生活中的优化问题举例 课件

合集下载

1.4 生活中的优化问题举例

1.4 生活中的优化问题举例
=3.2-2x(m).
4
高为
由题意知 x>0,x+0.5>0,且 3.2-2x>0,
∴0<x<1.6.
设容器的容积为 V m3,
则有 V=x(x+0.5)(3.2-2x)
=-2x3+2.2x2+1.6x(0<x<1.6).
∴V'=-6x2+4.4x+1.6.
目录
退出
令 V'=0,有 15x2-11x-4=0,
解得
4
x1=1,x2=-15(舍去).
∴当 x∈(0,1)时,V'(x)>0,V(x)为增函数,
x∈(1,1.6)时,V'(x)<0,V(x)为减函数.
∴V 在 x∈(0,1.6)时取极大值 V(1)=1.8,这个极大值就是 V 在
x∈(0,1.6)时的最大值,即 Vmax=1.8.这时容器的高为 1.2 m.
此时 Smax=42=16(m2).
答案:16 m2
目录
退出
2.用总长为 14.8 m 的钢条制作一个长方体容器的框架,如果所
制作容器的底面的一边比另一边长 0.5 m,那么高为多少时容器的容
积最大?并求出它的最大容积.
解:设容器底面短边的边长为 x m,则另一边长为(x+0.5) m,
14.8-4x-4(x+0.5)
思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助
椭圆的方程,可表示出等腰梯形的高.
目录
退出
解:(1)依题意,以 AB 的中点 O 为原点建立平面直角坐标系(如
图所示),则点 C 的横坐标为 x,点 C 的纵坐标为

(新课标人教A版)选修1-1数学同步课件:3-4《生活中的优化问题举例》

(新课标人教A版)选修1-1数学同步课件:3-4《生活中的优化问题举例》

(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数
关系式; (2)为获最大日盈利,该厂的日产量应定为多少件?
[解析] (1)由意可知次品率 p=日产次品数/日产量,
每天生产 x 件,次品数为 xp,正品数为 x(1-p). 3x 因为次品率 p= ,当每天 x 件时, 4x+32
3x 3x 有 x· 件次品,有 x1-4x+32 件正品. 4x+32
a 时, y ′≤ 0 ; v ∈ b
a 时,y′≥0.所以 , c b
ab 当 v= b 时,全程运输成本 y 最小.
ab ②若 >c,v∈(0,c],此时 y′<0,即 y 在(0,c] b 上为减函数. 所以当 v=c 时,y 最小. 综上可知,为使全程运输成本 y 最小. ab ab ab 当 b ≤c 时,行驶速度 v= b ;当 b >c 时,行 驶速度 v=c.
答:当箱子的高为10cm,底面边长为40cm时,箱子的
体积最大,最大容积为16000cm3.
[点评] 在解决实际应用问题中,如果函数在区间内 只有一个极值点,那么只需根据实际意义判定是最大值还 是最小值.不必再与端点的函数值进行比较.
已知矩形的两个顶点位于x轴上,另两个顶点位于抛物 线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的 长和宽. [解析] 如图所示,设出AD的长,进而求出AB,表示
[例3] 某汽车生产企业上年度生产一品牌汽车的投入
成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,
本年度为适应市场需求,计划提高产品档次,适当增加投 入成本,若每辆车投入成本增加的比例为x(0<x<1),则出 厂价相应提高的比例为0.7x,年销售量也相应增加.已知 年利润=(每辆车的出厂价-每辆车的投入成本)×年销售

生活中的优化问题举例(27)

生活中的优化问题举例(27)
解决生活中优化问题的四个步骤 (1)分析实际问题中各量之间的关系,建立实际问题的数学模 型,写出实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最 大(小)者为最大(小)值; (4)写出答案.
整理课件
【解析】设圆锥的高为x cm,则底面半径为 202 xc2m,
其体积为V=1 πx(202-x2)(0<x<20),
3
V′= 1π(400-3x2),令V′=0,
3
解得x1=2 0
3
3 ,x2=
2(0舍去3 ).
3
当0<x<2 0 3 时,V′>0;当 2 0<x3 <20时,V′<0,
整理课件
2.解应用题的思路和方法
解应用题首先要在阅读材料、理解题意的基础上把实际问题抽
象成数学问题,就是从实际问题出发,抽象概括,利用数学知
识建立相应的数学模型,再利用数学知识对数学模型进行分析、
研究,得到数学结论,然后再把数学结论返回到实际问题中去.
其思路如下:
实际问题
数学化 转化成数学问题
问 决题
整理课件
2.在边长为60 cm的正方形铁片的四角切去相等的正方形,再 把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底 的边长是多少时,箱子的容积最大?最大容积是多少?
整理课件
【解析】1.由题意,设矩形边长AD=2x,则AB=4-x2,
∴矩形面积为S=2x(4-x2)=8x-2x3(0<x<2).∴S′=8-6x2.
整理课件
【归纳】解答题1,2时的注意点与解答本题2时的关键点. 提示:(1)解答题1,2时,注意函数的定义域应该是实际问题 情境中符合实际情况的自变量的取值范围. (2)解答题2时,关键是正确地得到函数解析式后对函数极值点 的判断,当函数在给定的区间上只有一个极值点时,该极值点 为最值点.

1.4生活中的优化问题举例(三).ppt1

1.4生活中的优化问题举例(三).ppt1

半径为 6cm时,利润最大 .
y 换一个角度: 如果 我 们不用导 数工具 ,直接 从函数的图象 (图 r3 2 1.4 4)上观察,你有什么发现? f r 0.8π 3 r 从图象上容 易看出,当 r 3 时,
f 3 0,即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
解:⑴P(x) = R(x) – C(x) = – 10x3 + 45x2 + 3240x – 5000 MP (x) = P ( x + 1 ) – P (x) = – 30x2 + 60x +3275 (其中 xN 且 x[1, 20]). ⑵∵ P( x ) = – 30x2 + 90x + 3240 = – 30( x +9 )(x – 12) ∴当 1< x < 12 时, P( x ) > 0, P(x)单调递增, 当 12 <x < 20 时, P( x ) < 0 , P ( x ) 单调递减. ∴ x = 12 时, P(x)取最大值,即年建造 12 艘船时, 公司 造船的年利润最大. ⑶由 MP(x ) = – 30( x – 1) 2 + 3305 (xN 且 x[1, 20]). ∴当 1< x ≤ 20 时,MP (x)单调递减. MP (x)是减函数说明:随着产量的增加,每艘利润与前一 台比较,利润在减少.
4 3 S 3 S S 3 h h 3h 由①得 b= h,代入②,∴l= 3 h 3 h h 3
l′ = 3
S S S S =0, ∴ h = , 当 h < 时, l ′ <0, h > 时,l′>0. 2 4 4 4 h 3 3 3

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。

为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。

在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。

什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。

通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。

在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。

生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。

我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。

以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。

2.打破大目标:学会将大目标分解成小目标,逐步推进。

这样可以减少任务的压力,并更好地管理时间。

3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。

这样可以提高效率,并避免时间的浪费。

4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。

2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。

以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。

合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。

2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。

根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。

3.规律作息:良好的作息习惯对于身体和心理健康至关重要。

合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。

4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。

3. 金融规划金融规划是一个经济优化的问题。

生活中的优化举例

生活中的优化举例

05
工作办公优化
任务管理优化
总结词
高效、条理、计划
详细描述
通过制定明确的任务目标和计划,将工作任务分解为可执行的小任务,并按 优先级进行排序,可以帮助我们更高效地完成任务,同时避免任务遗漏或任 务完成不及时。
时间
详细描述
合理规划时间,将时间分配到不同的任务和活动中,可以最大限度地减少时间浪 费和提高工作效率。同时,学会合理调整工作节奏和时间安排,能够更好地适应 高强度的工作压力。
01
运用大数据技术,智能调度共享单车,提高单车可用性和效率

共享汽车服务
02
提供便捷的共享汽车服务,满足短途出行需求,减少汽车使用
频率。
电动汽车推广
03
鼓励使用电动汽车等环保出行方式,降低排放,改善空气质量

02
日常生活优化
购物优化
计划性购物:列出需要购买的物 品清单,尽量避免在无计划的情 况下进行购物,减少不必要
比较购物:在购买之前,通过线 上或线下的方式比较不同商家的 价格和质量,以便选择最合适
批量购买:一次性购买大量的日 用品,可以降低单位价格,同时 减少购物次数,提高购物效率。
的支出。
的商品。
饮食优化
均衡饮食:合理搭配 蛋白质、碳水化合物 、脂肪、维生素、矿 物质等营养素,以满 足身体
的基本需求。
简单化烹饪:减少烹 饪的复杂程度,使用 简单的烹饪技巧和食 材,可以降低食物中 脂肪和糖
游戏娱乐优化
流畅体验
通过优化游戏算法、降低游戏内延迟等技术手段,提高游戏的流畅度和稳定 性。
个性化设置
为玩家提供多种个性化设置,如自定义角色、场景等,让玩家更具自由度和 沉浸感。

高中数学《1.4生活中的优化问题举例》课件 新人教A版选修2-2

高中数学《1.4生活中的优化问题举例》课件 新人教A版选修2-2

5ax ∴y′=-3a+ 2 2.令 y′=0,解得 x=30. x +40 在(0,50)上,y 只有一个极值点,根据问题的实际意义,函数在 x =30 km 处取得最小值,此时 AC=50-x=20 (km). ∴供水站建在 A、D 之间距甲厂 20 km 处,可使水管费用最省. 用料最省问题是日常生活中常见的问题之一, 解决 这类问题要明确自变量的意义以及最值问题所研究的对象,正确 书写函数表达式,准确求导,结合实际作答.
方法技巧 转化与化归思想在生活中优化
问题的应用 生活中的利润最大、用料最省、效率最高等问题,通过认真 阅读理解关于实际问题的材料,建立相关数学模型,转化为利用 导数这一工具能够解决的一般数学问题.其解决问题的过程就体
现了转化与化归的思想,基本思路如图:
【示例】 某生产饮料的企业拟投入适当的广告费对产品进行促 销,在一年内,预计年销量 Q(万件)与广告费 x(万元)之间的 3x+1 函数关系为 Q= (x≥0),已知生产此产品的年固定投入 x+1 为 3 万元, 每生产 1 万件此产品需再投入 32 万元. 若每件产 品售价为“年平均每件成本的 150%”与“年平均每件所占 广告费的 50%”之和. (1)试将年利润 y(万元)表示为年广告费 x(万元)的函数.如果 年广告费投入 100 万元,企业是亏损还是盈利? (2)当年广告费投入多少万元时,企业年利润最大?
18 000 18 000x S=xy=x x-20 +25= +25x, x-20
18 000[x-20-x] -360 000 ∴S′= +25= +25. x-202 x-202
令 S′>0 得 x>140,令 S′<0 得 20<x<140. ∴函数在(140,+∞)上单调递增,在(20,140)上单调递减,∴S(x) 的最小值为 S(140). 当 x=140 时, y=175.即当 x=140, y=175 时, 取得最小值 24 500, S 故当广告的高为 140 cm,宽为 175 cm 时,可使广告的面积最小.

3.4 生活中的优化问题举例

3.4 生活中的优化问题举例
调递增,即半径越大,利润越高; 当r<2时,f′(r)<0,它表示f(r)单调递减,
即半径越大,利润越低.
(1)半径为2cm时,利润最小.这时f(2)<0,表 示此种瓶内饮料的利润还不够瓶子的成本,此
时利润是负值;
(2)半径为6cm时,利润最大.
y
从图中,你 还能看出什 么吗?
r 2 f (r ) 0.8p ( r ) 3
探究点2 饮料瓶大小对饮料公司利润的影响 【例2】下面是某品牌饮料的三种规格不同的产品, 若它们的价格如下表所示,则 (1)对消费者而言,选择哪一种更合算呢? (2)对制造商而言,哪一种的利润更大?
规格(L) 价格(元)
0.6 2.5
1.25 4.5
2 5.1
某制造商制造并出售球形瓶装的某种饮料,瓶
(1)它是一个关于r的二次函数,从函数解析式上可以
判断,不是r越小,磁盘的存储量越大.
=0. (2)为求 f 的最大值,计算 f (r) (r)
512 , 2 x
512 令S(x)= 2 - 2 = 0, 解 x
'
得 x = 16,x = -16(舍).
128 128 于是宽为 = = 8, x 16
当x 0, 16时,S' x <0; 当x 16,+∞时,S' x >0.
你还有其他解法 吗?例如用基本 不等式行吗?
因此,x=16是函数S(x)的极小值点,也是最
可作为基本存储单元,
根据其磁化与否可分别
记录数据0或1,这个基本
R
r
单元通常被称为比特(bit).
为了保障磁盘的分辨率,磁道之间的宽度必须大于m, 每比特所占用的磁道长度不得小于n.为了数据检索 便利,磁盘格式化时要求所有磁道要具有相同的比特数. 问题:现有一张半径为R的磁盘,它的存储区是半径介于 r与R之间的环形区域. ⑴是不是r越小,磁盘的存储量越大? ⑵r为多少时,磁盘具有最大存储量 (最外面的磁道不存储任何信息)?

生活中的优化问题举例课件

生活中的优化问题举例课件

跨部门协作
加强部门间的沟通和协作 ,打破信息孤岛,提高整 体工作效率。
合理分配工作任务
任务分配原则
根据员工的能力、经验和专长, 合理分配工作任务,确保工作量
均衡和高效。
优先级排序
根据任务的重要性和紧急性,指导 员工对工作任务进行优先级排序, 确保高优先级任务得到优先处理。
激励与考核机制
建立有效的激励和考核机制,鼓励 员工积极承担工作任务,提高工作 积极性和满意度。
在此添加您的文本16字
优先处理重要和紧急的任务,避免拖延和浪费时间。
在此添加您的文本16字
学习一些时间管理技巧,如番茄工作法等。
在此添加您的文本16字
避免多任务处理,尽量专注于单一任务,以提高工作效率 。
04
工作中的优化问题
பைடு நூலகம்
提高工作效率
制定合理的工作计划
减少干扰因素
根据工作优先级和任务量,制定每日 、每周和每月的工作计划,确保工作 有序进行。
生活中的优化问题举例课件
• 购物中的优化问题 • 旅行中的优化问题 • 日常生活中的优化问题 • 工作中的优化问题 • 学习中的优化问题
01
购物中的优化问题
寻找最优惠的价格
01
在购物时,消费者通常会寻找最 优惠的价格,以节省开支。
02
比较不同商家的价格,考虑商品 的质量、品牌、售后服务等因素 ,权衡性价比,选择最优惠的价 格。
02
旅行中的优化问题
选择最佳的旅行路线
总结词
选择最佳的旅行路线是旅行中的重要优化问题,可以减少时间和金钱的浪费。
详细描述
在旅行前,我们需要根据目的地、交通工具、时间等因素,选择一条最佳的旅行 路线。这需要考虑路线的长度、所需时间、交通工具的舒适度、费用等因素,以 便在有限的时间内尽可能多地游览景点,并减少不必要的花费。

2014年人教A版选修1-1课件 3.4 生活中的优化问题举例

2014年人教A版选修1-1课件 3.4  生活中的优化问题举例
本章内容
3.1 变化率与导数
3.2 导数的计算
3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例 第三章 小结
3.4
生活中的优化问题举例
3.4 生活中的优化问题举例 复习与提高
Hale Waihona Puke 3.4返回目录1. 课本中的三个例题是用导数解决函数中 的什么问题? 2. 什么是优化问题? 解决这类问题的思路 是怎样的?
例2. 饮料瓶大小对饮料公司利润的影响 某制造商制造并出售球形瓶装的某种饮料, 瓶子 的制造成本是 0.8pr2 分, 其中 r 是瓶子的半径, 单位 是厘米. 已知每出售 1 ml 的饮料, 制造商可获利 0.2 分, 且制造商能制作瓶子的最大半径为 6 cm. (1) 瓶子半径多大时, 能使每瓶饮料的利润最大? (2) 瓶子半径多大时, 每瓶饮料的利润最小? 解: 由题设得每瓶的利润函数为 f (r ) = 0.2 4 pr 3 0.8pr 2 (0 r 6). 3 f(r) = 0.8pr21.6pr, 解 0.8pr21.6pr>0 得 r>2, 即 2<r≤6 时, f(r)>0, 函数是增函数; 0<r<2 时, f(r)<0, 函数是减函数.
例2. 饮料瓶大小对饮料公司利润的影响 某制造商制造并出售球形瓶装的某种饮料, 瓶子 的制造成本是 0.8pr2 分, 其中 r 是瓶子的半径, 单位 是厘米. 已知每出售 1 ml 的饮料, 制造商可获利 0.2 分, 且制造商能制作瓶子的最大半径为 6 cm. 也是最小值点, r=2 是极小值点 (1) 瓶子半径多大时 ,, 能使每瓶饮料的利润最大 ? r=6是最大值点, . 每瓶饮料的利润最小? (2) 瓶子半径多大时 (1) 当半径为 6 cm 时, 每瓶饮料的利润最大, 解 : 由题设得每瓶的利润函数为 f最大利润为 (r ) = 0.2 4 pr 3 0.8pr 2 (0 r 6). 3 4 p 63 0.8p 62≈90 (分). f ( 6 ) = 0 . 2 21.6pr, f(r) = 0.8pr3 (2) 解 当半径为 2 cm 时,得每瓶饮料的利润最小 , r>2, 0.8pr21.6 pr>0 最小利润为 即 2<r≤6 时, f(r)>0, 函数是增函数; 4 p 23 0.8p 22≈3 (分). f ( 2 ) = 0 . 2 0<r<2 时, f3 (r)<0, 函数是减函数.

1.4_生活中的优化问题举例

1.4_生活中的优化问题举例

(0 ≤ x ≤ 100).
1答案
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x 2 400 x 2 km. 又设铁路上每吨千米的运费为3t元, 则公路上每吨千米的运费为5t元. B D 这样,每吨原料从供应站B运到工厂C的总运费为
C
A
y 5t CD 3t BD 5t 400 x 2 3t (100 x )(0 ≤ x ≤ 100).
'
2p R r , f r mn

f
'
r 0
R r 2
解得
R 因此,当 r 时,磁道具有最大的存储量,最大 2
2 p R 存储量为 .
R R ' ' 当r 时,f r 0;当r 时,f r 0, 2 2
2 mn
由上述例子,我们不难发现,解决优化问题的 基本思路是:
R r
储量越大? (2) r为多少时,磁盘具有最大存储量
(最外面的磁道不存储任何信息)?
解:存储量=磁道数×每磁道的比特数
设存储区的半径介于r与R之间,由于磁道之间的宽 度必须大于m,且最外面的磁道不存储人何信息,所以 Rr 磁道最多可达 , 又由于每条磁道上的比特数相 m 同,为获得最大的存储量,最内一条磁道必须装满,即
2pr .所以,磁道总存储量 每条磁道上的比特数可达到 n
R r 2pr 2pr f r r R r . m n mn
(1)它是一个关于r的二次函数,从函数的解析式上可 以判断,不是r越小,磁盘的存储量越大.
(2)为求 f x 的最大值,计算
'
f r 0,
例2、 某制造商制造并出售球形瓶装的某种饮料,瓶子的制造 成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出 售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的 最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢? 解:∵每个瓶的容积为: ∴每瓶饮料的利润:

生活中的优化问题举例(一)

生活中的优化问题举例(一)

例1:海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行 宣传。现让你设计一张如图3.4-1所示的竖向张贴 的海报,要求版心面积为128dm2,上、下两边各 空2dm,左、右两边各空1dm,如何设计海报的 尺寸,才能使四周空白面积最小?
x
分析:已知版心的面 积,你能否设计出版心 的高,求出版心的宽, 从而列出海报四周的面 积来?
2 .解决实际应用问题时,要把问题中所
涉及的几个变量转化成函数关系式,这需 要通过分析、联想、抽象和转化完成,函 极值 和 端点的函数值 数的最值要由 确定,当定义域是开区间 且 函 数 只 有 一 个 极值时,这个 极值也就是它的 最值 . 3 .生活中经常遇到求利润最大、用料最 省、效率最高等问题,这些问题通常称为 优化问题 .通过前面的学习,我们知道导数 导数 是求函数最大(小)值的有力工具,运用 可以解决一些生活中的 优化问 .
18x -84x
2
3
3 0<x< ,V′=36x-252x2, 14

1 1 由 V′=0 得 x=7或 x=0(舍去). x∈0,7时, V′>0, 1 3 x∈7,14时,V′<0,所以在
1 x=7处,V 有最大值,此
时高为 0.5m.
[答案]
A
当r 0,2时, f r 是减函数, 你能 解释它的实际意义吗?
图1.4 4
y
一、选择题 1 .曲线 y = ln(2x - 1) 上的点到直线 2x - y + 3 = 0 的最短距离为( )
A. 5 C.3 5
[解析]
B.2 5 D.0
设曲线在点 P(x0, y0)处的切线与 2x-y+3=0

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.

生活中的优化问题举例

生活中的优化问题举例

3.4 生活中的优化问题举例1.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P101第一自然段,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图3-4-1所示:图3-4-1现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有()A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[小组合作型]先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图3-4-2).问该容器的高为多少时,容器的容积最大?最大容积是多少?【导学号:97792051】图3-4-2【精彩点拨】设自变量(高)为x―→根据长方体的体积公式建立体积关于x的函数―→利用导数求出容积的最大值―→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x<10时,V′(x)>0,即V(x)是增加的;当10<x<24时,V′(x)<0,即V(x)是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零; (2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的长和宽.【解】 设矩形边长AD =2x (0<x <2), 则|AB |=y =4-x 2,则矩形面积为S =2x (4-x 2)=8x -2x 3(0<x <2), ∴S ′=8-6x 2,令S ′=0, 解得x 1=233,x 2=-233(舍去).当0<x <233,S ′>0,当233<x <2时,S ′<0, 所以,当x =233时,S 取得最大值, 此时S max =3239.即矩形的边长分别为433,83时,矩形的面积最大.10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和.【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x 元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【解】 (1)Q =P ·400v =⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]探究 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y(万元)表示为年广告费x(万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】(1)利用题中等量关系列出y与x的函数关系式,将x=100代入所求关系式判断y>0还是y<0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】(1)由题意,每年销售Q万件,成本共计为(32Q+3)万元.销售收入是(32Q+3)·150%+x·50%,∴年利润y=年收入-年成本-年广告费=12(32Q+3-x)=12⎝⎛⎭⎪⎫32×3x+1x+1+3-x=-x2+98x+352(x+1)(x≥0),∴所求的函数关系式为:y=-x2+98x+352(x+1)(x≥0).因为当x=100时,y<0,所以当年广告费投入100万元时,企业亏损.(2)由y=f(x)=-x2+98x+352(x+1)(x≥0),得f′(x)=-x2-2x+632(x+1)2(x≥0).令f′(x)=0,则x2+2x-63=0.∴x=-9(舍去)或x=7.又∵当x∈(0,7)时,f′(x)>0;当x∈(7,+∞)时,f′(x)<0,∴f(x)极大值=f(7)=42.又∵在(0,+∞)上只有一个极值点,∴f(x)max=f(x)极大值=f(7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【导学号:97792052】【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0). 由f ′(x )=-35x 2+24 000=0, 解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为 f (200)=-15×2003+24 000×200-50 000 =3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033 cmB.100 cmC.20 cmD.203 cm【解析】 设圆锥的高为h cm , 则V =13π(400-h 2)×h , 所以V ′(h )=13π(400-3h 2). 令V ′(h )=0,得h 2=4003, 所以h =2033.故选A. 【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A.9千台B.8千台C.6千台D.3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增, x >6时,y =18x 2-2x 3递减, ∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________.【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x=8时,S有最小值,最小值为8.【答案】84.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的售价为________元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x +230,由S′(x)=0得x=115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【导学号:97792053】【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。

§1.4生活中的优化问题举例

§1.4生活中的优化问题举例

§1.4生活中的优化问题举例(1)校对人:聂格娇 审核人:刘励钧1.进一步理解导数的概念,会利用导数概念形成过程中的基本思想分析一些实际问题,并建立它们的导数模型;2.掌握用导数解决实际中简单的最优化问题,构建函数模型,求函数的最值.(预习教材P 34~ P 36,找出疑惑之处)复习1:函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________复习2:函数()sin f x x x =-在[0,]2π上的最大值为_____;最小值为_______.二、新课导学※ 学习探究探究任务一:优化问题问题:张明准备购买一套住房,最初准备选择购房一年后一次性付清房款,且付款时需加付年利率为4.8%的利息,这时正好某商业银行推出一种年利率低于4.8%的一年定期贷款业务,贷款量与利率的平方成正比,比例系数为(0)k k >,因此他打算申请这种贷款在购房时付清房款. (1)若贷款的利率为,(0,0.048)x x ∈,写出贷款量()g x 及他应支付的利息()h x ;(2)贷款利息为多少时,张明获利最大?新知:生活中经常遇到求 、 、 等问题,这些问题通常称为优化问题.试试:在边长为60 cm 的正方形铁片的四角切去边长都为x 的小正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?反思:利用导数解决优化问题的实质是 .※ 典型例题例1班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为2128dm ,上、下两边各空2dm ,左、右两边各空1dm .如何设计海报的尺寸,才能使四周空白面积最小?变式:如图用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为a 2m ,为使所用材料最省,底宽应为多少?例2 某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是20.8r 分,其中r 是瓶子的半径,单位是厘米.已知每出售1 mL 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm .问(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料的利润最小?小结:⑴解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.⑵根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.⑶相当多有关最值的实际问题用导数方法解决较简单※动手试试练1. 一条长为100cm的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?练2. 周长为20的矩形,绕一条边边旋转成一个圆柱,求圆柱体积的最大值.三、总结提升※学习小结1.解决最优化的问题关键是建立函数模型,因此首先审清题意,明确常量与变量及其关系,再写出实际问题的函数关系式,对于实际问题来说,需要注明变量的取值范围.2.实际问题中在变量的范围内若只有一个极值点,那么它也是最值点.※知识拓展.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 某公司生产某种新产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益与年产量的关系是,则总利润最大时,每年生产的产品是()A.100 B.150 C.200 D.3002. 要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则其高应为( )A B C 3. 若一球的半径为r ,则内接球的圆柱的侧面积最大为( )A .22r πB .2r πC .24r πD .212r π 4. 球的直径为d ,当其内接正四棱柱体积最大时的高为 .5. 面积为S 的矩形中,其周长最小的是 .1. 一边长为a 的正方形铁片,铁片的四角截去四个边长都为x 的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积V 表示为x 的函数.(2)x 多大时,方盒的容积V 最大?2. 在半径为r 的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,求梯形面积最大时,梯形的上底长为多少?。

生活中的优化问题举例

生活中的优化问题举例

=v3 -5v2+6 000(0<v≤100).
48 2
(2)Q′= v2 - 16
5v,
令 Q′=0,则 v=0(舍去)或 v=80,
当 0<v<80 时,Q′<0;
当 80<v≤100 时,Q′>0,
∴v=80 千米/时时,全程运输成本取得极小值,即最小值,

Qmin= Q(80)=2
000(元). 3
栏目 导引
第一章 导数及其应用
由V′=12x2-552x+4 320=0,得x1=10,x2=36. ∵0<x<10时,V′>0,10<x<36时,V′<0,x>36时, V′>0, ∴当x=10时,V有极大值V(10)=19 600. 又∵0<x<24, ∴V(10)又是最大值. ∴当x=10时,V有最大值V(10)=19 600. 故当容器的高为10 cm时,容器的容积最大,最大容积是19 600 cm3.
栏目 导引
第一章 导数及其应用
方法归纳 注意利用导数的方法解决实际问题时,如果在定义区间内只 有一个点使f′(x)=0,且函数在这点有极大(小)值,那么不 与端点值比较,也可以知道该点的函数值就是最大(小)值.
栏目 导引
第一章 导数及其应用
2.甲、乙两地相距 400 千米,汽车从甲地匀速行驶到乙 地,速度不得超过 100 千米/时,已知该汽车每小时的运 输成本 P(元)关于速度 v(千米/时)的函数关系是 P= 1 v4- 1 v3+15v.
栏目 导引
用料(费用)最省问题
第一章 导数及其应用
一艘轮船在航行中每小时的燃料费和它的速度的立方 成正比.已知速度为每小时10海里时,燃料费是每小时6元, 而其他与速度无关的费用是每小时96元,问轮船的速度是多 少时,航行1海里所需的费用总和最小? [解] 设速度为每小时 v 海里的燃料费是每小时 p 元,那 么由题设的比例关系得 p=k·v3,其中 k 为比例系数,它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以p2=250 00p0,= x5>000,.
x
x
设总利润为y万元,则y= 50·0 x-1 200- 2x3
x
75
= 500 x- 2 x3-1 200.
75
求导数得,y′=
250-令2 yx′2=. 0得x=25.
x 25
故当x<25时,y′>0;当x>25时,y′<0.
因此,当x=25时,函数y取得极大值,也是最大值.
1.经济生活中优化问题的解法 经济生活中要分析生产的成本与利润及利润增减的快慢,以产 量或单价为自变量很容易建立函数关系,从而可以利用导数来 分析、研究、指导生产活动.(关键词:以产量或单价为自变量) 2.关于利润问题常用的两个等量关系 (1)利润=收入-成本; (2)利润=每件产品的利润×销售件数.
100x 2
令f′(x)=0,则x= 103 20,
)(x>0),
∵f(x)只有一个极值点,∴此点也为最值点,
∴当火车行驶速度为 103k2m0 /h时,费用最少. 答案:103 2k0m/h
2.设单位面积铁的造价为m,桶的总造价为y,
则y=3mπr2+m(πr2+2πrh).
因为V=πr2h,得h= V 所,以y=4mπr2+
1.求函数最值的常用方法有哪些? 提示:可以利用函数的单调性;可以利用基本不等式;可以利 用导数. 2.要做一个圆锥形的漏斗,其母线长为20 cm,要使其体积最 大,则高为________.
【解析】设圆锥的高为x cm,则底面半径为 202 xc2m,
其体积为V=1 πx(202-x2)(0<x<20),
r 2
2mV . r
所以y′=8mπr-
2mV r2
.
令y′=0,解得r= ( V,)此13 时h=4
4
(.
V
1
)3
4
所以当r<
(
V
1
)时3 ,y′<0,函数单调递减;
4
当r> (
V
1
)时3 ,y′>0,函数单调递增.
4
所以r=
(
V为)13 函数的极小值点,且是最小值点,
4
所以当r=
(
V
1
)即3 , h∶r=4∶1时,y有最小值.
900
(0≤x≤390).∵P′(x)= x21+300,
300
由P′(x)=0,得x=300.
当0≤x<300时,P′(x)>0,
当300<x≤390时,P′(x)<0,
∴所以当x=300时,P(x)最大.
答案:300
1.利用导数解决生活中优化问题的四个步骤 (1)分析实际问题中各量之间的关系,建立实际问题的数学模 型,写出实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最 大(小)者为最大(小)值; (4)写出答案.
间的关系为
p=
1 ,0 6-x 2,x 3
x c,
c,(c为常数,且0<c<6).
已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元. (1)将日盈利额y(万元)表示为日产量x(万件)的函数; (2)为使日盈利额最大,日产量应为多少万件?(注:次品率=
次品数 ×100%)
产品总数
【解题指导】
x-3
5元/千克时,每日可售出该商品11千克. (1)求a的值; (2)若该商品的成本为3元/千克,试确定销售价格x的值,使商 场每日销售该商品所获得的利润最大.
【解析】1.设产品的单价为p万元,根据已知,可设p2= k ,
x
其中k为比例系数.
因为当x=100时,p=50,所以k=250 000,
3
V′= 1π(400-3x2),令V′=0,
3
解得x1= 230
3,x2=
2(0舍去3 ).
3
当0<x<20 3时,V′>0;当 20<x3<20时,V′<0,
3
3
∴当x= 20 时3 ,V取最大值.
3
答案:20 c3m
3
3.体积为定值V0的正三棱柱,当它的底面边长为________时, 正三棱柱的表面积最小.
答案:25
2.(1)因为x=5时,y=11,所以 a+10=11,a=2.
2
(2)由(1)可知,该商品每日的销售量 y= 2+10(x-6)2.
x-3
所以商场每日销售该商品所获得的利润 f(x)=(x-3)[ 2+10(x-6)2]
x-3
=2+10(x-3)(x-6)2,3<x<6.
从而f′(x)=10[(x-6)2+2(x-3)(x-6)]
面积、容积的最值问题 【技法点拨】
解决面积、容积的最值问题的思路 解决面积、容积的最值问题,要正确引入变量,将面积或容积 表示为变量的函数,结合实际问题的定义域,利用导数求解函 数的最值.(关键词:引入变量)
【典例训练】(建议教师以第2题为例重点讲解) 1.已知矩形的两个顶点A,D位于x轴上,另两个顶点B,C位于 抛物线y=4-x2在x轴上方的曲线上,则这个矩形的面积最大时 的边长为_________.
答案:3 4V0
4.某公司生产一种产品,固定成本为20 000元,每生产一单位
的产品,成本增加100元,若总收入R与年产x的关系是 R(x)= x3 +400x(0≤x≤390),则当总利润最大时,每年生
900
产的产品单位数是_________.
【解析】由题意可得总利润P(x)= x3+300x-20 000
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x f′(x) f(x)
(3,4) +
4 0 极大值42
(4,6) -
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是
最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于42.
答:当销售价格为4元/千克时,商场每日销售该商品所获得的
39x 2x2
y
26 x (,c0为 x常数c,,且0<c<6).……5分
0, x c,
(2)由(1)知,当x>c时,日盈利额为0.………………………6分
当0<x≤c时,
∵y=
39x 2x2 ,
26 x
∴y′=
3 2g94x6 x 6 x2
9x
2x
2
= 3x 3x …9…①,………………………………………8分 6 x2
生活中的优化问题举例
1.优化问题的定义 解决生活中求_利__润__最__大__、_用__料__最__省__、_效__率__最__高__等问题. 2.解决优化问题的基本思路是
优化问题
用函数表示的数学问题
优化问题的答案
用导数解决数学问题
上述解决优化问题的过程是一个典型的_数__学__建__模__过程.
令S′=0,解之得x1=
2 3
3x,2=
2(舍3去).
3
当0<x<2 3时,S′>0;当 2<3x<2时,S′<0.
3
3
∴当x= 2 时3 ,S取得最大值为 32 3 .
3
9
即矩形的边长分别是 4 3,时8,矩形的面积最大.
33
答案:4 3,8
33
2.方法一:设箱底边长为x cm,
则箱子高为h=60 xcm,得箱子容积
2.在边长为60 cm的正方形铁片的四角切去相等的正方形,再 把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底 的边长是多少时,箱子的容积最大?最大容积是多少?
【解析】1.由题意,设矩形边长AD=2x,则AB=4-x2,
∴矩形面积为S=2x(4-x2)=8x-2x3(0<x<2).∴S′=8-6x2.
方法二:设箱子高为x cm,则箱底长为(60-2x) cm,则得箱 子容积 V(x)=(60-2x)2x(0<x<30).(后面同方法一,略) 由题意可知,当x过小或过大时箱子容积很小,所以最大值出 现在极值点处.
【归纳】解答题1,2时的注意点与解答本题2时的关键点. 提示:(1)解答题1,2时,注意函数的定义域应该是实际问题 情境中符合实际情况的自变量的取值范围. (2)解答题2时,关键是正确地得到函数解析式后对函数极值点 的判断,当函数在给定的区间上只有一个极值点时,该极值点 为最值点.
【规范解答】(1)当x>c时,p=2,
3
y=(1- 2)·x·3- 2·x· =3 0;……………………2分
3
3
2
当0<x≤c时,p= 1 ,
6-x
∴y=(1- 1)·x·3- ·1x·
3
6-x
6-x
2
=329x62xx…2 …. ………………………………………4分
∴日盈利额y(万元)与日产量x(万件)的函数关系为
【典例训练】(建议教师以第2题为例重点讲解)
1.某厂生产某种产品x件的总成本c(x)=1 200+ 2 x3(万
75
元),已知产品单价的平方与产品件数x成反比,生产100件这
样的产品单价为50万元,则产量定为_____件时,总利润最大.
2.某商场销售某种商品的经验表明,该商品每日的销售量y(单 位:千克)与销售价格x(单位:元/千克)满足关系式 y= a +10(x-6)2,其中3<x<6,a为常数.已知销售价格为
【解析】设底面的边长为a,高为h,
相关文档
最新文档