高中数学第一轮复习课时作业7——二次函数

合集下载

高考第一轮复习---二次函数

高考第一轮复习---二次函数

29.已知函数 已知函数f(x)=(4-3a)x2-2x+a,其中 为 其中a为 已知函数 其中 常数, 常数,求f(x)在[0,1]上的最大值 在 上的最大值
五、二次方程的根的问题 (1)基本方法是: )基本方法是: 1.直接解方程(根为有理根) 直接解方程(根为有理根) 直接解方程 2.参数分离 参数分离 3.根的分布(即利用二次函数的图像) 根的分布(即利用二次函数的图像) 根的分布 4.解方程(根为无理根) 解方程(根为无理根) 解方程
20.已知函数 已知函数f(x)=x2-2ax+2a+4的定义 已知函数 的定义 域为R,值域为 值域为[1,+∞),求由 的值构成 求由a的值构成 域为 值域为 求由 {3,-1} 的集合A=______________ 的集合 21. 已 知 函 数 f(x)=x2-6x+8(x∈[1,a]) 的 ∈ 最 小 值 是 f(a) , 则 a 的 取 值 范 围 是 _______ (1,3] 22.已知函数 已知函数y=x2-2x+3在 [0,m]上有最大 已知函数 在 上有最大 值3,最小值2,则m的取值范围是 ______ [1,2]
10. 图象与 轴的交点 图象与x轴的交点 轴的交点: 两个; ① △>0, 两个;这两个点的横坐标即为方程 ax2+bx+c=0的两根 的两根 一个;方程 ② △=0,一个 方程 2+bx+c=0有等根 一个 方程ax 有等根 无交点.方程 方程ax ③ △<0, 无交点 方程 2+bx+c=0 无实根 图象与y轴的交点坐标为 另:图象与 轴的交点坐标为 图象与 轴的交点坐标为(0,c)即f(0)=c 即 11. 抛物线被 x 轴所截得的线段的长 |x1-x2| . 轴所截得的线段的长: 12.当△<0,且a>0时,函数值恒大于 ,即 当 且 时 函数值恒大于0, ax2+bx+c>0恒成立 当△<0,且a<0时,函数值 恒成立.当 恒成立 且 时 恒小于0, 恒小于 ,当△<0,且a<0时,函数值恒小于 且 时 函数值恒小于0

高考数学一轮总复习二次函数与一元二次方程篇

高考数学一轮总复习二次函数与一元二次方程篇

高考数学一轮总复习二次函数与一元二次方程篇高考数学一轮总复习:二次函数与一元二次方程在高考数学中,二次函数与一元二次方程是常见的重要知识点。

掌握这些知识点对于考生来说至关重要。

本篇文章将为大家系统地介绍二次函数与一元二次方程的相关概念、性质和解题方法。

一、二次函数1. 概念及基本形式二次函数是指一元二次方程的解对应于坐标平面上的点集。

一般形式的二次函数可以表示为:y = ax^2 + bx + c,其中a、b、c为常数且a≠0。

2. 基本性质(1)顶点坐标:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax^2 + bx + c。

(2)开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

(3)对称轴:二次函数的对称轴为直线x = -b/2a。

3. 图像与性质二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和特殊情况。

根据函数的系数a的正负可以确定图像的开口方向。

(1)开口向上的抛物线:当a>0时,二次函数的图像开口向上,且顶点为最小值点。

(2)开口向下的抛物线:当a<0时,二次函数的图像开口向下,且顶点为最大值点。

(3)特殊情况:当a=0时,二次函数化为一次函数。

二、一元二次方程1. 概念及基本形式一元二次方程是指变量的二次幂和一次幂的系数不为零的方程。

一般形式的一元二次方程可以表示为:ax^2 + bx + c = 0,其中a、b、c 为常数且a≠0。

2. 求解方法(1)因式分解法:当一元二次方程可以因式分解时,可通过将方程分解为两个一次因式的乘积,然后令每个一次因式等于零来求解。

(2)配方法:当一元二次方程不能直接因式分解时,可以通过配方的方式来求解。

配方法首先将一元二次方程转化为完全平方形式,然后利用完全平方公式求解。

(3)求根公式法:一元二次方程的求根公式为x = (-b±√(b^2-4ac))/(2a),其中a、b、c为方程的系数。

2020年高考数学一轮复习《二次函数》

2020年高考数学一轮复习《二次函数》

2020年高考数学一轮复习《二次函数》考纲解读 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.命题趋势探究 对于二次函数,高考中主要考察二次函数的性质及其应用,尤其是二次函数、一元二次方程及一元二次不等式的综合应用.重点考察数形结合与等价转化以及分类讨论三种数学思想.由于二次函数、一元二次方程、一元二次不等式之间有着密切的联系,在高中数学中应用十分广泛,并对考查学生的数学能力有重要意义,所以以二次函数为命题背景仍将是一个热点.知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程.(3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标.2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2bx a =-时, 2min 4()4ac b f x a-=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,;2max4()ac b f x -=.(2) 与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==; (2) 若02b p x a <-<,则(),()2bm f M f q a =-=; (3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=; (4) 若2bq a-≥,则(),()m f q M f p ==. 三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔21212400b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示. 表2-5四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立0a >⎧⇔⎨∆<⎩;()0f x <恒成立0a <⎧⇔⎨∆<⎩. 注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负. 题型归纳及思路提示题型20 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式 1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ).A. m A ∀∈ ,都有(3)0f m +>B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<解析 依题意f(1)=0,且a>0,c<0,函数f(x)的图像如图2-47所示,且f(-2)=4a-2b+c=a+b+c+3a-3b=3(a-b)>0, 因此,若f(m)<0,且f(m+3)>0,故选A.变式2已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ). A. 12()()f x f x < B. 12()()f x f x = C. 12()()f x f x > D. 1()f x 与2()f x 的大小不能确定解析 解法一 :因为0<a <3,x 2>x 1,x 1+x 2=1-a,所以f(x 2)-f(x 1)=a(x 2-x 1)( x 1+x 2+2) =(x 2-x 1)(3-a ) >0,所以f(x 2) >f(x 1).故选A.解法二:(数形结合)如图2-48所示,x 2>x 1,x 1+x 2=1-a,1211(1,)222x x a +-=∈-, 故x 1离对称轴近,因此f(x 1)< f(x 2).例 2.42 已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c <()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x a x x b c+=-⎧⎨=-⎩,12||x x -=6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=. 变式1 设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =.解析 ①当a=1时,不等式可化为-(x 2-x-1)≥0,若x >0时均有x 2-x-1≤0,由二次函数的图像知,显然不成立,所以a ≠1. ②当a<1时,因为x>0,(a-1)x-1<0,且二次函数y=x 2-ax-1的图像开口向上,所以不等式x 2-ax-1≤0在x ∈(0, +∞)上不能恒成立,所以a<1不成立. ③当a>1时,如图2-49所示,令f(x)= (a-1)x-1, g(x)=x 2-ax-1,两函数的图像均过定点(0,-1).要满足对任意的x ≥0时.不等式[(a-1)x-1]( x 2-ax-1)≥0成立,则一次函数y=(a-1)x-1与二次函数y= x 2-ax-1在x 轴上有相同交点(11a -,0),所以有 (11a -)2-11a --1=0, 整理得2a 2-3a=0,解得a=32,或a=0(舍去),综上可知,a=32.变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________.解析 对于条件①:因为g(x)=2x -2,得g(1)=0,当x ≥1时,g(x)≥0,要使得对任意的x ∈R ,f(x)<0或g(x) <0,故当x ≥1时,f(x)<0恒成立,则021,4031m m m m <⎧⎪<-<<⎨⎪--<⎩得, 对于条件②:x ∃∈∞(-,-4),f(x)g(x)<0,又当x ∈(-∞,-4)时,g(x)<0, 故x ∃∈∞(-,-4),使得f(x)>0.(ⅰ)当2m=-m-3时,得m=-1,显然函数f(x)=-(x+2)2≤0,x ∈(-∞,-4)不满足要求; (ⅱ)当2m<-m-3时,得m<-1,则-4>2m,即m<-2满足题意.(ⅲ)当2m>-m-3时,得m>-1,则-m-3<-4,即m>1不满足m ∈(-4,0). 综上,m 的取值范围时(-4,-2).题型21 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围.分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围.解析 解法一: 由于方程(1-m 2)x 2+2mx-1=0的判别式△=b 2-4ac=4m 2+4(1-m 2)=4>0,又f(0)=-1<0,根据已知两根一个小于0,一个大于1可知,抛物线y=(1-m)x 2+2mx-1开口向上,且f(1)<0,故2210,1020m m m m ⎧->⎪-<<⎨-+<⎪⎩得. 解法二: 原方程可化为[(1-m)x+1][ (1+m)x-1] =0,解得,,因为m+1>m-1,且x 1,x 2一正一负,故有 11,10101m m m ⎧>0⎪⎪+-<<⎨⎪<⎪-⎩得.所以m 的取值范围是(-1,0) 变式 2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围. 解析 由题意知f(1)=1+2b+c=0,所以c=-1-2b.记g(x)=f(x)+x+b=x 2+(2b+1)x-b-1,则(3)(3)15015,(0)1057(1)1g b g b b g b g b -=5-7>0⎧⎪-=-<⎪<<⎨=--<⎪⎪=+>0⎩得,故实数b 的取值范围是15(,)57 例 2.44 已知方程32230(,,)x ax bx c a b c R +++=∈的三个实根可分别作为一个椭圆、一).A. )+∞B. )+∞C. )+∞D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---. 32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围.解析 由222330y x mx y =-+⎧⎨--=⎩,消去y 得22430x mx m -++=由题意,方程22430xmx m -++=有两根且均在(1,+∞)内,设22()430f x x mx m =-++=,所以222(4)4(3)042(1)1430m m m f m m ⎧=--+>⎪-⎪->1⎨⎪⎪=-++>⎩ 解得m>1且m ≠2.设Q,R 的坐标分别为(x Q ,y Q ),(X R ,Y R ),由|PQ|<|PR|有22R Q x m x m ==-113(1)R Q PR x PQ x ====-+-.由m>1且m ≠2,有1< 1-<7+4.且1-+≠7. PRPQ的取值范围是(1,7)∪(7,7+.题型22 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a )x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围.解析 作出函数f(x)在[-1, +∞)上符合单调递增的图像,如图2-50所示,那么对称轴x=≤-1,得k ≤-4,所以k 的取值范围是(-∞,-4].评注 通过本题,希望同学们了解“函数的单调区间是M ”与“函数在区间N 上是增函数”两个概念的不同,应该知道这两者间存在子集关系,即N ⊆M ,由题意,此二次函数开口向上,故其单调区间为[, +∞),故应有[-1, +∞)⊆[, +∞),所以≤-1,即k ≤-4. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系.解析 2()21f x x a x =--,抛物线()y f x =开口向上,对称轴x a =. (1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --. (2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-. (4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.解析 函数f(x)=4x 2-4ax+a 2-2a+2=4(x-)2-2a+2,其图像开口向上,对称轴为x=. ① 当≤0,即a≤0时,函数在区间[0,2]上为增函数, 故f(x)min = f(0)= a 2-2a+2, a 2-2a+2=3,得1a =±a ≤0,所以1a =② 当2,即4时,对称轴为x=处于区间[0,2]内部,故函数的最小值在对称轴处取得,故f(x)min =f()= -2a+2,由-2a+2=3,得a=-,又4,故舍去. ③ 当2,即a ≥4时,函数在区间[0,2]上为减函数,④ 故f(x)min = f(2)= a 2-10a+18,由a 2-10a+18=3,得5a =±又a ≥4,所以5a =+综上所述,满足条件的实数a的取值为1a =5a =评注 由本题求解过程可知: 本题为已知二次函数在某区间上的的最值求系数问题,解这类题时一般要进行分类讨论,注意二次函数在各定区江山的最值只可能在区间两个端点处或对称轴处取得。

高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。

高考数学一轮复习考点知识专题讲解7---二次函数与幂函数

高考数学一轮复习考点知识专题讲解7---二次函数与幂函数

高考数学一轮复习考点知识专题讲解二次函数与幂函数考点要求1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)图象(抛物线)定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a对称轴x =-b2a顶点坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1212x 是幂函数.(×)(2)若幂函数y =x α是偶函数,则α为偶数.(×)(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.(√)(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.(×) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝ ⎛⎭⎪⎫14等于()A .-12B.12C .±12D.22答案B解析设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝ ⎛⎭⎪⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________. 答案(-∞,40]∪[160,+∞) 解析依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y=f(x)为二次函数,若y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点,则函数解析式为________.答案f(x)=x2-4x解析因为y=f(x)在x=2处取得最小值-4,所以可设f(x)=a(x-2)2-4(a>0),又图象过原点,所以f(0)=4a-4=0,a=1,所以f(x)=(x-2)2-4=x2-4x.题型一幂函数的图象与性质例1(1)若幂函数y=x-1,y=x m与y=x n在第一象限内的图象如图所示,则m与n的取值情况为()A.-1<m<0<n<1B.-1<n<0<m<1 2C.-1<m<0<n<1 2D.-1<n<0<m<1答案D解析幂函数y=xα,当α>0时,y=xα在(0,+∞)上单调递增,且0<α<1时,图象上凸,∴0<m<1.当α<0时,y=xα在(0,+∞)上单调递减.不妨令x=2,由图象得2-1<2n,则-1<n<0.综上可知,-1<n<0<m<1.(2)(2022·长沙质检)幂函数f(x)=(m2-3m+3)x m的图象关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图象不关于y轴对称,舍去,当m=2时,f(x)=x2的图象关于y轴对称,因此m=2.教师备选1.若幂函数f(x)=(a2-5a-5)12ax-在(0,+∞)上单调递增,则a等于()A.1B.6 C.2D.-1 答案D解析因为函数f(x)=(a2-5a-5)12ax-是幂函数,所以a2-5a-5=1,解得a=-1或a=6. 当a=-1时,f(x)=12x在(0,+∞)上单调递增;当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是() A.⎣⎢⎡⎭⎪⎫2,167B .(0,2] C.⎝ ⎛⎭⎪⎫-∞,167D .[2,+∞)答案A解析因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎨⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎢⎡⎭⎪⎫2,167.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1(1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则() A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案A解析由题意得b =233<234=432=a ,a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数f (x )=x m -3(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于()A .1B .2C .1或2D .3 答案B解析因为f (x )=x m -3在(0,+∞)上是减函数, 所以m -3<0,所以m <3. 又因为m ∈N *,所以m =1或2. 又因为f (x )=x m -3是奇函数, 所以m =2.题型二 二次函数的解析式例2已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解方法一(利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二(利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12, 所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎪⎫x -122+8. 因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三(利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8, 即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍去).故所求函数的解析式为f (x )=-4x 2+4x +7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1B.x2+2x+1C.2x2-2x+1D.2x2+2x-1答案B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得ax 2+bx +c =x 2+2ax +(b -1),所以⎩⎨⎧ a =1,b =2a ,c =b -1,解得⎩⎨⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案f (x )=x 2-4x +3解析∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3, 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1二次函数的图象例3设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()答案D解析因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2二次函数的单调性与最值 例4已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ).解f (x )=x 2-tx -1=⎝⎛⎭⎪⎫x -t 22-1-t 24.(1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝ ⎛⎭⎪⎫t 2=-1-t 24.③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t 24,-2<t <4,3-2t ,t ≥4.延伸探究本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解f (-1)=t ,f (2)=3-2t ,f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎨⎧t ,t ≥1,3-2t ,t <1.教师备选1.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是________.(填序号)①当x >3时,y <0;②4a +2b +c =0; ③-1≤a ≤-23;④3a +b >0.答案①③解析依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故①正确;当x =2时,y =4a +2b +c >0,故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a , ∵2≤c ≤3,∴2≤-3a ≤3, ∴-1≤a ≤-23,故③正确,④错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1. (1)若f (x )在[0,1]上单调,求实数a 的取值范围; (2)若x ∈[0,1],求f (x )的最小值g (a ). 解(1)当a =0时,f (x )=-2x +1单调递减; 当a >0时,f (x )的对称轴为x =1a ,且1a>0,∴1a≥1,即0<a ≤1;当a <0时,f (x )的对称轴为x =1a 且1a<0,∴a <0符合题意. 综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减, ∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a.(ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a+1=-1a +1.(ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x +1在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎨⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3(1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是() A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4] C .[-3,-22] D .[-4,-3] 答案B解析∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增, 当x >0时,f (x )=x 2+ax +2, 对称轴为x =-a 2,∴2≤-a2≤3,解得-6≤a ≤-4.(2)(2022·汉中模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________. 答案[1,2]解析由题意知,f (x )=-(x -1)2+6, 则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若f (x )是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12等于() A .3B .-3C.13D .-13答案C解析设f (x )=x α,则4α2α=2α=3,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=13.2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为() A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 答案B解析二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点, 设二次函数为g (x )=ax 2+bx , 可得⎩⎨⎧a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .3.(2022·延吉检测)若函数y =(m 2-3m +3)·224m m x +-为幂函数,且在(0,+∞)上单调递减,则实数m 的值为() A .0B .1或2C .1D .2 答案C解析由于函数y =(m 2-3m +3)224mm x +-为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意.当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.4.已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为() A .-2或1B .-2C .1D .1或2 答案A解析因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.5.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是()A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案D解析因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎨⎧-b 2a =-1,9a -3b +c =0,解得⎩⎨⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确; 对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0, 故选项C 不正确; 对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.6.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是() A .[2,+∞) B.(2,+∞) C .(-∞,0) D .(-∞,2) 答案A解析二次函数y =kx 2-4x +2图象的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝ ⎛⎭⎪⎫116,14,则m -2n +3k =________. 答案0解析因为f (x )是幂函数, 所以m =1,k =0,又f (x )的图象过点⎝ ⎛⎭⎪⎫116,14,所以⎝ ⎛⎭⎪⎫116n =14,解得n =12,所以m -2n +3k =0.8.已知函数f (x )=4x 2+kx -8在[-1,2]上不单调,则实数k 的取值范围是________. 答案(-16,8)解析函数f (x )=4x 2+kx -8的对称轴为直线x =-k 8,则-1<-k8<2,解得-16<k <8.9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点. (1)求f (x )的解析式,并解不等式f (x )≤3; (2)若g (x )=f (sin x ),求函数g (x )的值域.解(1)由题意得⎩⎪⎨⎪⎧-1+3=-b -2a ,-1×3=3a ,解得⎩⎨⎧a =-1,b =4,∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0, 解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞). (2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1], 当t =-1时,g (t )有最小值0, 当t =1时,g (t )有最大值4,故g (t )∈[0,4].∴g (x )的值域为[0,4].10.(2022·烟台莱州一中月考)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解(1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎨⎧ c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎨⎧ c =2,2ax +b +a =2x +1,所以⎩⎨⎧ c =2,2a =2,b +a =1,解得⎩⎨⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数, 当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎨⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·安康模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案C解析若f (x )<0对x ∈[1,3]恒成立,则⎩⎨⎧ f (1)=2-4m <0,f (3)=18-6m <0,解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于()A .0B .1C.12D .2 答案A解析由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =13log 23,b =23log 13, ∴a -1b =13log 23-2311log 3=0.13.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案[2,4]解析解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].14.设关于x 的方程x 2-2mx +2-m =0(m ∈R )的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案7解析由题意有⎩⎨⎧ α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1, α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)·(x 2+ax +b )是偶函数,则f (x )的值域是________.答案[-16,+∞)解析因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎨⎧ f (-3)=f (3)=0,f (1)=f (-1)=0,代入得⎩⎨⎧ 9-3a +b =0,1+a +b =0,解得⎩⎨⎧ a =2,b =-3.所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m ,2n ]? 解(1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n ,解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数基础巩固强化一、选择题1.(文)如果函数f (x )=x 2+bx +c 对任意的实数x 都有f (12+x )=f (12-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)[答案] D[解析] 因为f (12+x )=f (12-x ),所以二次函数f (x )的图象关于直线x =12对称,故f (2)=f (-1),又该函数在(-∞,12)上递减,所以f (0)<f (-1)<f (-2),即f (0)<f (2)<f (-2).(理)若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则在区间(-∞,0]上 f (x )( ) A .可能是增函数,也可能是常数函数 B .是增函数 C .是常数函数 D .是减函数 [答案] A[解析] ∵f (x )为偶函数, ∴一次项系数m 2-1=0,∴m =±1.若m =1,则f (x )=1,为常数函数;若m =-1,则f (x )=-2x 2+1在(-∞,0]上为增函数.2.(文)(2012·辽宁大连24中期中)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .(0,34)C .[0,34]D .[0,34)[答案] D[解析] ①当m =0时,y =mx -1mx 2+4mx +3=-13,定义域为R ;②当m ≠0时,若函数y =mx -1mx 2+4mx +3的定义域为R ,则∀x ∈R ,mx 2+4mx +3≠0.由mx 2+4mx +3≠0⇒⎩⎪⎨⎪⎧m ≠0,Δ<0,⇒0<m <34.综上①②得0≤m <34,故选D.(理)(2012·北京朝阳区期中)已知函数f (x )=ax 2+2ax +4(0<a <3),其图象上两点的横坐标x 1、x 2满足x 1<x 2,且x 1+x 2=1-a ,则有( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .f (x 1)、f (x 2)的大小不确定 [答案] C[解析] f (x 1)-f (x 2)=(ax 21+2ax 1+4)-(ax 22+2ax 2+4)=a (x 1-x 2)(x 1+x 2+2).又x 1<x 2,且x 1+x 2=1-a ,∴a (x 1-x 2)·(x 1+x 2+2)=a (x 1-x 2)(1-a +2)=a (3-a )(x 1-x 2)<0,即f (x 1)-f (x 2)<0,故选C.3.(2013·烟台期中)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606B .45.6C .45.56D .45.51[答案] B[解析] 依题意可设甲销售x 辆,则乙销售(15-x )辆, ∴总利润S =5.06x -0.15x 2+2(15-x ) =-0.15x 2+3.06x +30(x ≥0). ∴当x =10时,S max =45.6(万元).4.(2013·温州模拟)方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( ) A .(-235,+∞)B .(1,+∞)C .[-235,1]D .(-∞,-235)[答案] C[解析] 令f (x )=x 2+ax -2,由条件知,f (1)·f (5)≤0或⎩⎪⎨⎪⎧Δ=a 2+8>0,1<-a 2<5,f (1)=a -1>0,f (5)=5a +23>0.∴-235≤a ≤1.5.(文)函数f (x )=ax 2+bx +c 与其导函数f ′(x )在同一坐标系内的图象可能是( )[答案] C[解析] 若二次函数f (x )的图象开口向上,则导函数f ′(x )为增函数,排除A ;同理由f (x )图象开口向下,导函数f ′(x )为减函数,排除D ;又f (x )单调增时,f ′(x )在相应区间内恒有f ′(x )≥0,排除B ,故选C.(理)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )[答案] D[解析] 若a <0,则只能是A 或B 选项,A 中-b2a <0,∴b <0,从而c >0,与A 图不符;B 中-b2a>0,∴b >0,∴c <0,与B 图不符.若a >0,则抛物线开口向上,只能是C 或D 选项,当b >0时,有c >0与C 、D 图不符,当b <0时,有c <0,此时-b2a>0,f (0)=c <0,故选D. 6.(文)已知方程|x |-ax -1=0仅有一个负根,则a 的取值范围是( ) A .a <1B .a ≤1C .a >1D .a ≥1[答案] D[解析] 数形结合判断.(理)若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围为( ) A .a <-1 B .a >1 C .-1<a <1 D .0≤a <1[答案] B[解析] 令f (x )=2ax 2-x -1,当a =0时显然不适合题意. ∵f (0)=-1<0,f (1)=2a -2,∴由f (1)>0得a >1,又当f (1)=0,即a =1时,2x 2-x -1=0两根x 1=1,x 2=-12不合题意,故选B.二、填空题7.(文)设函数f (x )=x 2+(2a -1)x +4,若x 1<x 2,x 1+x 2=0时,有f (x 1)>f (x 2),则实数a 的取值范围是________.[答案] a <12[解析] 由题意得1-2a 2>0,得a <12.(理)已知关于x 的函数f (x )=x 2-2x -3,若f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)等于________. [答案] -3[解析] ∵二次函数f (x )=x 2-2x -3中,a =1,b =-2,c =-3,∴由f (x 1)=f (x 2)得,x 1+x 22=-b2a=1, 所以x 1+x 2=2,则f (x 1+x 2)=f (2)=-3.8.(2012·上海)已知y =f (x )是奇函数.若g (x )=f (x )+2且g (1)=1,则g (-1)=________. [答案] 3[解析] 本题考查了奇函数的定义及函数值的求法. ∵f (x )为奇函数,∴f (-1)=-f (1),∵g (1)=f (1)+2 ①,g (-1)=f (-1)+2 ②, ∴①+②得g (1)+g (-1)=4, ∴g (-1)=4-g (1)=3.[点评] 抓住已知条件f (x )的奇函数是解决本题的关键.9.(2013·盐城模拟)若关于x 的不等式2-x 2>|x -a |至少有一个负数解,则实数a 的取值范围是________.[答案] (-94,2)[解析] y =2-x 2是开口向下的抛物线,y =|x -a |是与x 轴交于(a,0)点的“V 字形”折线,显然当a =2时,y =2-x 2(x <0)的图象都在折线下方,由2-x 2=x -a 得x 2+x -a -2=0,由Δ=1+4a +8=0得a =-94,此时y =x -a 与y =2-x 2(x <0)相切,故-94<a <2.三、解答题10.若函数y =lg(3-4x +x 2)的定义域为M .当x ∈M 时,求f (x )=2x +2-3×4x 的最值及相应的x的值.[解析] 要使函数y =lg(3-4x +x 2)有意义,应有3-4x +x 2>0, 解得x <1或x >3,∴M ={x <1或x >3}. f (x )=2x +2-3×4x =4×2x -3×(2x )2,令2x =t ,∵x <1或x >3,∴t >8或0<t <2. ∴y =4t -3t 2=-3(t -23)2+43(t >8或0<t <2),由二次函数性质可知, 当0<t <2时,f (x )∈(-4,43];当t >8时,f (x )∈(-∞,-160); 当2x =t =23,即x =log 223时,y =43.综上可知,当x =log 223时,f (x )取到最大值为43,无最小值.能力拓展提升一、选择题11.(文)(2013·郑州第一次质量预测)图中阴影部分的面积S 是关于h 的函数(0≤h ≤H ),则该函数的大致图象是( )[答案] B[解析] 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.(理)(2013·长春调研)若直角坐标平面内的两个不同点M ,N 满足条件: ①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对 [答案] C[解析] 由题意,当x >0时,将f (x )=log 3x (x >0)的图象关于原点对称后可知g (x )=-log 3(-x )(x <0)的图象与f (x )=-x 2-4x (x <0)的图象存在两个交点,故“友好点对”的个数为2,故选C.12.(2013·辽宁理,11)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8,设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16D .a 2+2a -16[答案] B[解析] ∵f (x )-g (x )=2x 2-4ax +2a 2-8=2[x -(a -2)][x -(a +2)], ∴H 1(x )=⎩⎪⎨⎪⎧f (x ),x ∈(-∞,a -2],g (x ),x ∈(a -2,a +2),f (x ),x ∈[a +2,+∞).H 2(x )=⎩⎪⎨⎪⎧g (x ),x ∈(-∞,a -2],f (x ),x ∈(a -2,a +2),g (x ),x ∈[a +2,+∞).可求得H 1(x )的最小值A =f (a +2)=-4a -4,H 2(x )的最大值B =g (a -2)=-4a +12,∴A -B =-16.故选B.[点评] 令f (x )=g (x )可得x 1=a -2,x 2=a +2在同一坐标系中画出y =f (x )与y =g (x )的图象,由图象易知A 为f (a -2)与f (a +2)中的较小值,B 为f (a -2)与f (a +2)中的较大值,故只需比较f (a -2)与f (a +2)的大小即可.13.(文)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”.那么函数的解析式为y =2x 2+1,值域为{5,19,1}的“孪生函数”共有( )A .4个B .6个C .8个D .9个[答案] D[解析] 由2x 2+1=1得x =0; 由2x 2+1=5得x =±2, 由2x 2+1=19得x =±3,要使函数的值域为{5,19,1},则上述三类x 的值都要至少有一个,因此x =0必须有,x =±2可以有一个,也可以有2个,共有三种情形,对于它的每一种情形,都对应x =±3的三种情形,即定义域可以是{0,2,3},{0,2,-3},{0,2,3,-3},{0,-2,3},{0,-2,-3},{0,-2,3,-3},{0,2,-2,3},{0,2,-2,-3},{0,2,-2,3,-3}共9种,故选D.(理)已知f (x )=(x -a )(x -b )-2(a <b ),并且α、β是方程f (x )=0的两个根(α<β),则实数a 、b 、α、β的大小关系可能是( )A .α<a <b <βB .a <α<β<bC .a <α<b <βD .α<a <β<b [答案] A[解析] 设g (x )=(x -a )(x -b ),则f (x )=g (x )-2,分别作出这两个函数的图象,如图所示,可得α<a <b <β,故选A.二、填空题14.(2013·惠州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+12ax -2,x ≤1a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则正数a 的取值范围是________.[答案] 1<a ≤2[解析] 由题意,得12+12a -2≤a 1-a ,则a ≤2,又f (x )=a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.15.已知函数f (x )的自变量的取值区间为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.函数f (x )=x 2的形如[n ,+∞)(n ∈(0,+∞))的保值区间是________.[答案] [1,+∞)[解析] 因为f (x )=x 2在[n ,+∞)(n ∈(0,+∞))上单调递增,所以f (x )在[n ,+∞)上的值域为[f (n ),+∞),若[n ,+∞)是f (x )的保值区间,则f (n )=n 2=n ,解得n =1.三、解答题16.(文)如图所示:图1是定义在R 上的二次函数f (x )的部分图象,图2是函数g (x )=log a (x +b )的部分图象.(1)分别求出函数f (x )和g (x )的解析式;(2)如果函数y =g [f (x )]在区间[1,m )上单调递减,求m 的取值范围.[解析] (1)由图1得,二次函数f (x )的顶点坐标为(1,2),故可设函数f (x )=a (x -1)2+2, 又函数f (x )的图象过点(0,0),故a =-2, 整理得f (x )=-2x 2+4x .由图2得,函数g (x )=log a (x +b )的图象过点(0,0)和(1,1),故有⎩⎪⎨⎪⎧ log a b =0,log a (1+b )=1,∴⎩⎪⎨⎪⎧a =2,b =1,∴g (x )=log 2(x +1)(x >-1).(2)由(1)得y =g [f (x )]=log 2(-2x 2+4x +1)是由y =log 2t 和t =-2x 2+4x +1复合而成的函数,而y =log 2t 在定义域上单调递增,要使函数y =g [f (x )]在区间[1,m )上单调递减,必须t =-2x 2+4x +1在区间[1,m )上单调递减,且有t >0恒成立.由t =0得x =2±62,又t 的图象的对称轴为x =1.所以满足条件的m 的取值范围为1<m ≤2+62.(理)(2012·成都诊断)已知二次函数f (x )=x 2+2bx +c (b 、c ∈R ). (1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b 、c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2)、(0,1)内,求实数b 的取值范围.[解析] (1)由题意可知,x 1、x 2是方程f (x )=0的两个根.由韦达定理得,⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c .即⎩⎪⎨⎪⎧-2b =0,c =-1. ∴b =0,c =-1.(2)由题知,f (1)=1+2b +c =0,∴c =-1-2b . 记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1, 则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0,⇒15<b <57, 即b 的取值范围为(15,57).考纲要求理解二次函数的概念及图象特征,掌握二次函数的最值及性质.补充说明1.熟练掌握二次函数的三种形式的解析式及其适用条件,准确把握三个二次之间的关系,明确二次函数在闭区间上最值的讨论方法,熟悉二次函数图象的对称轴、顶点、配方方法,在解决问题过程中自觉运用数形结合思想、分类讨论思想是突破二次函数问题的关键.备选习题1.(2013·太原模拟)已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则函数f(x)的大致图象为()[答案] B[解析]由f(x)为奇函数,排除A;由x=0时,f(0)的值唯一排除C;由x≥0时,f(x)=3x+m单调递增排除D,故选B.2.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[答案] A[解析]由y=f(x)与y=|lg x|图象(如图)可知,选A.3.(2012·浙江宁波模拟)函数f(x)的定义域为(-∞,1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2-12x+16,则直线y=2与函数f(x)图象的所有交点的横坐标之和是() A.1B.2C.4D.5[答案] D[解析]该函数图象与直线y=2有三个交点(x1,2),(x2,2),(x3,2),x1=-1,x2+x3=6(其中(x2,2),(x3,2)关于直线x=3对称),则横坐标之和为5.4.已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若“p 且q ”为真命题,则实数a 的取值范围是( )A .(-∞,23] B .(0,12) C .(12,23] D .(12,1) [答案] C[解析] 命题p 等价于3a 2≤1,即a ≤23.命题q :由函数y =(2a -1)x 为减函数得:0<2a -1<1,即12<a <1.因为“p 且q ”为真命题,所以p 和q 均为真命题,所以12<a ≤23,因此选C. 5.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间.[分析] (1)求二次函数f (x )在闭区间上的最值,应考虑对称轴与闭区间的位置关系.其最值必在顶点和区间端点获得.(2)若f (x )在区间A 上单调,则对称轴必在相应的开区间外.(3)利用复合函数单调性同增异减判断.[解析] (1)a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )min =f (2)=-1,f (x )max =f (-4)=35.(2)f (x )=x 2+2ax +3=(x +a )2+3-a 2,要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,∴a ≥4或a ≤-6.(3)a =1时,f (x )=x 2+2x +3=(x +1)2+2,f (|x |)=(|x |+1)2+2.令t =|x |(-4≤x ≤6),则0≤t ≤6,∵t =|x |在[-4,0]上单调递减,在[0,6]上单调递增,y =(t +1)2+2在[0,6]上单调递增,∴f (|x |)在[-4,0]上单调递减,在[0,6]上单调递增.。

2020年浙江高考数学一轮复习课堂测试:二次函数与幂函数

2020年浙江高考数学一轮复习课堂测试:二次函数与幂函数

课时跟踪检测(十二) 二次函数与幕函数一抓基础,多练小题做到眼疾手快1幕函数y= f(x)经过点(3, 3),则f(x)是()A•偶函数,且在(0,+^ )上是增函数B. 偶函数,且在(0,+^ )上是减函数C .奇函数,且在(0 ,+^ )上是减函数D •非奇非偶函数,且在(0,+^ )上是增函数解析:选D 设幕函数的解析式为y= x a,将(3, 3)代入解析式得3 a= 3,解得1a 2,所以y= x2 .故选D.2. (2018丽水调研股函数f(x) = ax2+ bx+ c(a^ 0, x € R),对任意实数t都有f(2 + t)= f(2-1)成立,在函数值f( —1), f(1), f(2), f(5)中,最小的一个不可能是()A. f(—1)B. f(1)C. f(2)D. f(5)解析:选B 由f(2 + t)= f(2 —t)知函数y= f(x)的图象对称轴为x = 2.当a>0时,易知f(5) = f(—1) > f(1) > f(2);当a v 0 时,f(5) = f(—1) v f(1) v f(2),故最小的不可能是f(1).3. (2018金华模拟)已知幕函数y= f(x)的图象经过点2, 4,则它的单调递增区间为( )A. (0,+^ )B. [0,+^ )C.(―汽0)D. ( — m,+m )解析:选C设幕函数f(x)=x a,••• f(x)的图象经过点2, 1 ,••• 2a= 1,解得a= —2,则f(x) = x—2= 4,且X M 0,••• y= x2在(—s, 0)上递减,在(0,+ s)上递增,•函数f(x)的单调递增区间是(一s, 0).4. 定义:如果在函数y= f(x)定义域内的给定区间[a , b]上存在x o(a v x o< b),满足f(x。

) =f[一fa,则称函数y= f(x)是[a , b]上的“平均值函数”,x°是它的一个均值点,如yb—a=x4是[—1,1]上的平均值函数,0就是它的均值点. 现有函数f(x) = —x2+ mx+ 1是[—1,1]上的平均值函数,则实数m的取值范围是____________ .解析:因为函数f(x)=—x2+ mx+ 1是[—1,1]上的平均值函数,设X 0为均值点,所以X 。

第一轮复习07----二次函数与幂函数

第一轮复习07----二次函数与幂函数

D
已知f x ax bx c, 且a b c,
2
二次函数的应用
a b c 0, 集合A m | f m 0, ) A.任意m A, 都有f m 3 0
则(
C.存在m0 A, 使得f m 3 0
B.任意m A, 都有f m 3 0
3 2 , 3 3
二次函数的应用
已知函数f x 3ax 2bx c,
2
a b c 0, 且a b c. b 7 2 7 1 , ,1; (1)求 的取值范围 ; 3 2 3 a (2)若x1、x2是方程f x 0的两个 实根,求 | x1 x2 | 的取值范围。
有最大值3,最小值2,求m的取值范围。
9 ; 1,2 2
二次函数
0,1,对称轴为x 2, 二次函数的图像过点
最小值为- 1,求它的解析式。
1 2 y x 2 1 2
二次函数
2 3,已知函数f x x 2ax 3, x 4,6. (1)当a 2时,求f x 的最值。 (2)求实数a的取值范围,使 y f x 在区间 - 4,6上是单调函数; (3)当a 1时,求f | x |的单调区间。
2
(1)若函数f x 的最小值为f 1 0,
(2)在(1)的条件下,f x x k在区
二次函数的应用
如果函数f x x bx c对任意的实数
2
C. f 2 f 0 f 2
B. f 0 f 2 f 2


分类讨论思想在函数中的应用
( 1)若a 1,作出函数f x 的图像。 g a 的表达式。

高三数学第一轮复习课时作业(6)二次函数

高三数学第一轮复习课时作业(6)二次函数

课时作业(六) 第6讲 二次函数时间:35分钟 分值:80分基础热身1.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1上递增,则a 的取值范围是( ) A .a ≤ 3 B .-3≤a ≤ 3C .0<a ≤ 3D .-3≤a <02.已知二次函数f (x )=ax 2+(a 2+b )x +c 的图像开口向上,且f (0)=1,f (1)=0,则实数b 的取值范围是( )A.⎝⎛⎦⎤-∞,-34B.⎣⎡⎭⎫-34,0C .0,+∞)D .(-∞,-1)3.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A .(-∞,2 B .-2,2C .(-2,2D .(-∞,-2)4.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A .正数 B .负数 C .非负数 D .不确定 能力提升5.设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数;②b =0,c >0时,方程f (x )=0只有一个实根;③f (x )的图像关于点(0,c )对称;④方程f (x )=0至多有两个实根.其中正确的命题的个数是( )A .1B .2C .3D .46.2011·长沙二模 若函数f (x )=x 2+ax +b 有两个零点x 1,x 2,且1<x 1<x 2<3,那么在f (1),f (3)两个函数值中( )A .只有一个小于1B .至少有一个小于1C .都小于1D .可能都大于17.设b >0,二次函数y =ax 2+bx +a 2-1的图像为下列之一,则a 的值为( )① ② ③ ④ 图K6-1 A .1 B .-1C.-1-52D.-1+528.已知函数f (x )=-x 2+ax -b +1(a ,b ∈R )对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈-1,1时,f (x )>0恒成立,则实数b 的取值范围是( )A .-1<b <0B .b <-2C .b <-1或b >2D .不能确定9.下列四个命题:(1)函数f (x )在x >0时是增函数,x <0时也是增函数,所以f (x )是增函数;(2)若函数f (x )=ax 2+bx +2与x 轴没有交点,则b 2-8a <0且a >0;(3)y =x 2-2|x |-3的递增区间为1,+∞);(4)y =1+x 和y =(1+x )2表示相同的函数.其中正确命题的个数是________.10.2011·上海十三校联考 已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为0,+∞),则f (1)的最小值为________.11.已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈⎣⎡⎦⎤14,12时,f (x )≥18,则a =________.12.(13分)已知函数f (x )=x 2+mx +n 的图像过点(1,3),且f (-1+x )=f (-1-x )对任意实数x 都成立. (1)求f (x )的解析式;(2)若F(x)=λx2+8x-f(x)在-1,1上是增函数,求实数λ的取值范围.难点突破13.(12分)已知二次函数f(x)=ax2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的“不动点”,若函数f(x)有且仅有一个不动点.(1)求f(x)的解析式;(2)若函数g(x)=f(x)+kx2在(0,4)上是增函数,求实数k的取值范围;(3)是否存在区间m,n(m<n),使得f(x)在区间m,n上的值域为3m,3n?若存在,请求出m,n的值;若不存在,请说明理由.课时作业(六)【基础热身】1.D 解析 f (x )=ax 2+(a 3-a )x +1在(-∞,-1上单调递增,有-a 3-a2a≥-1且a <0,得-3≤a <0.2.D 解析 由f (0)=1,f (1)=0得c =1,a +a 2+b +1=0,b =-a 2-a -1(a >0),得b <-1.3.C 解析 当a -2=0即a =2时,不等式为-4<0恒成立,∴a =2满足题意;当a -2≠0时,则a 满足⎩⎨⎧a -2<0,Δ<0,解得-2<a <2.所以a 的范围是-2<a ≤2.4.A 解析 ∵f (x )=x 2-x +a 的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0. 【能力提升】5.C 解析 对于①,c =0时,f (-x )=-x |-x |+b (-x )=-x |x |-bx =-f (x ),故f (x )是奇函数; 对于②,b =0,c >0时,f (x )=x |x |+c ,∴当x ≥0时,x 2+c =0无解,x <0时,f (x )=-x 2+c =0,∴x =-c ,有一个实数根;对于③,f (-x )+f (x )=-x |-x |+b (-x )+c +(x |x |+bx +c )=-x |x |-bx +c +x |x |+bx +c =2c , ∴f (x )的图像关于点(0,c )对称;对于④,当c =0时,f (x )=x (|x |+b ),若b <0,则方程有三根0,b ,-b ,故选C.6.B 解析 当函数图像关于直线x =2对称时,Δ=16-4b >0,b <4,f (1),f (3)都小于1;当函数图像对称轴不是直线x =2时,f (1),f (3)中至少有一个小于1.7.B 解析 由b >0可知,①、②图像不正确;由③、④图像均过点(0,0),则a 2-1=0⇒a =±1.当a =1时,b >0,f (x )的对称轴为x =-b 2<0,此时不合题意;当a =-1时,f (x )的对称轴x =b2>0,③图像满足,故选B.8.B 解析 由f (1-x )=f (1+x )得对称轴为直线x =1,所以a =2.当x ∈-1,1时,f (x )>0恒成立,得f (x )min =f (-1)>0,即-1-2-b +1>0⇒b <-2.9.0 解析 (1)反例f (x )=-1x;(2)不一定a >0,a =b =0也可;(3)画出图像(图略)可知,递增区间为-1,0和1,+∞);(4)值域不同.10.4 解析 由题意知⎩⎨⎧a >0,4-4ac =0,f (1)=a +c +2≥2+2ac =4.11.1 解析 f (x )=-32⎝⎛⎭⎫x -a 32+16a 2,f (x )max =16a 2≤16,得-1≤a ≤1,对称轴为x =a3.当-1≤a <34时,⎣⎡⎦⎤14,12是f (x )的递减区间,而f (x )≥18,即f (x )min =f ⎝⎛⎭⎫12=a 2-38≥18⇒a ≥1,与-1≤a <34矛盾;当34≤a ≤1时,14≤a 3≤13,且13<14+122=38, 所以f (x )min =f ⎝⎛⎭⎫12=a 2-38≥18⇒a ≥1,而34≤a ≤1,所以a =1.12.解答 (1)∵f (-1+x )=f (-1-x )对任意实数x 都成立,∴f (x )的对称轴为直线x =-1,∴-m2=-1,∴m =2.又f (1)=3,∴1+2+n =3,∴n =0.∴f (x )=x 2+2x .(2)由(1)得F (x )=(λ-1)x 2+6x .①当λ-1>0,即λ>1时,函数F (x )为二次函数,其对称轴为x =-3λ-1,∴函数F (x )在⎣⎡⎭⎫-3λ-1,+∞上为增函数.∵函数F (x )在-1,1上是增函数, ∴-3λ-1≤-1,解得1<λ≤4. ②当λ-1=0,即λ=1时,函数F (x )=6x ,f (x )在R 上为增函数,符合题意;③当λ-1<0,即λ<1时,函数F (x )为二次函数,其对称轴为x =-3λ-1∴函数F (x )在⎝⎛⎦⎤-∞,-3λ-1上为增函数,∵函数F (x )在-1,1上是增函数, ∴-3λ-1≥1,解得-2≤λ<1. 综上,λ的取值范围是-2,4. 【难点突破】13.解答 (1)∵f (x +1)=a (x +1)2+b (x +1)=ax 2+(2a +b )x +a +b 为偶函数, ∴2a +b =0,∴b =-2a ,∴f (x )=ax 2-2ax .∵函数f (x )有且仅有一个不动点, ∴方程f (x )=x 有且仅有一个解,即ax 2-(2a +1)x =0有且仅有一个解,∴2a +1=0,a =-12,∴f (x )=-12x 2+x .(2)g (x )=f (x )+kx 2=⎝⎛⎭⎫k -12x 2+x ,其对称轴为x =11-2k.由于函数g (x )在(0,4)上是增函数,∴当k <12时,11-2k ≥4,解得38≤k <12;当k =12时,符合题意;当k >12时,11-2k<0恒成立.综上,k 的取值范围是⎣⎡⎭⎫38,+∞.(3)f (x )=-12x 2+x =-12(x -1)2+12≤12,∵在区间m ,n 上的值域为3m,3n ,∴3n ≤12,∴n ≤16,故m <n ≤16,∴f (x )在区间m ,n 上是增函数,∴⎩⎨⎧f (m )=3m ,f (n )=3n ,即⎩⎨⎧-12m 2+m =3m ,-12n 2+n =3n ,∴m ,n 是方程-12x 2+x =3x 的两根,由-12x 2+x =3x ,解得x =0或x =-4, ∴m =-4,n =0.。

2014版高考数学一轮总复习 第7讲 二次函数与一元二次方程课件 理 新人教A版

2014版高考数学一轮总复习 第7讲 二次函数与一元二次方程课件 理 新人教A版


二次函数、二次方程等综合应用
【例 3】 f(x)=3ax2+2bx+c(a≠0), a+b+c=0, 设 若 f(0)· f(1)>0,求证: (1)方程 f(x)=0 有实根; b (2)-2<a<-1; 3 2 (3)设 x1,2 是方程 f(x)=0 的两实根, 3 ≤|x1-x2|<3. x 则
2.二次函数的图象是一条④ ________ , 经过配方,可得y =ax +bx+c=⑤
2

顶点为⑥
,对称轴为直线⑦ _____.
其图象及主要性质如下表:
3.一元二次方程根的分布.
1 方程ax 2+bx+c=0(a 0)两根:一正一负 ac 0;
0 0 b b 两正根 x1 x2 0 两负根 x1 x2 0; a a c c x1 x2 a 0 x1 x2 a 0 一零根 c=0.
2.函数 f(x)=2+2x-x2,x∈[0, 3]的值域是( A.(-∞,3] C.[-2,3] B.[-1,3] D.(-3,+∞)
)
【解析】因为 f(x)=-(x-1)2+3,x∈[0,3], 所以[f(x)]max=f(1)=3,[f(x)]min=f(3)=-1, 所以 f(x)的值域是[-1,3],故选 B.
又 m<n,所以 m=0,n=1.
【点评】1.求二次函数的解析式,常用待定系数法,若能 恰当选择其形式,将可化繁为简. 2.条件二次问题,注意一看开口方向,二看轴的位 置,三算端点数值.若盲目分类,“前途”将很渺茫.
素材1
已知二次函数 f(x)满足 f(-1)=f(3)=2,且 f(x)的最大 值为 6,则 f(x)= -x2+2x+5 ;若 x∈[0,5],则 f(x)的 最小值是 -10 .

2020年高考数学一轮复习考点07二次函数与幂函数必刷题(含解析)

2020年高考数学一轮复习考点07二次函数与幂函数必刷题(含解析)

考点07 二次函数与幂函数1、如果方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是____.【答案】(-∞,-3)【解析】设f(x)=x 2+(2m -1)x +4-2m ,由题意得,⎩⎪⎨⎪⎧Δ=(2m -1)2-4(4-2m )>0,f (2)=4+2(2m -1)+4-2m<0, 解得⎩⎪⎨⎪⎧m<-52或m>32,m<-3,所以m<-3,故实数m 的取值范围是(-∞,-3).2、 若幂函数y =mx n (m ,n ∈R)的图象经过点⎝ ⎛⎭⎪⎫8,14,则n =___. 【答案】-23【解析】由题意可得⎩⎪⎨⎪⎧m =1,8n =14, 解得n =-23,故n 的值为-23. 3、已知f(x)=ax 2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a ,b 的值为____.【答案】13,0 【解析】由题意得,f(-x)=f(x),即ax 2-bx +3a +b =ax 2+bx +3a +b ,即2bx =0对任意x 恒成立,所以b =0.又因为a -1=-2a ,解得a =13,所以a ,b 的值分别为13,0. 4、函数y =-x 2+2||x +3的单调减区间是____. 【答案】[-1,0]和[1,+∞)【解析】令f(x)=-x 2+2|x|+3,所以f(x)=⎩⎪⎨⎪⎧-x 2+2x +3,x≥0,-x 2-2x +3, x<0, 即f(x)=⎩⎪⎨⎪⎧-(x -1)2+4,x≥0,-(x +1)2+4, x<0, 所以当x≥0时,函数f(x)的减区间为(1,+∞);当x<0时,函数f(x)的减区间为(-1,0),故单调减区间为(-1,0)和(1,+∞).5、若函数f(x)=x 2-2x +1在区间[]a ,a +2上的最大值为4,则a 的值为____.【答案】-1或1【解析】由题意得,f(x)=x 2-2x +1=(x -1)2,对称轴为直线x =1.当a≥0时,f(a +2)=4,即(a +2)2-2(a +2)+1=4,解得a =1或a =-3(舍去);当a<0时,f(a)=4,即a 2-2a +1=4,解得a =-1或a =3(舍去).综上,a 的值为1或-1.6、 若不等式x 4+2x 2+a 2-a -2≥0对任意实数x 恒成立,则实数a 的取值范围是___.【答案】(-∞,-1]∪[2,+∞)【解析】由题意得x 4+2x 2+a 2-a -2≥0,即(x 2+1)2≥-a 2+a +3,所以-a 2+a +3≤1,解得a≥2或a≤-1,所以实数a 的取值范围是(-∞,-1]∪[2,+∞).7、设α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,3,则使函数y =x α为奇函数且定义域为R 的所有α的值为____. 【答案】1,3【解析】当α=-1时,y =x -1=1x ,此时函数的定义域为{x |x ≠0},不符合题意;当α=12时,y =x 12=x ,此时函数的定义域为[0,+∞),不符合题意;当α=1时,y =x ,此时函数的定义域为R ,且是奇函数,符合题意;当α=2时,y =x 2,此时函数的定义域为R ,是偶函数,不符合题意;当α=3时,y =x 3,此时函数的定义域为R ,且为奇函数,符合题意,综上α的值为1和3.8、求函数f(x)=x 2-2ax +2(x ∈[2,4])的最小值.【答案】f(x)min =⎩⎪⎨⎪⎧6-4a , a<2,2-a 2, 2≤a≤4,18-8a , a>4.【解析】f(x)图象的对称轴是直线x =a ,可分以下三种情况:①当a <2时,f(x)在[2,4]上为增函数,所以f(x)min =f(2)=6-4a ;②当2≤a≤4时,f(x)min =f(a)=2-a 2;③当a >4时,f(x)在[2,4]上为减函数,所以f(x)min =f(4)=18-8a.综上所述,f(x)min =⎩⎪⎨⎪⎧6-4a , a<2,2-a 2, 2≤a≤4,18-8a , a>4.9、已知函数f(x)=x 2-2x +2(x ∈[t ,t +1])的最小值为g(t),求g(t)的表达式.【答案】g(t)=⎩⎪⎨⎪⎧t 2+1, t<0,1, 0≤t≤1,t 2-2t +2, t>1.【解析】由题意得,f(x)=(x -1)2+1.①当t +1<1,即t<0时,g(t)=f(t +1)=t 2+1;②当t≤1≤t+1,即0≤t≤1时,g(t)=f(1)=1;③当t>1时,g(t)=f(t)=t 2-2t +2.综上所述,g(t)=⎩⎪⎨⎪⎧t 2+1, t<0,1, 0≤t≤1,t 2-2t +2, t>1.10、若点(2,2)在幂函数f(x)的图象上,点⎝⎛⎭⎪⎫-2,14在幂函数g(x)的图象上,定义 h(x)=⎩⎪⎨⎪⎧f (x ),f (x )≤g(x ),g (x ), f (x )>g (x ).试求函数h(x)的最大值以及单调区间. 【答案】1 单调增区间为(-∞,-1)和(0,1);单调减区间为(-1,0)和(1,+∞).【解析】求f(x),g(x)解析式及作出f(x),g(x)的图象同例1,如例1图所示,则有h(x)=⎩⎪⎨⎪⎧x -2,x<-1或x>1,x 2, -1≤x≤1且x≠0. 根据图象可知函数h(x)的最大值为1,单调增区间为(-∞,-1)和(0,1);单调减区间为(-1,0)和(1,+∞).11、已知幂函数f(x)的图象过点(2,2),幂函数g(x)的图象过点⎝ ⎛⎭⎪⎫2,14. (1) 求函数f(x),g(x)的解析式;(2) 求当x 为何值时:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【答案】(1) g(x)=x -2(2) ①当x>1或x<-1时,f(x)>g(x);②当x =1或x =-1时,f(x)=g(x); ③当-1<x<1且x≠0时,f(x)<g(x).【解析】(1) 设f(x)=x α,因为图象过点(2,2),故2=(2)α,解得α=2,所以f(x)=x 2. 设g(x)=x β,因为图象过点⎝ ⎛⎭⎪⎫2,14, 所以14=2β,解得β=-2,所以g(x)=x -2.(2) 在同一平面直角坐标系下作出f(x)=x 2与g(x)=x-2的图象,如图所示. 由图象可知,函数f(x),g(x)的图象均过点(-1,1)和(1,1),所以①当x>1或x<-1时,f(x)>g(x);②当x =1或x =-1时,f(x)=g(x);③当-1<x<1且x≠0时,f(x)<g(x).12、已知函数f(x)=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在区间(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a )-m 3的a 的取值范围. 【答案】{a |a <-1或23<a <32} 【解析】因为函数f (x )在(0,+∞)上单调递减,所以m 2-2m -3<0,解得-1<m <3.因为m ∈N *,所以m =1或m =2.又函数的图象关于y 轴对称,所以m 2-2m -3是偶数,当m =2时,22-2×2-3=-3为奇数,当m =1时,12-2×1-3=-4为偶数,所以m =1.又y =x -13在(-∞,0),(0,+∞)上均为减函数, 所以(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a , 解得a <-1或23<a <32. 故a 的取值范围为{a |a <-1或23<a <32}. 13、已知二次函数y =f(x)(x ∈R)的图象过点(0,-3),且f (x )>0的解集为(1,3).(1) 若函数f (x )=f (x )-mx 在区间(0,1)上单调递增,求实数m 的取值范围; (2) 求函数G (x )=f (sin x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的最值.【答案】(1) (-∞,2] (2) 最大值为0,最小值为-3【解析】(1) 因为f (x )>0的解集为(1,3),所以二次函数与x 轴的交点为(1,0)和(3,0),所以可设f (x )=a (x -1)(x -3).又因为函数图象过点(0,-3),代入f (x )得3a =-3,解得a =-1,所以f (x )=-(x -1)(x -3)=-x 2+4x -3,所以f (x )=-x 2+4x -3-mx =-x 2+(4-m )x -3.因为函数f (x )在区间(0,1)上单调递增,所以-4-m 2×(-1)≥1,解得m ≤2, 故实数m 的取值范围是(-∞,2].(2) 由题意得,G (x )=-sin 2x +4sin x -3=-(sin x -2)2+1. 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x ∈[0,1], 所以当sin x =0时,G (x )min =-3;当sin x =1时,G (x )max =0,故函数G (x )的最大值为0,最小值为-3.14、已知幂函数f (x )=x (m 2+m )-1(m ∈N *).(1) 试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2) 若该函数经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 【答案】(1) [0,+∞) 增函数 (2) ⎣⎢⎡⎭⎪⎫1,32 【解析】(1) 因为m 2+m =m (m +1),m ∈N *,且m 与m +1中必有一个为偶数,所以m (m +1)为偶数. 所以函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数.(2) 因为函数f (x )经过点(2,2),所以2=2(m 2+m )-1,即212=2(m 2+m )-1, 所以m 2+m =2,解得m =1或m =-2.又因为m ∈N *,所以m =1.由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32, 所以a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.15、已知a ∈R ,函数f (x )=x |x -a |.(1) 当a =2时,写出函数y =f (x )的单调增区间;(2) 当a >2时,求函数y =f (x )在区间[1,2]上的最小值;(3) 设a ≠0,函数y =f (x )在区间(m ,n )上既有最大值又有最小值,请分别求出m ,n 的取值范围(用a 表示).【答案】(1) (-∞,1],[2,+∞) (2) f (x )min =⎩⎪⎨⎪⎧2a -4,2<a ≤3,a -1, a >3.(3) 2+12a ≤m <a ,a 2<n ≤0. 【解析】(1) 当a =2时,f (x )=x |x -2|=⎩⎪⎨⎪⎧x (x -2),x ≥2,x (2-x ), x <2. 由图象可知,y =f (x )的单调增区间为(-∞,1],[2,+∞).(2) 因为a >2,x ∈[1,2],所以f (x )=x (a -x )=-x 2+ax =-⎝ ⎛⎭⎪⎫x -a 22+a 24. 当1<a 2≤32,即2<a ≤3时,f (x )min =f (2)=2a -4;当a 2>32,即a >3时,f (x )min =f (1)=a -1, 所以f (x )min =⎩⎪⎨⎪⎧2a -4,2<a ≤3,a -1, a >3. (3) f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,x (a -x ),x <a . ①当a >0时,图象如图1所示.由⎩⎪⎨⎪⎧y =a 24,y =x (x -a ),得x =1+22a , 所以0≤m <a 2,a <n ≤ 2+12a . ②当a <0时,图象如图2所示.由⎩⎪⎨⎪⎧y =-a 24,y =x (a -x ),得x =1+22a , 所以2+12a ≤m <a ,a 2<n ≤0.图1图2 16、已知函数f (x )=x -k 2+k +2(k ∈Z)满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q ,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为[-4,178]?若存在,求出q ;若不存在,请说明理由. 【答案】 (1) f (x )=x 2(2) 2【解析】 (1)∵f (2)<f (3),∴f (x )在第一象限是增函数.故-k 2+k +2>0,解得-1<k <2.又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q 满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点(2q -12q ,4q 2+14q)处取得. ①当q >0时,而4q 2+14q -g (-1)=4q 2+14q-(2-3q )=q -24q ≥0,∴g (x )max =4q 2+14q =178, g (x )min =g (-1)=2-3q =-4.解得q =2.②当q <0时,g (x )max =g (-1)=2-3q =178, g (x )min =4q 2+14q =-4, q 不存在.综上所述,存在q =2满足题意.17、设函数f (x )=x 2+2bx +c (c <b <1), f (1)=0,方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负并加以证明.【答案】(1) 见解析 (2)见解析解析:(1)证明:f (1)=0⇒1+2b +c =0⇒b =-c +12. 又c <b <1,故c <-c +12<1⇒-3<c <-13. 方程f (x )+1=0有实根,即x 2+2bx +c +1=0有实根,故Δ=4b 2-4(c +1)≥0,即(c +1)2-4(c +1)≥0⇒c ≥3或c ≤-1.又c <b <1,得-3<c ≤-1,由b =-c +12知b ≥0. (2)f (x )=x 2+2bx +c =x 2-(c +1)x +c =(x -c )(x -1),f (m )=-1<0,∴c <m <1,∴c -4<m -4<-3<c ,∴f (m -4)=(m -4-c )(m -4-1)>0,∴f (m -4)的符号为正.18、设二次函数f (x )=ax 2+bx +c 在区间[-2,2]上的最大值、最小值分别是M 、m ,集合A ={x |f (x )=x }.(1)若A ={1,2},且f (0)=2,求M 和m 的值;(2)若A ={1},且a ≥1,记g (a )=M +m ,求g (a )的最小值.【答案】(1) M =10 m =1 (2) 314【解析】(1)由f (0)=2可知c =2,又A ={1,2},故1,2是方程ax 2+(b -1)x +c =0的两实根, ∴⎩⎪⎨⎪⎧1+2=1-b a 2=c a ,解得a =1,b =-2. ∴f (x )=x 2-2x +2=(x -1)2+1,x ∈[-2,2]. 当x =1时,f (x )min =f (1)=1,即m =1;当x =-2时,f (x )max =f (-2)=10,即M =10.(2)由题意知,方程ax 2+(b -1)x +c =0有两相等实根x =1,∴⎩⎪⎨⎪⎧ 1+1=1-b a 1=c a,即⎩⎪⎨⎪⎧ b =1-2a c =a . ∴f (x )=ax 2+(1-2a )x +a ,x ∈[-2,2],其对称轴方程为x =2a -12a =1-12a, 又a ≥1,故1-12a ∈[12,1), ∴M =f (-2)=9a -2,m =f (2a -12a )=1-14a. g (a )=M +m =9a -14a-1. 又g (a )在区间[1,+∞)上是单调递增的,∴当a =1时,g (a )min =314.。

2013届高三人教B版文科数学一轮复习课时作业(7)幂函数与二次函数

2013届高三人教B版文科数学一轮复习课时作业(7)幂函数与二次函数

课时作业(七) 第7讲 幂函数与二次函数时间:45分钟 分值:100分基础热身1.2011·陕西卷 函数y =x 13的图象是( )图K7-12.“a =0”是“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件3.2010·安徽卷 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )图K7-24.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( ) A .a ≤2或a ≥3 B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-2 能力提升5.2011·锦州模拟 已知f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则( ) A .f (p +1)>0 B .f (p +1)<0 C .f (p +1)=0D .f (p +1的符号不能确定6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)7.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关8.2010·天津卷 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .0,+∞)C.⎣⎡⎭⎫-94,+∞ D.⎣⎡⎦⎤-94,0∪(2,+∞) 9.已知幂函数f (x )α则不等式f (|x |)≤2A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2} D .{x |-4≤x ≤4}10.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.11.已知函数f (x )=x 2-2x +3在区间0,m 上有最大值3,最小值2,则m 的取值范围是________.12.一元二次方程x 2+(a 2-1)x +(a -2)=0的一根比1大,另一根比1小,则实数a 的取值范围是________.13.已知定义在区间0,3上的函数f (x )=kx 2-2kx 的最大值为3,则k =________.14.(10分)已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正比例函数; (4)是反比例函数; (5)是二次函数.15.(13分)已知函数f (x )=1-2a x -a 2x(a >1). (1)求函数f (x )的值域;(2)若当x ∈-2,1时,函数f (x )的最小值为-7,求此时f (x )的最大值.难点突破16.(12分)2011·吉林师大附中模拟 已知函数f (x )=x 2+bx +c 满足条件:f (x -3)=f (5-x ),且方程f (x )=x 有相等实根.(1)求f (x )的解析式;(2)当x ∈-1,+∞)时,f (x )≥2(a -1)x +a +14恒成立,求a 的取值范围.课时作业(七)【基础热身】1.B 解析 因为y =x 13,由幂函数的性质,过点(0,0),(1,1),则只剩B ,C.因为y =x α中α=13,图象靠近x 轴,故答案为B.2.A 解析 由“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”可知,对称轴x =-a2≤0,即a ≥0,所以“a =0”是“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”的充分不必要条件.3.D 解析 首先选择讨论的起点,应分为a >0和a <0.若a <0,则对于A ,c <0,b >0,-b2a>0,可以排除A ; 对于B ,c >0,b <0,-b2a<0,排除B. 若a >0,则bc >0,对于答案C ,c <0,-b2a>0,通过对称轴的位置可以排除C. 4.A 解析 由于二次函数的开口向上,对称轴为x =a ,若使其在区间(2,3)内是单调函数,则需所给区间在对称轴的同一侧,即a ≤2或a ≥3.【能力提升】5.A 解析 二次函数的对称轴为直线x =-12,由f (0)>0,知f (-1)>0.又f (p )<0,则必有-1<p <0,∴p +1>0,∴f (p +1)>0,故选择A.6.C 解析 函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0的图象如图.知f (x )在R 上为增函数.∵f (2-a 2)>f (a ),即2-a 2>a .解得-2<a7.B 解析 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 8.D 解析 由题意f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ∈[-1,2]=⎩⎪⎨⎪⎧⎝⎛⎭⎫x +122+74,x ∈(-∞,-1)∪(2,+∞),⎝⎛⎭⎫x -122-94,x ∈[-1,2],所以当x ∈(-∞,-1)∪(2,+∞)时,f (x )的值域为(2,+∞);当x ∈-1,2时,f (x )的值域为⎣⎡⎦⎤-94,0,故选D.9.D 解析 ∵f ⎝⎛⎭⎫12=22,∴α=12.故f (|x |)≤2可化为|x |12≤2,∴|x |≤4.故其解集为{x |-4≤x ≤4}.10.32 解析 ∵f (x )=k ·x α是幂函数,∴k =1.又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,11.1≤m ≤2 解析 ∵f (x )=x 2-2x +3=(x -1)2+2,∴其对称轴方程为x =1,f (1)=2.∴m ≥1. 又∵f (0)=3,由对称性可知f (2)=3,∴m ≤2,综上可知1≤m ≤2.12.-2<a <1 解析 令f (x )=x 2+(a 2-1)x +(a -2),方程就是f (x )=0,它的一个根大于1,另一根小于1,f (x )=x 2+(a 2-1)x +(a -2)的图象是开口向上的抛物线,相当于说抛物线与x 轴的两个交点分别在点(1,0)的两侧,必有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1.13.1或-3 解析 (1)当k =0时,显然不成立.(2)当k ≠0时,f (x )=k (x -1)2-k ,①当k >0时,二次函数图象开口向上,当x =3时,f (x )有最大值,f (3)=k ·32-2k ×3=3k =3⇒k =1;②当k <0时,二次函数图象开口向下,当x =1时,f (x )有最大值,f (1)=k -2k =-k =3⇒k =-3.故k =1或-3.14.解答 (1)∵f (x )是幂函数,故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1.(2)若f (x )是幂函数且又是(0,+∞)上的增函数,则⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,∴m =-1.(3)若f (x )是正比例函数,则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45.(4)若f (x )是反比例函数, 则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(5)若f (x )是二次函数,则-5m -3=2,即m =-1,此时m 2-m -1≠0,故m =-1.15.解答 设a x =t >0,则y =-t 2-2t +1=-(t +1)2+2.(1)∵t =-1∉(0,+∞),∴y =-t 2-2t +1在(0,+∞)上是减函数. ∴y <1,所以f (x )的值域为(-∞,1).(2)∵x ∈-2,1,a >1,∴t ∈⎣⎡⎦⎤1a 2,a ,由t =-1∉⎣⎡⎦⎤1a 2,a ,所以y =-t 2-2t +1在⎣⎡⎦⎤1a 2,a 上是减函数,∴-a 2-2a +1=-7,∴a =2或a =-4(不合题意,舍去).当t =1a 2=14时,y 有最大值.即y max =-⎝⎛⎭⎫142-2×14+1=716.【难点突破】16.解答 (1)f (x )=x 2+bx +c 满足条件f (x -3)=f (5-x ),则函数f (x )的图象关于直线x =1对称,故b=-2.又方程f (x )=x 有相等实根,即x 2-3x +c =0有相等实根,故c =94,故f (x )=x 2-2x +94.(2)由题意,得f (x )≥2(a -1)x +a +14,即a ≤x 2-2ax +2在-1,+∞)上恒成立,而g (x )=x 2-2ax +2在-1,+∞)上的最小值是g (x )min =错误!又a ≤g (x )min 等价于⎩⎪⎨⎪⎧a <-1,a ≤3+2a或⎩⎪⎨⎪⎧a ≥-1,a ≤2-a 2,解之,得a ∈-3,1.。

高考数学一轮复习 专题7.2 一元二次不等式及其解法(练)

高考数学一轮复习 专题7.2 一元二次不等式及其解法(练)

专题7.2 一元二次不等式及其解法【基础巩固】一、填空题1.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.【答案】92.对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________.【答案】{x |x <1或x >3}【解析】x 2+(k -4)x +4-2k >0恒成立,即g (k )=(x -2)k +(x 2-4x +4)>0,在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.3.(2015·江苏卷)不等式2x 2-x <4的解集为________.【答案】{x |-1<x <2}【解析】∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________.【答案】[0,4]【解析】由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧ a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________.【答案】{x |x >1}【解析】由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧ x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 6.(2017·盐城期中)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是________.【答案】[-1,4]7.(2017·扬州期末)若关于x 的不等式ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.【答案】⎝⎛⎭⎪⎫-1,45 【解析】由已知ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎪⎫-1,45. 8.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫-22,0 【解析】二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧ f m =m 2+m 2-1<0,f m +1=m +12+m m +1-1<0, 解得-22<m <0. 二、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.【能力提升】11.(2016·苏北四市模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.【答案】⎩⎨⎧⎭⎬⎫x |x >12或x <-3212.(2017·南通调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是________.【答案】{x |-ln 2<x <l n 3}【解析】法一 依题意可得f (x )=a ⎝ ⎛⎭⎪⎫x -12(x -3)(a <0),则f (e x )=a ⎝⎛⎭⎪⎫e x -12(e x -3)(a <0),由f (e x )=a ⎝ ⎛⎭⎪⎫e x -12(e x -3)>0,可得12<e x <3,解得-l n 2<x <ln 3. 法二 由题知,f (x )>0的解集为⎩⎨⎧⎭⎬⎫x 12<x <3,令12<e x <3,得-ln 2<x <ln 3. 13.(2017·无锡模拟)已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.【答案】(-∞,-1)∪(2,+∞)【解析】由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b2-b-2>0,解得b<-1或b>2.14.解关于x的不等式ax2-(2a+1)x+2<0(a∈R).解原不等式可化为(ax-1)(x-2)<0.。

二次函数课时作业

二次函数课时作业

5.1二次函数课时作业一、二次函数的概念 1、在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“√”,不是的打“x ”).(l )y=-2x 2 ( ) (2)y=2(x-1)2+3 ( ) (3)y=-3x 2-3 ( ) (4) s=a(8-a) ( ) 2、下列各式中,y 是x 的二次函数的是 ( )A 21xy x += B . 220x y +-= C .22y ax -=- D . 2210x y -+= 3.当m 是何值时,下列函数是二次函数,并写出这时的函数关系式. (1)y=234m m mx -+,m= ,y= ;(2) y=2(1)mmm x ++,m= ,y= ;y=232(4)m m m x-+-,m= ,y= .4.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).5.下列各关系式中,属于二次函数的是(x 为自变量)()=81x 2 =12-x =21x=a 2x 6.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是≠0,b ≠0,c ≠0 <0,b ≠0,c≠0C.a >0,b ≠0,c ≠0 ≠07.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?二、列二次函数的解析式1、已知正方形边长为3,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是2、某工厂第一年的利润为20(万元),第三年的利润y (万元),与平均年增长率x 之间的函数关系式是 .3、在半径为4cm 的圆面上,从中挖去一个半径为x 的同心圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为 .4、设一圆的半径为r ,则圆的面积S =______,其中变量是_____.5、.如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直 的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值 范围.6.某宾馆有客房120间,每天房间的日租金为50元,每天都客满,•宾馆装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,•则客房每天出租会减少6间,设每间客房日租金提高到x 元,客房租金的总收入为y 元.(1)分别用函数表达式,表格和图象表示y 与x 之间的关系?(2)自变量x 的取值范围是什么?7、农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的鸡圈,为了节约材料,同时要使矩形面积最大..,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的羊鸡圈。

2021高考一轮复习 第七讲 二次函数与幂函数

2021高考一轮复习 第七讲 二次函数与幂函数

2021高考一轮复习第七讲二次函数与幂函数一、单选题(共14题;共28分)1.(2分)已知幂函数f(x)=x n的图象过点(8,1),且f(a+1)<f(3),则a的取值范围是4()A.(−4,2)B.(−∞,−4)∪(2,+∞)C.(−∞,−4)D.(2,+∞)2.(2分)已知函数f(x)=(m−1)2x m2−4m+2是在(0,+∞)上单调递增的幂函数,则m=()A.0或4B.0或2C.0D.23.(2分)设a=(1)0.5,b=(13)0.5,c=log0.30.2,则a、b、c的大小关系是()2A.a>b>c B.a<b<c C.b<a<c D.a<c<b4.(2分)二次函数f(x)=−x2+2tx在[1 , +∞)上最大值为3,则实数t=()A.±√3B.√3C.2D.2或√35.(2分)已知二次函数f(x)满足f(3+x)=f(3−x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(−∞,0]B.[0,6]C.[6,+∞)D.(−∞,0]∪[6,+∞)6.(2分)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A.B.C.D.7.(2分)若二次函数f(x)=ax2−x+4对任意的x1,x2∈(−1,+∞),且x1≠x2,都有f(x1)−f(x2)x1−x2<0,则实数a的取值范围为()A.[−1,0)B.[−12,+∞)C.(−12,0)D.(−12,+∞)28.(2分)如果二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是()A.{-2,6}B.(-2,6)C.[-2,6]D.(-∞,-2)∪(6,+∞)9.(2分)已知二次函数f(x)=x2+bx+c(b∈R,c∈R),M,N分别是函数f(x)在区间[−1,1]上的最大值和最小值,则M−N的最小值()A.B.C.D.10.(2分)二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4−x)成立,若f(1−2x2)<f(1+2x−x2),则x的取值范围是()A.B.或C.0D.或11.(2分)二次函数f(x)=x2−4x+1(x∈[3,5])的值域为()A.[−2,6]B.[−3,+∞)C.[−3,6]D.[−3,−2] 12.(2分)二次函数y=ax2+bx+c和y=cx2+bx+a( ac≠0, a≠c)的值域分别为M 和N,命题p:MÜ N,命题q:M∩N≠∅,则下列命题中真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q13.(2分)二次函数f(x)满足f(x+2)=f(-x+2),且f(0)=3,f(2)=1,若在[0,m]上f (x)的最大值为3,最小值为1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]14.(2分)若二次函数f(x)=ax2+bx+c图象的顶点在第四象限且开口向上,则导函数f′(x)的图象可能是()A.B.C.D.二、填空题(共3题;共3分)15.(1分)幂函数f(x)的图像经过点P(4,2),则f(9)=.16.(1分)已知集合A={−2,−1,−12,13,12,1,2,3},任取k∈A,则幂函数f(x)=x k为偶函数的概率为(结果用数值表示)17.(1分)幂函数y=(m2−m−1)x−5m−3在x∈(0,+∞)时为减函数,则m=。

高考数学一轮复习课时过关检测八幂函数与二次函数含解析

高考数学一轮复习课时过关检测八幂函数与二次函数含解析

课时过关检测(八) 幂函数与二次函数A 级——基础达标1.已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( ) A .是增函数 B .不是单调函数 C .是减函数D .不能确定解析:A 因为函数f (x )=(m -1)x 2-2mx +3是偶函数,所以函数图象关于y 轴对称,即mm -1=0,解得m =0.所以f (x )=-x 2+3为开口向下的抛物线,所以在(-∞,0)上此函数单调递增.故选A .2.(2022·济南质检)若f (x )是幂函数,且满足f 4f 2=3,则f ⎝ ⎛⎭⎪⎫12=( ) A .3 B .-3 C .13D .-13解析:C 设f (x )=x α,则4α2α=2α=3,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=13.3.(2022·浙江模拟)已知函数f (x )=ax 2+bx +c 的图象如图所示,则( )A .b <a +c ,c 2<ab B .b <a +c ,c 2>ab C .b >a +c ,c 2<abD .b >a +c ,c 2>ab解析:D 由题图知,a >0,b >0,c <0,f (1)=a +b +c =0,f (-1)=a -b +c <0,所以c =-(a +b ),b >a +c ,所以c 2-ab =[-(a +b )]2-ab =a 2+b 2+ab >0,即c 2>ab .故选D .4.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-π3,0B .⎣⎢⎡⎦⎥⎤-π6,0C .⎣⎢⎡⎦⎥⎤-π3,π6 D .⎣⎢⎡⎦⎥⎤-π6,π3 解析:B 由题得f (x )=-10⎝ ⎛⎭⎪⎫sin 2x +sin x +14+2,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,令t =sin x ,则f (x )=g (t )=-10⎝⎛⎭⎪⎫t +122+2,令g (t )=-12,得t =-1或t =0,由g (t )的图象,可知当-12≤t ≤0时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,2,所以-π6≤m ≤0.故选B . 5.不等式⎝ ⎛⎭⎪⎫12x≤x 的解集是( )A .⎣⎢⎡⎦⎥⎤0,12 B .⎣⎢⎡⎭⎪⎫12,+∞ C .⎣⎢⎡⎦⎥⎤0,22 D .⎣⎢⎡⎭⎪⎫22,+∞ 解析:B 在同一坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与y =x 的图象,如图所示:当⎝ ⎛⎭⎪⎫12x =x 时,解得x =12,由图象知⎝ ⎛⎭⎪⎫12x ≤x 的解集是⎣⎢⎡⎭⎪⎫12,+∞故选B . 6.(多选)由于被墨水污染,一道数学题仅能见到如下文字:“已知二次函数y =ax 2+bx +c 的图象过点(1,0),…,求证:这个二次函数的图象关于直线x =2对称.”根据现有信息,题中的二次函数可能具有的性质是( )A .在x 轴上截得的线段的长度是2B .与y 轴交于点(0,3)C .顶点是(-2,-2)D .过点(3,0)解析:ABD 由已知得⎩⎪⎨⎪⎧a +b +c =0,-b2a=2,解得b =-4a ,c =3a ,所以二次函数为y =a (x 2-4x +3),其顶点的横坐标为2,所以顶点一定不是(-2,-2),故选A 、B 、D .7.(多选)已知函数y =x α(α∈R )的图象过点(3,27),下列说法正确的是( ) A .函数y =x α的图象过原点 B .函数y =x α是奇函数 C .函数y =x α是单调减函数 D .函数y =x α的值域为R解析:ABD 因为函数y =x α(α∈R )的图象过点(3,27),所以27=3α,即α=3,所以f (x )=x 3,A 项,因为f (0)=0,所以函数y =x 3的图象过原点,因此本说法正确;B 项,因为f (-x )=(-x )3=-x 3=-f (x ),所以函数y =x 3是奇函数,因此本说法正确;C 项,因为y =x 3是实数集上的单调递增函数,所以本说法不正确;D 项,因为y =x 3的值域是全体实数集,所以本说法正确.故选A 、B 、D .8.已知函数f (x )=4+log a (2x -3)(a >0且a ≠1)的图象恒过定点P ,且点P 在函数g (x )=x α的图象上,则α=________.解析:令2x -3=1,得x =2,此时f (2)=4,∴函数f (x )=4+log a (2x -3)(a >0且a ≠1)的图象恒过定点(2,4),即P (2,4),又∵点P 在函数g (x )=x α的图象上,∴2α=4,∴α=2.答案:29.已知幂函数f (x )的部分对应值如表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是________.解析:设幂函数为f (x )=x α,则⎝ ⎛⎭⎪⎫12α=22,∴α=12,∴f (x )=x 12,不等式f (|x |)≤2等价于|x |12≤2,∴|x |≤4,∴-4≤x ≤4.∴不等式f (|x |)≤2的解集是[-4,4].答案:[-4,4]10.已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上单调递增. (1)求函数f (x )的解析式; (2)设函数g (x )=f x +2x +c ,若g (x )>2对任意的x ∈R 恒成立,求实数c 的取值范围.解:(1)∵f (x )在区间(0,+∞)上单调递增,∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3.又m ∈Z ,∴m =0,1,2.当m =0或2时,f (x )=x 3,不是偶函数; 当m =1时,f (x )=x 4,是偶函数. 故函数f (x )的解析式为f (x )=x 4.(2)由(1)知f (x )=x 4,则g (x )=x 2+2x +c =(x +1)2+c -1. 由g (x )>2对任意的x ∈R 恒成立,得g (x )min >2(x ∈R ). ∵g (x )min =g (-1)=c -1,∴c -1>2,解得c >3. 故实数c 的取值范围是(3,+∞).B 级——综合应用11.(2022·合肥质检)已知函数f (x )=-2x 2+bx +c ,不等式f (x )>0的解集为(-1,3).若对任意的x ∈[-1,0],f (x )+m ≥4恒成立,则m 的取值范围是( )A .(-∞,2]B .[4,+∞)C .[2,+∞)D .(-∞,4]解析:B 因为f (x )>0的解集为(-1,3),故-2x 2+bx +c =0的两个根为-1,3,所以⎩⎪⎨⎪⎧-c2=-1×3,b 2=-1+3,即⎩⎪⎨⎪⎧b =4,c =6,令g (x )=f (x )+m ,则g (x )=-2x 2+4x +6+m =-2(x-1)2+8+m ,由x ∈[-1,0]可得g (x )min =m ,又g (x )≥4在[-1,0]上恒成立,故m ≥4,故选B .12.(多选)若a +b >0,函数f (x )=(x -a )(x +b )-1的零点为x 1,x 2(x 1<x 2)则( ) A .x 1<b B .x 2>a C .x 1+x 2=a -bD .x 1+x 2=b -a解析:BC 设g (x )=(x -a )(x +b ),则g (a )=g (-b )=0,f (x 1)=g (x 1)-1=0,g (x 1)=1,同理g (x 2)=1,所以x 1+x 2=a +(-b )=a -b ,由a +b >0得a >-b 且a >0,又x 1<x 2,g (x )的图象是开口向上的抛物线,所以x 1<-b ,x 2>a ,故选B 、C .13.请先阅读下列材料,然后回答问题.对于问题“已知函数f (x )=13+2x -x 2,问函数f (x )是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由”,一个同学给出了如下解答:令u =3+2x -x 2,则u =-(x -1)2+4,当x =1时,u 有最大值,u max =4,显然u 没有最小值.故当x =1时,f (x )有最小值14,没有最大值.(1)你认为上述解答是否正确?若不正确,说明理由,并给出正确的解答; (2)试研究函数y =2x 2+x +2的最值情况.解:(1)不正确.没有考虑到u 还可以小于0.正确解答如下:令u =3+2x -x 2,则u =-(x -1)2+4≤4,易知u ≠0,当0<u ≤4时,1u ≥14,即f (x )≥14;当u <0时,1u<0,即f (x )<0.∴f (x )<0或f (x )≥14,即f (x )既无最大值,也无最小值.(2)∵x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74≥74,∴0<y ≤87,∴函数y =2x 2+x +2的最大值为87⎝ ⎛⎭⎪⎫当x =-12时取到,无最小值.C 级——迁移创新14.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f b -f ab -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f 1-f -11--1=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)15.已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1. (1)求a ,b 的值;(2)若存在x ∈[3,4],使g (x )<2m 2-tm +7对任意的t ∈[0,5]都成立,求m 的取值范围; (3)设f (x )=g x x,若不等式f (2x )-k ·2x≥0在x ∈[-1,1]上有解,求实数k 的取值范围.解:(1)g (x )=ax 2-2ax +1+b =a (x -1)2+1+b -a . ∵a >0,∴g (x )在[2,3]上单调递增,∴⎩⎪⎨⎪⎧g2=1,g 3=4⇒⎩⎪⎨⎪⎧1+b =1,9a -6a +1+b =4⇒⎩⎪⎨⎪⎧a =1,b =0.(2)由(1)得g (x )=x 2-2x +1,∵存在x ∈[3,4],使g (x )<2m 2-tm +7对任意的t ∈[0,5]都成立, ∴g (x )min =g (3)=4<2m 2-tm +7对任意的t ∈[0,5]都成立,即-mt +2m 2+3>0对任意的t ∈[0,5]都成立,其中t 看作自变量,m 看作参数,∴⎩⎪⎨⎪⎧2m 2+3>0,-5m +2m 2+3>0,解得m ∈(-∞,1)∪⎝ ⎛⎭⎪⎫32,+∞.(3)由(1)得f (x )=g x x =x 2-2x +1x =x +1x-2,∴f (2x )-k ·2x =2x +12x -2-k ·2x≥0,令2x=t ⎝ ⎛⎭⎪⎫12≤t ≤2,则不等式可化为k ≤1+1t 2-2t,∵不等式f (2x )-k ·2x≥0在x ∈[-1,1]上有解,∴k ≤⎝⎛⎭⎪⎫1+1t2-2t max ,又∵1+1t2-2t =⎝ ⎛⎭⎪⎫1t -12,12≤t ≤2⇒12≤1t ≤2,∴⎝ ⎛⎭⎪⎫1+1t 2-2t max =1,k ≤1,即实数k 的取值范围是(-∞,1].。

(湖南专用)高考数学一轮复习方案 作业手册 文(含解析)

(湖南专用)高考数学一轮复习方案 作业手册 文(含解析)

课时作业(一)A [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.已知集合S ={1,2},T ={1,3},则S ∪T =( ) A .{1} B .{2,3}C .{1,2,3}D .{1,2,1,3}2.[2012·长沙模拟] 设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则图K1-1中的阴影部分表示的集合为( )图K1-1A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}3.设非空集合M ,N 满足:M ={x |f (x )=0},N ={x |g (x )=0},P ={x |f (x )g (x )=0},则集合P 恒满足的关系为( )A .P =M ∪NB .P ⊆(M ∪N )C .P ≠∅D .P =∅4.[2012·上海卷] 若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =________.能力提升5.已知集合A ={x |x 2-4x -12<0},B ={x |x <2},则A ∪(∁R B )=( ) A .{x |x <6} B .{x |-2<x <2} C .{x |x >-2} D .{x |2≤x <6}6.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为( ) A .1 B .3 C .4 D .8 7.[2012·益阳模拟] 设全集U ={x |x ≤7,x ∈N *},集合A ={1,3},B ={2,6},则∁U (A ∪B )=( )A .{2,3,6}B .{1,2,7}C .{2,5,7}D .{4,5,7}8.[2012·北京卷] 已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎝⎛⎭⎪⎫-1,-23 C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞) 9.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为________.10.集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a 的值为________. 11.已知x ∈R ,y >0,集合A ={x 2+x +1,-x ,-x -1},集合B =-y ,-y2,y +1,若A =B ,则x 2+y 2的值为____________________.12.(13分)集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},满足A ∩B ≠∅,A ∩C =∅,求实数a 的值.难点突破13.(12分)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集的个数;(3)当x∈R时,若A∩B=∅,求实数m的取值范围.课时作业(一)B [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.S ={y |y =3x ,x ∈R },T ={y |y =x 2-1,x ∈R },则S ∩T 是( ) A .S B .TC .∅D .有限集2.[2012·浙江卷] 设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}3.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪log 12x ≥12,则∁R A =( )A.⎣⎢⎡⎭⎪⎫22,+∞ B.⎝⎛⎭⎪⎫22,+∞ C .(-∞,0]∪⎣⎢⎡⎭⎪⎫22,+∞ D .(-∞,0]∪⎝⎛⎭⎪⎫22,+∞ 4.[2012·淮阴模拟] 已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )=________.能力提升5.[2012·郴州模拟] 集合A ={x |x 2-2x +a >0},1∉A ,则实数a 的取值范围是( ) A .(-∞,0] B .[0,+∞) C .[1,+∞) D .(-∞,1]6.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为( )A .0B .6C .12D .187.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}8.已知集合A,B,A={x|-2≤x<2},A∪B=A,则集合B不可能...为( ) A.∅ B.{x|0≤x≤2}C.{x|0<x<2} D.{x|0≤x<2}9.已知集合M={(x,y)|x+y=1},N={(x,y)|x-y=1},则M∩N=________.10.设集合A={5,log2(a+3)},B={a,b},若A∩B={2},则A∪B=________.11.集合A={(x,y)|y=1-x2},B={(x,y)|y=x+b},若A∩B的子集有4个,则b 的取值范围是________.12.(13分)设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.(1)当a=1时,求集合M;(2)若M⊆N,求实数a的取值范围.难点突破13.(1)(6分)[2012·北京西城区模拟] 已知集合A={a1,a2,…,a20},其中a k>0(k=1,2,…,20),集合B={(a,b)|a∈A,b∈A,a-b∈A},则集合B中的元素至多有( ) A.210个 B.200个C.190个 D.180个(2)(6分)[2012·北京朝阳区模拟] 已知集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数}.若O为坐标原点,M,N为集合A所表示的平面区域与集合B所表示的平面区域的边界的交点,则△MON的面积S与m的关系式为________.课时作业(二) [第2讲 命题及其关系、充分条件、必要条件](时间:35分钟 分值:80分)基础热身1.[2012·重庆卷] 命题“若p ,则q ”的逆命题是( ) A .若q ,则p B .若綈p ,则綈q C .若綈q ,则綈p D .若p ,则綈q2.[2012·佛山模拟] 已知非零向量a ,b ,则“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件3.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题4.[2013·扬州中学月考] 已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________________________.能力提升5.“a =2”是“函数f (x )=x a-12为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列有关命题的说法中,正确的是( )A .命题“若x 2>1,则x >1”的否命题为“若x 2>1,则x ≤1”B .“x >1”是“x 2+x -2>0”的充分不必要条件C .命题“∃x 0∈R ,使得x 20+x 0+1<0”的否定是“∀x ∈R ,都有x 2+x +1>0” D .命题“若α>β,则tan α>tan β”的逆命题为真命题 7.下列命题中,真命题的个数是( )①x,y∈R,“若x2+y2=0,则x,y全为0”的逆命题;②“若a+b是偶数,则a,b都是偶数”的否命题;③“若x=3或x=7,则(x-3)(x-7)=0”的逆否命题.A.0 B.1C.2 D.38.[2012·郑州模拟] 设p:|2x+1|>a,q:x-12x-1>0,使p是q的必要不充分条件的实数a的取值范围是( )A.(-∞,0) B.(-∞,-2]C.[-2,3] D.(-∞,3]9.[2012·邰阳质检] 写出一个使不等式x2-x<0成立的充分不必要条件________.10.已知命题“若a>b,则ac2>bc2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.11.“x=2”是“向量a=(x+2,1)与向量b=(2,2-x)共线”的________条件.12.(13分)π为圆周率,a,b,c,d∈Q,已知命题p:若aπ+b=cπ+d,则a=c且b=d.(1)写出命题p的否定并判断真假;(2)写出命题p的逆命题、否命题、逆否命题并判断真假;(3)“a=c且b=d”是“aπ+b=cπ+d”的什么条件?并证明你的结论.难点突破13.(12分)已知集合A=y错误!y=x2-错误!x+1,x∈错误!,2,B={x|x+m2≥1}.条件p:x∈A,条件q:x∈B,并且p是q的充分条件,求实数m的取值范围.课时作业(三) [第3讲 简单的逻辑联结词、全称量词与存在量词](时间:35分钟 分值:80分)基础热身1.已知命题p :∀x ∈R ,x >sin x ,则命题p 的否定形式为( ) A .∃x 0∈R ,x 0<sin x 0 B .∀x ∈R ,x ≤sin x C .∃x 0∈R ,x 0≤sin x 0 D .∀x ∈R ,x <sin x2.[2012·湖南学海联考] 下列命题中的假命题是( )A .∀x ∈R ,2x -1>0B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1 D .∃x ∈R ,tan x =23.[2012·河北五校联考] 下列结论错误的是( )A .命题“若x 2-3x +2=0,则x =2”的逆否命题为“若x ≠2,则x 2-3x +2≠0”B .命题“存在x 为实数,x 2-x >0”的否定是“任意x 是实数,x 2-x ≤0”C .“ac 2>bc 2”是“a >b ”的充分不必要条件 D .若p 且q 为假命题,则p ,q 均为假命题4.[2012·河南四校联考] 命题“∀x ∈R ,都有|x -1|-|x +1|≤3”的否定是________________________________________________________________________.能力提升5.[2012·黄冈中学月考] 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要.....条件..是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤56.[2013·德州重点中学月考] 下列有关命题的说法正确的是( ) A .命题“若xy =0,则x =0”的否命题为:“若xy =0,则x ≠0” B .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题C .命题“∃x 0∈R ,使得2x 20-1<0”的否定是:“∀x ∈R ,均有2x 2-1<0” D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题7.[2012·东北三校联考] 已知命题p :∃x 0∈0,π2,sin x 0=12,则綈p 为( )A .∀x ∈0,π2,sin x ≠12B .∀x ∈0,π2,sin x =12C .∃x 0∈0,π2,sin x 0≠12D .∃x 0∈0,π2,sin x 0>128.[2013·长沙一中期中] 以下四个命题中,正确命题的个数为( )①命题:“∀x ∈R ,x 2+2x +4>0”的否定是“∃x 0∈R ,使得x 20+2x 0+4>0”;②“α=π3”是“sin α=32”的充分不必要条件;③命题“x >2, 则x 2>4”的逆否命题为真命题; ④若“p ∨q ”为假命题,则p ,q 都是假命题. A .3个 B .2个 C .1个 D .0个 9.[2012·常德模拟] 已知命题p :∀x ∈R ,x 2≥x ;命题q :∃x ∈R ,x 2≥x ,则p 是______命题,q 是________命题.10.[2012·宁德质检] 若“∀x ∈R ,(a -2)x +1>0”是真命题,则实数a 的取值集合是________.11.下列四个命题:①∀x ∈R ,x 2+x +1≥0;②∀x ∈Q ,12x 2+x -13是有理数;③∃α,β∈R ,使sin(α+β)=sin α+sin β; ④∃x ,y ∈Z ,使3x -2y =10. 所有真命题的序号是________.12.(13分)[2012·吉林模拟] 已知p :f (x )=x 3-ax 在(2,+∞)上为增函数,q :g (x )=x 2-ax +3在(1,2)上为减函数,若p 或q 为真命题,p 且q 为假命题,求a 的取值范围.难点突破13.(12分)已知p :方程a 2x 2+ax -2=0在[-1,1]上有解;q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若“p 或q ”是假命题,求实数a 的取值范围.课时作业(四)A [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.[2012·石家庄质检] 下列函数中与函数y =x 相同的是( )A .y =|x |B .y =1xC .y =x 2D .y =3x 32.[2012·郑州质检] 函数f (x )=2x -1log 2x的定义域为( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)3.下列函数中,值域为[0,3]的函数是( ) A .y =-2x +1(-1≤x ≤0) B .y =3sin xC .y =x 2+2x (0≤x ≤1) D .y =x +34.[2012·陕西卷] 设函数f (x )=⎩⎨⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=________.能力提升5.[2013·浙江重点中学联考] 已知f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1(-1<x <0),0(0≤x ≤1),则f (3)=( )A .-1B .0C .1D .1或0 6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,x ∈{-2};(2)y=2x 2+1,x ∈{2};(3)y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2-1,值域为{-1,5}的“孪生函数”共有( )A .5个B .4个C .3个D .2个7.[2012·衡阳模拟] 函数y =1-lg (x +2)的定义域为( ) A .(0,8] B .(-2,8]C .(2,8]D .[8,+∞)8.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( ) A.14 B .-14 C.32 D .-329.[2012·汕头质检] 已知f (x )=⎩⎪⎨⎪⎧sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝ ⎛⎭⎪⎫56的值为________.10.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是________.11.已知g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12=________. 12.(13分)图K4-1是一个电子元件在处理数据时的流程图:(1)试确定y =f (x )的函数关系式; (2)求f (-3),f (1)的值; (3)若f (x )=16,求x 的值.难点突破13.(12分)已知二次函数f (x )有两个零点0和-2,且f (x )的最小值是-1,函数g (x )与f (x )的图象关于原点对称.(1)求f (x )和g (x )的解析式;(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围.课时作业(四)B [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.下列是映射的是(图 2A .(1)(2)(3)B .(1)(2)(5)C .(1)(3)(5)D .(1)(2)(3)(5)2.[2012·江西师大附中月考] 已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0a x ,x >0,若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .43.[2012·马鞍山二模] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .34.函数y =x -x 的值域是________.能力提升5.已知f (x )的图象恒过点(1,2),则f (x +3)的图象恒过点( ) A .(-3,1) B .(2,-2) C .(-2,2) D .(3,5)6.[2012·岳阳模拟] 已知函数f (x )=lg x 的定义域为M ,函数y =⎩⎪⎨⎪⎧2x ,x >2,-3x +1,x <1的定义域为N ,则M ∩N =( )A .(0,1)B .(2,+∞)C .(0,+∞)D .(0,1)∪(2,+∞)7.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-528.[2012·石家庄质检] 设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A 且f (f (x 0))∈A ,则x 0的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14B.⎝ ⎛⎭⎪⎫14,12C.⎝ ⎛⎦⎥⎤14,12D.⎣⎢⎡⎦⎥⎤0,38 9.[2012·四川卷] 函数f (x )=11-2x的定义域是________.(用区间表示)10.已知f (x )=⎩⎪⎨⎪⎧ln 1x,x >0,1x ,x <0,则f (x )>-1的解集为____________________.11.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1的值域是________.12.(13分)(1)求函数f (x )=lg (x 2-2x )9-x2的定义域; (2)已知函数f (x )的定义域为[0,1],求下列函数的定义域:①f (x 2),②f (x -1);(3)已知函数f (lg(x +1))的定义域是[0,9],求函数f (2x)的定义域.难点突破13.(12分)已知f (x )是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.课时作业(五) [第5讲 函数的单调性与最值](时间:45分钟 分值:100分)基础热身 1.下列函数中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)2.函数f (x )=1-1x在[3,4)上( )A .有最小值无最大值B .有最大值无最小值C .既有最大值又有最小值D .最大值和最小值皆不存在3.[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x 2,x ∈RD .y =x 3+1,x ∈R 4.函数f (x )=xx +1的最大值为________.能力提升5.[2012·宁波模拟] 已知函数f (x )为R 上的减函数,则满足f (|x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)6.[2013·湖南师大附中月考] 函数f (x )=⎩⎪⎨⎪⎧x 3-8(x ≥0),e x -9(x <0),g (x )=3x -1,则不等式f [g (x )]≥0的解集为( )A .[1,+∞)B .[ln3,+∞)C .[1,ln3)D .[log 32,+∞)7.[2012·哈尔滨师范大学附中期中] 函数y =⎝ ⎛⎭⎪⎫121x 2+1的值域为( )A .(-∞,1) B.⎝ ⎛⎭⎪⎫12,1 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,+∞ 8.[2013·惠州二调] 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .(2-2,2+2)B .[2-2,2+2]C .[1,3]D .(1,3)9.[2012·长春外国语学校月考] 已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( )A .(3,+∞)B .(0,1) C.⎝ ⎛⎦⎥⎤0,14 D .(1,3) 10.若函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f (x )的值域是________. 11.若在区间⎣⎢⎡⎦⎥⎤12,2上,函数f (x )=x 2+px +q 与g (x )=x +1x 在同一点取得相同的最小值,则f (x )在该区间上的最大值是________.12.函数y =xx +a在(-2,+∞)上为增函数,则a 的取值范围是________.13.函数y =ln 1+x1-x 的单调递增区间是________.14.(10分)试讨论函数f (x )=xx 2+1的单调性.15.(13分)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.难点突破16.(12分)已知函数f (x )=x 2x -2(x ∈R ,且x ≠2).(1)求f (x )的单调区间;(2)若函数g (x )=x 2-2ax 与函数f (x )在x ∈[0,1]上有相同的值域,求a 的值.课时作业(六)A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝ ⎛⎭⎪⎫13x,x ∈R 2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2012·哈尔滨师范大学附中月考] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .34.[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-134=( ) A.32 B .-32 C.12 D .-126.[2012·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x2的图象关于原点对称,则f a2=( ) A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·湖南师大附中月考] 已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.11.[2012·长沙一中月考] 已知定义域为R 的函数f (x )对任意实数x ,y 满足f (x +y )+f (x -y )=2f (x )cos y ,且f (0)=0,f π2=1,给出下列结论:①f π4=12;②f (x )是奇函数;③f (x )是周期函数;④f (x )在(0,π)内为单调函数.其中正确的结论是________.(填写序号)12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m-2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.课时作业(六)B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( ) A .奇函数 B .偶函数C .非奇非偶函数D .不能确定奇偶性4.[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.能力提升5.[2012·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.[2012·衡阳模拟] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.[2013·忻州一中月考] 命题p :∀x ∈R ,3x>x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨p 真 B .p ∧q 真 C .綈p 真 D .綈q 假9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.10.[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(七) [第7讲 二次函数](时间:45分钟 分值:100分)基础热身1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( ) A .a ≤2或a ≥3 B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-22.函数y =(cos x -a )2+1,当cos x =a 时有最小值,当cos x =-1时有最大值,则a 的取值范围是( )A .[-1,0]B .[-1,1]C .(-∞,0]D .[0,1]3.[2012·长春外国语学校月考] 若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则f (x )在区间(-∞,0]上是( )A .增函数B .减函数C .常数D .增函数或常数4.[2011·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________.能力提升5.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( ) A .f (1)≥25 B .f (1)=25 C .f (1)≤25 D .f (1)>256.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .27.[2012·昆明模拟] 若函数y =ax 与y =b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(-∞,0)上是( )A .增函数B .减函数C .先增后减D .先减后增8.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关9.[2012·怀化模拟] 如图K7-1是二次函数f (x )=x 2-bx +a 的图象,其函数f (x )的导函数为f ′(x ),则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,3)10.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3(-2≤x <0),x 2-2x -3(0≤x ≤3)的值域是________.11.方程|x 2-2x |=a 2+1(a ∈(0,+∞))的解的个数是________.12.[2013·湖南师大附中月考] 已知函数f (x )=x 2+ax +b -3,f (x )的图象恒过点(2,0),则a 2+b 2的最小值为________.13.[2012·北京卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2,若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________.14.(10分)[2012·正定模拟] 已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)对于任意x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的范围.15.(13分)设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.难点突破16.(12分)[2013·衡水中学一调] 已知对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)对任意实数b,函数恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)的图象上A,B两点的横坐标是f(x)的不动点,且A,B两点关于直线y=kx+12a2+1对称,求b的最小值.课时作业(八)A [第8讲指数与对数的运算] (时间:35分钟分值:80分)基础热身1.2log 510+log 50.25=( ) A .0 B .1 C .2 D .42.下列等式能够成立的是( ) A.⎝ ⎛⎭⎪⎫n m 5=m 15n 5B.12(-2)4=3-2C.4x 3+y 3=(x +y )34D.39=333.在对数式b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5C .2<a <3或3<a <5D .3<a <44.[2012·正定中学月考] 计算lg 14-lg25100-12=________.能力提升5.若log 2log 3log 4x =log 3log 4log 2y =log 4log 2log 3z =0,则x +y +z 的值为( ) A .50 B .58 C .89 D .1116.[2012·武汉调研] 若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.34 D.43 7.[2012·重庆卷] 已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c8.若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,则x y=( ) A .2 B .3 C.12 D.139.[2012·海南五校联考] x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.10.[(1-log 63)2+log 62·log 618]÷log 64=________.11.[2012·上海卷] 方程4x -2x +1-3=0的解是________.12.(13分)设x >1,y >1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.难点突破13.(12分)已知f (x )=e x -e -x ,g (x )=e x +e -x.(1)求[f (x )]2-[g (x )]2的值;(2)若f (x )·f (y )=4,g (x )·g (y )=8,求g (x +y )g (x -y )的值.课时作业(八)B [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.下列命题中,正确命题的个数为( ) ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1; ③3x 4+y 6=x 43+y 2;④5-3=10(-3)2.A .0B .1C .2D .32.化简:(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-23.log(n +1+n )(n +1-n )=( ) A .1 B .-1 C .2 D .-24.已知a 12=49,则log 23a =________.能力提升5.若10x =2,10y=3,则103x -y 2=( )A.263B.63 C.233 D.366.函数y =x 2+2x +1+3x 3-3x 2+3x -1的图象是( ) A .一条直线 B .两条射线 C .抛物线 D .半圆7.若a >1,b >0,且a b +a -b =22,则a b -a -b的值等于( ) A. 6 B .2或-2 C .2 D .-28.[2012·唐山模拟] 已知3x =4y=12,则1x +1y=( )A. 2 B .1 C.12D .2 9.设f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞),则满足f (x )=14的x 值为________.10.化简:lg2+lg5-lg8lg50-lg40=________.11.方程log 2(x 2+x )=log 2(2x +2)的解是________.12.(13分)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.难点突破13.(12分)设a ,b ,c 均为正数,且满足a 2+b 2=c 2.(1)求证:log 2⎝ ⎛⎭⎪⎫1+b +c a +log 2⎝ ⎛⎭⎪⎫1+a -c b =1;(2)若log 4⎝⎛⎭⎪⎫1+b +c a =1,log 8(a +b -c )=23,求a ,b ,c 的值.课时作业(九) [第9讲 指数函数、对数函数、幂函数](时间:45分钟 分值:100分)基础热身1.[2012·西安质检] 已知a =32,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 满足的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n2.[2012·梅州中学月考] 若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2xB .log 12xC.12x D .x 2 3.[2012·四川卷] x)K9-4.[2012·南通模拟] 已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.能力提升5.[2012·汕头测评] 下列各式中错误..的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg1.6>lg1.4 6.若集合A ={y |y =x 13,-1≤x ≤1},B =y⎪⎪⎪ )y =⎝ ⎛⎭⎪⎫12x ,x ≤0,则A ∩B =( )A .(-∞,1)B .[-1,1]C .∅D .{1}7.[2012·南昌调研] 函数f (x )=log 22x 2+1的值域为( ) A .[1,+∞) B .(0,1] C .(-∞,1] D .(-∞,1)8.[2012·三明联考] 已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1100的值等于( )A.1lg2 B .-1lg2 C .lg2 D .-lg29.[2012·全国卷] 已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,3x ,x <0,则满足f (a )<13的a 的取值范围是________.11.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是________.12.[2013·河北五校联盟调研] 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,(x >0),2x ,(x ≤0)且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.13.[2012·长春外国语学校月考] 关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称; ②f (x )的最小值是lg2;③当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.14.(10分)设a >0,f (x )=e xa +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数; (3)解方程f (x )=2.15.(13分)已知函数f (x )=log a (x +1)(a >1),且函数y =g (x )图象上任意一点P 关于原点的对称点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.难点突破16.(12分)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.课时作业(十) [第10讲 函数的图象与性质的综合](时间:45分钟 分值:100分)基础热身1.函数f (x )=1x+2x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.为了得到函数y =3⎝ ⎛⎭⎪⎫13x 的图象,可以把函数y =⎝ ⎛⎭⎪⎫13x的图象( ) A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度3.下列四个函数中,图象如图 )A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x4.[2012·开封质检] 把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是________________________________________________________________________.能力提升5.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图K10-2阴影部分)的面积为S ,则S 与t 的函数关系图象可表示为( )图K10-图K106.已知图K10-4①中的图象对应的函数为y =f (x ),则图K10-4②中的图象对应的函数为( )-A .y =f (|x |) B .y =|f (x )| C .y =f (-|x |) D .y =-f (|x |)7.[2012·郑州调研] 已知曲线如图K10-5所示:图K10-以下为编号为①②③④的四个方程: ①x -y =0;②|x |-|y |=0; ③x -|y |=0;④|x |-y =0.请按曲线A ,B ,C ,D 的顺序,依次写出与之对应的方程的编号为( ) A .④②①③ B .④①②③ C .①③④② D .①②③④8.函数f (x )=1+log 2x 与g (x )=21-x( )9.已知函数f (x )=e x,其反函数为y =f -1(x ),则函数g (x )=|f -1(1-x )|的大致图象是( )图K10-10.将函数y =2x+1的图象按向量a 平移得到函数y =2x +1的图象,则a =________.11.[2012·海淀一模] 函数f (x )=x +1x图象的对称中心为________.12.设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为________. 13.[2012·唐山二模] 奇函数f (x )、偶函数g (x )的图象分别如图K10-8(1),K10-8(2)所示,方程f (g (x ))=0,g (f (x ))=0的实根个数分别为a ,b ,则a +b =________.14.(10分)设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).求g (x )的解析式.15.(13分)已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.难点突破 16.(12分)(1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图象关于直线x =m 对称;(2)若函数y =log 2|ax -1|的图象的对称轴是x =2,求非零实数a 的值.课时作业(十一) [第11讲 函数与方程](时间:45分钟 分值:100分)基础热身 1.[2013·安庆四校联考] 图K11-1是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]2.[2012·唐山期末] 设f (x )=e x+x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)3.[2012·湖南师大附中月考] 已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续不断的曲线,则函数f (x )在下列哪个区间内必有零点( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.能力提升5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定6.[2013·诸城月考] 设函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.[2011·陕西卷] 方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根C .有且仅有两个根D .有无穷多个根9.[2012·石家庄质检] 已知函数f (x )=⎝ ⎛⎭⎪⎫12x-sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .410.若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围是________.11.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x -1,则函数g (x )=f (x )-log 3|x |的零点个数为________.13.[2013·扬州中学月考] 已知函数f (x )=|x 2-1|x -1-kx +2恰有两个零点,则k 的取值范围是________.14.(10分)已知函数f (x )=4x +m ·2x+1有且仅有一个零点,求m 的取值范围,并求出该零点.15.(13分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.难点突破16.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1),-25x +125(1<x ≤5).(1)若函数y =f (x )的图象与直线kx -y -k +1=0有两个交点,求实数k 的取值范围;(2)试求函数g (x )=xf (x )的值域.课时作业(十二) [第12讲 函数模型及其应用](时间:45分钟 分值:100分)基础热身1.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A .y =t 2B .y =log 2tC .y =2tD .y =2t 22.等边三角形的边长为x ,面积为y ,则y 与x 之间的函数关系式为( )A .y =x 2B .y =12x 2C .y =32x 2 D .y =34x 2 3.某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x ),则以下结论正确的是( )A .x >22%B .x <22%C .x =22%D .x 的大小由第一年的产量确定4.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y 元,则本利和y 随存期x 变化的函数关系式是________.能力提升5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x ),一种是平均价格曲线y =g (x )(如f (2)=3表示开始交易后第2小时的即时价格为3元;g (2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y =f (x ),虚线表示y =g (x ),其中可能正确的是( )7.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元 8.[2013·荆州中学一检] 下列所给4个图象中,与所给3件事吻合最好的顺序为( ) (a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (c)A .(1)(2)(4)B .(4)(2)(3)C .(4)(1)(3)D .(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件10.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b 0<b ≤32为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.11.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系(如图K12-5所示),若每辆客车营运的年平均利润最大,则营运的年数为________年.12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________千米.13.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (mg)与时间t (h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图K12-6所示,据测定,当空气中每立方米的含药量降低到0.25 mg 以下时,学生方可进教室,那从药物释放开始,至少需要经过________h 后,学生才能回到教室.14.(10分)[2013·长沙一中月考] 如图K12-7,为迎接我校建校100周年,学校决定对一块长200 m ,宽160 m 的长方形荒地ABCD 进行规划,建造一个长方形公园,公园的一边落在边AB 上,但不能影响现有的古树保护区△DEF (其中DE =60 m ,DF =40 m).问如何设计才能使公园占地面积最大,并求出这个最大的面积.15.(13分)[2013·重庆北江中学月考] 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图K12-8所示.已知旧墙的维修费为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x图K12-8难点突破16.(12分)[2012·湖南十二校联考] 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)请分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用函数模型y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(七) [第7讲 二次函数]
(时间:45分钟 分值:100分)
基础热身
1.函数y =x 2+bx +c 在[0,+∞)上是单调函数,则( )
A .b ≥0
B .b ≤0
C .b >0
D .b <0
2.已知m >2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图象上,则( )
A .y 1<y 2<y 3
B .y 1<y 3<y 2
C .y 2<y 1<y 3
D .y 3<y 2<y 1
3.已知函数f (x )=-x 2+ax -b +1(a ,b ∈R )对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则实数b 的取值范围是( )
A .-1<b <0
B .b <-2
C .b <-1或b >2
D .不能确定
4.有一批材料可以围成200 m 长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地,且内部用此材料隔成三个面积相等的矩形(如图K7-1),则围成的矩形场地的最大面积为( )
图K7-1
A .1 000 m 2
B .2 000 m 2
C .2 500 m 2
D .3 000 m 2
能力提升
5.[2012·海淀模拟] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )
A .f (x )是偶函数,递增区间是(0,+∞)
B .f (x )是偶函数,递减区间是(-∞,1)
C .f (x )是奇函数,递减区间是(-1,1)
D .f (x )是奇函数,递增区间是(-∞,0)
6.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则m M
的值为( ) A.14 B.12 C.22 D.32
7.已知函数f (x )=⎩
⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞)
B .(-1,2)
C .(-2,1)
D .(-∞,-2)∪(1,+∞)
8.[2012·青岛一模] 设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,
b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )
A.⎝⎛⎦
⎤-94,-2 B .[-1,0] C .(-∞,-2] D.⎝⎛⎭
⎫-94,+∞ 9.设函数f (x )=ax 2+bx +c (a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为( )
A .-2
B .-4
C .-8
D .不能确定
10.[2012·合肥质检] 若函数f (x )为奇函数,当x ≥0时,f (x )=x 2+x ,则f (-2)的值为________.
11.[2012·佛山质检] 对任意实数a ,b ,函数F (a ,b )=12
(a +b -|a -b |),如果函数f (x )=-x 2+2x +3,g (x )=x +1,那么函数G (x )=F (f (x ),g (x ))的最大值等于________.
12.某商场出售一种商品,每天卖1 000件,每件获利4元.根据经验,若每件少卖1角钱,则每天可多卖出100件,为获得最好的经济效益,每件获利应定为________元.
13.在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…,a n ,共n 个数据.我们规定所测量物理量的“最佳近似值”a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a =________________________________________________________________________.
14.(10分)已知函数f (x )=-12
x 2+x ,是否有实数m ,n (m <n )使得函数f (x )的定义域、值域分别是[m ,n ]和[2m ,2n ]?若存在,求出m ,n 的值;若不存在,说明理由.
15.(13分)已知f (x )=ax 2+(2a -1)x -3在⎣⎡⎦
⎤-32,2上的最大值为1,求实数a 的值.
难点突破
16.(12分)已知函数f (x )=ax 2+bx +1(a ,b 为实数),x ∈R ,
F (x )=⎩
⎪⎨⎪⎧f (x )(x >0),-f (x )(x <0). (1)若f (-1)=0,且函数f (x )的值域为[0,+∞),求F (x )的表达式;
(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围;
(3)设m ·n <0,m +n >0,a >0且f (x )为偶函数,判断F (m )+F (n )能否大于零?。

相关文档
最新文档