存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在v i到自身的回路,则一定存在v i到自身长度小于等于n的回路.推论在一个n阶图G中,若存在v i到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v∈V且u~v}是V上的等价关系连通图:任意两点都连通的图. 平凡图是连通图.连通分支: V关于连通关系R的等价类的导出子图设V/R={V1,V2,…,V k}, G[V1], G[V2], …,G[V k]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)³0, 且d(u,v)=0 ⇔u=vd(u,v)=d(v,u)d(u,v)+d(v,w)³d(u,w)点割集与割点记G-v: 从G中删除v及关联的边G-V ': 从G中删除V '中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, V '⊂V, 若p(G-V ')>p(G)且∀V ''⊂V ', p(G-V '')=p(G),则称V '为G的点割集. 若{v}为点割集, 则称v为割点.边割集与割边(桥)定义设无向图G=<V,E>, E '⊆E, 若p(G-E ')>p(G)且∀E ''⊂E ',p(G-E '')=p(G), 则称E '为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:K n无点割集n阶零图既无点割集,也无边割集.若G连通,E '为边割集,则p(G-E ')=2若G连通,V '为点割集,则p(G-V ')³2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通定理(强连通判别法) D强连通当且仅当D中存在经过每个顶点至少一次的回路定理(单向连通判别法) D单向连通当且仅当D中存在经过每个顶点至少一次的通路有向图的短程线与距离u到v的短程线: u到v长度最短的通路 (u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>³0, 且d<u,v>=0 u=vd<u,v>+d<v,w> ³d<u,w>注意: 没有对称性7.3 图的矩阵表示无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, v n}, E={e1, e2, …, e m},令m ij为v i与e j的关联次数,称(m ij)n´m为G的关联矩阵,记为M(G).性质(1) 每一列恰好有两个1或一个2有向图的关联矩阵定义设无环有向图D=<V,E>, V={v1, v2, …, v n},E={e1, e2, …, e m}, 令性质(1) 每一列恰好有一个1和一个-1(2) 第i行1 的个数等于d+(v i), -1 的个数等于d-(v i)(3) 1的总个数等于-1的总个数, 且都等于m(4) 平行边对应的列相同有向图的邻接矩阵有向图的可达矩阵7.4 最短路径及关键路径带权图G=<V,E,w>, 其中w:E→R.∀e∈E, w(e)称作e的权. e=(v i,v j), 记w(e)=w ij . 若v i,v j不相邻, 记w ij =∞.设L是G中的一条路径, L的所有边的权之和称作L的权, 记作w(L).u和v之间的最短路径: u和v之间权最小的通路.标号法(E.W.Dijkstra, 1959)PERT图与关键路径PERT图(计划评审技术图)设有向图G=<V,E>, v∈Vv的后继元集Γ+(v)={x|x∈V∧<v,x>∈E}v的先驱元集Γ-(v)={x|x∈V∧<x,v>∈E}PERT图:满足下述条件的n阶有向带权图D=<V,E,w>,(1) D是简单图,(2) D中无回路,(3) 有一个入度为0的顶点, 称作始点; 有一个出度为0的顶点, 称作终点.通常边的权表示时间, 始点记作v1, 终点记作v n关键路径关键路径: PETR图中从始点到终点的最长路径v i的最早完成时间TE(v i): 从始点v1沿最长路径到v i所需的时间TE(v1)=0TE(v i)=max{TE(v j)+w ji|v j∈Γ-(v i)}, i=2,3,¼,nv i的最晚完成时间TL(v i): 在保证终点v n的最早完成时间不增加的条件下, 从始点v1最迟到达v i的时间TL(v n)=TE(v n)TL(v i)=min{TL(v j)-w ij|v j∈Γ+(v i)}, i=n-1,n-2,¼,1 v i的缓冲时间TS(v i)=TL(v i)-TE(v i), i=1,2,¼,nv i在关键路径上 TS(v i)=0最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1v3v7v8。
离散数学-新第七章
是可传递的。
由上证得 ~也是偏序关系。
2
例1 设 A=1,2,3,6,定义 A 上的整除关系 :
当旦仅当 a 整除 b 时,有 a b 。
由定义 = ( 1 , 1 ) ( 1 , 2 ) ,( 1 , 3 ) , ( 1 , 6 ) ,2 , 2 ) ( ( 2 , 6 , ) ( 3 , 3 ) ,( 3 , 6 , ) ( 6 , 6 , )
第七章 格
一偏序集
1.偏序集
定义7-1 集合L和定义在 L 上的偏序关系 “≤”
一起称为偏序集,用<L;≤ >表示。
<R;≤>,<I:≤>,<2U;>和<N;|>都是偏 序集。
~
若 是集合A上的偏序关系,则 的逆关系 也必是A上的偏序关系,证明如下:
1
1.对任意的 a A,因为 自反,所以有
(7 4) (75 ) (74 ) (75 )
(71)~(75)、(71)~(75)这十个 关系式代表了格。 的定义
12
2.格的性质
定理7-3 在格<L;≤>中,对于任意 1,2L
以下三式中若任意一式成立,那么其它两式也成立.
( 1 )( l 1 l 2 l 1 )( 2 ; )( l 1 l 2 l 2 )( 3 ; ) ( l 2 l 1 )
于是,由(5-5) l1l1(l1l2) (2)
由(1)、(2)和反对称性
得l1(l1l2)l1.
18
定理7-7 (等幂律) 设<L;≤>是格,则对任意 l L ,有
(a )l l l; (b )l l l.
证明 (a)由定理7-6 ,
离散数学讲义(第7章)
34
7-2 路与回路(续)
定义 路:给定无向图(或有向图)G=〈V,E〉。令v0, v1,…,vm V,边(或弧)e1,e2,…,em E, 其中ei 是关联于结点vi-1,vi的边,交替序列 v0e1v1e2v2…emvm称为连接v0到vm的路(或链)。 简单图的路可以由结点序列表示,有向图中结点数 大于1的一条路也可以由边序列表示。 起点,终点:v0,vm。 路的长度:边的数目。 回路:若v0=vm时,该路称为回路。 迹:没有重复边的路。 通路:没有相同结点的路。 圈:闭的通路。即除v0=vm外,其余结点均不相同。
35
7-2 路与回路(续)
定理:在一个具有n个结点的图中,如果从结点vi 到结点vj,存在一条路,则从vi到vj必存在 一条不多于n-1条边的路。
推论:在一个具有n个结点的图中,如果从vi到vj, 存在一条路,则从vi到vj必存在一条边数小 于n的通路。
36
7-2 路与回路(续)
定义 无向图的连通性
7-2 路与回路(续)
简单有向图G中 单侧连通:任何一对结点间至少有一个结点到另 一个结点是可达的,责成图G为单侧连通的。 强连通:如果对于图G的任何一对结点两者之间 是相互可达的,则称这个图是强连通的。 弱连通:如果图G中略去边的方向,将它看成无 向图后图是连通的,则称该图为弱连通的。 注:强连通 单侧连通 弱连通 强分图:具有强连通性质的最大子图。 单侧分图:具有单侧连通性质的最大子图。 弱分图:具有弱连通性质的最大子图。
6
图论(续)
“七桥问题”的图论解法
1736年,图论和拓扑学诞生
C c A a b B
7
d e f
g D
图论(续)
LeonhardEuler(1707-1783)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
2、生成树(1)
定义2 若图G的生成子图T是树,则称T为G的生成树。T中的 边叫做树枝;G中不属于T的边叫做弦;所有弦的集合称为T的 补。 例如下图中,T1是G的一棵生成树,e1、e4、e5、e6、e8 是T1的树枝; e2、e3、e7是T1的弦;{e2,e3,e7}是T1的补。 还有T2, T3也是G的生成树。
第7-7讲 树与生成树
1. 树的概念 2. 生成树 3. 最小生成树 4. Kruskal算法 5. 课堂练习 6. 第7-7讲 作业
1
1、树的概念(1)
树是图论中重要的概念之一,在计算机科学中有广泛的运用。
定义1 一个连通且无回路的无向图称为树。 树中度数为1的结点叫树叶;度数大于1的结点叫分枝点 或内点。 如果一个无向图的每个连通分支是树,则称为森林。
6
2、生成树(2)
定理3 连通图至少有一棵生成树。 证明:如果图G连通且无回路,则G就是一棵生成树。 如果图G连通且有一个回路,则删去回路上的一条边得图 G1,显然G1也是连通的,如果G1无回路,则G1是生成树。 如果G1仍有回路,则重复上述步骤,直到无回路为止,就 得到一个与G有相同结点且无回路的连通图,它是G的一棵 生成树。
最小生成树在许多实际问题中,如交通运输、管道铺设 等,有广泛的应用。
8
4、Kruskal算法(1)
定理4 设图G有n个结点,以下算法产生一颗最小生成树: (1) 取最小权边e1,令i=1; (2)若i=n-1,则结束。否则转3; (3)设已选中n的边为e1,e2,…,e i 。 在G中选不同于e1, e2,…,e i 的边e i+1,使e1,e2,…,e i ,e i+1构成的路中无 回路,且e i+1是满足此条件的最小权边; (4) i=i+1,转(2)。 上面的算法也叫避圈法。实际求解时有两种方式: (1)从边权最小的边所关联的两个结点出发,逐步添补边 权最小的边,但始终保持连通性且无回路,直到边数达到n1条为止。 (2)不断删除边权最大的边而保持图的连通性且无回路。 直到边数剩n-1条停时止。
9
4、Kruskal算法(2)
Kruskal算法举例:在下图中求最小生成树(方法1)。
10
4、Kruskal算法(3)
Kruskal算法举例:在下图中求最小生成树(方法2) 。
11
5、课堂练习
用Kruskal算法求下图中的最小生成树。
12
第7-7讲 作业
P327 2,6
13
设G=<V,E>是一个连通图,|V|=n,|E|=m,则G的生成树有 n-1条边。因此,为得出G的一棵生成树应删去m-(n-1)条边。 数m-(n-1)称为G的秩。即连通图G的秩指产生G的一棵生成树 应删去的边数。
7
3、最小生成树
定义3 设图G=<V,E,C(e)>,其中C(e)>0边的权数。设T是G的 生成树,T的各边权数之和 C(ei)称为T的树权,记作C(T)。G 的所有生成树中树权最小者叫最小生成树。
3
1、树的概念(3)
定理1 关于树的下列定义是等价的: (1)无回路的连通图。 …… (6)每对结点间有且仅有一条路。
证明(续):由(6)证(1)。每对结点间有路,则G连通。因每对结 点间仅有一条路,则G无回路。否则,回路上的两点至少有两 条道路,与所设矛盾。故G是无回路的连通图。
41、树的概念(4)21、树的概念(2)定理1 关于树的下列定义是等价的: (1)无回路的连通图。 (2)无回路且e=v-1。 e为边数,v为结点数。 (3)连通且e=v-1。 (4)无回路,但增加一条边,得到且仅得到一个回路。 (5)连通,但删除一条边则不连通。 (6)每对结点间有且仅有一条路。 证明:由(1)证(2)。设图G中,v=2,e=0,则e=v-1。 设v=k-1时命题成立。当v=k时,因G无回路且连通,因而至少有 一个度数为1的结点。若不然,因各点皆连通且度数大于等于2。从 某结点vi出发,可达另一个结点vi,再继续,可经由一些结点后返回 某结点vi。这样就产生了回路。与假设矛盾。故至少有一个度数为1 的结点。删除该结点及其关联的一条边得k-1个结点的子图G’,它仍 是连通的,且e’=v’-1,即e-1=(v-1)-1,整理得e=v-1。
定理2 任一棵树中至少有两片树叶。
证明:设树T=<V,E>,|V|=v。因T连通,对任意vV,有 deg(vi)1,而deg(vi)=2e=2(v-1)。
如果T的每个结点的度数皆大于2,则deg(vi)2v,与上述 结论矛盾。 如果T只有一个结点的度数等于1,则deg(vi)2(v-1)+1,即 deg(vi)2v-1,也与上述结论相悖。 故T中至少有两个结点的度数等于1,即有两片树叶。