天津南开区2017-2018学年九年级数学第一学期期末试卷及答案新人教版
2017-2018学年人教版初三数学第一学期期末试卷含答案
2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
2017-2018学年度九年级(上)数学期末复习试卷
2017-2018学年度九年级(上)数学练习试卷(A3)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.2017的绝对值是()A.﹣2017 B.2017 C.D.﹣2.下列计算结果正确的是()A.2+=2B.÷=C.(﹣2a2)3=﹣6a6 D.(x+1)2=x2+13.下列英文字母既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交5.如图,下列各数中,数轴上点A表示的数可能是()A.4的算术平方根B.4的立方根C.4的平方根D.8的算术平方根6.下列说法正确的是()A.了解2017年报考飞行员的学生的视力情况应采取抽样调查B.打开电视机,正在播放“神奇的动物去哪里”制作花絮是必然事件C.为了初三1200名学生的体能状况,从中抽取了100名学生的成绩进行分析,1200是样本容量D.7,9,9,4,9,8,8,这组数据的众数是97.在函数y=中,自变量x的取值范围是()A.x>1 B.x≥﹣2 C.x≥﹣2且x≠1 D.x>1且x≠﹣28.如图,⊙O中,弦AB与CD交于点页脚内容1M,∠C=35°,∠AMD=75°,则∠D的度数是()A.25° B.35°C.40°D.75°9.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,则FG:AG是()A.1:4 B.1:3 C.1:2 D.2:310.如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.32 B.56 C .60 D.6411.有“小蛮腰”之称的广州电视塔为中国第一高电视塔,其主体顶部450~454米处有世界最高摩天轮(即图中AC=4米),与一般竖立的摩天轮不一样,广州塔的摩天轮沿着倾斜的轨道运转,对地倾斜角为∠ABC=15.5°.小明操作无人机观察摩天轮,由于设备限制无法近距离拍摄,无人机在图中P点观察到摩天轮最低点B的仰角为∠BPD=60°,最高点A的仰角为∠APD=36°,请问此时无人机距离电视塔的水平距离PD 为()(参考数据:tan15.5°≈0.4,tan36°≈0.7,≈1.7)A.3 B.2.7 C.3.3 D.3.712.若实数a使函数y=(a+6)x2﹣3x+的图象同时经过四个象限,并且使不等式组无解,则所有符合条件的整数a的积是()A.﹣336 B.56C.0 D.42二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.11月30日消息,近日工信部公布了截止10月末通信业的各项数据.数据显示,我国移动电话4G用户持续爆发式增长,总数达到714000000户,其中页脚内容2714000000用科学记数法表示为.14.(π﹣3)0+|﹣1|﹣()﹣2=.15.如图,边长为3的正方形ABCD,以A为圆心,AB 为半径作弧交DA的延长线于E,连接CE,则图中阴影部分面积为.15题17题18题16.现将背面完全相同,正面分别标有数﹣2、﹣1、0、1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数字分别记为m、n,则使点P(m,n)在平面直角坐标系xOy,落在直线y=﹣x+1上的概率为.17.小明和小强分别从A、B两地出发匀速相向而行,达到对方出发地后均立即以原速返回.已知小明到达B地半小时后,小强到达A 地.如图表示他们出发时间t(单位:小时)与距离A地的路程S(单位:千米)之间的关系图,则出发后小时,小明和小强第2次相遇.18.如图,边长为2的菱形ABCD中,∠BAD=60°,现有∠BFE=30°的三角板△BEF,将△BEF绕B旋转得△BE′F′,BE′,BF′所在直线分别交线段AC于点M,N,若点C关于直线BE′的对称点为C′,当C′N ⊥AC时,AN的长为.三、解答题:(本大题共8个小题,共78分)解答应写出必要的文字说明、证明过程或演算步骤。
天津市部分区2017-2018学年度第一学期期末考试九年级数学含答案
九年级数学参考答案 第 1 页(共 5 页)1天津市部分区2017~2018学年度第一学期期末考试九年级数学参考答案一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13. -4 ; 14.(3,-2); 15.12; 16.65 ; 17.20个; 18.1或6或11或26 (注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分) 19.(1) 解:移项,得x 2﹣8x= -1, 配方,得 x 2﹣8x+ 42= -1+42即(x-4)2 =15 . ............................................2分 ∴ x ﹣ ∴ x 1 x 2=4 .............................................4分 (2)解: 因式分解,得(x-3)(x+1)=0............................................1分 于是得 x-3=0 , 或x+1=0 ............................................2分 ∴x 1=3,x 2= -1..............................................4分 20.解:(1)△A′BC′如图所示; .............................................3分 (2)∵BC ′=BC=4,∠CBC ′=90º∴C ′= .............................................5分 (3)点A 经过的路径为以点B 为圆心, AB 为半径的圆弧,路径长即为弧长,∵5=,∠ABA ′=90º .................6分∴¼'AA 的长为:180n r π=90551802ππ⨯⨯=, 即点A 经过的路径长为52π. ...................8分九年级数学参考答案 第 2 页(共 5 页)221.(1)设每公顷水稻产量的年平均增长率为x , ............................................1分 根据题意,得 7200(1+x )2=8712 ............................................4分 解得:x 1=0.1,x 2=﹣2.1(不合题意,舍去) ............................................6分 答:年平均增长率为10%; ............................................7分 (2)由题意,得8712(1+0.1)=9583.2(kg )因为 9583.2<10000 ............................................9分 所以,2016年该村水稻产量不能达到10000kg . ...........................................10分 22.解:如图,连接OD ............................................1分 ∵AB 是⊙O 的直径∴∠ACB=∠ADB= 90°, ............................................3分 在Rt △ABC 中,= ............................................5分∵CD 平分∠ACB , ∴∠ACD=∠BCD, ∴∠AOD=∠BOD.∴AD=BD ...........................................7分 又 在Rt △ABD 中,222AD BD AB +=∴AD=BD=2AB=2×cm ) ............................................10分23.解:(1)同学甲的方案不公平.............................................1分理由如下:开始第一次红1 红2 白蓝第二次红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白............................5分由树状图可以看出,所有可能出现的结果共有12种,即:红1 红1 红1 红2 红2 红2 白白白蓝蓝蓝红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种,摸到“一白一蓝”的有2种,故小刚获胜的概率为41=123,小明获胜的概率为21=126............................................7分两人获胜的概率不相同,所以该方案不公平.......................................8分(2)拿出一个红球或放进一个蓝球,其他不变(答案不唯一) ...............................10分24.解:(1)直线DM与⊙O相切............................................1分证明:连接OD , ............................................2分∵OB=OD∴∠B=∠ODB ............................................3分∵AB=AC∴∠B=∠C ............................................4分∴∠ODB =∠C∴OD∥AC ............................................5分又∵DM⊥AC∴DM⊥OD∴DM与OD相切............................................6分(2)连接OE 交AB 于点H ...........................................7分 ∵E 是»AB 的中点,AB=24∴OE ⊥AB, AH=12AB=12 ...........................................8分 连接OA, 设⊙O 的半径为x ...........................................9分 由EH=8,则OH=x-8在RtΔOAH 中,根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2,0),C (0,2)代入y=﹣x 2+mx+n ,得0422m n n =--+⎧⎨=⎩,解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣x+2,则易得B (1,0).∵S △AOM =2S △BOC , ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯ ∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分整理,得x 2+x=0或x 2+x ﹣4=0,解得x=0或 x=﹣1或 .............................6分则符合条件的点M 的坐标为:(0,2)或(-1,2)或(12-,-2)或(12--,-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ,将A (﹣2,0),C (0,2)代入,得202k b b -+=⎧⎨=⎩, 解得12k b =⎧⎨=⎩.即直线AC 的解析式为y=x+2. ............................................8分 设N 点坐标为(x ,x+2),(﹣2≤x≤0),则D 点坐标为(x ,﹣x 2﹣x+2),ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1,∴当x=﹣1时,ND 有最大值1. ...........................................10分。
【期末试卷】2017-2018学年天津市九年级数学上册期末强化练习卷01(含答案)
【期末试卷】2017-2018学年天津市九年级数学上册期末强化练习卷01(含答案)2017-2018学年九年级数学上册期末强化练习卷一、选择题1.方程3x2﹣x+=0的二次项系数与一次项系数及常数项之积为()A.3 B.﹣C.D.﹣92.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是().3.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小A.3 B.2 C.1 D.04.下列方程中两实数根互为倒数有()①x2﹣2x﹣1=0;②2x2﹣7x+2=0;③x2﹣x+1=0.A.0个B.1个C.2个D.3个5.下列说法正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C. 直径是同一个圆中最长的弦D.过三点能确定一个圆6.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°7.有四个命题,其中正确的命题是( )①经过三点一定可以作一个圆;②任意一个三角形有且只有一外接圆;③三角形的外心到三角形的三个顶点的距离相等;④在圆中,平分弦的直径一定垂直于这条弦A.①②③④B.①②③C.②③④D.②③8.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2、-1、0、1、3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为( )A.0.8 B.0.6 C.0.4 D.0.29.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位10.如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是( )A.(-3,0) B.(-2,0) C.(0,-3) D.(0,-2)11.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°12.若函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,则m的值为()A.0 B.1或9 C.﹣1或﹣9 D.0或﹣1或﹣9二、填空题13.如果关于x的方程x2-2x+m=0(m为常数)有两个相等实数根,那么m=______.14.一个口袋中装有4个白色球,1个红色球,搅匀后随机从袋中摸出1个球是白色球的概率是.15.如图,在△ABC中,∠CAB=70°,将△ABC绕A点逆时针旋转到△AB/C/位置,使CC/∥AB,则∠BAB/= .16.已知正方形的外接圆半径为2,则这个正方形的边长为 .17.如图,△ABC的外接圆O的半径为2,∠C=40°,则的长是.18.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m 的值是三、解答题19.如图在边长为1个单位长度的小正方形组成的网格中,给出格点△ABC(顶点是网格线的交点)(1)请画出以A为旋转中心,将△ABC按逆时针方向旋转90°得到图形△A1B1C1,并写出各顶点坐标.(2)请画出△ABC向右平移4个单位长度后的图形△A2B2C2,并指出由△A1B1C1通过怎样的一次变换得到△A2B2C2?20. 解方程:(x+1)(x﹣3)=﹣1.21.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。
天津市部分地区2017-2018学年度第一学期期末试卷九年级数学(高清版-附答案)
天津市部分地区2017-2018学年度第一学期期末试卷九年级数学(高清版-附答案)天津市部分区2017~2018学年度第一学期期末考试九年级数学参考答案一、选择题(每小题3分,共36分)1 2 3 4 5 6 7 8 9 10 11 12题号答D A B C D C D A A B B C案二、填空题(每小题3分,共18分); 16.65; 17.20 13.-4 ; 14.(3,-2);15.12个;18.1或6或11或26(注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分)19.(1)解:移项,得x2﹣8x= -1,配方,得x2﹣8x+ 42= -1+42即(x-4)2=15. .......................... ..................2分∴ x﹣4=±15∴ x115x2=4﹣15.............................................4分(2)解:因式分解,得(x-3)(x+1)=0 ............................................1分于是得 x-3=0 , 或x+1=0 ............................................2分∴x 1=3,x 2=-1. .............................................4分20.解:(1)△A′BC′如图所示; .............................................3分(2)∵BC′=BC=4,∠CBC′=90º∴22442+= .............................................5分(3)点A 经过的路径为以点B 为圆心,AB 为半径的圆弧,路径长即为弧长,∵22345+=,∠ABA′=90º .................6分 ∴¼'AA 的长为:180n r π=90551802ππ⨯⨯=, 即点A 经过的路径长为52π. ...................8分 21.(1)设每公顷水稻产量的年平均增长率为x , ............................................1分根据题意,得7200(1+x)2=8712............................................4分解得:x1=0.1,x2=﹣2.1(不合题意,舍去)............................................6分答:年平均增长率为10%; (7)分(2)由题意,得8712(1+0.1)=9583.2(kg)因为9583.2<10000 .................................. ..........9分所以,2016年该村水稻产量不能达到10000kg ............................................10分22.解:如图,连接OD .......................................... ..1分∵AB是⊙O的直径∴∠ACB=∠ADB= 90°,.......................................... ..3分在Rt△ABC中,BC=2222-=-=16(cm) ..............................2012AB AC..............5分∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD.∴AD=BD ...... .....................................7分又在Rt△ABD中,222+=AD BD AB∴ AD=BD=2AB=22×20=1022(cm)............................................10分23.解:(1)同学甲的方案不公平.............................................1分理由如下:开始第一次红1 红2 白蓝第二次红2 白蓝红1 白蓝 1 2 红1 红2 白 (5)分由树状图可以看出,所有可能出现的结果共有12种,即:红1 红1 红1 红2 红2 红2 白白白蓝蓝蓝红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种,摸到“一白一蓝”的有2种,故小刚获胜的概率为41,小明获胜的概率为=12321............................................7分=126两人获胜的概率不相同,所以该方案不公平.......................................8分(2)拿出一个红球或放进一个蓝球,其他不变(答案不唯一)...............................10分24.解:(1)直线DM与⊙O相切 (1)分证明:连接OD , ............ ................................2分∵OB=OD∴∠B=∠ODB............................................3分∵AB=AC∴∠B=∠C............................................4分∴∠ODB =∠C∴OD∥AC............................................5分又∵DM⊥AC∴DM⊥OD∴DM与OD相切.................... ........................6分(2)连接OE交AB 于点H ...........................................7分∵E是»AB的中点,AB=24∴OE⊥AB,AB=12 ................................. AH=12..........8分连接OA, 设⊙O 的半径为x ...........................................9分由EH=8,则OH=x-8在RtΔOAH 中,根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2,0),C (0,2)代入y=﹣x 2+mx+n ,得0422m n n =--+⎧⎨=⎩,解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣x+2,则易得B (1,0).∵S △AOM =2S △BOC , ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分整理,得x 2+x=0或x 2+x ﹣4=0,解得x=0或 x=﹣1或x=1172- .............................6分则符合条件的点M 的坐标为:(0,2)或(-1,2)或(1172-+,-2)117--,-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ,将A (﹣2,0),C (0,2)代入,得202k b b -+=⎧⎨=⎩, 解得12k b =⎧⎨=⎩. 即直线AC 的解析式为y=x+2. ............................................8分设N 点坐标为(x ,x+2),(﹣2≤x≤0),则D 点坐标为(x ,﹣x 2﹣x+2),ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1,∴当x=﹣1时,ND有最大值1............................................ 10分。
2017-2018学年第一学期九年级数学期末试题参考答案
2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。
……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。
答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。
天津市部分地区2017-2018学年度第一学期期末试卷九年级数学(高清版附)
天津市部分区2017~2018学年度第一学期期末考试九年级数学参考答案一、选择题(每小题3分,共36分) 题号1 2 3 4 5 6 7 8 9 10 11 12 答案 D A B C D C D AA B B C 二、填空题(每小题3分,共18分)13. -4 ; 14.(3,-2); 15.12; 16.65 ; 17.20个; 18.1或6或11或26 (注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分)19.(1) 解:移项,得x 2﹣8x= -1,配方,得 x 2﹣8x+ 42= -1+42即(x-4)2 =15 . ............................................2分 ∴ x ﹣4=±15 ∴ x 115 x 2=415 .............................................4分(2)解: 因式分解,得(x-3)(x+1)=0 ............................................1分 于是得 x-3=0 , 或x+1=0 ............................................2分 ∴x 1=3,x 2= -1. .............................................4分20.解:(1)△A′BC′如图所示; .............................................3分(2)∵BC′=BC=4,∠CBC′=90º∴22442+= .............................................5分(3)点A 经过的路径为以点B 为圆心,AB 为半径的圆弧,路径长即为弧长,∵22345+=,∠ABA′=90º .................6分∴¼'AA 的长为:180n r π=90551802ππ⨯⨯=, 即点A 经过的路径长为52π. ...................8分 21.(1)设每公顷水稻产量的年平均增长率为x , ............................................1分 根据题意,得 7200(1+x )2=8712 ............................................4分 解得:x 1=0.1,x 2=﹣2.1(不合题意,舍去) ............................................6分 答:年平均增长率为10%; ............................................7分(2)由题意,得8712(1+0.1)=9583.2(kg )因为 9583.2<10000 ............................................9分 所以,2016年该村水稻产量不能达到10000kg . ...........................................10分22.解:如图,连接OD ............................................1分 ∵AB 是⊙O 的直径∴∠ACB=∠ADB= 90°, ............................................3分 在Rt △ABC 中, BC=22222012AB AC -=-=16(cm) ............................................5分 ∵CD 平分∠ACB ,∴∠ACD=∠BCD,∴∠AOD=∠BOD.∴AD=BD ...........................................7分 又 在Rt △ABD 中,222AD BD AB += ∴ AD=BD=22AB =22×20=102(cm ) ............................................10分23. 解:(1)同学甲的方案不公平. ............................................1分 理由如下:开始第一次 红1 红2 白 蓝第二次 红2 白 蓝 红1 白 蓝 1 2 红1 红2 白............................5分由树状图可以看出,所有可能出现的结果共有12种,即:红1 红1 红1 红2 红2 红2 白 白 白 蓝 蓝 蓝红2 白 蓝 红1 白 蓝 红1 红2 蓝 红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种,摸到“一白一蓝”的有2种,故小刚获胜的概率为41=123,小明获胜的概率为21=126............................................7分 两人获胜的概率不相同,所以该方案不公平 .......................................8分(2)拿出一个红球或放进一个蓝球,其他不变 (答案不唯一) ...............................10分24.解:(1)直线DM 与⊙O 相切 ............................................1分证明:连接OD , ............................................2分 ∵OB=OD∴∠B=∠ODB ............................................3分∵AB=AC∴∠B=∠C ............................................4分∴∠ODB =∠C∴OD ∥AC ............................................5分又∵DM ⊥AC∴DM ⊥OD∴DM 与OD 相切 ............................................6分(2)连接OE 交AB 于点H ...........................................7分∵E 是»AB 的中点,AB=24 ∴OE ⊥AB, AH=12AB=12 ...........................................8分 连接OA, 设⊙O 的半径为x ...........................................9分由EH=8,则OH=x-8在RtΔOAH 中,根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2,0),C (0,2)代入y=﹣x 2+mx+n ,得0422m n n =--+⎧⎨=⎩,解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣x+2,则易得B (1,0).∵S △AOM =2S △BOC , ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯ ∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分 整理,得x 2+x=0或x 2+x ﹣4=0,解得x=0或 x=﹣1或x=1172- .............................6分 则符合条件的点M 的坐标为:(0,2)或(-1,2)或(1172-+,-2)或(1172-,-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ,将A (﹣2,0),C (0,2)代入,得202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩. 即直线AC 的解析式为y=x+2. ............................................8分 设N 点坐标为(x ,x+2),(﹣2≤x≤0),则D 点坐标为(x ,﹣x 2﹣x+2),ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1,∴当x=﹣1时,ND 有最大值1. ...........................................10分。
20172018第一学期期末测试九年级数学试题及答案
2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。
考试结束后,只分。
考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为1201. 上交答题卡。
毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。
在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。
答案不能答在试题卷上。
毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2017-2018学年九年级上数学期末试卷及答案解析
)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题
;④
11、方程
有两个不等的实数根,则 a 的取值范围是________。
12、如图,⊙O 中,弦 AB=3,半径 BO=,C 是 AB上一点且 AC=1,点 P 是⊙O 上一动点,连 PC,则 PC长的最小 值是
B.4
C.5 D.6
8、.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,
有下列 5 个结论:①abc<0;②3a+c>0;
③4a+2b+c>0;④2a+b=0;⑤b2>4ac.
其中正确的结论的有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
9、如图,已知 AB=12,点 C,D 在 AB上,且 AC=DB=2,点 P 从点 C 沿线段 CD向点 D 运动(运动到点 D 停止),以 AP、BP为斜边在 AB的同侧画等腰 Rt△APE和等腰 Rt△PBF,连接 EF,取 EF的中点 G,下列说法中正确的有 ()
C.与 x 轴相切、与 y 轴相离 D.与 x 轴、y 轴都相切
7、某口袋中有 20个球,其中白球 x 个,绿球 2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜, 甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则 乙获胜.则当 x=________时,游戏 对甲、乙双方公平 ()
A.3
5、如图,A,B,C是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是
A. ∠OBA=∠OCA
B. 四边形 OABC内接于⊙O
C.. AB=2BC
D. ∠OBA+∠BOC=90°
6、在平面直角坐标系中,以点(3,2)为圆心,2 为半径的圆与坐标轴的位置关系为( )
2017-2018学年九年级数学上期末试卷含详细答案解析
2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。
人教版初中数学九年级上册期末试题(天津市南开区
2018-2019学年天津市南开区九年级(上)期末数学试卷一、选择题(每小题3分共36分)1.(3分)下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落2.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.3.(3分)若函数是反比例函数,且它的图象在第一、三象限,则m的值为()A.2B.﹣2C.D.4.(3分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是()A.45°B.90°C.135°D.180°5.(3分)圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为()A.108°B.120°C.135°D.216°6.(3分)若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限7.(3分)已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定8.(3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.9.(3分)如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为()A.πB.3πC.6πD.12π10.(3分)如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A.6B.8C.12D.1611.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.2+1C.9D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c <0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为4+c,其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分共18分)13.(3分)在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为千米.14.(3分)如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为.15.(3分)有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与x轴只有一个交点;乙:图象的对称轴是直线x=3;丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式.16.(3分)如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为.17.(3分)如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y =ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC 长为.18.(3分)如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A (1,1)、B(﹣3,1)、C(﹣3.﹣1)(1)若△ABC的外接圆的圆心为P,则点P的坐标为.(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A′、B′、C′,得到△A′B′C′,在图中画出△A′B′C′;若将△A′B′C′沿x轴方向平移,需平移单位长度,能使得B′C′所在的直线与⊙P相切.三、解答题19.(8分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.20.(8分)已知双曲线y=(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为,k的值为,点B的坐标为;(2)直接写出当<kx时,x的取值范围;(3)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标.21.(10分)现有一块直角三角形木板,它的两条直角边分别为3米和4米.要把它加工成面积最大的正方形桌面,甲、乙二人加工方法分别如图1和图2所示.请运用所学知识说明谁的加工方法符合要求.22.(10分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD 的大小.23.(10分)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:(1)直接写出y与x的函数关系式:(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的货款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?24.(10分)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边AB绕点B 顺时针旋转90°得到线段BD,连接CD,过点D做BC边上的高DE,则DE与BC的数量关系是,△BCD的面积为;(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含a的式子表示△BCD的面积,并说明理由;(3)探究3:如图③,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,试探究用含a的式子表示△BCD的面积,要有探究过程.25.(10分)点P为拋物线y=x2﹣2mx+m2(m为常数,m>0)上任意一点,将抛物线绕顶点G逆时针旋转90℃后得到的图象与y轴交于A、B两点(点A在点B的上方),点Q 为点P旋转后的对应点.(1)抛物线y=x2﹣2mx+m2的对称轴是直线,当m=2,点P的横坐标为4时,点Q的坐标为;(2)设点Q(a,b),请你用含b的代数式表示a,则a=;(3)如图,点Q在第一象限,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,当AQ=2QC,QD=m时,求m的值.2018-2019学年天津市南开区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分共36分)1.(3分)下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落【分析】必然事件是指一定会发生的事件.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.【点评】本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.2.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)若函数是反比例函数,且它的图象在第一、三象限,则m的值为()A.2B.﹣2C.D.【分析】根据反比例函数的定义列式求出m,根据反比例函数的性质得到m>0,得到答案.【解答】解:∵函数y=mx是反比例函数,∴m2﹣5=﹣1,解得,m=±2,∵它的图象在第一、三象限,∴m>0,∴m=2,故选:A.【点评】本题考查的是反比例函数的定义和性质,形如y=(k为常数,k≠0)的函数称为反比例函数.4.(3分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是()A.45°B.90°C.135°D.180°【分析】观察图形可得,图形有四个形状相同的部分组成,从而能计算出旋转角度.【解答】解:图形可看作由一个基本图形每次旋转90°,旋转4次所组成,故最小旋转角为90°.故选:B.【点评】本题考查了旋转对称图形,根据已知图形得出最小旋转角度数是解题关键.5.(3分)圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为()A.108°B.120°C.135°D.216°【分析】利用底面周长=展开图的弧长可得.【解答】解:根据题意得30π=,解得n=108°.故选:A.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.6.(3分)若点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限【分析】直接利用反比例函数的增减性得出两点分布的象限,进而得出y1<0<y2时,对应x的值大小.【解答】解:∵点(x1,y1)、(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,∴图象分布在第二、四象限,每个象限内y随x的增大而减小,第二象限内所有点对应y值都是正值,第四象限内所有点对应y值都是负值,∴点(x1,y1)在第四象限,(x2,y2)在第二象限,∴x1>x2.故选:A.【点评】此题主要考查了反比例函数的性质以及反比例函数图象上点的坐标特点,正确应用反比例函数的性质是解题关键.7.(3分)已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x 的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【分析】根据反比例函数的性质可以判断k的正负情况,然后根据△的正负,即可判断方程x2﹣2(k+1)x+k2﹣1=0的根的情况,本题得以解决.【解答】解:∵当x>0时,反比例函数y=的函数值随自变量的增大而减小,∴k>0,∵x2﹣2(k+1)x+k2﹣1=0,∴△=[﹣2(k+1)]2﹣4×1×(k2﹣1)=8k+8>0,∴关于x的方程x2﹣2(k+1)x+k2﹣1=0有两个不相等的实数根,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.(3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.【分析】根据相似三角形的性质判断即可.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴,A错误;∴,C错误;∴,D正确;不能得出,B错误;故选:D.【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.9.(3分)如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为()A.πB.3πC.6πD.12π【分析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【解答】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故选:D.【点评】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO 的长是解题关键.10.(3分)如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A.6B.8C.12D.16【分析】由于,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=,然后即可求出E(3m,n﹣),依据mn=3m(n﹣)可求mn=6,即求出k的值.【解答】解:如图,过F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若设F(m,n)则OA=3m,BF=2m∵S△BEF=4∴BE=则E(3m,n﹣)∵E在双曲线y=上∴mn=3m(n﹣)∴mn=6即k=6.故选:A.【点评】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.11.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.2+1C.9D.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选:C.【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c <0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为4+c,其中正确的结论个数有()A.1个B.2个C.3个D.4个【分析】根据抛物线的图象与系数的关系,利用开口方向得出a的符号,结合图象与x轴交点位置得出c的符号,再结合对称轴位置得出b的符号,结合图象与x轴交点位置分别判断①,②,③,再结合已知AO=OC,即可得出BO=4+c,进而判断④,即可求出答案.【解答】解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:﹣>0,∴b>0,∴abc>0,故①正确;令x=3,y>0,∴9a+3b+c>0,故②错误;∵OA=OC<1,∴c>﹣1,故③正确;观察图象可知关于x的方程ax2+bx+c(a≠0)=0的两根:一个根在0与1之间,一个根在3与4之间,由OC=OA,则OB=4+c,即关于x的方程ax2+bx+c=0(a≠0)有一个根为4+c,故④正确;故选:C.【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(每小题3分共18分)13.(3分)在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为26千米.【分析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【解答】解:根据比例尺=图上距离:实际距离,得:A,B两地的实际距离为2.6×1000000=2600000(cm)=26(千米).故答案为:26.【点评】考查了比例线段.能够根据比例尺正确进行计算,注意单位的转换.14.(3分)如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为.【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【解答】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π=,所以“小鸡正在圆圈内”啄食的概率为:=.【点评】解答此题的关键是求出正方形及圆的面积,用到的知识点为:概率=相应的面积与总面积之比.15.(3分)有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与x轴只有一个交点;乙:图象的对称轴是直线x=3;丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式y=﹣(x﹣3)2.【分析】根据题意,可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:由题意可得,满足上述全部特点的二次函数的解析式为y=﹣(x﹣3)2,故答案为:y=(x﹣3)2.【点评】本题考查二次函数的性质、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答,注意:本题答案不唯一,只要符合题意即可.16.(3分)如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为y=.【分析】根据中心对称的性质求出A点的坐标,再用待定系数法求函数解析式.【解答】解:因为A、B是反比例函数和正比例函数的交点,所以A、B关于原点对称,由图可知,A点坐标为(1,3),设反比例函数解析式为y=,将(1,3)代入解析式得:k=1×3=3,可得函数解析式为y=.故答案为y=.【点评】本题主要考查待定系数法求反比例函数的解析式的知识,从图中观察出A、B两点关于原点对称是解题的关键.17.(3分)如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC 长为4.【分析】先求出对称轴,再根据B、D关于对称轴对称,求出点D坐标,根据正方形的性质AC=BD即可解决问题.【解答】解:抛物线的对称轴x=﹣=2,点B坐标(0,3),∵四边形ABCD是正方形,点A是抛物线顶点,∴B、D关于对称轴对称,AC=BD,∴点D坐标(4,3)∴AC=BD=4.故答案为4.【点评】本题考查二次函数的性质、正方形的性质,解题的关键是求出抛物线的对称轴,记住抛物线的对称轴公式x=﹣,属于中考常考题型.18.(3分)如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A (1,1)、B(﹣3,1)、C(﹣3.﹣1)(1)若△ABC的外接圆的圆心为P,则点P的坐标为(﹣1,0).(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A′、B′、C′,得到△A′B′C′,在图中画出△A′B′C′;若将△A′B′C′沿x轴方向平移,需平移5单位长度,能使得B′C′所在的直线与⊙P相切.【分析】(1)观察图象可知,△ABC是直角三角形,推出斜边AC的中点P,是△ABC的外接圆的圆心;(2)延长OA到A′,使得AA′=OA,延长OB到B′,使得BB′=OB,延长CO到C′,使得CC′=OC,连接A′B′,B′C′,C′A′,△A′B′C′即为所求;【解答】解:(1)观察图象可知,△ABC是直角三角形,∴斜边AC的中点P,是△ABC的外接圆的圆心,∵A(1,1),C(﹣3.﹣1),∴P(﹣1,0).故答案为(﹣1,0).(2)如图,△A′B′C′即为所求;∵AC==2,∴△ABC的外接圆的半径为,∵点P到直线B′C′的距离为5,∴将△A′B′C′沿x轴方向平移5﹣或5+个单位能使得B′C′所在的直线与⊙P相切.故答案为5±.【点评】本题考查坐标与图形的变化﹣平移,位似变换,切线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题19.(8分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∴有6种选择方案:AD、AE、BD、BE、CD、CE;(2)∵(1)中各种选购方案被选中的可能性相同,且A型号电脑被选中的有2种情况,∴A型号电脑被选中的概率==.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)已知双曲线y=(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为6,k的值为,点B的坐标为(﹣3,﹣2);(2)直接写出当<kx时,x的取值范围;(3)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标.【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)根据A、B的坐标结合图象即可得出答案;(3)把点P(n﹣2,n+3)代入y=,得(n﹣2)(n+3)=6,解方程即可.【解答】解:(1)∵双曲线y=(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2),∴m=3×2=6,k=,∵双曲线和正比例函数的交点关于原点对称,∴B(﹣3,﹣2),故答案为6,,(﹣3,﹣2);(2)﹣3<x<0或x>3;(3)∵点P(n﹣2,n+3)在第一象限的双曲线上,∴(n﹣2)(n+3)=6,解得n=3或n=﹣4,∵点P(n﹣2,n+3)在第一象限,∴n﹣2>0,n+3>0,∴只取n=3,∴P(1,6).【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式的应用,主要考查学生的理解能力和观察图象的能力,题目比较典型,难度不大.21.(10分)现有一块直角三角形木板,它的两条直角边分别为3米和4米.要把它加工成面积最大的正方形桌面,甲、乙二人加工方法分别如图1和图2所示.请运用所学知识说明谁的加工方法符合要求.【分析】根据相似三角形的性质,相似三角形的对应边成比例;相似三角形的对应高的比等于相似比,求解即可.【解答】解:图1加工的方法合理.设图1加工桌面长xm,∵FD∥BC,∴Rt△AFD∽Rt△ACB,∴AF:AC=FD:BC,即(4﹣x):4=x:3,解得x=,设图2加工桌面长ym,过点C作CM⊥AB,垂足是M,与GF相交于点N,∵GF∥DE,∴△CGF∽△CAB,∴CN:CM=GF:AB,∴(CM﹣y):CM=y:AB.∴AB=.由面积相等可求得CM=2.4,故此可求得y=;很明显x>y,故x2>y2,∴图1加工的方法合理.【点评】此题考查了相似三角形的性质,相似三角形的对应边成比例;相似三角形的对应高的比等于相似比;解此题的关键是将实际问题转化为数学问题进行解答.22.(10分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD 的大小.【分析】(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点评】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(10分)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:(1)直接写出y与x的函数关系式:y=﹣10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的货款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?【分析】(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可.【解答】解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000,(x≥50)(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为直线x=70,∴当50<x<70时,销售利润随着销售单价的增大而增大;(3)∵由40(﹣10x+1000)≤10000解得x≥75又由于最大进货量为:y=10000÷40=250由题意可知,当x=75时,可以销售250件商品,结合图形,故此时利润最大.S=250×(75﹣40)=8750(元)故该商家在10000元内的进货条件下,最大捐款为8750元.【点评】本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.24.(10分)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边AB绕点B 顺时针旋转90°得到线段BD,连接CD,过点D做BC边上的高DE,则DE与BC的数量关系是DE=BC,△BCD的面积为;(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含a的式子表示△BCD的面积,并说明理由;(3)探究3:如图③,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,试探究用含a的式子表示△BCD的面积,要有探究过程.【分析】(1)证明△ACB≌△DEB,根据全等三角形的性质得到DE=AC=BC=3,根据三角形的面积公式计算;(2)作DG⊥CB交CB的延长线于G,证明△ACB≌△BGD,得到DG=BC=a,根据三角形的面积公式计算;(3)作AN⊥BC于N,DM⊥BC交CB的延长线于M,根据等腰三角形的性质得到BN=BC=a,根据全等三角形的性质,三角形的面积公式计算即可.【解答】解:(1)∵△ABC是等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=45°,在△ACB和△DEB中,,∴△ACB≌△DEB(AAS)∴DE=AC=BC=3,∴△BCD的面积=×3×3=,故答案为:DE=BC;;(2)作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴DG=BC=a,∴△BCD的面积=×BC•DG=a2;(3)作AN⊥BC于N,DM⊥BC交CB的延长线于M,∵AB=AC,AN⊥BC,∴BN=BC=a,由(2)得,△ANB≌△BMD,∴DM=BN=a,∴△BCD的面积=×BC•DM=a2.【点评】本题考查的是全等三角形的判定和性质,等腰三角形的性质,三角形的面积计算,掌握全等三角形的判定定理和性质定理,三角形的三线合一是解题的关键.25.(10分)点P为拋物线y=x2﹣2mx+m2(m为常数,m>0)上任意一点,将抛物线绕顶点G逆时针旋转90℃后得到的图象与y轴交于A、B两点(点A在点B的上方),点Q 为点P旋转后的对应点.(1)抛物线y=x2﹣2mx+m2的对称轴是直线m,当m=2,点P的横坐标为4时,点Q 的坐标为(﹣2,2);(2)设点Q(a,b),请你用含b的代数式表示a,则a=m﹣b2;(3)如图,点Q在第一象限,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,当AQ=2QC,QD=m时,求m的值.【分析】(1)对称轴x=﹣=m,当m=2时,点P坐标(4,4),逆时针向旋转90度,坐标为(﹣2,2),即可求解;(2)如图所示,设图象旋转前Q点的位置在点P处,过点P、Q分别作x轴的垂线,因为图象旋转角为90度,则:EG=m﹣a,GF=QE=b,即可求解;(3)证明△DCQ≌△OCE(SAS)、△AQO≌△EQO(SAS)即可求解.【解答】解:(1)对称轴x=﹣=m,。
天津南开区初三期末考试数学试卷
23. 进入冬季,我市多次出现雾霾天气,商场根据市民健康需要,代理销售一种防尘口罩,进货价为 20 元/包, 经市场调研发现:销售单价为 30 元/包时,每周可售出 100 包,每涨价 1 元,就少售出 5 包,若供货厂家规定 市场价不得低于 30 元/包,且商场每周要完成不少于 150 包的销售任务 (I)试确定周销售量 y(包)与售价 x(元/包)之间的函数关系式 (II)试确定商场每周销售这种防尘口罩所获得的利润 w(元)与售价 x(元/包)之间的函数关系式,并直接写 出售价 x 的范围 (III)当售价 x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润 w(元)最大?最大利润是多 少?
3 1 4
三、解答题:(66 分) 19. 某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班. 小明和小红既是该校的高一新生,又 是好朋友,求小明和小红分在同一个班的概率(列出表格或画出树形图).
k 20. 如图,一次函数 y=x+m 的图象与反比例函数 y 的图象交于 A、B 两点,且与 x 轴交于点 C,点 A 的
2017-2018 年度南开区初三期末考试数学试卷
一. 选择题(12×3=36)
1.下列事件中是不可能事件的是
A. 每天早晨太阳从东方升起
B. 公鸡下蛋
C. 下雨时打雷
D. 体育运动中肌肉拉伤
2. 下列图标中,既是轴对称图形,又是中心对称图形的是
A.
B.
C.
最新题库2017年天津市南开区九年级上学期数学期末试卷【答案版】
C、是轴对称图形,也是中心对称图形; D、是轴对称图形,不是中心对称图形. 故选: C.
3.(3 分)若关于 x 的一元二次方程 x2+2x+k=0 无实数根,则 k 值可以是(
)
A.﹣ 5 B.0 C.1 D.3 【解答】 解:∵关于 x 的一元二次方程 x2+2x+k=0 没有实数根, ∴∴△ =b2﹣4ac< 0, 即 22﹣4×1×k<0,
2016-2017 学年天津市南开区九年级(上)期末数学试卷
一、选择题:每小题 3 分,共 36 分.
1.(3 分)下列事件中是不可能事件的是(
)
A.降雨时水位上升 B.在南极点找到东西方向
C.体育运动时消耗卡路里 D.体育运动中肌肉拉伤
2.(3 分)下列图形既是轴对称图形又是中心对称图形的是(
)
A.
11.( 3 分)如图,在 ?ABCD中, F 是 BC上的一点,直线 DF与 AB 的延长线相交
于点 E,BP∥DF,且与 AD 相交于点 P,则图中相似三角形的组数为(
)
A.3 B.4 C.5 D.6 12.( 3 分)如图,在平面直角坐标系 xOy 中,抛物线 y=x2+bx+c 与 x 轴只有一个 交点 M ,与平行于 x 轴的直线 l 交于 A、B 两点,若 AB=3,则点 M 到直线 l 的距
所以得到的抛物线与 y 轴的交点坐标为( 0, 3). 故选: B.
9.(3 分)如图, AC是⊙ O 的直径,∠ ACB=60°,连接 AB,过 A,B 两点分别作 ⊙ O 的切线,两切线交于点 P.若已知⊙ O 半径为 1,则△ PAB的周长为( )
A.3 B.
C. D.3
【解答】 解:∵ AC是⊙ O 的直径, ∴∠ ABC=9°0,∠ BAC=3°0,CB=1,AB= , ∵ AP为切线, ∴∠ CAP=9°0,∠PAB=60°, 又∵ AP=BP, ∴△ PAB为正三角形, ∴△ PAB的周长 =3 , 故选: A.
天津市南开区九年级数学上学期期末考试试题(含解析) 新人教版
天津市南开区2015-2016学年九年级数学上学期期末考试试题一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C. D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B 逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①② B.③④ C.①④ D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD 为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D 的位置关系,并说明理由.2015-2016学年天津市南开区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C. D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×( 2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B 逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CB H中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①② B.③④ C.①④ D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9 .【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18 个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为 2 .【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 2 .【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD >∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠AP Q=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为: =.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D 的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x 2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x 2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。
天津市南开区2017届九年级上期末数学模拟试卷含答案解析
A.40cmB.60cmC.cmD.100cm
6.已知反比例函数 y=
的图象上有 A(x ,y )、B(x ,y )两点,当 x <x <0
11
22
12
时,y1<y2,则 m 的取值范围是( )
A.m<0 B.m>0C.m<
D.m>
7.二次函数 y=ax2+bx+c 图象上部分点的坐标满足下表:
A.
B.
C.
D.
3.若 a 为方程 x2+x﹣ 5=0 的解,则 a2+a+1 的值为( ) A.12 B.6 C.9 D.16 4.若反比例函数 y=﹣ 的图象经过点 A(3,m),则 m 的值是( )
A.﹣ 3 B.3 C.﹣ D. 5.在直径为 200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽 AB=160cm,则油的最大深度为( )
第 1 页(共 24 页)
A.5πcmB.6πcmC.9πcmD.8πcm 9.如图,△ABC 与△DEF 是位似图形,位似比为 2:3,已知 AB=4,则 DE 的长等于 ()
A.6 B.5 C.9 D. 10.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比,已知这 本书的长为 20cm,则它的宽约为( ) A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm 11.如图,Rt△ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点 C 顺时针旋转得△ A1B1C,当 A1 落在 AB 边上时,连接 B1B,取 BB1 的中点 D,连接 A1D,则 A1D 的长度 是( )
x
…
﹣3 ﹣2 ﹣1 0
1
…
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南开区2017-2018学年度第一学期期末质量检测
九年级数学试卷
一 选择题:每小题3分,共36分。
1.下列事件中是不可能事件的是( )
(A)降雨时水位上升 (B)在南极点找到东西方向
(C)体育运动时消耗卡路里 (D)体育运动中肌肉拉伤
2.下列图形既是轴对称图形又是中心对称图形的是( )
3.若关于x 的一元二次x 2
+2x+k=0无实数根,则k 值可以是( )
A.3
B.1
C.0
D.-5
4.如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )
A.135°
B.125°
C.115°
D. 105°
5.如图,在⊙O 中,弦AB 的长为10,圆周角∠ACB=45°,则这个圆的直径为( ) A.52 B.102 C.152 D.202
6.在平面直角坐标系中,反比例函数x
a a y 222+-=图象的两个分支分别在( ) A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限
7.点(-1,y 1)、(-2,y 2)、(3,y 3)均在x
y 6
-=的图象上,则y 1、y 2、y 3的大小关系是( )
A.y 1<y 2<y 3
B. y 2<y 3<y 1
C.y 3<y 2<y 1
D.y 3<y 1<y 2
8.将抛物线y=(x-1)2
+3向左平移1个单位,得到的抛物线与y 轴的交点坐标是( )
A.(0,2)
B.(0,3)
C.(0,4)
D.(0,7)
9.如图,AC 是⊙0的直径,∠ACB=60°,连接AB ,过A ,B 两点分别作⊙O 的切线,两切线交于点P.若已知
⊙0半径为1,则△PAB 的周长为( ) A.33 B. 233 C. 3 D.3
10.如图,以点O 为位似中心,将△ABC 缩小后得到△A /B /C /,已知OB=3OB /,则△A /B /C /
与△ABC 的面积
比为( )
A.1:3
B.1:4
C.1:5
D.1:9
11.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP//DF ,且与AD 相交于点P ,
则图中相似三角形的组数为( ) A.3 B.4 C.5 D.6
12.如图在平面直角坐标系中,抛物线y=x 2
+bx+c 与x 轴只有一个交点M,与平行于x 轴的直线l 交于A,B 两点.
若AB=3,则点M 到直线l 的距离为( ) A.25 B.49 C.2 D.4
7
第II 卷(非选择题共84分)
二 填空题:每小题3分,共18分。
13.在比例尺为1:100000的地图上,量得甲、乙两地距离是20cm ,则甲、乙两地实际距离为 km.
14.在一个不透明的布袋中有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下夜色后放回布袋中,摇匀后随机摸出一球,记下颜色,...,如此大量摸球试验后,小明发现其中摸出红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 个.
15.如图,己知双曲线x
k y =经过Rt △OAB 斜边OB 的中点D,与直角边AB 相交于点C.若△OBC 的面积为3,则k 等于
16.如图,正方形ABCD 内接于⊙0,其边长为2,则⊙0的内接正三角形EFG 的边长为
17.如图,在Rt △ABC 中,ABC=90°,AB=8cm ,BC=6cm ,分别以A 、C 为圆心,以
2AC 的长为半径作圆,将
Rt △ABC 截取两个扇形,则剩余(阴影)部分的面积为 cm 2.(结果保留π)。