2020重庆南岸区七年级上册数学期末试卷
2020-2021学年最新重庆市七年级上期末模拟数学试题及答案解析
七年级上期末考试数学试题一、选择题(本大题共12小题,共48.0分)1.下列计算正确的是()A. −(−3)=−3B. −|−3|=−3C. −(+3)=3D. −|−3|=3【答案】B【解析】解:A、−(−3)=3,错误;B、−|−3|=−3,正确;C、−(+3)=−3,错误;D、−|−3|=−3,错误;故选:B.根据绝对值、相反数的性质解答即可.此题考查绝对值、相反数,关键是根据绝对值、相反数的性质解答.2.下列运算正确的是()A. −3(x−1)=−3x−1B. −3(x−1)=−3x+1C. −3(x−1)=−3x−3D. −3(x−1)=−3x+3【答案】D【解析】解:根据去括号的方法可知−3(x−1)=−3x+3.故选:D.去括号时,要按照去括号法则,将括号前的−3与括号内每一项分别相乘,尤其需要注意,−3与−1相乘时,应该是+3而不是−3.本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是−3只与x 相乘,忘记乘以−1;二是−3与−1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.3.图中∠1和∠2是对顶角的是()A. B.C. D.【答案】A【解析】解:A、是对顶角,故此选项正确;B、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;C、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;D、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;故选:A.根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.本题考查了对顶角的定义,理解定义是关键.4.下列各组数中,数值相等的是()A. −23和(−2)3B. −22和(−2)2C. −23和−32D. −110和(−1)10【答案】A【解析】解:A、−23=−8,(−2)3=−8,相等,此选项符合题意;B、−22=−4,(−2)2=4,不相等,此选项不符合题意;C、−23=−8,−32=−9,不相等,此选项不符合题意;D、−110=−1,(−1)10=1,不相等,此选项不符合题意;故选:A.A、根据乘方的意义分别计算,再判断;B、根据乘方的意义分别计算,再判断;C、根据乘方的意义分别计算,再判断;D、根据乘方的意义分别计算,再判断.本题考查了有理数的乘方,解题的关键是注意−a n与(−a)n的区别和联系.5.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A. 55×103B. 5.5×104C. 5.5×105D. 0.55×105【答案】B【解析】解:55000用科学记数法可表示为:5.5×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.从正面观察如图所示的两个物体,看到的主视图是()A.B.C.D.【答案】C【解析】解:从正面看左边是一个矩形,右边是一个正方形,故选:C.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,据从正面看得到的图形是主视图.7.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选:D.根据垂线段的定义直接观察图形进行判断.过点B作线段AC所在直线的垂线段,是一条线段,且垂足应在线段AC所在的直线上.8.如图,l//m,∠1=115∘,∠2=95∘,则∠3=()A. 120∘B. 130∘C. 140∘D. 150∘【答案】D【解析】解:∵l//m,∠1=115∘,∴∠4=180∘−∠1=180∘−115∘=65∘,又∠5=180∘−∠2=180∘−95∘=85∘,∴∠3=∠4+∠5=65∘+85∘=150∘.故选:D.先根据两直线平行,同旁内角互补,求出∠4,再求出∠2的邻补角∠5,然后利用三角形外角性质即可求出∠3.本题利用平行线的性质和三角形外角的性质求解.9.已知2y−x=5,那么5(x−2y)2−3x+6y−60的值为()A. 10B. 40C. 80D. 210【答案】C【解析】解:∵5(x−2y)2−3x+6y−60=5(x−2y)2+3(2y−x)−60将2y−x=5代入5(x−2y)2+3(2y−x)−60,得5(x−2y)2+3(2y−x)−60=125+15−60=80.故选:C.代数式5(x−2y)2−3x+6y−60可以变形为5(x−2y)2+3(2y−x)−60,因此可将2y−x=5整体代入即可求出所求的结果.代数式中的字母表示的数没有明确告知,而是隐含在题设中,可以利用“整体代入法”求代数式的值.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A. 4B. 25C. 29D. 33【答案】C【解析】解:∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选:C.由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.本题考查二进制和十进制之间的转换.需注意观察所给例题及二进制数的特点.11. 如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n 个图案中有白色六边形地面砖( )块.A. 6+4(n +1)B. 6+4nC. 4n −2D. 4n +2【答案】D【解析】解:∵第一个图案中,有白色的是6个,后边是依次多4个. ∴第n 个图案中,是6+4(n −1)=4n +2. 故选:D .观察图形可知,第一个黑色地面砖由六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.本题考查图形的变化规律,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第一个图案的基础上,多一个图案,多4块白色地砖.12. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】解:∵100!=100×99×98×…×1,98!=98×97×…×1, 所以100!98!=100×99=9900. 故选:C .由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算100!98!的值. 本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共6小题,共24.0分) 13. 单项式−2x 2y 3的系数是______.【答案】−23【解析】解:∵单项式−2x 2y 3的数字因数是−23∴此单项式的系数是−23. 故答案为:−23.根据单项式系数的定义进行解答即可.本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.14. 将多项式2x 3y −4y 2+3x 2−x 按x 的降幂排列为:______. 【答案】2x 3+3x 2−x −4y 2【解析】解:多项式2x 3y −4y 2+3x 2−x 按x 的降幂排列为:2x 3+3x 2−x −4y 2. 故答案为:2x 3+3x 2−x −4y 2.根据降幂排列的定义,我们把多项式的各项按照x 的指数从大到小的顺序排列起来即可.此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.15. 若(x −2)2+|y +13|=0,则y x =______. 【答案】19【解析】解:∵(x −2)2+|y +13|=0,∴x −2=0,y +13=0, 解得x =2,y =−13. ∴y x =(−13)2=19.根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16. 如图,已知AE//BD ,∠1=130∘,∠2=30∘,则∠C =______度.【答案】20【解析】解:∵AE//BD ,∠1=130∘,∠2=30∘, ∴∠CBD =∠1=130∘. ∵∠BDC =∠2, ∴∠BDC =30∘.在△BCD 中,∠CBD =130∘,∠BDC =30∘, ∴∠C =180∘−130∘−30∘=20∘.根据平行线的性质和三角形的内角和定理求得.本题应用的知识点为:三角形的外角与内角的关系及两直线平行,同位角相等.17. 若|a|=5,|b|=3,且a +b <0,那么a −b =______. 【答案】−8或−2【解析】解:∵|a|=5,|b|=3, ∴a =±5,b =±3. 又∵a +b <0,∴a =−5,b =3或a =−5,b =−3. 当a =−5,b =3时,a −b =−5−3=−8; 当a =−5,b =−3时,a −b =−5+3=−2.故答案为:−8或−2.先依据绝对值的性质、有理数的加法法则求得a、b的值,然后代入计算即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.18.数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,−2)放入其中,就会得到32+(−2)+1=8.现将数对(−2,3)放入其中得到数m=______,再将数对(m,1)放入其中后,得到的数是______.【答案】8 66【解析】解:数对(−2,3)放入其中得到(−2)2+3+1=4+3+1=8;再将数对(8,1)放入其中得到82+1+1=64+1+1=66.故答案为:8;66.根据题中的新定义化简所求式子,计算即可得到结果.此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.三、计算题(本大题共4小题,共48.0分)19.计算:(1)−13−(1+0.5)×1÷(−4)(2)−3.375×12+4.375÷112−36×(118−112+13)(3)612×(−2)4÷[(−2)3−(−2)2−22]÷(−43)【答案】解:(1)−13−(1+0.5)×13÷(−4)=−1−32×13×(−14)=−1+1 8=−78;(2)−3.375×12+4.375÷112−36×(118−112+13)=−3.375×12+4.375×12−2+3−12=(−3.375+4.375)×12−2+3−12=1×12−2+3−12=12−2+3−12=1;(3)612×(−2)4÷[(−2)3−(−2)2−22]÷(−43)=132×16÷[(−8)−4−4]×(−34)=132×16÷(−16)×(−34)=132×16×(−116)×(−34)=398.【解析】(1)根据有理数的乘除法和减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.先化简,再求值.(1)5x2−(3y2+5x2)+(4y2+7xy),其中x=−1,y=1.(2)13x2−(3x2+3xy−35y2)+(83x2+3xy+25y2),其中x=12,y=2.【答案】解:(1)原式=5x2−3y2−5x2+4y2+7xy=y2+7xy,当x=−1,y=1时,原式=12+7×(−1)×1=1−7 =−6;(2)原式=13x2−3x2−3xy+35y2+83x2+3xy+25y2=y2,当y=2时,原式=22=4.【解析】(1)先把整式展开,再合并同类项,化为最简形式,再把x,y的值代入,即可求得结果.(2)先把整式展开,再合并同类项,化为最简形式,再把y的值代入,即可求得结果.本题主要考查整式的加减−化简求值,在做整式的混合运算时,要掌握公式法,单项式与多项式相乘以及合并同类项等知识点.21.自从我们有了用字母表示数,发现表达有关的数和数量关系更加简洁明了,从而有助于我们发现更多有趣的结论,请你按要求试一试(1)完善表格.(2)利用(1)中发现的结论,计算20012+19922−2×2001×1999【答案】(a+b)2 1 9 9 64 64【解析】解:(1)完善表格.故答案为:(a+b)2,1,9,9,64,64;(2)利用(1)中发现的结论,得20012+19922−2×2001×(1992+7)=(2001−1992)2−2×2001×7= 81−28014=−27933.(1)计算得到结果,填表即可;(2)原式变形后,利用得出的结论计算即可求出值.此题考查了列代数式,弄清题意是解本题的关键.22.某单位需以“挂号信”或“特快专递”方式向四所学校各寄一封信这四封信的重量分别是81g,90g,215g,352g根据这四所学校的地址及信件的重量范围,在邮局查得相关邮费标准如下:方式寄出呢?(2)这四封信分别以怎样的方式寄出最合算?请说明理由.【答案】解:(1)重量为90g的信以“挂号信”方式寄出,则邮寄费为5×0.8+3+0.5=7.5(元);以“特快专递”方式寄出,邮寄费为5+3+1=9(元).(2)∵这五封信的重量均小于1000g,∴若以“特快专递”方式寄出,邮寄费为5+3+1=9(元).由(1)得知,重量为90g的信以“挂号信”方式寄出,费用为7.5元小于9元;∵81g<90g,∴重量为81g的信以“挂号信”方式寄出小于9元;若重量为215g的信以“挂号信”方式寄出,则邮寄费为5×0.8+2×2+3+0.5=11.5(元)>9(元).∵352g>215g,∴重量为352g的信以“挂号信”方式寄出,费用均超过9元.因此,将这四封信的前两封以“挂号信”方式寄出,后两封以“特快专递”方式寄出最合算.【解析】根据表中提供的信息,对每种重量的信件的费用进行计算,选出最合理的方案.此题信息量大,涉及很多专业术语,阅读时要弄清题意,以免算错.注意理解“挂号信”和“特快专递”两种方式的收费原则.四、解答题(本大题共3小题,共30.0分)23.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中“+”表示成绩大于15秒.−0.87+1−1.20−0.7+0.6−0.4−0.1(2)这个小组男生的平均成绩是多少秒?【答案】解:(1)根据题意可知达标人数为6人,×100%=75%.达标率=68答:(1)这个小组男生的达标率为75%;(2)15+−0.87+1−1.2+0−0.7+0.6−0.4−0.18=15+−1.67 8=14.79125(秒).答:这个小组男生的平均成绩是14.79125秒.【解析】(1)根据非正数为达标成绩,求得达标人数,然后计算达标率即可;(2)根据题意列出算式,然后计算平均成绩即可.本题主要考查的是正数和负数,理解正负号的意义是解题的关键.24.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,BM=15cm,求线段MC的长.【答案】解:设AB=2xcm,BC=4xcm,CD=3xcm所以AD=AB+BC+CD=9xcm因为M是AD的中点所以AM=MD=12AD=4.5xcm所以BM=AM−AB=4.5x−2x=2.5xcm因为BM=15cm,所以2.5x=15,x=6故C M=MD−CD=4.5x−3x=1.5x=1.5×6=9cm【解析】由已知B,C两点把线段AD分成2:4:3三部分,所以设AB=2xcm,BC=4xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM的长.本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.25.问题情景:如图1,AB//CD,∠PAB=130∘,∠PCD=120∘,求∠APC的度数.(1)天天同学看过图形后立即口答出:∠APC=110∘,请你补全他的推理依据.如图2,过点P作PE//AB,∵AB//CD,∴PE//AB//CD.(______)∴∠A+∠APE=180∘.∠C+∠CPE=180∘.(______)∵∠PAB=130∘,∠PCD=120∘,∴∠APE=50∘,∠CPE=60∘∴∠APC=∠APE+∠CPE=110∘.(______)问题迁移:(2)如图3,AD//BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.【答案】平行于同一条直线的两条直线平行两直线平行同旁内角互补等量代换【解析】解:(1)过点P作PE//AB,∵AB//CD,∴PE//AB//CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180∘.∠C+∠CPE=180∘.(两直线平行同旁内角互补)∵∠PAB=130∘,∠PCD=120∘,∴∠APE=50∘,∠CPE=60∘∴∠APC=∠APE+∠CPE=110∘.(等量代换)故答案为:平行于同一条直线的两条直线平行;两直线平行同旁内角互补;等量代换.(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE//AD交CD于E,∵AD//BC,∴AD//PE//BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,过P作PE//AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β−∠α;当P在AB延长线时,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α−∠β.(1)根据平行线的判定与性质填写即可;(2)过P作PE//AD交CD于E,推出AD//PE//BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形(分两种情况①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.。
重庆市七年级上册数学期末试卷及答案-百度文库
重庆市七年级上册数学期末试卷及答案-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯4.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④5.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个6.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 7.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限9.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 11.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 19.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 20.16的算术平方根是 .21.若a a -=,则a 应满足的条件为______. 22.若2a +1与212a +互为相反数,则a =_____. 23.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.24.当12点20分时,钟表上时针和分针所成的角度是___________.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.27.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.28.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.29.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由. 30.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.31.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.32.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x 2x x >x 2,不合题意; ③x =12x x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.A解析:A 【解析】 【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.5.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.6.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.C解析:C 【解析】 【分析】直接利用简单组合体的三视图进而判断得出答案. 【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意. 故选:C . 【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.9.B解析:B 【解析】 ①若5x=3,则x=35, 故本选项错误; ②若a=b ,则-a=-b ,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则n m=1, 故本选项错误.故选B. 10.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6.故选:C .【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.16.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,解析:83n -【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.19.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 21.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.22.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.23.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.24.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t个单位长度,当t=4时,6t=24,为MN长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健27.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒ 则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.28.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.31.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.32.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
重庆市七年级上册数学期末试卷(带答案)-百度文库
重庆市七年级上册数学期末试卷(带答案)-百度文库 一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒5.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73 D .5或736.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查7.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 8.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m -12.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<0二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.已知单项式245225n m xy x y ++与是同类项,则m n =______. 16.若方程11222m x x --=++有增根,则m 的值为____. 17.15030'的补角是______.18.16的算术平方根是 .19.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.20.已知二元一次方程2x-3y=5的一组解为x a y b=⎧⎨=⎩,则2a-3b+3=______. 21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、解答题25.如图,OC 是AOB ∠内一条射线,且AOC BOC ∠∠<,OE 是AOB ∠的平分线,OD 是AOC ∠的角平分线,则(1)若108,36,AOB AOC ∠=︒∠=︒则OC 是DOE ∠平分线,请说明理由.(2)小明由第(1)题得出猜想:当3AOB AOC ∠=∠时,OC 一定平分,DOE ∠你觉得小明的猜想正确吗?若正确,请说明理由;若不正确,判断当AOB ∠和AOC ∠满足什么条件时OC 一定平分,DOE ∠并说明理由.26.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.27.计算:﹣0.52+14﹣|22﹣4| 28.如图,已知点C 为AB 上的一点,12AC =,23CB AC =,点D 是AC 的中点,点E 是AB 的中点,求DE 的长29.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A .1.5小时以上;B .1~1.5小时;C .0.5~1小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.30.先化简,再求值:()()223321325x x x x --+---,其中1x =-. 四、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.33.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).5.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ),解得:m =﹣1,故选:A .【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.6.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B .【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.7.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 8.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.9.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.18.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4 ∴16的算术平方根为4 解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 19.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100.故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.21.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案. 【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°. 【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、解答题25.(1)OC 是角平分线;(2)正确,理由见解析.【解析】【分析】(1)根据108,36,AOB AOC ∠=︒∠=︒分别求出,,AOE COE DOC ∠∠∠的度数,进而得出答案;(2)设AOC x ∠=,进而得出3,AOB x ∠= 分别求出COE DOC ∠∠、的度数,进而得出猜想是否正确.【详解】解:(1)OE 平分AOB ∠,108AOB ∠=︒ ∴1542AOE AOB ∠=∠=︒ ∴18COE AOE AOC ∠=∠-∠=︒OD 平分AOC ∠,36AOC ∠=︒ ∴1182DOC AOC ∠=∠=︒ COE DOC ∠=∠∴OC 是DOE ∠的平分线.(2)正确,理由如下设AOC x ∠=3AOB AOC ∠=∠3AOB x ∴∠=OE 平分AOB ∠1 1.52AOE AOB x ∴∠=∠= 2x COE AOE AOC ∴∠=∠-∠= OD 平分AOC ∠122x DOC AOC ∴∠=∠= COE DOC ∠=∠OC 是DOE ∠的平分线.【点睛】本题考查的是角度中的角平分线的问题,解题关键是根据题意得出角度之间的关系即可.26.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】 解:(1)设这件商品的成本价为x 元,由题意得,x (1+50%)×80%=180.解得:x =150,答:这件商品的成本价是150元;(2)利润率=180150150-×100%=20%. 答:此件商品的利润率是20%.【点睛】 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.27.【解析】【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.28.4【解析】【分析】 根据已知条件可求出28,203CB AC AB ===,再根据点D 是AC 的中点,点E 是AB 的中点,求出,DC AE ,由图可得出DE AE AD =-,计算求解即可.【详解】解:∵12AC =,23CB AC =∴28,203CB AC AB === ∵点D 是AC 的中点,点E 是AB 的中点∴10,6AE AD DC ===∴1064DE AE AD =-=-=.【点睛】本题考查的知识点是与线段中点有关的计算,能够根据图形找出相关线段间的数量关系是解此题的关键.29.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A 类,C 类,D 类的人数得到B 类人数,即可补全图形;(3)用3000乘以C 、D 类人数占比即可得出答案.【详解】解:(1)读图可得:A 类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%; 则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下.【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.30.23213x x -+-,-27【解析】【分析】先先去括号,再合并同类项得到最简结果,然后把x 的值代入计算即可求出值.【详解】解:原式=2229636153213x x x x x x -+-++=-+-当x=-1时,原式=-3-21-3=-27【点睛】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】 (1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】 (1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+;如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.33.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
重庆市七年级(上)期末数学试卷含答案
重庆市七年级(上)期末数学试卷含答案七年级(上)期末数学试卷题号⼀⼆三四总分得分⼀、选择题(本⼤题共12⼩题,共36.0分)1.以下四个数中,最⼤的数是( )A. 0B.C. 1D.622.如图是由6个⼤⼩相同的⼩⽴⽅体搭成的⼏何体,从正⾯看到的图形是( )A.B.C.D.3.下列运算正确的是( )A. B. C. D.x2+x3=x5x2?x3=x6(3x3)2=6x6x6÷x3=x3 4.某校为了了解初⼀年级1200名学⽣的视⼒情况,从中随机抽取了300名学⽣进⾏视⼒情况的调查,下列说法错误的是( )A. 总体是1200名学⽣的视⼒情况B. 样本容量是300C. 样本是抽取的300名学⽣D. 个体是每名学⽣的视⼒情况5.如图,点A位于点O的( )A. 南偏东⽅向上B. 东偏南⽅向上25°65°C. 南偏东⽅向上D. 南偏东⽅向上65°55°6.下列调查中,最适合全⾯调查普查的是()( )A. 对某班全体同学出⽣⽇期的调查B. 对重庆市七年级学⽣使⽤⼿机情况的调查C. 对嘉陵江重庆段⽔质情况的调查D. 对⼀批⽜奶中某种添加剂的含量检测7.下列说法正确的是( )A. 射线AB 和射线BA 是同⼀条射线B. 六边形的对⾓线⼀共有9条C. 两点之间,直线最短D. 连接两点的线段叫两点间的距离8.⼩蓉在某⽉的⽇历上提出了如图所⽰的四个数a 、b 、c 、d ,则这四个数的和可能是( )A. 24B. 27C. 28D. 309.甲队有100⼈,⼄队有170⼈,在总⼈数不变的情况下,如果要求甲队⼈数是⼄队⼈数的,应从甲队调多少⼈去⼄队,如果设应从甲队调x ⼈到⼄队,列出的⽅程12正确的是( )A. B. 100+x =12(170?x)12(100+x)=170?x C. D. 100?x =12(170+x)12(100?x)=170+x 10.下列图形都是由相同⼤⼩的⽅块按照⼀定规律组成的.其中第个图形中⼀共有4①个⽅块,第个图形中⼀共有7个⽅块,第个图形中⼀共有10个⽅块,,照②③…此规律排列下去,第个图形中⽅块的个数为⑧( )A. 22B. 25C. 28D. 3111.按如图所⽰的运算程序,能输出的结果为20的是( )A. ,B. ,x =2y =2x =?3y =2C. , D. ,x =?3y =?2x =3y =?212.设⼀列数、、、、中任意三个相邻数之和都是20,已知,a 1a 2a 3…a 2014…a 2=2x ,,那么a 18=13a 65=6?x a 2020=( )A. 2B. 3C. 4D. 13⼆、填空题(本⼤题共14⼩题,共42.0分)13.实验表明,⼈体内某种细胞的形状可近似地看作球体,它的直径约为,数字⽤科学记数法表⽰为______.0.00000156m 0.0000015614.单项式的系数是______.?2x 2y 315.如图是正⽅体的表⾯展开图,则与“细”字相对的字是______.16.若a 与b 互为相反数,c 与d 互为倒数,则______.2021a +cd +2021b =17.若⽅程是关于x 的⼀元⼀次⽅程,则x 的值为______.(1?a)x a?3+a =018.若,,则______2021m =62021n =420212m?n =19.今天下午的数学考试将在4:30结束,此时时针与分针的夹⾓为______度.20.九章算术中有⼀道阐述“盈不⾜术”的问题,原⽂如下:今有⼈共买物,⼈出《》⼋,盈三;⼈出七,不⾜四,问⼈数,物价各⼏何?译⽂为:现有⼀些⼈共同买⼀个物品,每⼈出8元,还盈余3元;每⼈出7元,则还差4元,那么这个物品的价格是______元.21.如图,⼀纸⽚沿直线AB 折成的V 字形图案,已知图中,则的度数______.∠1=62°∠2=22.若关于x 的⽅程有⽆数解,则ab 的值为______.3x 2+ax +23=b 23.已知有理数a 、b 、c 在数轴上的对应点如图所⽰且,化简:|a|>|b|______.|c|?|a +b|?|c?b|=24.若,则的值为______.x 2+2x?5=0x 3+3x 2?3x?525.如图,将⼀根绳⼦对折后⽤线段AB 表⽰,现从P 处将绳⼦剪断,剪断后的各段绳⼦中最长的⼀段为60cm ,若,则这条绳⼦的原AP =23PB 长为______cm .26.某商店新进⼀批衬⾐和数对暖瓶⼀对为2件,暖瓶的对数正好是衬⾐件数的⼀半,()每件衬⾐的进价是40元,每对暖瓶的进价是60元暖瓶成对出售,商店将这批物()品以⾼出进价的价格售出,最后留下了17件物品未卖出,这时,商店发现卖10%出物品的总售价等于所有货物总进价的,则最初购进这批暖瓶______对.90%三、计算题(本⼤题共3⼩题,共25.0分)27.(1)?12019+(23)?2+(π?3)0+|14?1|(2)?112÷3+36×(59+16?712)28.(1)2a 2?4a 4b 3+(?2a 2b )3?a 5÷a 3(2)x(y?1)?(x?y )2?(y?x )3÷(x?y )429.列⼀元⼀次⽅程解决问题()2018年末,“诺如”病毒突现⼭城,某药店计划购进A 、B 两种瓶装的免洗消毒液共1200瓶这两种消毒液的进价,售价如下表所⽰:A 种B 种进价元瓶(/)2040售价元瓶(/)3055要使该商场售完这批消毒液的利润恰好为总进价的,A 种消毒液应购进多少45%瓶?四、解答题(本⼤题共6⼩题,共47.0分)30.(1)x?6=8?4(x +1)(2)2x?0.30.5?x +0.40.3=131.,其中,.2x 2?[?3(?23x 2+xy)?2xy ?y 2]?y(3x +xy )2x =12y =?132.如图,已知B 是线段AC 的中点,D 是线段CE 的中点,若,,求线段BD 的长.AB =4CE =34AC33.2018是我国改⾰开放四⼗周年,某校政治组采取随机抽样的⽅法对该校学⽣进⾏了“改⾰开放四⼗周年成果”的问卷调查,调查结果分别为A“⾮常了解”、B“⽐较了解”、C“基本了解”和D“不了解”四个等级.⽼师根据调查结果绘制了如下统计图,请根据图中提供的信息解答下列问题(1)本次参与调查问卷的学⽣有______⼈;扇形统计图中“基本了解”部分所对应的扇形圆⼼⾓是______度;(2)请补全条形统计图;(3)估计该校2000名学⽣中对“改⾰开放四⼗周年成果”不了解的⼈数约有多少?()写出必要的计算过程(2)34.如图,某校初⼀班组织学⽣从A地到B地步⾏野营,匀速前进,该班师⽣共56⼈,每8⼈排成⼀排,相邻两排之间间隔1⽶,途中经过⼀座桥CD,队伍从开始上桥到刚好完全离开桥共⽤了150秒,当队尾刚好⾛到桥的⼀端D处时,排在队1.5尾的班长发现⼩萍还在桥的另⼀端C处拍照,于是以队伍倍的速度返回去找⼩萍,同时队伍仍按原速度继续前⾏,30秒后,⼩萍发现游班长返回来找他,便⽴2.1/刻以⽶秒的速度向游班长⽅向⾏进,⼩萍⾏进40秒后与游班长相遇,相遇后两⼈以队伍2倍的速度前⾏追赶队伍.(1)(2)初⼀班的队伍长度为______⽶;求班级队伍⾏进的速度列⼀元⼀次⽅程解决问题;(2)()请问:班长从D 处返回找⼩萍开始到他们两⼈追上队⾸的刘⽼师⼀共⽤了多少(3)时间?35.如图,平⾯上顺时针排列射线OA 、OB 、OC 、OD ,,在∠BOC =90°∠AOD ∠BOC外部且为钝⾓,::8,射线OM 、ON 分别平分、题∠AOB ∠COD =7∠AOC ∠AOD.(⽬中所出现的⾓均⼩于且⼤于180°0°)若,则______,______;(1)∠AOD =120°∠AOM =∠CON =当的⼤⼩发⽣改变时,和之间是否存在着固定的数量关系?(2)∠AOD ∠AOM 7∠CON 如果存在、求出它们之间的数量关系;如果不存在,请说明理由;在的条件下,将绕点O 以每秒的速度顺时针旋转得到、(3)(1)∠AOB 6°∠A 1O B 1(OA OB 的对应边分别是、,同时将绕点O 以每秒的速度顺时针旋转O A 1O B 1)∠COD 2°得到、OD 的对应边分别是、,当第2次与重合时结束,∠C 1O D 1(OC O C 1O D 1)O A 1O C 1若旋转时间为t 秒,求出t 为何值时,?∠A 1O C 1=12∠B 1O D 1。
2019-2020学年重庆市南岸区七年级(上)期末数学试卷(含解析)
2019-2020学年重庆市南岸区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题:(本大题共12个小题,每小题4分,共48分)1.计算3﹣4,结果是()A.﹣1 B.﹣7 C.1 D.72.若海平面以上1045米,记作+1045米,则海平面以下155米,记作()A.﹣1200米B.﹣155米C.155米D.1200米3.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.4.下列图形中,()是正方体的展开图.A.B.C.D.5.重庆拥有长江索道、洪崖洞等网红景点,成为中国内地热门旅游地之一.今年国庆节期间,重庆共接待境内外游客接近38600000人次,数据38600000用科学记数法可表示为()A.386×105B.38.6×106C.3.86×107D.3.86×1066.下列计算中,正确的是()A.x+y=xy B.7x﹣3x=4x2C.﹣x2﹣x2=0 D.6xy﹣xy=5xy7.已知a+b=,则代数式2a+2b﹣3的值是()A.2 B.﹣2 C.﹣4 D.﹣38.如图,∠AOB=∠COD=90°,且OE平分∠AOD,以下等式不成立的是()A.∠AOC=∠BOD B.∠AOE=∠EOD C.∠EOC=∠EOB D.∠AOD=∠COE9.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°10.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①11.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人?设有x人,根据题意可列方程为()A.﹣2=B.+2=C.+2=D.﹣2=12.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a,b,c,d的值,说法错误的是()A.a=0 B.b=1 C.c=2 D.d=3二、填空题:(本大题6个小题,每小题4分,满分24分)13.计算:|﹣2|+1=.14.如图是某个几何体的三视图,该几何体是.15.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.17.一列数a1,a2,a3,a4,a5,a6,…,已知第1个数a1=3,第6个数a6=6,且任意三个相邻的数之和为7,则第2020个数a2020的值是.18.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P,越野车装满油从起点A出发,到储油点P时从车中取出部分油放进P储油点,然后返回出发点A,加满油后再开往P,到P储油点时取出储存的所有油放在车上,再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是千米.三、解答题:(本大题共7个小题,每小题10分,共70分)19.(10分)计算:(1)6﹣2﹣(﹣1.5)(2)﹣(3﹣5)×32÷(﹣1)320.(10分)先化简,再求值:(﹣x2+3﹣4x)+(5x﹣3+2x2),其中x=﹣2.21.(10分)解方程:(1)2(x+8)=x﹣1 (2)﹣1=22.(10分)某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如图所示的统计图(不完整).请根据图中信息回答问题:(1)求m,n的值;(2)补全条形统计图.23.(10分)有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:2+3﹣5﹣9;(2)若2÷3×5 9=30,请推算横线上的符号;(3)在“2 3 5+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.24.(10分)在2020年元月的日历表中,某一天对应的号数的上、下、左、右四个数的和为m.(1)如果某一天是a号,请用含a的代数式把m表示出来;(2)m的值可能是96吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由;(3)m的值可能是28吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由.星期日星期一星期二星期三星期四星期五星期六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 3125.(10分)小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80m/min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160m/min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180m/min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?四、解答题:(本大题1个小题,共8分)26.(8分)已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一、选择题1.【解答】解:3﹣4=﹣1.故选:A.2.【解答】解:若海平面以上1045米,记作+1045米,则海平面以下155米,记作﹣155米.故选:B.3.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.4.【解答】解:A、中间4个正方形是“田字形”,不是正方体展开图;B、折叠不是正方体展开图;C、符合正方体展开图;D、不符合正方体展开图;故选:C.5.【解答】解:将38600000用科学记数法表示为3.86×107.故选:C.6.【解答】解:A.x与y不是同类项,所以不能合并,故本选项不合题意;B.7x﹣3x=4x,故本选项不合题意;C.﹣x2﹣x2=﹣2x2,故本选项不合题意;D.6xy﹣xy=5xy,正确,故本选项符合题意.故选:D.7.【解答】解:∵2a+2b﹣3=2(a+b)﹣3,∴将a+b=代入得:2×﹣3=﹣2故选:B.8.【解答】解:A.∵∠AOB=∠COD=90°,∴∠AOC=∠BOD(同角的余角相等);B.∵OE平分∠AOD,∴∠COE=∠BOE,又∵∠AOC=∠BOD,∴∠COE﹣∠AOC=∠BOD﹣∠BOD,∴∠AOE=∠EOD;C.∵OE平分∠AOD,∴∠COE=∠BOE;D.没有条件能证明∠AOD与∠COE相等.故选:D.9.【解答】解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.10.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.11.【解答】解:设有x人,依题意,得:+2=.故选:C.12.【解答】解:根据题意,将表格中的数据填写完整如图所示:因此,a=0,b=1,c=1,d=3,故选:C.二、填空题13.【解答】解:原式=2+1=3.故答案为:3.14.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.15.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣116.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为200017.【解答】解:∵第1个数a1=3,第6个数a6=6,且任意三个相邻的数之和为7,∴a1+a2+a3=7,a1=a4,a3=a6,∴3+a2+6=7,∴a2=﹣2,∵2020÷3=673…1,∴第2020个数a2020的值是3,故答案为:3.18.【解答】解:设点P与点A距离为100a,每次装满汽油最多只能驶600千米,则100千米的油耗为箱,则第一次到达点P时,用油箱,最多取出的1﹣2×=(1﹣a)箱油,车第二次到达点P时,还有(1﹣)箱油,加上点P的油为1﹣+1﹣a,这些油应该小于等于1箱油,即1﹣+1﹣a≤1,解得:a≥2,当a=2时,即AP=200,当第一次到达点P时,考虑到车正好返回,往返共400千米,最多留下200千米的油;当第二次到达点P时,还有400千米的油,加上点P存有的200千米的油,共计600千米的油,这样最大距离为200+600=800,故答案为800.三、解答题19.【解答】解:(1)6﹣2﹣(﹣1.5)=6+(﹣2)+1.5=5.5;(2)﹣(3﹣5)×32÷(﹣1)3=﹣(﹣2)×9÷(﹣1)=﹣2×9÷1=﹣18.20.【解答】解:(﹣x2+3﹣4x)+(5x﹣3+2x2)=﹣x2+3﹣4x+5x﹣3+2x2=x2+x,当x=﹣2时,原式=(﹣2)2﹣2=2.21.【解答】解:(1)去括号,可得:2x+16=x﹣1,移项,合并同类项,可得:x=﹣17.(2)去分母,可得:2(2y﹣1)﹣6=3(4y﹣3),去括号,可得:4y﹣2﹣6=12y﹣9,移项,合并同类项,可得:﹣8y=﹣1,系数化为1,可得:y=.22.【解答】解:(1)∵被调查的总人数为12÷20%=60(人),∴m=×100%=25%,n=×100%=15%;(2)D类别人数为60×30%=18(人),E类别人数为60﹣(12+15+9+18)=6(人),补全图形如下:23.【解答】解:(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”;(3)2﹣3×5+9=﹣4,故答案为:﹣×.24.【解答】解:(1)若某一天是a号,则这一天上、下,左、右四天分别为a﹣7,a+7,a﹣1,a+1,∴m=a﹣7+a+7+a﹣1+a+1=4a,(2)根据题意可得:a﹣7+a+7+a﹣1+a+1=96,∴a=24,∴这一天上、下,左、右四天分别为17,31,23,25;∴m的值可能为96;,(3)根据题意可得:a﹣7+a+7+a﹣1+a+1=28∴a=7,∵a﹣7=0,∴a=7不合题意,∴m的值不可能为28.25.【解答】解:(1)设爸爸追上小明时距离学校xm,依题意,得:﹣=5,解得:x=200.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为1000÷80=(min),爸爸的速度为1000÷(﹣5)=(m/min).答:爸爸的速度为m/min.(3)设爸爸需要ymin可追上小明,依题意,得:180y=80(y+5),解得:y=4,∴30+5+4+4=43.答:爸爸返回家的时间是7:43.四、解答题26.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=3;或如备用图3,AC=4,MC=2,MN=MC+CN=2+1=3.答:MN的长为3。
2020-2021重庆市初一数学上期末试题(含答案)
2020-2021重庆市初一数学上期末试题(含答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )3.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+4.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .5 5.-4的绝对值是( ) A .4B .C .-4D .6.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 8.在下列变形中,错误的是( ) A .(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5 B .(37﹣3)﹣(37﹣5)=37﹣3﹣37﹣5 C .a +(b ﹣c )=a +b ﹣c D .a ﹣(b +c )=a ﹣b ﹣c9.如图所示,C 、D 是线段AB 上两点,若AC=3cm ,C 为AD 中点且AB=10cm ,则DB=( )A .4cmB .5cmC .6cmD .7cm10.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( ) A .2B .2或2.25C .2.5D .2或2.511.若a =2,|b |=5,则a +b =( ) A .-3 B .7 C .-7 D .-3或7 12.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n 个图有____颗棋子(用含n 的代数式示).14.观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来: 15.如图,数轴上A 、B 两点之间的距离AB =24,有一根木棒MN ,MN 在数轴上移动,当N 移动到与A 、B 其中一个端点重合时,点M 所对应的数为9,当N 移动到线段AB 的中点时,点M 所对应的数为_____.16.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 . 17.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.18.已知A ,B ,C 三点在同一条直线上,AB=8,BC=6,M 、N 分别是AB 、BC 的中点,则线段MN 的长是_______.19.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n20.化简:()()423a b a b ---=_________.三、解答题21.一个角的补角比它的余角的2倍大20゜,求这个角的度数. 22.计算题(1)(3)(5)-+-(2)11112+436⎛⎫⨯-⎪⎝⎭23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0. (2)化简:| b -c|+|a +b|-|c -a|24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案 甲 全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元? 25.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元. (1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为 元.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案. 【详解】∵x 是3-的相反数,y 5=, ∴x=3,y=±5, 当x=3,y=5时,x+y=8, 当x=3,y=-5时,x+y=-2, 故选C. 【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.3.C解析:C【解析】【分析】根据a,b在数轴的位置,即可得出a,b的符号,进而得出选项中的符号.【详解】根据数轴可知-1<a<0,1<b<2,a b>0,故此选项是正数,不符合要求,故此选项错误;∴A.+->0,故此选项是正数,不符合要求,故此选项错误;B.aba b<0,故此选项不是正数,符合要求,故此选项正确;C.--+>0,故此选项是正数,不符合要求,故此选项错误.D.a b故选:C.【点睛】此题考查有理数的大小比较以及数轴性质,根据已知得出a,b取值范围是解题关键.4.C解析:C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.5.A解析:A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 6.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.7.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.8.B解析:B【解析】【分析】根据去括号法则:若括号前为正号直接去括号,若括号前是负号,去括号时要将括号中的每一项都变号,即可解题.【详解】解:A、C、D均正确,其中B项应为,(37﹣3)﹣(37﹣5)=37﹣3﹣37+5故错误项选B.【点睛】本题考查了去括号法则,属于简单题,熟悉去括号法则是解题关键. 9.A解析:A【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.【详解】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.10.D解析:D【解析】试题分析:应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.解:设经过t小时两车相距50千米,根据题意,得120t+80t=450﹣50,或120t+80t=450+50,解得t=2,或t=2.5.答:经过2小时或2.5小时相距50千米.故选D.考点:一元一次方程的应用.11.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.12.D解析:D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题13.n(n+2)﹣1【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系找到规律利用规律求解即可【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×解析:[n(n+2)﹣1].【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子.故答案为:34;[n(n+2)﹣1].【点睛】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.【解析】【分析】根据题意分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律用n 表示可得答案【详解】根据题意分析可得:解析:()221121n n n n n +-=++=+【解析】 【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案. 【详解】 根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1; 故答案为(n+1)2-n 2=2n+1.15.21或﹣3【解析】【分析】设MN 的长度为m 当点N 与点A 重合时此时点M 对应的数为9则点N 对应的数为m+9即可求解;当点N 与点M 重合时同理可得点M 对应的数为﹣3即可求解【详解】设MN 的长度为m 当点N 与点解析:21或﹣3. 【解析】 【分析】设MN 的长度为m ,当点N 与点A 重合时,此时点M 对应的数为9,则点N 对应的数为m+9,即可求解;当点N 与点M 重合时,同理可得,点M 对应的数为﹣3,即可求解. 【详解】设MN 的长度为m ,当点N 与点A 重合时,此时点M 对应的数为9,则点N 对应的数为m+9, 当点N 到AB 中点时,点N 此时对应的数为:m+9+12=m+21, 则点M 对应的数为:m+21﹣m =21; 当点N 与点M 重合时, 同理可得,点M 对应的数为﹣3, 故答案为:21或﹣3. 【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.﹣5x+3y 【解析】【分析】先根据题意求出多项式A 然后再求A-B 【详解】解:由题意可知:A+B=x-y∴A=(x-y )-(3x-2y )=-2x+y∴A -B=(-2x+y )-(3x-2y )=-5x+3解析:﹣5x+3y . 【解析】【分析】先根据题意求出多项式A,然后再求A-B.【详解】解:由题意可知:A+B=x-y,∴A=(x-y)-(3x-2y)=-2x+y,∴A-B=(-2x+y)-(3x-2y)=-5x+3y.故答案为:-5x+3y.【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.17.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式多项式不含x2项即k-1=0k=1故k的值是1【点睛】本题考査解析:【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.18.1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论根据线段中点的定义利用线段的和差关系求出MN的长即可得答案【详解】①如图当点C在线段AB上时∵MN分别是ABBC的中点A解析:1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论,根据线段中点的定义,利用线段的和差关系求出MN的长即可得答案.【详解】①如图,当点C在线段AB上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3,∴MN=BM-BN=1,②如图,当点C在线段AB的延长线上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3, ∴MN=BM+BN=7∴MN 的长是1或7,故答案为:1或7【点睛】本题考查线段中点的定义及线段的计算,熟练掌握中点的定义并灵活运用分类讨论的思想是解题关键.19.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:故剪n 次时共有4+3(n-1)=3n+1考点:规律型:图形的变化类解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1.试题解析:故剪n 次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.20.2a-b 【解析】【分析】直接利用整式的加减运算法则计算得出答案【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b 故答案为:2a-b 【点睛】本题考查整式的加减运算正确掌握相关运解析:2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为: 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.三、解答题21.这个角的度数是20°. 【解析】试题分析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;根据题意列出方程,再解方程即可,试题解析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;由题意,得:(180)2(90)20.x x ---=解得:20.x =答:这个角的度数是20.22.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425436⎛⎫⨯-=+-=⎪⎝⎭. 【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.23.(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c ,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c ,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.24.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x 元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元); 乙商场实际付款:290﹣2×50+270﹣2×50=360(元); 故答案为:336,360;(2)设这条裤子的标价是x 元,由题意得:(380+x )×60%=380﹣3×50+x ﹣3×50, 解得:x =370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.25.(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)①根据第一问的结论设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105−y)支,求出方程的解不是整数则说明算错了;②设单价为21元的钢笔为z支,单价为25元的毛笔则为(105−y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.【详解】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x=21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为2元或6元.【点睛】本题考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用及二元一次不定方程的运用,在解答时根据题意等量关系建立方程是关键.。
重庆市七年级上期末数学试卷解析版
2020-2021学年重庆市七年级上期末数学试卷一.选择题(共12小题,满分48分,每小题4分)
1.(4分)﹣2020的绝对值是()
A.2020B.﹣2020C.−
1
2020D.
1
2020
解:根据绝对值的概念可知:|﹣2020|=2020,
故选:A.
2.(4分)如图是某兴趣社制作的模型,则它的俯视图是()
A.B.C.D.
解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.
3.(4分)下列运算正确的是()
A.23=6B.﹣8a﹣8a=0
C.﹣42=﹣16D.﹣5xy+2xy=﹣3
解:A、23=8,错误,选项不符合题意;
B、﹣8a﹣8a=﹣16a,错误,选项不符合题意;
C、﹣42=﹣16,正确,选项符合题意;
D、﹣5xy+2xy=﹣3xy,错误,选项不符合题意;
故选:C.
4.(4分)若单项式−1
3
xy3z2的系数、次数分别是a、b,则()
A.a=1
3,b=6B.a=−
1
3,b=6C.a=
1
3,b=7D.a=−
1
3,b=7
解:单项式−1
3
xy3z2的系数、次数分别是a、b,
则a=−1
3,b=6.
故选:B.
第1 页共11 页。
重庆市南岸区2020-202学年第一学期七年级上册期末考试数学试题
20. 如图,已知点 A,B,C,利用尺规,按要求作图: (1)作线段 AB,AC,过 B,C 作射线 BQ;在射线 CQ 上截取 CD=BC,在射线 DQ 上截取 DE=BD; (2)连接 AE,在线段 AE 上截取 AF=AC,作直线 AD、线段 DF; (3)比较 BC 与 DF 的大小,直接写出结果
注意事项:
1.试题卷上各题的答案用钢笔或圆珠笔书写在答.题.卡.上,不得在试题卷上直接作答; 2.答题前认真阅读答.题.卡.上的注意事项; 3.作图(包括作辅助线)请一律用 2.B.铅.笔. 完成; 4.考试结束,由监考人员将试题卷和答.题.卡.一并收回. 一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A,B,
25. 小明和小亮是同学,同住在一个小区. 学校门前是一条东西大道. 沿路向东是图书馆,向西是小明 和小亮家所在的小区. 一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆:
13. 一元一次方程 2x 1 3 的解是 x __________. 14. 若 a 5, b 3 ,且 a b 0 ,则 ab _______ . 15. 某中学七年级学生的平均体重是 44kg ,下表给出了 6 名学生的体重情况,最重和最轻的同学体重
相差_________ kg .
D. 9 4
D. D. 球
C . 32 与 32
D . 23 与 (2)3
9. 定义 a※b a2 (b 1) ,例如 3※5 32 (5 1) 9 4 9 ,则 (3)※4 的结果为 4
A. 3
B. 3
5
C.
4
9
D.
4
10. 如图,点 A,B,C 在数轴上,他们分别对应的有理数是 a,b,c,
重庆市七年级上册数学期末试卷(带答案)-百度文库
重庆市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104C .3.84×105D .3.84×1063.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .66.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .08.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×29.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,5 10.如果一个有理数的绝对值是6,那么这个数一定是()A.6B.6-C.6-或6D.无法确定11.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=112.下列各数中,比73-小的数是()A.3-B.2-C.0D.1-13.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人14.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱15.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个二、填空题16.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.17.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.18.多项式2x3﹣x2y2﹣1是_____次_____项式.19.已知x=2是方程(a+1)x-4a=0的解,则a的值是 _______.20.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.21.单项式22ab -的系数是________.22.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________23.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.24.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.25.计算:()222a -=____;()2323x x ⋅-=_____.26.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)27.﹣225ab π是_____次单项式,系数是_____.28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.30.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________. 三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.33.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.34.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?35.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值36.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.37.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.5.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.6.B解析:B 【解析】 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.7.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.8.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.9.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6或6.故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.13.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.14.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.15.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题16.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn =17cm,所以x +4x +72x =17,解得x =2,所以BD =14,故答案为:14. 17.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.18.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.19.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键20.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.21.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.22.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.23.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 24.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键26.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.27.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 28.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.29.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.30.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、压轴题31.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=,∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.34.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB 的长,然后根据线段中点的定义解答即可;(2)①由PQ =1,得到|15-(4x -3x )|=1,解方程即可;②先表示出PM 、OQ 、OM 的长,代入4PM +3OQ ﹣mOM 得到55+(21-7m )x ,要使4PM +3OQ ﹣mOM 为定值,则21-7m =0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm .∵点C 是线段 AB 的中点,∴AC =AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ).(2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16. ②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM 为定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5;②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.35.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P ,对应的数为﹣和.(2)设P 点所表示的数为n ,∴PA =n +3,PB =n ﹣2. ∵PA 的中点为M ,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点, ∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.36.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
重庆市七年级上册数学期末试卷及答案-百度文库
重庆市七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .33.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=-D .235a b ab +=5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 6.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯7.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上8.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b - B .9b 9a -C .9aD .9a -9.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个10.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=611.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式12.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 13.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )214.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯C .6510⨯D .510⨯15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.把53°30′用度表示为_____. 17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
2020学年重庆市南岸区人教版七年级上期末数学试卷含答案解析
2020学年重庆市南岸区七年级(上)期末数学试卷一、选择题(48分)1.(2020•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣22.(2020•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(2020•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查4.(2020•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B5.(2020秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=96.(2020秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元7.(2020•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.8.(2020秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a29.(2020•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°10.(2020•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.2211.(2020•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长12.(2020秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.2020 B.21公里C.22公里D.25公里二、填空题(24分)13.(2020•福建)若|a|=2,则a=.14.(2020秋•南岸区期末)36.42°=度分秒.15.(2020秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为.16.(2020秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为.17.(2020秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是.18.(2020秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=.三、解答题(14分)19.(7分)(2020秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).20207分)(2020秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.四、解答题(40分)21.(10分)(2020秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).22.(10分)(2020秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):星期一二三四五六日增减(单位:个) +5 ﹣6 ﹣5 +15 ﹣10 +16 ﹣8(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.23.(10分)(2020•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数) 频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=,b=;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)(2020秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?五、解答题(24分)25.(12分)(2020秋•南岸区期末)概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣﹣杨辉法:(如图(1))口诀:“九子斜排,上下对易,左右相更,四维挺出”学以致用:(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2,分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等;(2)将方格2中左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和相等;(3)将9个连续自然数填入方格3的方格内,使每一横行、每一竖行及两条对角线的3个数之和都等于60;(4)用﹣3~5这九个数补全方格4中的幻方.方格1方格26 6 68 8 810 10 10方格3方格426.(12分)(2020秋•南岸区期末)如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.2020学年重庆市南岸区七年级(上)期末数学试卷参考答案与试题解析一、选择题(48分)1.(2020•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.2.(2020•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2020•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(2020•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.5.(2020秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9【考点】有理数的除法;有理数的减法;有理数的乘方.【专题】计算题.【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【解答】解:A、﹣12﹣8=﹣2020误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.【点评】此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.6.(2020秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元【考点】列代数式.【分析】用4个足球的价钱加上7个篮球的价钱即可.【解答】解:买4个足球、7个篮球共需要(4m+7n)元.故选:A.【点评】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.7.(2020•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;B、折叠后缺少下底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一个侧面,所以也不能折叠成一个正方体.故选C.【点评】只要有“田”字格的展开图都不是正方体的表面展开图.8.(2020秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a2【考点】同类项.【分析】根据同类项的定义:含有相同的字母,且相同字母的次数相同,即可作出判断.【解答】解:A、相同字母的次数不同,故不是同类项,选项错误;B、所含字母不同,则不是同类项,选项错误;C、所含字母不同,则不是同类项,选项错误;D、正确;故选A.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.(2020•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互余,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.【点评】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.10.(2020•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.22【考点】规律型:图形的变化类.【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程解答即可.【解答】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;4n+2=90解得n=22答:这样的餐桌需要22张.故选:D.【点评】此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.11.(2020•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长【考点】生活中的平移现象.【专题】操作型.【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.12.(2020秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.2020 B.21公里C.22公里D.25公里【考点】一元一次方程的应用.【分析】首先设出未知数,然后用x表示出王明和李丽的打车费用,然后根据题意列出一元一次方程,求出x的值即可.【解答】解:设两家住地离公园的路程为x公里,王明打车费用为10+1.2×(x﹣4),李丽打车费用为8+1.3×(x﹣3),根据题意,得10+1.2×(x﹣4)+1=8+1.3×(x﹣3),解得x=25.答:两家住地离公园的路程是25公里,故选D.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是用未知数x表示出两人乘车所收费用,此题难度不大.二、填空题(24分)13.(2020•福建)若|a|=2,则a=±2.【考点】绝对值.【专题】计算题.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(2020秋•南岸区期末)36.42°=36度25分12秒.【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒转化运算,注意以60为进制.【解答】解:36.42°=36度25分12秒.【点评】此类题是进行度、分、秒转化运算,相对比较简单,注意以60为进制即可.15.(2020秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为﹣3.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:2m+3=2﹣5,解得:m=﹣3,故答案为:﹣3【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(2020秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为4.【考点】一元一次方程的应用.【分析】可设最小的数为未知数,表示出其余3个数,让4个数的和相加等于22列式求值即可.【解答】解:设圈住的最小的数为x,其余数为(x+1),(x+2),(x+3),x+(x+1)+(x+2)+(x+3)=22,解得x=4,则x+1=5,x+2=6,x+3=7.故答案为:4.【点评】本题考查一元一次方程的应用,得到4个数的代数式是解决本题的突破点;用到的知识点为:日历上横行中相邻的数相隔1.17.(2020秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.【考点】规律型:数字的变化类.【分析】根据叙述:第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案即可表示出每个同学报出的数.【解答】解:第一个同学报5,第二个同学报6,第三个同学报36,第四个同学报36﹣1=35.故答案为:35.【点评】此题考查数字的变化规律,理解题意,按照题目给出的运算方法即可解决问题.18.(2020秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=﹣85.【考点】专题:正方体相对两个面上的文字.【分析】先根据图中正方形的摆放方式可知与白色面相邻的面有紫、蓝、绿、红,然后再确定出其中相对的面,从而得出a、b、c的值,最后代入计算即可.【解答】解:∵根据图形可知:白色面相邻的面有紫、蓝、绿、红,∴“紫”与“绿”是对面,“红”与“蓝”是对面,“白”与“黄”是对面.∴第一个正方体的底面是黄色,第二个正方体的底面是紫色,第三个正方体的底面是绿色.∴a=﹣3,b=﹣6,c=﹣4.∴a+b+c+abc=(﹣3)+(﹣6)+(﹣4)+(﹣3)×(﹣6)×(﹣4)=﹣13+(﹣72)=﹣85.故答案为:﹣85.【点评】本题主要考查的是正方形相对两个面上的文字,确定出正方体的对面是解题的关键.三、解答题(14分)19.(7分)(2020秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣10+3+4=9﹣10=﹣1;(2)原式=﹣1+2﹣8=﹣9+2=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20207分)(2020秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.【考点】直线、射线、线段.【专题】作图题.【分析】(1)根据直线没有端点,是向两方无限延伸的画出图形即可;(2)根据射线有1个端点,是向一方无限延伸的画出图形即可;(3)使PA+PB+PC+PD的值最小的点P,应在AC、BD连线的交点上,由此画出即可.【解答】解:如图所示:.【点评】此题考查直线、射线、线段的画法,掌握直线、射线、线段的意义和特征是解决问题的关键.四、解答题(40分)21.(10分)(2020秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)(2020秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):星期一二三四五六日增减(单位:个) +5 ﹣6 ﹣5 +15 ﹣10 +16 ﹣8(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.【考点】正数和负数.【分析】(1)根据有理数的加法运算,再根据最大数减最小数,可得答案;(2)利用表格中数据进行加减运算即可;(3)根据产量乘以单价,可得工资,根据超产数量乘以超产的奖励单价,可得奖金,根据有理数的加法,可得答案.【解答】解:(1)由图表可得:周一:40+5=45(个);周二:40﹣6=34(个);周三:40﹣5=35(个);周四:40+15=55(个);周五:40﹣10=30(个);周六:40+16=56(个);周日:40﹣8=32(个);所以本周产量最多的一天比最少的一天多生产56﹣32=26(个).(2)由题意可得:5﹣6﹣5+15﹣10+16﹣8+50×7=357(个),所以工艺厂在本周实际生产工艺品的数量为357个;(3)357×5+(357﹣350)×10=1855(元).答:该厂工人这一周的工资总额是1855元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(10分)(2020•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数) 频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.【考点】频数(率)分布表;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【解答】解:(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有2020频率为0.2020∴a=2020.202000,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.2020.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点评】本题考查的用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2020秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?【考点】一元一次方程的应用.【分析】设这位打工者要住x个月,则A家租金为:680x+1000,B家租金为:780x,(1)当x=6时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(2)当x=12时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(3)根据A家租金=B家租金,求出x的值.【解答】解:设这位打工者要住x个月,根据题意得:A家租金为:680x+1000,B家租金为780x.(1)如果住半年,交给A家的租金是:680×6+1000=5080(元);。
重庆市南岸区第十一中学校2022-2023学年七年级上学期期末数学试题
数学
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.
1. 的绝对值是( )
A.3B. C. D.
2.如图是一个由6个相同的正方体组成的立体图形,它的俯视图是()
(1)直接写出 和 的长;
(2)当 为何值时,机器狗 在点 与机械猫 的中点处?
(3)①当 为何值时,机器狗 与机械猫 相遇?
②当 为何值时,机器狗 和机械猫 之间的距离 ?
A. B. C. D.
11.“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()
14.已知关于 方程 的解是 ,则 的值为______.
15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次购物节中,把该商品按标价的8折销售,售价为168元,则这种商品的进价是______元.
16.在一个 的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的 的方格称为一个三阶幻方.如图,方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则 的值是______.
A. B. C. D.
3.据《人民网》报道,在2022卡塔尔世界杯承担开、闭幕式等重要活动的卢塞尔球场是由中国铁建集团承建,其建筑面积为195000平方米.把数字“195000”用科学记数法表示为()
2021-2022学年重庆市南岸区七年级(上)期末数学试卷(附答案详解)
2021-2022学年重庆市南岸区七年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.−√3的倒数是()A. −√3B. −1√3C. 1√3D. √32.如图,在这个直三棱柱中,与棱AB一定相等的棱是()A. ADB. DEC. ACD. BE3.以下调查中,最适合用来全面调查的是()A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率4.如图,几何体的截面形状是()A.B.C.D.5.化简2a2−2(−3a+a2)的结果为()A. 6aB. 4a2+6aC. −6aD. a2−6a6.将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是−3的是()A. B.C. D.7.某月1日−10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是()A. 1日−10日,甲的步数逐天增加B. 1日−6日,乙的步数逐天减少C. 第9日,甲、乙两人的步数正好相等D. 第11日,甲的步数不一定比乙的步数多8.若关于x的方程3x−a=−7+x的解是x=−2,则a的值是()A. −3B. −2C. 2D. 39.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/ℎ,水流速度是a km/ℎ,3ℎ后甲船比乙船多航行()A. 4akmB. 5akmC. 6akmD. 7akm10.如图,用“十”字形框,任意套中2022年元月份日历中的五个数,如果这五个数最小的数为a,则这五个数的和是()A. 5aB. 5a+7C. 5a+21D. 5a+3511.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()A. 23x+17x+x=33 B. 23x+12x+17x=33C. 23x+12x+17x+x=33 D. x+23x+17x−12x=3312.如图所示,∠COD的顶点O在直线AB上,OE平分∠COD,OF平分∠AOD,已知∠COD=90°,∠BOC=α,则∠EOF的度数为()A. 90°+αB. 90°+α2C. 45°+αD. 90°−α2二、填空题(本大题共6小题,共24.0分)13.计算:|−1|+2=______.14.据报道,在第12届中国国际航空航天博览会上,中国航天科工正式宣布,已经开展4000km/ℎ的高速飞行列车研究.请把数据4000用科学记数法表示为______.15.如图,点D是AB的中点,AC=4,BC=2,线段CD的长度为______.16.如图,一个圆锥形橡皮泥的主视图是三角形ABC,若BC=6,则这个圆锥形橡皮泥的底面积为______.(不取近似值)17.如图,在数轴上,点A,B分别表示数a,b,其中|a|=3,BO=6,则b−a=______.18.对于实数a,b定义运算“☆”如下:a☆b=ab2−ab,例如3☆2=3×22−3×2=6,则方程x☆(−2)=48,则x=______.三、解答题(本大题共8小题,共78.0分)19.计算:(1)8÷(−2)+(−2)3×(12)2;(2)72×(13−12)2.20.先化简下式,再求值:(−x2+3−4x)+2(3x−2+x2),其中x=−3.21.如图,已知线段AB,射线AP.按要求完成作图:(1)用圆规在射线AP上截取AC=2AB,连接CB;(2)以AC为一边,以C为顶点,在射线AP上方,用三角尺作∠ACM=75°;延长AB,交CM于点D;(3)比较线段DB与CB的大小,BD与AC的大小,并直接写出结论.22.解方程:(1)7x−18=2(4−3x);(2)3y−12+1=2y−13.23.为了解某小区居民用水情况,从该小区居民用户中随机抽取100户进行月用水量(单位:吨)调查.整理抽取这100户的月用水量,其中月用水量小于等于15吨的户数有60户.按月用水量(单位:吨)0~5,5~10,10~15,15~20,20~25,25~30,30~35进行分组,绘制频数分布直方图所示.(1)求频数分布直方图中x,y的值;(2)为估计这100户居民的用水量,可设各组居民用户月平均用水量如表:组别0~55~1010~1515~2020~2525~3030~35月平均用水量2.57.512.517.522.527.532.5根据上述信息,估计该小区这100户居民用户月用水量的平均数.说明:0~5是指大于等于0且小于等于5,5~10是指大于5且小于等于10,依此类推,30~35是指大于30且小于等于35).24.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?25.一种特殊的三角形幻方,是由4个较小的三角形和3个较大的三角形构成,且满足每个三角形三个顶点处的数之和相等.如图1,是这种特殊三角形幻方,阴影部分的三角形三个顶点处的数之和为2+8+5=15,该图中每个三角形三个顶点处的数字之和都为15.(1)根据图1,计算图中9个数的和与每个三角形三个顶点处数的和之间的倍数关系,并写出你的结论;(2)图2是这种特殊的三角形幻方,请把数字−4,−2,0,2,3这5个数字填在图2的各个圈内;(3)图3是这种特殊的三角形幻方,请求x的值.26.学习了有理数后,为练习加、减、乘、除以及乘方混合运算,“智慧学习小组”自制了一副卡片,每张卡片上分别标有从−13至13的其中一个整数(不含0),每个整数有2张相同的卡片,共52张.每天课余,小组成员会做五分钟的混合运算游戏.每次随机抽取4张卡片,根据卡片上的数字进行混合运算(每张卡片必须用一次且只能用一次,可以加括号),使得运算结果为24或者−24.例如果随机抽取的四张卡片上的数为1,−2,2,3,可以列式为:23×(−2−1)=−8×(−3)=−24.说明:23×(−2−1)与(−2−1)×23,是交换了因数的位置,看作是相同的算式;23×(−2−1)与23×(−1−2)是交换了加数的位置,看作是相同的算式.(1)如果随机抽取的四张卡片上的数为2,−2,5,−1,请列出计算结果为24或−24的两个不同算式;(2)如果随机抽取的四张卡片上的数为3,−3,−1,2,请列出计算结果为24或−24的四个不同算式.答案和解析1.【答案】B,【解析】解:−√3的倒数是√3故选:B.根据倒数的定义写出即可.考查了实数的性质及倒数的定义,属于基础题,比较简单.2.【答案】B【解析】解:在这个直三棱柱中,与棱AB一定相等的棱是:DE,故选:B.根据三棱柱的特征判断即可.本题考查了认识立体图形,熟练掌握三棱柱的特征是解题的关键.3.【答案】C【解析】解:A、调查柳江流域水质情况,适合抽样调查,故本选项不合题意;B、了解全国中学生的心理健康状况,适合抽样调查,故本选项不合题意;C、了解全班学生的身高情况,适合普查,故本选项符合题意;D、调查春节联欢晚会收视率,适合抽样调查,故本选项不合题意.故选:C.根据全面调查的意义,结合具体问题情境逐项进行判断即可.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【答案】A【解析】解:由图可知:该几何体的截面形状是长方形,故选:A.结合图形判断即可.本题考查了截一个几何体,结合图形分析解答是解题的关键.5.【答案】A【解析】解:原式=2a2+6a−2a2=6a,故选:A.先去括号,再合并同类项即可.本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.6.【答案】A【解析】解:∵任意两个相对面的数字之和为0,∴3与−3是两个相对的面,2与−2是两个相对的面,1与−1是两个相对的面,A.x对应的数字是−3,故A符合题意;B.x对应的数字是−2,故B不符合题意;C.x对应的数字是−2,故C不符合题意;D.x对应的数字是−2,故D不符合题意;故选:A.根据正方体的表面展开图找相对面的方法,判断即可.本题考查了相反数,正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.7.【答案】B【解析】解:A.1日−10日,甲的步数逐天增加;故A正确,不符合题意;B.1日−5日,乙的步数逐天减少;6日步数的比5日的步数多,故B错误,符合题意;C.第9日,甲、乙两人的步数正好相等;故C正确,不符合题意;D.第11日,甲的步数不一定比乙的步数多;故D正确,不符合题意;故选:B.根据图中给出的甲乙两人这10天的数据,依次判断A,B,C,D选项即可.本题属于统计类,主要考查数据分析能力,题目比较简单.8.【答案】D【解析】解:把x=−2代入方程3x−a=−7+x,得:−6−a=−7+(−2),解得:a=3.故选:D.方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】C【解析】解:根据题意得:3[(50+a)−(50−a)]=6a(km).故选:C.顺水速度=船速+水速,逆水速度=船速−水速.本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.10.【答案】D【解析】解:这五个数最小的数为a,则这五个数的和为a+a+7+a+6+a+8+a+ 14=5a+35,故选:D.根据日历中数字的规律:一行中,每相邻的两个数字相差是1;一列中,每相邻的两个数字相差是7,设出其中的一个,然后表示出其余的数,然后相加即可.此题考查了列代数式的知识,了解日历中数之间的关系,能够从中发现数学方面的知识.关键是知道日历中数字的规律:一行中,每相邻的两个数字相差是1;一列中,每相邻的两个数字相差是7.11.【答案】C【解析】解:由题意可得23x+12x+17x+x=33.故选:C.根据题意列方程23x+12x+17x+x=33.本题考查列一元一次方程,解题关键是通过题干找出等量关系.12.【答案】B【解析】解:∵OE平分∠COD,OF平分∠AOD,∴∠FOD=12∠AOD,∠EOD=12∠COD,∴∠EOF=12∠AOD+12∠COD=12(∠AOD+∠COD),∵∠COD=90°,∠BOC=α,∠AOB=180°,∴∠AOD+∠COD=180°+α,∴∠EOF=12(180°+α)=90°+12α,故选:B.由角平分线的定义可求解∠EOF=12(∠AOD+∠COD),再根据∠BOC=α,∠AOB=180°,可求解∠EOF的度数.本题主要考查角平分线的定义,角的计算,灵活运用角平分线的定义求解角的度数是解题的关键.13.【答案】3【解析】解:|−1|+2=1+2=3.故答案为:3.先算绝对值,再算加法即可求解.本题考查了有理数的加法,绝对值,关键是熟练掌握各自的计算方法.14.【答案】4×103【解析】解:4000科学记数法表示为4×103.故答案为:4×103.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】1.【解析】解:∵AC=4,BC=2,∴AB=AC+BC=4+2=6,∵点D是AB的中点,AB=3,∴AD=BD=12∴CD=AC−AD=4−3=1.故答案为:1.由线段的和差可求得AB=6,结合中点的定义可求AD=3,进而可求解CD的长.本题主要考查两点间的距离,线段的中点,利用中点的定义求解线段长是解题的关键.16.【答案】9π【解析】解:由题意,底面圆的直径为6,∴底面积=π×32=9π,故答案为:9π.由题意底面圆的直径为6,利用圆的面积公式求解即可.本题考查由三视图判定几何体,圆的面积公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】9【解析】解:由题意得:a<0<b,∵|a|=3,BO=6,∴a=−3,b=6,∴b−a=6−(−3)=6+3=9,故答案为:9.根据点A,B在数轴上的位置求出a,b的值,然后代入进行计算即可.本题考查了数轴,绝对值,根据点A,B在数轴上的位置求出a,b的值是解题的关键.18.【答案】8【解析】解:由题意可得:x☆(−2)=x×(−2)2−x×(−2)=48,则4x+2x=48,故6x=48,解得:x=8.故答案为:8.直接根据题意得出一元一次方程,进而解方程得出答案.此题主要考查了实数运算以及解一元一次方程,正确将原式变形是解题关键.19.【答案】解:(1)8÷(−2)+(−2)3×(12)2=(−4)+(−8)×14=(−4)+(−2)=−6.(2)72×(13−12)2=72×(−16)2=72×136=2.【解析】(1)首先计算乘方,然后计算除法、乘法,最后计算加法即可.(2)首先计算乘方,然后计算乘法即可.此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.【答案】解:原式=−x2+3−4x+6x−4+2x2=x2+2x−1,当x=−3时,原式=9−6−1=2.【解析】根据去括号、合并同类项法则把原式化简,代入计算得到答案.本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.21.【答案】解:(1)如图,线段AC即为所求;(2)如图,射线CM即为所求;(3)利用测量法可知,BD=CB,BD>AC.【解析】(1)根据要求作出图形即可;(2)根据要求作出图形即可;(3)利用测量法解决问题即可.本题考查作图−复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.22.【答案】解:(1)7x−18=2(4−3x) 7x−18=8−6x7x+6x=8+1813x=26x=2;(2)3y−12+1=2y−133(3y−1)+6=2(2y−1)9y−3+6=4y−29y−4y=−2+3−65y=−5y=−1.【解析】(1)按照解一元一次方程的步骤进行计算即可;(2)按照解一元一次方程的步骤进行计算即可.本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.23.【答案】解:(1)x=60−(30+3)=27,y=100−(60+18+12+6)=4;(2)1100×(2.5×3+7.5×27+12.5×30+17.5×18+22.5×12+27.5×6+32.5×4)=1100×1465=14.65(吨),答:估计该小区这100户居民用户月用水量的平均数为14.65吨.【解析】(1)由小于等于15吨的户数有60户结合第1、3组户数可得x的值,根据各分组户数之和等于总户数可得y的值;(2)根据加权平均数的定义列式计算即可.此题考查了频数(率)分布直方图,弄清条形统计图中的数据是解本题的关键.24.【答案】解:(1)∵甲生产线加工m 吨原材料需要(2m +3)小时,∴甲生产线加工2吨原材料所需要的时间为2×2+3=7(小时);(2)∵乙生产线加工n 吨原材料需要(3n +2)小时,∴当3n +2=8时,n =2(吨),∴乙生产线8小时能加工的原材料的吨数为2吨;(3)根据题意可得,{2m +3=3n +2m +n =7, 解得,{m =4n =3, ∴分配到甲、乙生产线的吨数分别为4吨和3吨.【解析】(1)将m =2代入2m +7求值即可;(2)列出方程3n +2=8,再解方程即可;(3)根据题意列方程组解答.本题主要考查了列代数式和一元一次方程、二元一次方程组的应用,正确理解题意,熟练掌握一元一次方程的应用是解题的关键.25.【答案】解:(1)∵7+6+2+3+8+5+1+4+9=45,每个三角形三个顶点处数的和是15,∴图中9个数的和是每个三角形三个顶点处数的和的3倍;(2)把数字−4,−2,0,2,3这5个数字填在各个圈内,填图如下:(3)如图:由图可知,每个三角形三个顶点处数的和是m +n −4,∴m +n −4=A +m +2,∴A=n−6,∵B=(m+n−4)−(A−4)=m+n−4−(n−6−4)=m+6,∴x=(m+n−4)−(B+n)=(m+n−4)−(m+6+n)=−10.【解析】(1)把图中9个数相加,即可得答案;(2)根据每个三角形三个顶点处的数之和相等即可填图;(3)先根据每个三角形三个顶点处的数之和相等求出A、B,即可得到答案.本题考查有理数的加法,解题的关键是利用每个三角形三个顶点处的数之和相等解决问题.26.【答案】解:(1)[2−(−2)]×[5−(−1)]=24;2×(−2)×(−1−5)=24;(2)[2−(−1)]3−3=24;(−3)×(−1)×23=24;−1−2−(−3)3=24;3×[(−3)2−1]=24.【解析】通过四个数的组合运算,列出结果为24或−24的算式即可.本题考查了有理数的混合运算,解题关键是熟练掌握有理数的运算法则,注意运算顺序.。
重庆市数学七年级上学期期末数学试题
重庆市数学七年级上学期期末数学试题一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 2.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .33.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个4.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .65.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣36.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°7.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣19.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC=12∠AOB D.∠AOC+∠BOC=∠AOB10.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠4 11.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>012.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 13.下列各组数中,互为相反数的是( )A.2与12B.2(1)-与1 C.2与-2 D.-1与21-14.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.215.如图的几何体,从上向下看,看到的是()A.B.C.D.二、填空题16.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.17.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是__.18.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.19.单项式22ab-的系数是________.20.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x,使第2次输出的数也是x,则x=_____.21.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.22.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.23.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.25.如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为_____.26.A学校有m个学生,其中女生占45%,则男生人数为________.27.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______.28.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.29.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.33.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.34.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数35.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.36.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.3.C解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.5.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.6.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.7.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.10.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.11.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.12.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.13.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.14.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t 的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.15.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题16.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.17.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.18.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.19.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.20.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.21.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.24.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.25.11cm .【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.26.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m,故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.27.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.28.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.29.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.30.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、压轴题31.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810=故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x元,抵扣金额为b元,则优惠率1x b1b 2100%x2x+=⨯=+为了得到最高优惠率,则在每一范围内x均取最小值,可以得到2030405040080012001600>>>∴当商品标价为400元时,享受到最高的优惠率1155% 220=+=故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.34.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;。
重庆市人教版七年级上册数学期末综合测试题
重庆市人教版七年级上册数学期末综合测试题一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟 B .35分钟C .42011分钟 D .36011分钟 2.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 4.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-25.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34 6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣3 8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 10.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+B .321x +C .22x x -D .3221x x -+11.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-12.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.14.把53°30′用度表示为_____.15.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.16.=38A ∠︒,则A ∠的补角的度数为______.17.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
2020-2021重庆市初一数学上期末试题及答案
2020-2021重庆市初一数学上期末试题及答案一、选择题1.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( )A .一个B .两个C .三个D .四个2.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A .25︒B .65︒C .55︒D .35︒ 3.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A .B .C .D .4.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .35.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .56.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.在下列变形中,错误的是( )A .(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5B .(37﹣3)﹣(37﹣5)=37﹣3﹣37﹣5 C .a +(b ﹣c )=a +b ﹣cD.a﹣(b+c)=a﹣b﹣c9.4h=2小时24分.答:停电的时间为2小时24分.故选:C.【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.10.下列比较两个有理数的大小正确的是()A.﹣3>﹣1 B.1143>C.510611-<-D.7697->-11.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个12.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)64的展开式中第三项的系数为()A.2016B.2017C.2018D.2019二、填空题13.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.14.已知:﹣a=2,|b|=6,且a>b,则a+b=_____.15.若代数式213k--的值是1,则k= _________.16.若表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________.17.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.18.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.19.若2x ﹣1的值与3﹣4x 的值互为相反数,那么x 的值为_____.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.三、解答题21.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?22.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 23.2020年元旦,某商场将甲种商品降价40%,乙种商品降价20%,开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)求甲、乙两种商品原销售单价各是多少元?(2)若商场在这一次促销活动中,甲种商品亏损25%,乙种商品盈利25%.那么,商场在这次促销活动中,是盈利还是亏损了?如果是盈利件盈利了多少元?如果是亏损,亏损了多少元?24.先化简再求值:2(x 3﹣2y 2)﹣(x ﹣2y )﹣(x ﹣3y 2+2x 3),其中x=﹣3,y=﹣2.25.如图,直线SN 为南北方向,OB 的方向是南偏东60°,∠SOB 与∠NOC 互余,OA 平分∠BON .(1)射线OC 的方向是 .(2)求∠AOC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.C解析:C【解析】【分析】由△AOB与△COD为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°.【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°,∴∠BOD=∠AOD-∠AOB=125°-90°=35°,∴∠BOC=∠COD-∠BOD=90°-35°=55°.故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.3.C解析:C【解析】【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【详解】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有:故选C .【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.5.C解析:C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.6.A解析:A【解析】【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.7.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.8.B解析:B【解析】【分析】根据去括号法则:若括号前为正号直接去括号,若括号前是负号,去括号时要将括号中的每一项都变号,即可解题.【详解】解:A、C、D均正确,其中B项应为,(37﹣3)﹣(37﹣5)=37﹣3﹣37+5故错误项选B.【点睛】本题考查了去括号法则,属于简单题,熟悉去括号法则是解题关键. 9.无10.D解析:D【解析】【分析】根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.【详解】A.﹣3<﹣1,所以A选项错误;B.14<13,所以B选项错误;C.﹣56>﹣1011,所以C选项错误;D.﹣79>﹣67,所以D选项正确.故选D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.11.B解析:B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选:B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则. 12.A解析:A【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),∴(a+b)64第三项系数为1+2+3+…+63=2016,故选A.点睛:此题考查了规律型-数字的变化类,考查学生通过观察、分析、归纳发现其中的规律,并应用发现的规律解决实际问题的能力.二、填空题13.100【解析】【分析】设这件童装的进价为x元根据利润=售价﹣进价即可得出关于x的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x元依题意得:120﹣x=20x解得:x=100故答案为:1解析:100【解析】【分析】设这件童装的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设这件童装的进价为x元,依题意,得:120﹣x=20%x,解得:x=100.故答案为:100.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.-8【解析】【分析】根据相反数的定义绝对值的性质可得ab的值根据有理数的加法可得答案【详解】∵﹣a=2|b|=6且a>b∴a=﹣2b=-6∴a+b=﹣2+(-6)=-8故答案为:-8【点睛】本题考查解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.15.-4【解析】【分析】【详解】由=1解得解析:-4【解析】【分析】【详解】 由213k --=1,解得4k =-. 16.-1【解析】【分析】最小的正整数为1最大的负整数为-1绝对值最小的有理数为0分别代入所求式子中计算即可求出值【详解】解:∵最小的正整数为1最大的负整数为绝对值最小的有理数为0∴;故答案为:【点睛】此解析:-1【解析】【分析】最小的正整数为1,最大的负整数为-1,绝对值最小的有理数为0,分别代入所求式子中计算,即可求出值.【详解】解:∵最小的正整数为1,最大的负整数为1-,绝对值最小的有理数为0,∴()(1+0)(1)1+•⨯⨯-=-▲■=;故答案为:1-.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中图形表示的数字是解本题的关键.17.10【解析】∵轮船在顺水中的速度为28千米/小时在逆水中的速度为24千米/小时∴水流的速度为:(千米/时)∴水面上的漂浮物顺水漂流20千米所需的时间为:(小时)故答案为10点睛:本题解题的关键是要清解析:10【解析】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,∴水流的速度为:(2824)22-÷=(千米/时),∴水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时).故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,①顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;②水面上漂浮物顺水漂流的速度等于水流速度.18.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 19.x=1【解析】【分析】互为相反数的两个数的和等于0根据题意可列出方程【详解】解:根据题意得:2x-1+3-4x=0解得x=1故答案为:1【点睛】本题主要考查了相反数的定义解题关键是要读懂题目的意思根解析:x=1【解析】【分析】互为相反数的两个数的和等于0,根据题意可列出方程.【详解】解:根据题意得:2x-1+3-4x=0,解得x=1.故答案为:1.【点睛】本题主要考查了相反数的定义,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.42或11【解析】【分析】由程序图可知输出结果和x 的关系:输出结果=4x-2当输出结果是166时可以求出x 的值若计算结果小于等于149则将结果4x-2输入重新计算结果为166由此求出x 的之即可【详解解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.三、解答题21.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【解析】【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件 由题意可得:22x +30(12x +15)=6000 解得:x=150 ∴购进乙商品12×150+15=90件 ∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180 解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.22.2ab -,4-.【解析】【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.23.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元;(2)商场在这次促销活动中盈利,盈利了8元【解析】【分析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入1000-a-b中即可找出结论.【详解】(1)设甲商品原销售单价x元,则乙商品原销售单价(1400﹣x)元,则(1﹣40%)x+(1﹣20%)(1400﹣x)=1000,解得:x=600,∴1400﹣x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,则(1﹣25%)a=(1﹣40%)×600,(1+25%)b=(1﹣20%)×800,解得:a=480,b=512 ,∴1000﹣a﹣b=1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,解题的关键是找准等量关系,正确列出一元一次方程.24.﹣y2﹣2x+2y,-2【解析】试题分析:先去括号,然后合并同类项,最后代入数值进行计算即可.试题解析:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+2y﹣x+3y2﹣2x3=﹣y2﹣2x+2y,当x=﹣3,y=﹣2时,原式=﹣(﹣2)2﹣2×(﹣3)+2×(﹣2)=﹣4+6﹣4=﹣2.25.(1)北偏东30°;(2)∠AOC=30°.【解析】【分析】(1)先根据余角的定义计算出∠NOC,然后得到OC的方向;(2)由OB的方向是南偏东60°得到∠BOE=30°,则∠NOB=120°,根据OA平分∠NOB 得到∠NOA=60°,再根据角的和差计算即可.【详解】解:(1)由OB的方向是南偏东60°,可得∠SOB=60°,∵∠SOB与∠NOC互余,∴∠NOC=90°﹣∠SOB=30°,∴OC的方向是北偏东30°;故答案为:北偏东30°;(2)∵OB的方向是南偏东60°,∴∠BOE=30°,∴∠NOB=30°+90°=120°,∵OA平分∠BON,∴∠NOA=12∠NOB=60°,∵∠NOC=30°,∴∠AOC=∠NOA﹣∠NOC=60°﹣30°=30°.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020重庆南岸区七年级上册数学期末试卷
(考试时间:120分钟 满分:150分)
注意事项:
1.试题卷上各题的答案签字笔书写在答题卡上,不得在试题卷上直接作答;2.答题前认真阅读答题卡上的注意事项;
3.作图(包括作辅助线)请一律用2B 铅笔完成;
4.考试结束,由监考人员将试题卷和答题卡一并收回.
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出
了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.计算,结果是
34-A .B .C .1D .71-7-2. 若海平面以上1045米,记做+1045米,则海平面以下155米,记做
A .米
B .米1200-155-
C .155米
D .1200米3.如图是一个由6个相同的正方体组成的立体图形,它的主视图是
4.下列图形是正方体的展开图的是
5.重庆拥有长江索道、洪崖洞等网红景点,成为中国内地热门旅游地之一.今年国庆节期间,重庆共接待境内外游客接近38 600 000人次,数据38 600 000用科学记数法可表示为A .B .538610
⨯638.610
⨯C .D .7
3.8610
⨯6
3.8610
⨯6.下列计算中,正确的是
A.
B.
+x y xy =2
734x x x -=
3题图
A . B. C. D.
C. D. 22
0x x --=65xy xy xy
-=7. 已知,则代数式的值是1
2
a b +=223a b +-A .2B .2
-C .D .4
-13
2
-8. 如图,∠AOB =∠COD =90°,且OE 平分∠AOD ,以下等式不成立的是
A .∠AOC =∠BOD
B .∠AOE =∠EOD
C .∠EOC =∠EOB
D .∠AOD =∠CO
E 9.如图,钟表上10点整时,时针与分针所成的角是
A .30°
B .60°
C .90°
D .120°
10.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:
①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录
③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A .②→③→①→④ B .③→④→①→②C .①→②→④→③ D .②→④→③→①
11. 中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘.求共有多少人? 设有人,根据题意可列方程为
x A .
B .
9232x x --=9
232x x ++=C .
D .9+232
x x -=9232
x x +-=
12. 体育课上的口令:立正,向右转,向后转,向左转之间可以
相加.连续执行两个口令就把这两个口令加起来.例如:
9题图
O
8题图
向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母,,,的值,说法错误的是a b c d A .B . 0a =1b =C .
D .2c =3
d =二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在
答题卡中对应的横线上.13. 计算:_____
2+1=-14.如图是某几何体的三视图,则该几何体是_____15.如图,数轴上A ,B 两点所表示的数分别是
和2,点C 是线段AB 的中点,则点C 所表
4-示的数是 .
16. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是 元.
17.一列数 ,,,,,,…,已知第1个数,第6个数,1a 2a 3a 4a 5a 6a 13a =66a =且任意三个相邻的数之和为7,则第2020个数的值是 .
2020a 18. 科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只
能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大行程是_____千米.
三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要
的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.计算:(1) ;
(2).
()62 1.5---()()3
2
3531--⨯÷-20.先化简,再求值:,其中,.
(
)()2
2
34532x x x x
-+-+-+2
x =-14题图
15题图
C
A 2
-4
21. 解方程:
(1); (2)
.()281x x +=-2143
132
y y ---=22. 某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,
随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整). 请根据图中信息回答问题:
(1)求m ,n 的值.(2)补全条形统计图.
23. 有个填写运算符号的游戏:“”
,在每个“”上,填入,
2359+,,中的某一个(可重复使用),然后计算结果
-⨯÷(1)计算:;
2+359--(2)若,请推算“”上的符号;
2359=30÷⨯(3)在“”的“”上填入符号后,使计算所得数最小,直接写出
2
35+9填上符号后的算式及算式的计算结果的最小值.
24.在2020年元月的日历表中,某一天对应的号数的上、下、左、右四个数的和为.m (1)如果某一天是号,请用含的代数式把表示出来;
a a m (2)的值可能是96吗?如果可能,求出这一天上、下、左、右四天,如果不可能,
m 22题图2
12
15
抽取的学生最喜欢课程内容的条形统计图
抽取的学生最喜欢课程内容的扇形统计图
A .趣味数学B.数学史话C.实验探究D.生活应用E.思想方法
请说明理由.
(3)的值可能是28吗?如果可能,求出这一天上、下、左、右四天,如果不可能,
m 请说明理由.
星期日星期一星期二星期三星期四星期五星期六12345678910111213141516171819202122232425
26
27
28
29
30
31
25.小明每天早上7:30从家出发,到距家1000m 的学校上学,一天,小明以80m /min
的速度上学,5min 后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.
(1)如果爸爸以160m /min 的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?
(3)爸爸以180m /min 的速度追赶小明,他把书给小明后及时原路原速返回(交书
耽误的时间忽略不计),返回家的时间是多少?
四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26. 已知如图,A ,B ,C 三点在同一直线上,AB =6, BC =2.
(1)已知点C 在直线AB 上,根据条件,请补充完整图形,并求AC 的长;
26题图1B A
26题备用图1
B
A
(2)已知点C 在直线AB 上,M ,N 分别是AB ,BC 的中点,根据条件,请补充完
整图形,并求MN 的长,直接写出MN 与AC 的长存在的数量关系;
(3)已知点C 在直线AB 上,M ,N 分别是AC ,BC 的中点,根据条件,请补充完
整图形,并求MN 的长,直接写出MN 与AB 的长存在的数量关系.
26题图2B A
26题备用图2
B
A
B
A
26题图3
B
A 26题备用图3。