必修四复习三(三角函数的图象和性质)
三角函数的图像和性质知识点及例题讲解
三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。
三角函数的图像和性质(3)
第一节 三角函数的图像和性质一、 知识梳理2.函数)sin(ϕω+=x A y 的图像与性质:(1)函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是T=_________ (2)函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是T=_________(3)五点法作)sin(ϕω+=x A y 的简图,设X x ωϕ=+,X 取______________________来求相应x 的值以及对应的y 值再描点作图。
(4)关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。
切记每一个变换总是对字母 x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
二、 基础自测1.(2011·大纲全国卷理,5)设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13 B .3 C .6 D .9 答案:C2、(理)函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 答案:C3.已知-π6≤x <π3,cos x =m -1m +1,则m 的取值范围是( )A .m <-1B .3<m ≤7+4 3C .m >3D .3<m <7+43或m <-1 答案:C4.已知函数y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0 C .ω≥1 D .ω≤-1 答案:B5.(2012·湖洲中学月考)已知函数f (x )=A cos(ωx +φ)的图像如下图所示,f ⎝⎛⎭⎫π2=-23,则f (0)=________.答案:2/36.sin1,sin2,sin3的大小关系为________. 答案: sin3< sin1< sin27.求y =sin 2x -cos x +2的最值. 答案:最大值与最小值分别为134与1.三、 例题讲解[例1] 求下列函数的定义域:(1)y =-2cos 2x +3cos x -1+lg(36-x 2);(2)y =2+log 12x +tan x .[解析] (1)由题意得⎩⎪⎨⎪⎧-2cos2x +3cosx -1≥036-x2>0,即⎩⎪⎨⎪⎧2cosx -1cosx -1≤0-6<x<6,也即⎩⎪⎨⎪⎧cosx ≥12-6<x<6.解得⎩⎪⎨⎪⎧-π3+2k π≤x ≤π3+2k πk ∈Z-6<x<6 (*)取k =-1,0,1,可分别得到 x ∈⎝⎛⎦⎤-6,-5π3或x ∈⎣⎡⎦⎤-π3,π3或x ∈⎣⎡⎭⎫5π3,6. 即所求的定义域为⎝⎛⎦⎤-6,-5π3∪⎣⎡⎦⎤-π3,π3∪⎣⎡⎭⎫5π3,6.(2)要使函数有意义,只要⎩⎪⎨⎪⎧2+log 12 x ≥0tanx ≥0 即⎩⎪⎨⎪⎧0<x ≤4k π≤x<k π+π2k ∈Z即0<x<π2或π≤x ≤4.所以函数的定义域为⎝⎛⎭⎫0,π2∪[π,4].变式:求下列各函数的定义域:(1)y =11-cosx;(2)y =sinx +1-tanx. [解析] (1)函数y =11-cosx有意义时,1-cosx ≠0,即cosx ≠1,所以x ≠2k π(k ∈Z),所以函数的定义域为{x|x ≠2k π,x ∈R ,k ∈Z}.(2)要使函数有意义,必须⎩⎪⎨⎪⎧sinx ≥0,1-tanx ≥0.由上图知道,函数的定义域为⎣⎡⎦⎤2k π,2k π+π4∪⎝⎛⎦⎤2k π+π2,2k π+π(k ∈Z).[例2] 求下列函数值域:(1)y =2cos 2x +2cos x ;(2)y =3cos x -3sin x ;(3)y =sin x +cos x +sin x cos x . [解析] (1)y =2cos2x +2cosx =2⎝⎛⎭⎫cosx +122-12. 当且仅当cosx =1时,得ymax =4, 当且仅当cosx =-12时,得ymin =-12,故函数值域为⎣⎡⎦⎤-12,4. (2)y =3cosx -3sinx =23⎝⎛⎭⎫32cosx -12sinx=23cos ⎝⎛⎭⎫x +π6.∵⎪⎪⎪⎪cos ⎝⎛⎭⎫x +π6≤1, ∴该函数值域为[-23,23]. (3)y =sinxcosx +sinx +cosx =sinx +cosx 2-12+2sin ⎝⎛⎭⎫x +π4=sin2⎝⎛⎭⎫x +π4+2sin ⎝⎛⎭⎫x +π4-12=⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π4+222-1, 所以当sin ⎝⎛⎭⎫x +π4=1时,当sin ⎝⎛⎭⎫x +π4=-22时,y 取最小值-1,∴该函数值域为⎣⎡⎦⎤-1,12+2. 变式:求y =sin2x -sinxcosx +2的值域. [解析] y =sin2x -sinxcosx +2=1-cos2x 2-12sin2x +2=-12(sin2x +cos2x)+52=-22sin ⎝⎛⎭⎫2x +π4+52. 又∵-1≤sin ⎝⎛⎭⎫2x +π4≤1,∴5-22≤y ≤5+22.∴函数的值域为[5-22,5+22]. [例3]判断下列函数的奇偶性(1)sin 2tan y x x =- (2)1sin cos 1sin cos x xy x x +-=++ (3)()cos sin y x =(4)y =答案:(1) 奇 (2) 非奇非偶 (3)偶 (4)奇,偶变式:函数y =2sin ⎝⎛⎭⎫x -π4cos ⎝⎛⎭⎫π4-x 是( ) A .周期为2π的奇函数 B .周期为π的奇函数 C .周期为π的偶函数 D .周期为π的非奇非偶函数 [答案] C[例4] 求函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间. [解析] ∵y =2sin ⎝⎛⎭⎫π3-2x=-2sin ⎝⎛⎭⎫2x -π3,∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间就是y =2sin ⎝⎛⎭⎫2x -π3的单调减区间.由2k π+π2≤2x -π3≤3π2+2k π,k ∈Z ,得2k π+5π6≤2x ≤11π6+2k π.∴k π+5π12≤x ≤11π12+k π. ∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间是⎣⎡⎦⎤k π+5π12,11π12+k π,k ∈Z.变式:(理)已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈R.求:(1)函数f (x )的最大值及取得最大值时自变量x 的集合;(2)函数f (x )的单调增区间. [解析] (1)∵f(x)=1-cos2x 2+sin2x +31+cos2x2=2+sin2x +cos2x =2+2sin ⎝⎛⎭⎫2x +π4,∴当2x +π4=2k π+π2,即x =k π+π8 (k ∈Z)时,f(x)取得最大值2+ 2.因此,f(x)取得最大值时自变量x 的集合是 {x|x =k π+π8,k ∈Z}(2)f(x)=2+2sin ⎝⎛⎭⎫2x +π4.由题意得2k π-π2≤2x +π4≤2k π+π2 (k ∈Z),即k π-3π8≤x ≤k π+π8(k ∈Z), 因此f(x)的单调增区间是⎣⎢⎡⎦⎥⎤k π-38π,k π+π8(k ∈Z).[例5]求下列函数的最小正周期(1) ()()2sin cos f x x x π=-;(2) ()23tan 1tan x f x x =-;(3) ()1cos 43f x x π⎛⎫=++ ⎪⎝⎭. 答案:(1)π (2)π (3)2π[例6] 已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6.(1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 答案:见暑假作业13题变式:1.已知函数f(x)=2sin x 4cos x 4-23sin 2x4+ 3.(1)求函数f (x )的最小正周期及最值;(2)令g (x )=f (x +π3),判断函数g (x )的奇偶性,并说明理由.[解析] (1)∵f(x)=sin x 2+3(1-2sin2x4)=sin x 2+3cos x 2=2sin(x 2+π3),∴f(x)的最小正周期T =2π12=4π. 当sin(x 2+π3)=-1时,f(x)取得最小值-2;当sin(x 2+π3)=1时,f(x)取得最大值2.(2)由(1)知f(x)=2sin(x 2+π3),又g(x)=f(x +π3)∴g(x)=2sin[12(x +π3)+π3]=2sin(x 2+π2)=2cos x2.∵g(-x)=2cos(-x 2)=2cos x2=g(x),∴函数g(x)是偶函数.2.(卷一:3) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24 ()C1(0,]2 ()D (0,2] 【答案】A 四、 反馈训练反馈训练1 一、选择题1.函数y =sin2x +sinx -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54][答案] C[解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sinx =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sinx ∈[-1,1],y =t2+t -1,(-1≤t ≤1),显然-54≤y ≤1,选C.2.若函数f(x)=sin ωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( )A .3B .2 C.32 D.23[答案] C[解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2πω,∴2πω=43π,∴ω=32.故选C(亦利用y =sinx 的单调区间来求解)3.对于函数f(x)=2sinxcosx ,下列选项中正确的是( ) A .f(x)在(π4,π2)上是递增的B .f(x)的图像关于原点对称C .f(x)的最小正周期为2πD .f(x)的最大值为2 [答案] B[解析] 本题考查三角函数的性质.f(x)=2sinxcosx =sin2x ,周期为π,最大值为1,故C 、D 错;f(-x)=sin(-2x)=-2sinx ,为奇函数,其图像关于原点对称,B 正确;函数的递增区间为⎣⎡⎦⎤k π-π4,k π+π4,(k ∈Z)排除A.4.函数y =sin2x +acos2x 的图像关于直线x =-π8对称,则a 的值为( )A. 2 B .- 2 C .1 D .-1[答案] D[解析] 解法1:由y =sin2x +acos2x 可联想到形如y =Asin(ωx +φ)的函数.又知其对称轴为x =-π8,故此直线必经过函数图像的波峰或波谷.从而将x =-π8代入原式,可使函数取最大值或最小值.即-22+22a =±a2+1,∴a =-1.解法2:由于函数图像关于直线x=-π8对称∴f(0)=f(-π4),∴a=-1,故选D.5.已知函数f(x)=3sin πxR图像上相邻的一个最大值点与一个最小值点恰好都在圆x2+y2=R2上,则f(x)的最小正周期为()A.1 B.2 C.3 D.4 [答案] D[解析]f(x)的周期T=2ππR=2R,f(x)的最大值是3,结合图形分析知R>3,则2R>23>3,只有2R=4这一种可能,故选D.6.已知函数f(x)=sin(2x+φ)为实数,若f(x)≤|f(π6)|对x∈R恒成立,且|f(π2)|>f(π),则f(x)的单调递增区间是()A.[kπ-π3,kπ+π6](k∈Z)B.[kπ,kπ+π2](k∈Z)C.[kπ+π6,kπ+2π3](k∈Z)D.[kπ-π2,kπ](k∈Z)[答案] C[解析]本题主要考查正弦函数的有界性以及正弦函数的单调性.若f(x)≤|f(π6)|对x∈R恒成立,则|f(π6)|=|sin(π3+φ)|=1,所以π3+φ=kπ+π2,k∈Z,φ=kπ+π6,k∈Z,由f(π2)>f(π),(k∈Z),可知sin(π+φ)>sin(2π+φ).即sinφ<0,所以φ=2kπ-5π6,k∈Z.代入f(x)=sin(2x+φ),得f(x)=sin(2x-5π6).由2k π-π2≤2x -5π6≤2k π+π2,得k π+π6≤x ≤k π+2π3,故选C.二、填空题7.比较大小:(1)sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5________cos ⎝⎛⎭⎫-17π4.[答案] (1)> (2)<[解析] (1)∵-π2<-π10<-π18<π2,y =sinx 在⎣⎡⎦⎤-π2,π2上是增函数,∴sin ⎝⎛⎭⎫-π10<sin ⎝⎛⎭⎫-π18,即sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5=cos 23π5=cos ⎝⎛⎭⎫4π+3π5=cos 3π5,cos ⎝⎛⎭⎫-17π4=cos 17π4=cos ⎝⎛⎭⎫4π+π4=cos π4.∵0<π4<3π5<π,且函数y =cosx 在[0,π]上是减函数, ∴cos π4>cos 3π5,即cos ⎝⎛⎭⎫-17π4>cos ⎝⎛⎭⎫-23π5, 即cos ⎝⎛⎭⎫-23π5<cos ⎝⎛⎭⎫-17π4.8.函数f(x)=sinx +2|sinx|,x ∈[0,2π]的图像与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.[答案] (1,3)[解析] f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧3sinx , 0≤x ≤π,-sinx ,π<x ≤2π.在同一坐标系中,作出函数f(x)与y =k 的图像可知1<k<3.三、解答题9.(2012·福建四地六校联考)已知函数f(x)=-1+23sinxcosx +2cos2x. (1)求f(x)的单调递减区间;(2)求f(x)图像上与原点最近的对称中心的坐标; (3)若角α,β的终边不共线,且f(α)=f(β), 求tan(α+β)的值.[解析] f(x)=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6,(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f(x)的单调减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z).(2)由sin ⎝⎛⎭⎫2x +π6=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z), ∴f(x)图像上与原点最近的对称中心坐标是⎝⎛⎭⎫-π12,0.(3)由f(α)=f(β)得:2sin ⎝⎛⎭⎫2α+π6=2sin ⎝⎛⎭⎫2β+π6,又∵角α与β不共线,∴⎝⎛⎭⎫2α+π6+⎝⎛⎭⎫2β+π6=2k π+π(k ∈Z),即α+β=k π+π3(k ∈Z),∴tan(α+β)= 3.反馈训练2 一、选择题1.函数f(x)=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( ) A .k π (k ∈Z) B .k π+π6 (k ∈Z)C .k π+π3 (k ∈Z)D .k π-π3(k ∈Z)[答案] D[解析] 解法1:由两角和与差的三角公式得f(x)=2sin ⎝⎛⎭⎫π3-3x +θ.由f(x)是奇函数得π3+θ=k π(k ∈Z)⇒θ=k π-π3(k ∈Z).故选D.解法2:∵函数f(x)为奇函数,定义域为R. ∴f(0)=0,即3cos θ+sin θ=0,∴sin ⎝⎛⎭⎫θ+π3=0,∴θ+π3=k π,∴θ=k π-π3(k ∈Z). 2.函数y =11-x 的图像与函数y =2sin πx(-2≤x ≤4)的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8[答案] D[解析] 本题主要考查了正弦函数的性质以及数形结合法.依题意:两函数的图像如下图所示:由两函数的对称性可知:交点A1,A2,A3,A4,A5,A6,A7,A8的横坐标满足x1+x8=2,x2+x7=2,x3+x6=2,x4+x5=2,即x1+x2+x3+x4+x5+x6+x7+x8=8,故选D.二、填空题3.已知函数f(x)=Atan(ωx +φ)(ω>0,|φ|<π2),y =f(x)的部分图像如下图,则f(π24)=______.[答案] 3[解析] 本小题考查内容为正切函数的图像与解析式.∵T =π2=πω,∴ω=2. 当x =0时,f(0)=Atan φ=1,当x =3π8时,f ⎝⎛⎭⎫3π8=Atan ⎝⎛⎭⎫3π4+φ=0,∴φ=π4,A =1, ∴f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3. 4.动点A(x ,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t =0时点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t(单位:秒)的函数的单调递增区间是______________.[答案] [0,1]和[7,12][解析] 设点A 的纵坐标y 关于t 的函数为y =sin(ωt +φ).∵T =12=2πω,∴ω=π6. 当t =0时,sin φ=32,cos φ=12,∴φ可取π3. ∴y =sin(π6t +π3),由正弦函数的单调性知, 2k π-π2≤π6t +π3≤2k π+π2(k ∈Z) 2k π-5π6≤π6t ≤2k π+π6(k ∈Z). ∴12k -5≤t ≤12k +1(k ∈Z).当k =0时 ,-5≤t ≤1;当k =1时,7≤t ≤13又∵0≤t ≤12,∴单调增区间为[0,1]和[7,12].三、解答题5.(2012·深圳模拟)已知函数f(x)=sinx +acos2x 2,a 为常数,a ∈R ,且x =π2是方程f(x)=0的解. (1)求函数f(x)的最小正周期;(2)当x ∈[0,π]时,求函数f(x)的值域.[解析] (1)f ⎝⎛⎭⎫π2=sin π2+acos2π4=0, 则1+12a =0,解得a =-2. 所以f(x)=sinx -2cos2x 2=sinx -cosx -1, 则f(x)=2sin ⎝⎛⎭⎫x -π4-1. 所以函数f(x)的最小正周期为2π.(2)由x ∈[0,π],得x -π4∈⎣⎡⎦⎤-π4,3π4,则sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-22,1, 则2sin ⎝⎛⎭⎫x -π4-1∈[-2,2-1], 所以y =f(x)值域为[-2,2-1].6.(2011·北京理,15)已知函数f(x)=4cosxsin(x +π6)-1. (1)求f(x)的最小正周期;(2)求f(x)在区间[-π6,π4]上的最大值和最小值. [解析] (1)因为f(x)=4cosxsin(x +π6)-1 =4cosx ⎝⎛⎭⎫32sinx +12cosx -1 =3sin2x +2cos2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6 ∴f(x)的最小正周期为π.(2)当x ∈⎣⎡⎦⎤-π6,π4时,2x +π6∈⎣⎡⎦⎤-π6,2π3, 当2x +π6=π2,即x =π6时,f(x)取到最大值2; 当2x +π6=-π6即x =-π6时,f(x)取到最小值-1. ∴f(x)的最大值和最小值分别是2和-1.7.已知函数f(x)=log 12(sinx -cosx). (1)求它的定义域和值域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.[分析] 对于(1),(2)可以从sinx -cosx =2sin ⎝⎛⎭⎫x -π4入手.对于(3)则看f(x)的定义域是否关于原点对称.对于(4)可利用f(x +T)=f(x)先验证T 是一个周期,再证T 是最小正周期.[解析] (1)由题意得sinx -cosx>0,即2sin ⎝⎛⎭⎫x -π4>0,从而得2k π<x -π4<2k π+π(k ∈Z).∴函数f(x)的定义域为⎩⎨⎧⎭⎬⎫x|2k π+π4<x<2k π+54π,k ∈Z . ∵0<sin ⎝⎛⎭⎫x -π4≤1,∴0<sinx -cosx ≤2, 即有log 12 2≤log 12(sinx -cosx). 故函数f(x)的值域是⎣⎡⎭⎫-12,+∞. (2)∵sinx -cosx =2sin ⎝⎛⎭⎫x -π4在f(x)的定义域上的单调递增区间为⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z),单调递减区间为⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z). ∴f(x)的单调递增区间是⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z); 单调递减区间是⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z). (3)∵f(x)的定义域在数轴上对应的点关于原点不对称,∴函数f(x)是非奇非偶函数.(4)∵f(x +2π)=log 12[sin(x +2π)-cos(x +2π)]=log 12(sinx -cosx)=f(x),∴函数f(x)的最小正周期T =2π.[点评] 本题综合考查了三角函数的性质,解题的关键是把sinx -cosx 化为Asin(ωx +φ)的形式.。
必修四第一章第3节 三角函数的图象和性质(一)周期性与图象
年级高一学科数学版本苏教版课程标题必修四第一章第3节三角函数的图象和性质(一)周期性与图象编稿老师王东一校林卉二校黄楠审核王百玲一、考点突破1. 掌握正弦、余弦、正切三角函数的图象和性质,会作三角函数的图象。
通过三角函数的图象研究其性质。
2. 注重函数与方程、转化与化归、数形结合思想等数学思想方法的运用。
3. 掌握正弦型函数y=A sin(ωx+φ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题。
高考命题趋势考查内容1. 对三角函数图象的考查多以选择题、填空题为主。
对数形结合思想的考查主要通过三角函数图象和单位圆中的三角函数线等来体现。
2. 三角函数的性质是考查的重点,这类题目概念性强,具有一定的综合性与难度。
能力要求熟练掌握基本技能与基本方法。
难度与赋分高考中以三基为主,多为基础题目,每年分值约为8分。
二、重难点提示重点:正弦、余弦、正切函数的周期性、图象及性质;函数y=A sin(ωx+φ)的图象及参数对函数图象变化的影响。
难点:周期函数的概念;画三角函数的图象;函数y=A sin(ωx+φ)的图象与正弦曲线的关系。
一、知识脉络图正弦函数y=sinx三角函数的图象余弦函数y=cosx正切函数y=tanxy=Asin(ωx+φ)作图象描点法(五点作图法)几何作图法性质定义域、值域单调性、奇偶性、周期性对称性最值二、知识点拨1. 正弦、余弦、正切函数的主要性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:)(0,2Zkk∈⎪⎭⎫⎝⎛+ππ无对称轴对称中心:⎝⎛⎭⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间⎣⎡2kπ-π2,2kπ+⎦⎤π2(k∈Z);单调减区间⎣⎡2kπ+π2,2kπ+⎦⎤3π2(k∈Z)单调增区间[2kπ-π,kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间⎝⎛kπ-π2,kπ+⎭⎫π2(k∈Z)奇偶性奇偶奇2. 函数y=A sin(ωx+φ)(1)用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找到五个特征点。
三角函数的图像和性质讲解(定义域,值域,周期,单调性等)
三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
(完整版)最全三角函数的图像与性质知识点总结
i ng si nt he i rb ei n ga re g三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质二、正切函数的图象与性质函数y =sin x y =cos x图象定义域RR 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+(k ∈Z )时,y max =1;π2x =2k π-(k ∈Z )时,y min =-1π2x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+,k ∈Zπ2对称中心:(k π+,0)(k ∈Z )π2对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π定义域{|,}2x x k k Z ππ≠+∈值域R单调性递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(含原点)(,0)()2k k Z π∈最小正周期π三、三角函数图像的平移变换和伸缩变换1. 由的图象得到()的图象x y sin =)sin(ϕω+=x A y 0,0A ω>>xy sin =方法一:先平移后伸缩方法二:先伸缩后平移操作向左平移φ个单位横坐标变为原来的倍1ω结果)sin(ϕ+=x y xy ωsin =操作横坐标变为原来的倍1ω向左平移个单位ϕω结果)sin(ϕω+=x y 操作纵坐标变为原来的A 倍结果)sin(ϕω+=x A y 注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
数学必修4——三角函数的图像与性质
数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。
4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。
利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。
途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。
途径⼆:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。
5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。
6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。
【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。
三角函数的图像与性质说课课件
二.学 情 分 析
(1)高一学生有一定的抽象思维能力,而形象思
维在学习中占有不可替代的地位,所以本节要紧 紧抓住数形结合方法进行探索.
(2)本班学生对数学科特别是函数内容的学
可知:正弦函数图像每经过 2k (k Z) 单位长度就重复出现,所以
...... 6 ,4 ,2 ,2 ,4 ,6..... 都是函数的周期.
2k(kZ)
最小正周期:如果周期函数f(x)的所有周期中存在一个最小整数, 那么这个最小整数就叫做f(x)的最小正周期 根据上述定义,我们有:
正弦函数是周期函数,2k (k Z且k 0) 都是它的周期,最小正周期为2
1
6
4
2
0
2
4
x
-1
1、定义域 3、最小正周期 4、单调性 : 增区间 5、最值 当x=
余弦曲线
2、值域
减区间
时,ymin
当x= 6、奇偶性
时,ymax
[设计意图]:通过把学习任务转移给学生,激发学生的主体意识和成就 动机,通过自主探索,给予学生解决问题的自主权,促进生生交流 ,最 终使学生成为独立的学习者 ,随着问题的解决,学生的积极性将被调动
单调区间为
2k
2
,2k
2
(k
Z
)
【设计意图】:通过列举正弦函数的几个
单调区间,最后归纳出函数所有的单调区 间,体现从特殊到一般的知识认识程 ,
培养学生观察、归纳的学习能力,有助于 以后理解记忆正弦型函数的相关性质.
思考:正弦函数的减区间是? 当x取何值时,y取最值?
三角函数的图象与性质(自制)
x
R 最大值与最小值点恰好都在x 2 y 2 R 2上, 则f ( x ) 的最小正周期为 A.1 B.2 C .3 D.4
的图象上, 相邻的一个
析 : 本题主要考查三角函数的图象的性质 : 对称 中心与对称轴及最大值与最小值之间的关系.
依题意知 : 函数f ( x )的周期T f ( x )的最大值为 3.
f ( x )max 0
当x 0时分子为 1, 分母为1, 最小值为 1.
析 : f ( x) =-
sin x 1 3 2cos x 2sin x 1 1( 1 cos x 2 ) 1 sin x .
sin x 1 (1 sin x )2 (1 cos x )2
1 cos x 2 ) 表示点(1, 1)与单位圆上的点连线的斜率 1 sin x 的平方,为(0, ) (
故f ( x ) [1,0]
例4 : 对于函数f ( x ) a sin x bx c(其中a , b R, c z ), 选取a , b, c的一组值计算f (1)与f ( 1), 所得出的正确 结果一定不正确的是( 2011福建) A.4, 6 B.3,1 C .2, 4 D.1, 2
| t | 2
必须的哟!
故f ( t )在[ 2, 2]上为减函数, f ( x )min
9 9 2 2; f ( x )max 2 2. 2 2
练1.(2011上海理8)函数y sin(
2
2
x )cos(
6
x )的最大值为
.
析 : y sin(
x )cos(
1 积化和差 : sin sin [sin( ) sin( )] 2
(完整版)三角函数的图像和性质教案
课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法 导入法、讲授法、归纳总结法学习内容与过程基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x定义域 R R{x |x ≠k π+错误!,k ∈Z }图象值域 [-1,1] [-1,1] R1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙ 特别满意 ⊙ 满意 ⊙ 一般 ⊙ 差 学生签字:课后练习:(具体见附件)课后小结教师签字:审阅签字: 时 间:教务主任签字: 时 间:龙文教育教务处。
三角函数图象和性质(总结的很全面不看后悔)
三角函数专题辅导课程安排制作者:程国辉专题辅导一三角函数的基本性质及解题思路课时:4-5学时 学习目标:1. 掌握常用公式的变换。
2. 明确一般三角函数化简求值的思路。
第一部分 三角函数公式 1、两角和与差的三角函数:cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β)tan(α-β)=(tan α-tan β)/(1+tan α·tan β2、倍角公式:sin(2α)=2sin α·cos α=2/(tan α+cot α)cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cot α)3、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-4、同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αααααα==第二部分:三角函数的化简、计算、证明的恒等变形的基本思路:一角二名三结构首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
三角函数和反三角函数图像性质、知识点总结
三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值2.角度制与弧度制设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°)角度与弧度的换算①360°=2π rad ②1°=π/180rad③1 rad=180°/π=57° 18′≈57.3°弧长公式 l a R =扇形的面积公式 12s lR =3.诱导公式:(奇变偶不变,符号看象限)所谓奇偶指是整数k 的奇偶性(k ·π/2+a )所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注:①:诱导公式应用原则:负化正、大化小,化到锐角为终了4. 三角函数的图像和性质:(其中z k ∈)①:三角函数x y sin = x y cos =x y tan = cot y x=函 数 图 象定义域 R R 2x k ππ≠+x k π≠值域 [-1,1][-1,1]RR周期 2π2πππ奇偶性 奇偶奇非奇非偶单 调 性 2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦[]2,2k k πππ-↑ []2,2k k πππ+↓,22k k ππππ⎡⎤-+↑⎢⎥⎣⎦[],k k πππ+↓对 称 性 :2x k ππ=+对称轴对称中心:(,0)k π:x k π=对称轴:对称中心(+,0)2k ππ:对称中心(,0)2k π零值点 πk x =2ππ+=k xπk x =2ππ+=k x最 值 点2ππ+=k x ,1max=y2ππ-=k x ,1min-=yπk x 2=,1max =y ;2y k ππ=+,1min -=y②:函数)sin(ϕω+=x A y 的图像与性质:(1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T5.三角函数尺度变换sin y x =经过变换变为sin y x ϖϕ=+A ()的步骤(先平移后伸缩): 1sin sin sin sin y x y x y x y x ϖϕϖϖϖϕϖϕ=−−−−−−−→=−−−−−→=+−−−−−−−→=+横坐标变为原来的倍向左或向右纵坐标不变平移个单位纵坐标变为原来的A 倍横坐标不变()A ()6.三角函数的对称变换:① )()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折) (对三角函数来说:图像关于x 轴对称)② )()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折) (对三角函数来说:图像关于y 轴对称)③ )()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④ )()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)7.反三角函数的图像与性质:名称y=arsinx y=arccosx y=arctanx y=arccotx定义y=sinx((,))22xππ∈-的反函数,叫做反正弦函数y=cosx((0,))xπ∈的反函数,叫做反余弦函数y=tanx((,))22xππ∈-的反函数,叫做反正切函数y=cotx((0,))xπ∈的反函数,叫做反余切函数性质图像定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性[]1,1-增函数[]1,1-减函数(),-∞+∞增函数(),-∞+∞减函数奇偶性arcsin()arcsinθθ-=-arccos()arccosθπθ-=-arctan()arctanθθ-=-arccot()arccotθπθ-=-周期性非周期函数非周期函数非周期函数非周期函数7.三角函数公式:(1)倒数关系: (2)平方关系:tan cot 1sin csc 1cos sec 1αααααα⋅=⋅=⋅= 222222sin cos 11tan sec 1cot csc αααααα+=+=+=(3)三角和与差公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ+=++=-++=- sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ-=--=+--=+(4)二倍角公式:()22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=-升幂公式 22221cos 2sin 1cos 22sin 2(1cos 21cos 22cos cos 2αααααααα-⎫=⎪⎧-=⎪⎪⇒⎬⎨++=⎪⎩⎪=⎪⎭降幂公式) (5)三角函数的和差化积公式 (6)三角函数的积化和差公式sin sin 2sin cos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅ [][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+-- 六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π
2π
sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π
2π
cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.
§4.3 三角函数的图象与性质
于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4
.
(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4
=
11 12
π-
2 3
π=
π 4
,得
T
=
π,
∵
T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设
z
=
ωx+φ,由
z
取
0,
π 2
3π ,π, ,2π
2
来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
第2讲 三角函数的诱导公式和三角函数的图像与性质(必修4)
三角函数的诱导公式和三角函数的图像与性质一、知识温故:诱导公式◆ 终边相同的角的三角函数值相等()()()zk , t an 2t an z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin轴对称关于与角角x αα-()()()ααααααt a n t a n -=-=--=-C o s C o s S i n S i n♦ 轴对称关于与角角y ααπ-()()()ααπααπααπt a n t a n -=--=-=-C o s C o s S i n S i n⌧ 关于原点对称与角角ααπ+()()()ααπααπααπt a n t a n =+-=+-=+C o sC o s S i n S i n⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2t an 22=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-Sin Cos Cos Sin ααπααπααπc o t2t a n 22-=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+S i nC o s C o s S i n 注:上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”周期问题◆()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A y三角函数的图像及性质(i )正弦函数、余弦函数的图像1. 函数sin ,cos y x y x ==的图像2. 函数sin ,cos y x y x ==的性质 正弦函数余弦函数 定义域 定义域 值域 值域 周期性 周期性 奇偶性 奇偶性 单调性单调性最大(小)值最大(小)值 对称性对称性3. 周期函数的定义:一般地,对于函数()f x ,如果存在一个非零数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四复习三(三角函数的图象和性质)
知识点1周期函数
对于函数f(x),如果存在一个不为零的常数T ,使得当x 取定义域内每一个值时, 都有 ,那么函数f(x)就叫做周期函数, 叫做这个函数的周期. 如果在周期函数f(x)的所有周期中存在一个 ,那么这个数就叫做f(x)的最小正周期.
典型例题:
例一:求下列函数的定义域 :x
x x f tan 1
sin 2)(-=
针对训练1.求下列函数的定义域(1) x x y x x f cos lg 36)2();sin 2lg()(2+-==
例二求下列函数的值域:(1) 求函数()cos22sin f x x x =+的最小值和最大值
(2)函数x x x x f cos sin 3sin )(2+=的最大值是 .
针对训练(1)求当函数2
3
21cos sin 2
--+=a x a x y 的最大值为1时a 的值.
(2)函数x x x x f cos sin 3sin )(2+=在区间]2
,4[π
π上的最大值是 .
例三、例2:说明由函数x y sin =的图象经过怎样的变换,得到下列函数的图象. (1))4
sin(π
+
=x y ; (2))4
3sin(5π
-
=x y
例四、1、已知函数f (x )=sin ⎝⎛⎭⎫ωx +π
3(ω>0)的最小正周期为π,则该函数的图象( ) A 关于直线x =π3对称 B 关于点⎝⎛⎭⎫π3,0对称 C 关于直线x =-π
6
对称 D 关于点⎝⎛⎭⎫π6,0对称 2、函数f(x)=sin(2x+
2
π
)图像中一条对称轴方程不可能为( ) A.x=4π B. x=2
π C. x=π D. x=23π
针对练习:1.已知函数R x x x x x f ∈-+=,32
5sin 35cos sin 5)(2
(1)求f(x)的最小正周期;(2)求f(x)的对称轴和对称中心.
针对训练:2.已知函数))(12
(sin 2)6
2sin(3)(2R x x x x f ∈-
+-
=
π
π
(1)求函数f(x)的最小
正周期;(2)求使函数f(x)取得最大值的x 的集合.
例五、1.函数)2
sin(
2cos )(x x x f ++=π
是( )
A.非奇非偶函数
B.仅有最小值的奇函数
C.仅有最大值的偶函数
D.既有最大值又有最小值的偶函数 2.已知函数)cos()sin()(ϕϕ+++=x x x f 是奇函数,则ϕ的一个取值是( ) A.0 B.4
π
-
C. 2
π
-
D.
π
针对练习:已知函数x
x x x f 2cos 4
sin 5cos 6)(24-+=求f(x)的定义域,判断它的奇偶性并求其
值域.
例六、(1)求函数)23
sin(x y -=π
的单调递减区间;(2)求)4
6tan(
3x
y -=π
的周期及单调区间.
针对练习:设R x ∈,函数)2
0,0(21)(cos )(2
π
ϕωϕω<<>-+=x x f .已知f(x)的最小正周期为π,且4
1
)8
(=
π
f .(1)求ω和ϕ的值;(2)求f(x)的单调增区间.
巩固提高:
1.下列函数中,既是偶函数又在),0(π上递增的是( ) A.y=tan|x|B.y=cos(-x)C.)2sin(π
-
=x y D.)2
cot(x
y = 2.已知函数R x x x x f ∈+=,sin )2cos 1()(2
,则f(x)是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为
2π的奇函数 D.最小正周期为2
π
的偶函数
3.函数1)cos (sin 2++=x x y 的最小正周期是( )
A.
2
π B. π C. 23π D. π2
4.在同一平面直角坐标系中,函数]2,0[)(232cos(ππ∈+=x x y 的图象和直线2
1
=y 的交点个数是( )
A.0
B.1
C.2
D.4 5.函数2
sin
2sin sin )(x
x x x f +=
是( )
A.以4π为周期的偶函数
B.以2π为周期的奇函数
C.以2π为周期的偶函数
D.以4π为周期的奇函数 6.将函数)sin(θ-=x y 的图象向右平移3
π
个单位长度得到新函数图象的一条对称轴是直线4
π
=x ,则θ的一个可能取值是( )
A.
125π B.125π- C.1211π D.12
11π- 7.若函数)0)(6cos(>-
=ωπ
ωx y 的最小正周期为
5
π
,则ω等于 .
8.函数)0,(1cos sin 2cos 2)(2
>∈++=ωωωωR x x x x x f 的最小正周期是2
π.
(1)求ω的值;(2)求函数f(x)的最大值,并求使f(x)取得最大值的x 的集合.
9.已知函数),0,0,0(cos sin )(R x b a x b x a x f ∈>>>+=ωωω的周期为π,
.3)4
(,2)(=≤π
f x f (1)求f(x)的表达式;(2)求函数f(x)的单调递增区间.。