太阳能电池方阵及蓄电池容量计算的一般方法

合集下载

光伏电源系统的组成和原理

光伏电源系统的组成和原理

光伏电源系统的原理及组成首先太阳能电池发电系统是利用以光生伏打效应原理制成的太阳能电池将太阳辐射能直接转换成电能的发电系统。

它由太阳能电池方阵、控制器、蓄电池组、直流/交流逆变器等局部组成,其系统组成如下列图。

1.太阳能电池方阵:太阳能电池单体是光电转换的最小单元,尺寸一般为4cm 2到100cm 2不等。

太阳能电池单体的工作电压约为0.5V, 工作电流约为20-25mA/cm 2, 一般不能单独作为电源使用。

将太阳能电池单体进展串并联封装后,就成为太阳能电池组件,其功率一般为几瓦至几十瓦,是可以单独作为电源使用的最小单元。

太阳能电池组件再经过串并联组合安装在支架上,就构成了太阳能电池方阵,可以满足负载所要求的输出功率 (见图1-2)。

〔1〕硅太阳能电池单体常用的太阳能电池主要是硅太阳能电池。

晶体硅太阳能电池由一个晶体硅片组成,在晶体硅片的上外表严密排列着金属栅线,下外表是金属层。

硅片本身是P 型硅,外表扩散层是N 区,在这两个区的连接处就是所谓的PN 结。

PN 结形成一个电场。

太阳能电池的顶部被一层抗反射膜所覆盖,以便减少太阳能的反射损失。

太阳能电池的工作原理如下:光是由光子组成,而光子是包含有一定能量的微粒,能量的大小由光的波长 决定,光被晶体硅吸收后,在PN 结中产生一对对正负电荷,由于在PN 结区域的正负电荷被别离,因而可以产生一个外电流场,电流从晶体硅片电池 的底端经过负载流至电池的顶端。

这就是"光生伏打效应〞。

将一个负载连接在太阳能电池的上下两外表间时,将有电流流过该负载,于是太阳能电池就产生了电流;太阳能电池吸收的光子越多,产生的电流也就越大。

光子的能量由波长决定,低于基能能量的光子不能产生自由电子,一个高于基能能量的光子将仅产生一个自由电子,多余的能量将使电池发热,伴随电能损失的影响将使太阳能电池的效率下降。

〔2〕硅太阳能电池种类目前世界上有3种已经商品化的硅太阳能电池:单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池。

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图)太阳能电池板与蓄电池配置计算公式一:首先计算出电流:如:12V蓄电池系统;30W的灯2只,共60瓦。

电流=60W÷12V=5A二:计算出蓄电池容量需求:如:路灯每夜累计照明时间需要为满负载7小时(h);(如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭)需要满足连续阴雨天5天的照明需求。

(5天另加阴雨天前一夜的照明,计6天)蓄电池=5A×7h×(5+1)天=5A×42h=210AH另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。

所以210AH也只是应用中真正标准的70%左右。

三:计算出电池板的需求峰值(WP):路灯每夜累计照明时间需要为7小时(h);★:电池板平均每天接受有效光照时间为4.5小时(h);最少放宽对电池板需求20%的预留额。

WP÷17.4V=(5A×7h×120%)÷4.5hWP÷17.4V=9.33WP=162(W)光伏发电系统计算方法光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。

其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。

尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。

如输出电源为交流220V或11 0V,还需要配置逆变器。

各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,合格的控制器还应具备温度补偿的功能。

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。

所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。

在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。

一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。

这种方法一般适用于中小型光伏发电系统的设计。

另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。

这种方法适用于中大型光伏发电系统的设计。

下面就以第二种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法,其他计算公式和方法将在下一节中分别介绍。

1.基本计算方注计算太阳能电池组件的基本方法是用负载平均每天所消耗的电量(Ah)除以选定的电池组件在一天中的平均发电量(Ah),就算出了整个系统需要并联的太阳能电池组件数。

这些组件的并联输出电流就是系统负载所需要的电流。

具体公式为:负载用电10A,负载工作8小时。

(220V ))组件日平均发电量()负载日平均用电量(电池组件并联数Ah Ah =其中, 组件日平均发电量=组件峰值工作电流(A)×峰值日照时数(h)。

假设告知负载日耗电(KWh ),如何计算负载日平均用电量(Ah )。

再将系统的工作电压除以太阳能电池组件的峰值工作电压,就可以算出太阳能电池组件的串联数量。

这些电池组件串联后就可以产生系统负载所需要的工作电压或蓄电池组的充电电压。

具体公式为:组件峰值工作电压系数)系统工作电压(电池组件串联数 1.43V ⨯=系数1.43是太阳能电池组件峰值工作电压与系统工作电压的比值。

太阳能电池方阵功率计算方法

太阳能电池方阵功率计算方法

太阳能电池方阵功率计算方法(案例说明)要计算太阳能电池组件的功率,必须要计算得到太阳能方阵面上所接收到的辐射量。

下面以固定方阵为例进行设计。

1.太阳能电池方阵倾斜角确定如果采用计算机辅助设计软件,应当进行太阳能电池方阵倾斜角的优化计算,要求在最佳倾斜角时冬天和夏天辐射量的差异尽可能小,而全年辐射量尽可能大,二者应当兼顾。

这对纬度高地区尤其重要。

高纬度地区的冬天和夏天水平面太阳能辐射差异非常大,如果按照水平面辐射量进行设计,则蓄电池的冬季存储量要远远大于阴雨天的存储量。

造成蓄电池的设计容量和投资都加大。

选择了最佳倾斜角,太阳能电池方阵面上的冬夏季辐射量之差就会变小,蓄电池的容量可以减少,系统造价降低,设计更为合理。

如果不用计算机进行倾斜角优化设计,也可以根据当地纬度按照表2-13设计。

2.由水平面辐射量计算太阳能电池方阵平面上的辐射量一般来讲,太阳能电池方阵面上的辐射量要比水平面辐射量高5%~15%不等;纬度越高,倾斜面比水平面增加的辐射量越大。

3.将倾斜面方阵面上的辐射量换算成峰值日照时数换算公式如下:如果辐射量的单位是:cal/cm2,则:峰值日照时数=辐射量·0.0116,其中0.0116为将辐射量cal/cm2换算成峰值日照时数的换算系数。

峰值日照定义:100Mw/ cm2=0.1W/ cm21cal=4.1868J=4.1868W·S则:(4.1868W·S)/(3600s/h·0.1W/ cm2)=0.0116h·cm2/cal例如:假定某地年水平面辐射量为135Kcal/cm2,方阵面上的辐射量为148.5 Kcal/cm2,则年峰值日照时数为148500·0.0116=1722.6h;每日峰值日照时数为4.7h。

如果辐射量的单位是MJ/ m2,则峰值日照小时数=辐射量/3.6(换算系数)例如:假定某地年水平辐射量为5643 MJ/ m2,方阵面上的辐射量为6207 MJ/ m2,则年峰值日照小时数为6207/3.6=1724h;每日峰值日照时数为:1724/365=4.7h。

太阳能光伏电池板安装计算攻略

太阳能光伏电池板安装计算攻略

太阳能电池板方阵安装角度怎样计算?由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

光伏组件计算公式

光伏组件计算公式

光伏组件计算公式 The latest revision on November 22, 2020光伏发电系统设计计算公式1.转换效率η=Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率)其中:Pin=1KW/㎡=100mW/cm2。

2.充电电压Vmax=V额×1.43倍3.电池组件串并联3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah)3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V)4.蓄电池容量蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度5平均放电率平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率7.蓄电池7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数7.2蓄电池串联数=系统工作电压/蓄电池标称电压7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数损耗系数:取1.6~2.0根据当地污染程度、线路长短、安装角度等8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等9.以年辐射总量为依据的计算方式组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取27610.以年辐射总量和斜面修正系数为依据的计算10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等:安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.310.2蓄电池容量=10×负载总用电量/系统工作电压:10:无日照系数(对于连续阴雨不超过5天的均适用)11.以峰值日照时数为依据的多路负载计算11.1电流组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。

电力光伏系统设计计算公式

电力光伏系统设计计算公式

光伏电能发电系统设计计算公式1、转换效率:η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率)其中:Pin=1KW/㎡=100mW/cm²。

2、充电电压:Vmax=V额×1.43倍3.电池组件串并联3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah)3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V)4.蓄电池容量蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度5平均放电率平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率7.蓄电池:7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数7.2蓄电池串联数=系统工作电压/蓄电池标称电压7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等;8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等;9.以年辐射总量为依据的计算方式组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276;10.以年辐射总量和斜面修正系数为依据的计算10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3;10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用)11.以峰值日照时数为依据的多路负载计算11.1电流:组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。

太阳能电池组件及方阵容量的设计方法案例分析

太阳能电池组件及方阵容量的设计方法案例分析

太阳能电池组件及方阵容量的设计方法案例分析上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。

所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。

在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。

一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。

这种方法一般适用于中小型光伏发电系统的设计。

另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。

这种方法适用于中大型光伏发电系统的设计。

下面就以第一种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法。

(1)以峰值日照时数为依据的简易计算方法这是一个常用的简单计算公式,常用于小型独立太阳能光伏发电系统的快速设计与计算,也可以用于对其他计算方法的验算。

其主要参照的太阳能辐射参数是当地峰值日照时数。

损耗系数当地峰值日照时数用电时间用电器功率太阳能电池组件功率⨯⨯=P在本公式中,太阳能电池组件功率、用电器功率的单位都是瓦(W);用电时间和当地峰值日照时数的单位都是小时(h);蓄电池容量单位为安时(Ah);系统电压是指蓄电池或蓄电池组的工作电压,单位是伏(V)。

损耗系数主要有线路损耗、控制器接入损耗、太阳能电池组件玻璃表面脏污及安装倾角不能兼顾冬季和夏季等因素,可根据需要在1.6~2之间选取。

系统安全系数主要是为蓄电池放电深度(剩余电量)、冬天时蓄电池放电容量减小、逆变器转换效率等因素所加的系数,计算时可根据需要在1.6~2之间选取。

设计实例某地安装一套太阳能庭院灯,使用两只9W/12V 节能灯做光源,每日工作4h 。

光伏组件计算公式

光伏组件计算公式

光伏发电系统设计计算公式1.转换效率η= Pm电池片的峰值功率/A电池片面积×Pin单位面积的入射光功率其中:Pin=1KW/㎡=100mW/cm2;2.充电电压Vmax=V额×倍3.电池组件串并联电池组件并联数=负载日平均用电量Ah/组件日平均发电量Ah电池组件串联数=系统工作电压V×系数组件峰值工作电压V4.蓄电池容量蓄电池容量=负载日平均用电量Ah×连续阴雨天数/最大放电深度5平均放电率平均放电率h=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间h=∑负载功率×负载工作时间/∑负载功率7.蓄电池蓄电池容量=负载平均用电量Ah×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数蓄电池串联数=系统工作电压/蓄电池标称电压蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算组件功率=用电器功率×用电时间/当地峰值日照时数×损耗系数损耗系数:取~根据当地污染程度、线路长短、安装角度等蓄电池容量=用电器功率×用电时间/系统电压×连续阴雨天数×系统安全系数系统安全系数:取~,根据蓄电池放电深度、冬季温度、逆变器转换效率等9.以年辐射总量为依据的计算方式组件方阵=K×用电器工作电压×用电器工作电流×用电时间/当地年辐射总量有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取27610.以年辐射总量和斜面修正系数为依据的计算方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等:安全系数:根据使用环境、有无备用电源、是否有人值守等,取~蓄电池容量=10×负载总用电量/系统工作电压:10:无日照系数对于连续阴雨不超过5天的均适用11.以峰值日照时数为依据的多路负载计算电流组件电流=负载日耗电量Wh/系统直流电压V×峰值日照时数h×系统效率系数系统效率系数:含蓄电池充电效率,逆变器转换效率,组件功率衰减+线路损耗+尘埃等.具体根据实际情况进行调整;功率组件总功率=组件发电电流×系统直流电压×系数系数:组件峰值工作电压与系统工作电压的比值;蓄电池组容量蓄电池组容量=负载日耗电量Wh/系统直流电压V×连续阴雨天数/逆变器效率×蓄电池放电深度逆变器效率:根据设备选型约80%~93%之间:蓄电池放电深度:根据其性能参数和可靠性要求等,在50%~75%之间选择;12.以峰值日照时数和两段阴雨天间隔天数为依据的计算方法系统蓄电池组容量的计算蓄电池组容量Ah=安全次数×负载日平均耗电量Ah×最大连续阴雨天数×低温修正系数/蓄电池最大放电深度系数安全系数:之间:低温修正系数:0℃以上时取,-10℃以上取,-20℃以上取:蓄电池最大放电深度系数:浅循环取,深度循环取,碱性镍镉蓄电池取.组件串联数组件串联数=系统工作电压V×系数选定组件峰值工作电压V组件平均日发电量计算组件日平均发电量=Ah=选定组件峰值工作电流A×峰值日照时数h×斜面修正系数×组件衰减损耗系数峰值日照时数和倾斜面修正系数为系统安装地的实际数据:组件衰减损耗修正系数主要指因组件组合、组件功率衰减、组件灰尘遮盖、充电效率等的损失,一般取:两段连续阴雨天之间的最短间隔天数需要补充的蓄电池容量的计算补充的蓄电池容量Ah=安全系数×负载日平均耗电量Ah×最大连续阴雨天数组件并联数的计算:组件并联数=补充的蓄电池容量+负载日平均耗电量×最短间隔天数/组件平均日发电量×最短间隔天数负载日平均耗电量=负载功率/负载工作电压×每天工作小时数13.光伏方阵发电量的计算年发电量=kWh=当地年总辐射能KWH/㎡×光伏方阵面积㎡×组件转换效率×修正系数; P=H·A·η·K修正系数K=K1·K2·K3·K4·K5K1组件长期运行的衰减系数,取:K2灰尘遮挡组件及温度升高造成组件功率下降修正,取:K3为线路修正,取:K4为逆变器效率,取或根据厂家数据:K5为光伏方阵朝向及倾斜角修正系数,取左右;14.根据负载耗电量计算光伏方阵的面积光伏组件方阵面积=年耗电量/当地年总辐射能×组件转换效率×修正系数A=P/H·η·K15.太阳能辐射能量的转换1卡cal=焦J=毫瓦时mWh1千瓦时kWh=兆焦MJ1千瓦时/㎡KWh/㎡=兆焦/㎡MJ/㎡=千焦/厘米2KJ/cm2100毫瓦时/厘米2mWh/cm2=卡/厘米2cal/cm21兆焦/米2MJ/m2=卡/厘米2cal/cm2=毫瓦时/厘米2mWh/cm2当辐射量的单位为卡/厘米2:年峰值日照时数=辐射量×换算系数当辐射量的单位为兆焦/米2:年峰值日照时数=辐射量÷换算系数当辐射量单位为千瓦时/米2:峰值日照小时数=辐射量÷365天当辐射量的单位为千焦/厘米2,峰值日照小时数=辐射量÷换算系数16.蓄电池选型蓄电池容量≥5h×逆变器功率/蓄电池组额定电压17.电价计算公式发电成本价格=总成本÷总发电量电站盈利=买电价格-发电成本价格×电站寿命范围内工作时间发电成本价格=总成本-总补贴÷总发电量电站盈利=买电价格-发电成本价格2×电站寿命范围内工作时间电站盈利=买电价格-发电成本价格2×电站寿命范围内工作时间+非市场因素收益18.投资回报率计算无补贴:年发电量×电价÷投资总成本×100%=年回报率有电站补贴:年发电量×电价÷投资总成本-补贴总额×100%=年回报率有电价补贴及电站补贴:年发电量×电价+补贴电价÷投资总成本-补贴总额×100%=年回报率19.光伏方阵倾角角度和方位角角度倾斜角纬度组件水平倾角0°—25°倾角=纬度26°—40°倾角=纬度+5°—10°在我国大部分地区采取+7°41°—55°倾角=纬度+10°—15°纬度>55°倾角=纬度+15°—20°方位角方位角=一天中负荷的峰值时刻24h制-12×15+经度-11620.光伏方阵前后排间距:D = 0 . 7 0 7 H / t a n a c r s i n 0 . 6 4 8 c o sΦ- 0 . 3 9 9 s i nΦD:组件方阵前后间距Φ:光伏系统所处纬度北半球为正,南半球为负H:为后排光伏组件底边至前排遮挡物上边的垂直高度。

光伏发电系统设计计算公式

光伏发电系统设计计算公式

光伏发电系统设计计算公式1.转换效率;η=Pm(电池片的峰值功率)/A(电池片面积);其中:Pin=1KW/㎡=100mW/cm2;2.充电电压;Vmax=V额×1.43倍;3.电池组件串并联;3.1电池组件并联数=负载日平均用电量(Ah)/;3.2电池组件串联数=系统工作电压(V)×系数1;4.蓄电池容量;(单位是安时Ah,或者单位极板CELL几W,简称W/CELL.蓄电池容量=负载日平均用电量(Ah)×连续阴光伏发电系统设计计算公式5平均放电率平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率7.蓄电池7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数7.2蓄电池串联数=系统工作电压/蓄电池标称电压7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数损耗系数:取1.6~2.0根据当地污染程度、线路长短、安装角度等8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等9.以年辐射总量为依据的计算方式组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取27610.以年辐射总量和斜面修正系数为依据的计算10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等:安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.310.2蓄电池容量=10×负载总用电量/系统工作电压:10:无日照系数(对于连续阴雨不超过5天的均适用)11.以峰值日照时数为依据的多路负载计算11.1电流组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。

光伏电站蓄电池容量的计算方法.

光伏电站蓄电池容量的计算方法.

光伏电站蓄电池容量的计算方法在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。

因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。

不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。

在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。

例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。

每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。

蓄电池又可分为浅循环和深循环两种类型。

因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。

确定蓄电池容量的公式为:aK U L P F D C ××××=0 (公式4-1) C -蓄电池容量,kW·h (Ah );D -最长无日期间用电时数,h ;F—蓄电池放电效率的修正系数,(通常取1.05);P O -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。

上式可简化为:C =3.75×D×P 0这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。

由于蓄电池容量一般以安时数表示,故蓄电池容量应该为:VWh C Ah C )(1000)(×=′ H I Ah C ×=′)(C ′为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。

如何根据负载计算太阳能电池板的安装容量

如何根据负载计算太阳能电池板的安装容量

?1.将用电按照时间分布取最高数值Pmax2.计算出太阳光照最短日期的时间长Tmin3.根据太阳能电池板规格计算出在Tmin情况下输出Pmax的总容量Cs4.根据Cs计算得到蓄电池的容量Cb5.根据Pmax确定逆变器规格,最好给出30%的裕量如何计算配置UPS电池的容量ups的额定功率*延长时间*ups输出的功率因数/该UPS主机的启动直流电压,所得的结果为总的电池容量(单位为AH)。

注意:厂家在考虑能充分达到延长时间,一般不乘以ups输出的功率因数。

举例说明:山特C6KS,6000VA(额定功率)/4200W(有用功率),主机的直流电压为240v,如果延长8小时,电池容量配置如下:按此结果,理论上应该配置20只(240v/12v,每只电池的直流电压是12v)200AH.针对ups的充电效用和常用ups蓄电池标准,所配置的蓄电池为100AH,65AH,38AH,24AH.所以将200AH分为2个100AH并联,如此得到2组100AH电池,每一组是20只,共40只100AH电池。

用电功率*用电时间/(电池电压*转换效率)=电池容量假如需要1KW用电功率,UPS工作一小时,换算成电池的容量为:1000*1/(12*0.5)=167(安时)如果4块或8块电池串联,则每块电池的容量分别为:1000*1/(12*4*0.5)=41(安时)1000*1/(12*8*0.5)=21(安时)扣除电池放电效率及逆变消耗,效率取50%太阳能发电蓄电池容量的计算方法浏览次数:351次2008-1-30地球上各地区受太阳光照射及辐射能变化的周期为一天24h。

处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。

但是天气的变化将影响方阵的发电量。

如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。

设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。

光伏发电工程技术习题答案

光伏发电工程技术习题答案

《光伏发电工程技术》教材习题答案习题11.简述太阳能电池的工作原理。

答:光生伏特效应简称为光伏效应,指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。

其工作原理如下:当太阳光照射到半导体表面,半导体内部N区和P区中原子的价电子受到太阳光子的冲击,通过光辐射获取到超过禁带宽度E g的能量,脱离共价健的束缚从价带激发到导带,由此在半导体材料内部产生出很多处于非平衡状态的电子—空穴对。

结合图1-7所示,光生电子-空穴对在耗尽区产生后,立即被内建电场分离,光生电子被推向N区,光生空穴被推向P区:在N区中光生电子-空穴对向P-N结的边界扩散,一旦达到耗尽区的边界,立即受到内电场的作用,空穴推入P 区,而光生电子则被留在N区;P区中的光生电子(少子)则同样的先扩散,后在电场力的作用下被推入N区,光生空穴则留在P区。

因此,在P区有过剩的空穴,在N区有过剩的电子,如此便在P-N结两侧形成了正负电荷的积累,产生与势垒电场方向相反的光生电动势,也就是光生伏特效应。

将半导体做成太阳能电池并外接负载后,光电流从P区经负载流至N区,负载即得到功率输出,太阳能便变成了电能。

2.说明光伏发电系统的组成及各个部分的作用。

答:光伏发电系统通常由太阳能电池组件(太阳能电池板或光伏组件)、蓄电池组、控制器、逆变器等几部分构成。

太阳能电池组件也叫太阳能电池板,是太阳能发电系统中的核心部分,是能量转换的器件,其作用是将光能转换成电能。

蓄电池的作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。

控制器的作用是使太阳能电池和蓄电池高效、安全、可靠的工作,以获得最高效率并延长蓄电池的使用寿命,能自动防止蓄电池过充电和过放电。

逆变器的作用是将直流电转换成交流电的设备。

3.光伏发电系统的一般分类如何?各种类型光伏发电系统的工作原理如何?答:光伏发电系统分为独立系统、并网系统。

独立光伏发电也叫离网光伏发电。

主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器,结合图1-10所示。

光伏系统设计计算公式

光伏系统设计计算公式

光伏发电系统设计计算公式1、转换效率:η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率)其中:Pin=1KW/㎡=100mW/cm²。

2、充电电压:Vmax=V额×1.43倍3.电池组件串并联3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah)3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V)4.蓄电池容量蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度5平均放电率平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率7.蓄电池:7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数7.2蓄电池串联数=系统工作电压/蓄电池标称电压7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等;8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等;9.以年辐射总量为依据的计算方式组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276;10.以年辐射总量和斜面修正系数为依据的计算10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3;10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用)11.以峰值日照时数为依据的多路负载计算11.1电流:组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。

太阳能电池方阵组合的计算

太阳能电池方阵组合的计算

太阳能电池方阵组合的计算太阳能电池方阵是根据负载需要将若干个组件通过串联和并联进行组合连接,得到规定的输出电流和电压,为负载提供电力的。

方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流。

一般独立光伏系统电压往往被设计成与蓄电池的标称电压相对应或者是它的整数倍,而且与用电器的电压等级一致,如220v、110v、48v、36v、24v、12v等。

交流光伏发电系统和并网光伏发电系统,方阵的电压等级往往为110v 或220v。

对电压等级更高的光伏发电系统,则采用多个方阵进行串并联,组合成与电网等级相同的电压等级,如组合成600v、10kv等,再通过逆变器后与电网连接。

方阵所需要串联的组件数量主要由系统工作电压或逆变器的额定电压来确定,同时要考虑蓄电池的浮充电压、线路损耗以及温度变化等因素。

一般带蓄电池的光伏发电系统方阵的输出电压为蓄电池组标称电压的1.43倍。

对于不带蓄电池的光伏发电系统,在计算方阵的输出电压时一般将其额定电压提高10%,再选定组件的串联数。

例如,一个组件的最大输出功率为108w,最大工作电压为36.2v,设选用逆变器为交流三相,额定电压380v,逆变器采取三相桥式接法,则直流输出电压up=uab/0.817=380/0.817≈465v。

再来考虑电压富余量,太阳能电池方阵的输出电压应增大到1.1×465=512v,则计算出组件的串联数为512v/36.2v≈14块。

下面再从系统输出功率来计算太阳能电池组件的总数。

现假设负载要求功率是30kw,则组件总数为30000w/108w≈277块,从而计算出模块并联数为277/14≈19.8,可选取并联数为20块。

结论:该系统应选择上述功率的组件14串联20并,组件总数为14×20=280块,系统输出最大功率为280×108w≈30.2kw。

①短路电流(Isc):当将太阳能电池的正负极短路、使U=O时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。

光伏组件计算公式

光伏组件计算公式

光伏组件计算公式This model paper was revised by the Standardization Office on December 10, 2020光伏发电系统设计计算公式1.转换效率η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率)其中:Pin=1KW/㎡=100mW/cm2。

2.充电电压Vmax=V额×倍3.电池组件串并联电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah)电池组件串联数=系统工作电压(V)×系数组件峰值工作电压(V)4.蓄电池容量蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度5平均放电率平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度6.负载工作时间负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率7.蓄电池蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数蓄电池串联数=系统工作电压/蓄电池标称电压蓄电池并联数=蓄电池总容量/蓄电池标称容量8.以峰值日照时数为依据的简易计算组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数损耗系数:取~根据当地污染程度、线路长短、安装角度等蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数系统安全系数:取~,根据蓄电池放电深度、冬季温度、逆变器转换效率等9.以年辐射总量为依据的计算方式组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取27610.以年辐射总量和斜面修正系数为依据的计算方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量系数5618:根据充放电效率系数、组件衰减系数等:安全系数:根据使用环境、有无备用电源、是否有人值守等,取~蓄电池容量=10×负载总用电量/系统工作电压:10:无日照系数(对于连续阴雨不超过5天的均适用)11.以峰值日照时数为依据的多路负载计算电流组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数系统效率系数:含蓄电池充电效率,逆变器转换效率,组件功率衰减+线路损耗+尘埃等.具体根据实际情况进行调整。

光伏方阵用地面积计算公式

光伏方阵用地面积计算公式

光伏方阵用地面积计算公式光伏方阵是利用太阳能光伏电池将太阳能转化为电能的设备,是目前广泛应用于太阳能发电领域的一种技术。

光伏方阵的建设需要占用一定的土地面积,因此对于光伏方阵用地面积的计算十分重要。

本文将介绍光伏方阵用地面积的计算公式,并对公式中的各项参数进行详细解释。

光伏方阵用地面积的计算公式如下:\[ A = \frac{P}{G \times \eta} \]其中,A表示光伏方阵用地面积,单位为平方米;P表示光伏方阵的总装机容量,单位为千瓦;G表示太阳辐射强度,单位为千瓦/平方米;η表示光伏电池的转换效率,为无单位数值。

首先,我们来解释一下太阳辐射强度G。

太阳辐射强度是指太阳辐射在单位面积上的能量,通常以千瓦/平方米为单位。

太阳辐射强度受到地理位置、季节、天气等因素的影响,因此在实际计算中需要结合具体的地理环境数据进行评估。

一般来说,太阳辐射强度越高的地区适合建设光伏方阵。

其次,光伏电池的转换效率η是指光伏电池将太阳能转化为电能的效率。

光伏电池的转换效率通常在15%到25%之间,不同类型的光伏电池其转换效率也会有所差异。

在实际计算中,需要根据光伏电池的具体参数确定其转换效率。

最后,总装机容量P是指光伏方阵中所有光伏电池的总装机容量之和。

总装机容量是衡量光伏方阵发电能力的重要指标,通常以千瓦为单位。

在实际建设光伏方阵时,需要根据电网接入容量、用地条件等因素确定光伏方阵的总装机容量。

综上所述,光伏方阵用地面积的计算公式中包括了太阳辐射强度、光伏电池的转换效率和总装机容量三个重要参数。

在实际应用中,需要根据具体的地理环境和光伏方阵设计参数来确定用地面积。

通过合理的计算和规划,可以最大限度地利用太阳能资源,提高光伏方阵的发电效率,为可持续发展做出贡献。

除了以上介绍的计算公式,还有一些其他因素也会对光伏方阵用地面积产生影响。

例如,光伏方阵的布局方式、地形地貌、土地利用政策等因素都会对光伏方阵用地面积的确定产生影响。

太阳能发电蓄电池容量的计算方法

太阳能发电蓄电池容量的计算方法

太阳能发电蓄电池容量的计算方法一、概述地球上各地区受太阳光照射及辐射能变化的周期为一天24h。

处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。

但是天气的变化将影响方阵的发电量。

如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。

设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。

由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。

根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。

气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。

对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。

方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。

二、蓄电池组容量设计太阳能电池电源系统的储能装置主要是蓄电池。

与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。

它的容量比负所需的电量大得多。

蓄电池提供的能量还受环境温度的影响。

为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。

1.蓄电池的选用能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。

国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。

普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。

碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

2.蓄电池组容量的计算蓄电池的容量对保证连续供电是很重要的。

太阳能板蓄电池容量的计算

太阳能板蓄电池容量的计算

太阳能电板、蓄电池的容量计算方法•蓄电池组采用上述电池浮充供电方式时,蓄电池的性能是关键。

在各种蓄电池中,性能最优者属碱性蓄电池,它的低温特性和过量充电性能较好,自动放电小,但价格较高,容量不大,一般的非密封酸性蓄电池电解液容易挥发,不宜在水情自动测报系统中使用。

免维护密封酸性蓄电池具有良好的性能价格比,故目前使用较多。

根据我们长期从事水情遥测系统设计的经验,通过经费核算及考虑防雷要求,遥测站使用太阳能电池和蓄电池组合的浮充供电系统。

铅酸全密封酸性蓄电池具有良好的低温特性和充电特性,而且免维护,因而遥测设备用它供电是理想的,为保证最长连续无日照期间也能供电,必须选择蓄电池的容量。

在广东地区一般定为满足30天的需要。

在本系统中采用胶状电解质全密封免维护铅酸蓄电池作为系统的直流电源。

可选的品牌很多,如进口产品汤浅、大力神等。

•超短波测站太阳能浮充供电的蓄电池容量的计算工作电压:12.5V静态电流:2mA发射电流:6A(25W电台),发射时间t=1秒月发送时间:以月发送1200次计算,合计发送20分,则可计算出日耗电量Q产日发送时间x耗电量+静态电流x24小时=0.1Ah最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量C =日耗电量x最大的连续无日照时间/容量修正系数=0.1Ah x30;0.8=3.75Ah考虑到蓄电池要能提供6A的电流,应采用容量大于10Ah的蓄电池。

因此,本系统雨量遥测站(25W电台)需采用12Ah的蓄电池。

•超短波水位雨量测站太阳能浮充供电的蓄电池容量的计算工作电压:12.5V静态电流:2mA发射电流:6A (25W电台),发射时间t=1秒24小时发送时间:以发送300次计算,合计发送5分钟时间,则可计算出日耗电量Q产日发送时间>耗电量+静态电流沌4小时=0.61Ah最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池供电系统设计步骤
⑴列出基本数据
①确定所有负载功率及连续工作时间
②确定地理位置:经、纬度及海拔高度
③确定安装地点的气象资料:
★年(或月)太阳辐射总量或年(或月)平均日照时数
★年平均气温和极端气温
★最长连续阴雨天数
★最大风速及冰雹等特殊气候资料
⑵确定负载功耗:Q=ΣI²H 其中:I-负载电流,H-负载工作时间(小时)
⑶确定蓄电池容量:C = Q X d X 1.3
式中:d-连续阴雨天数 C-蓄电池标称容量(10小时放电率)
C = (10~20)³Cr /(1-d)
⑷确定方阵倾角:推荐方阵的倾角与纬度的关系
⑸计算方阵β倾角下的辐射量:
Sβ= S³sin(α+β)/sinα
式中:Sβ—β倾角方阵太阳直接辐射分量
α—中午时太阳高度角
S
其它:α=90°-Φ±δ
式中:Φ—纬度
δ—太阳赤纬度(北半球取+号)地面即:α=90°-Φ+δ
δ=23.45°sin[(284+n)³360/365]
式中:n—从一年开头算起第n天的纬度
那么 Rβ=S³sin(α+β)/sinα+D
式中 Rβ—β角方阵面上的太阳总辐射量 D—散射辐射量(查阅气象资料)
⑹计算方阵电流:
Tm = (Rβ³mwH/cm2)/(100mw/cm2)
式中:Tm—为平均峰值日照时数
Imin = Q/(Tm³η1³η2)
式中:Imin—方阵最小输出电流η1—蓄电池充电效率
η2—方阵表面灰尘遮散损失
Imax = Q/(Tmin³η1³η2)
⑺确定方阵电压:
V = Vf+Vd
式中:Vf—蓄电池浮充电压(25‵)Vd—线路电压损耗
⑻确定方阵功率:
F=Im³V/(1-α(Tmax-25))
式中:α—一般取α=0.5% Tmax—太阳电池最高工作温度
⑼根据蓄电池容量、充电电压、环境极限温度、太阳电池方阵电压及功率要求,选取适
合的太阳电池组件。

举例:以负载480W/-48V为例
⑴基本数据:
‴负载功率:480W/-48V,24小时连续工作。

‴地理位置:新疆库车:东经83°E,北纬41.7°N
‴年平均日照时数(水平面):2700小时
‴极限气温:-40‵~+70‵
‴连续阴雨天数:5天
‴最大风速:50m/s
‴水平面太阳直接辐射量:S = 478mwH/cm2
⑵负载功率:Q=480W/-48V X 24=240AH
⑶确定蓄电池容量:
取 d=5 C=240 X 5 X 1.3=1560AH
⑷确定方阵倾角:β
取β=40°+15°=55°
⑸计算方阵β角下的日辐射量:
因为α=90°-Φ+δ=90°-40°+15°=65°
δ=23.45°sin[(284+n)³360/365]
取n=200天
所以δ=23.45°sin[(284+n)³360/365]=20.82°≈21°
又因为 Rβ=S³sin(α+β)/sinα+D 取 D=0
则 Rβ=478³sin(65°+55°)/sin65°=478³0.96=456mwh/cm2
⑹计算方阵电流
因为Tm = (Rβ³mwH/cm2)/(100mw/cm2)=456/100=4.56h
所以Imin = Q/(Tm³η1³η2) 取η1=1 η2=1
Imin = Q/(Tm³η1³η2)=240/4.56=52.6A
⑺确定方阵功率
F=Im³V/(1-α(Tmax-25))
令Im=Imin,Im为平均电流 V=Vm(Vm=SM55组件电压³4) Tmax=70°
则F=52.6³69.6/(1-5103(70-25))=4723W
综上述计算结果,对480W/-48V负载24小时连续工作应配太阳电池组件功率4723Wp。

并与西门子计算机优化设计方案比较如下:
计算项目我司计算结果西门子计算机优化设计结果
太阳电池功率: 4723W 4823.3W
连续阴雨天: 5天 5天
蓄电池容量: 1560AH 1500AH
方阵倾角: 55° 55°
太阳能控制器对蓄电池的充电控制
太阳能电池方阵容量的确定:
通常我司都是根据西门子太阳能电源系统计算机设计软件来设计的,其算法与《2太阳能电池方阵容量的一般计算方法》是一致的,故在此就不列出详细的计算过程,仅列出计算步骤和结果,以“松树沟(524W/-48V)”站为例叙述如何计算太阳能电源系统:1.列出基本数据:来自标书及相关的有关气象和地理环境资料。

‴经、纬度:东经112°55′51″北纬35°31′海拔1895米
‴负载功耗:524W/-48V,24小时连续不间断工作。

‴连续阴雨天:7天。

‴气象资料:如太阳辐射量,年平均气温和极端气温、风速、连阴雨天等,用户可在当地气象部门查询(我司采用西门子太阳能电源系统计算机设计软件已将气象
卫星收集的气象资料输入在所选择的地点或接近的地点)
2.确定负载功耗:524W/-48V 24小时连续工作(标书给出)。

3.确定蓄电池容量:经过计算结果为:2300.0AH/-48V(详见3.3.2松树沟西门子太阳能计算机优化方案)。

4.确定方阵倾角:
在计算过程中,选择靠近该站地点的2个采样点(河南卢氏:东经111°、北纬34°和河北武安:东经114°、北纬37°)发现方阵倾角选“卢氏”时为50°,而选“武安”时为35°,再结合地理位置及海拔等环境因素及以往的实际经验,认为“卢氏”的资料较接近“松树沟”站的情况,并做以下修正。

结论:方阵倾角为50°
5.计算日辐射量:略(西门子软件中已提供)。

6.方阵功率的确定:
计算结果为:5261.8Wp。

7.确定组件的规格型号:选定为SM55/55Wp/每块。

8.修正总的功率数结果:取96块SM55组件/5280Wp(4串24并)。

9.方阵串并联数的确定:
‴ -48V系统。

‴取4块串联,24组件并联。

10. 方阵输入的路数确定:
西门子太阳能控制器是按A、B、C、D 4路输入来生产制作的,故方阵分A、B、C、
D 4 路输入。

太阳能控制器的工作原理:
1.太阳能控制器选型:根据电源系统电压和方阵最大充电电流来选择控制器注:A:受负载电压变化范围的限制(44-52V)的设备使用限压器,电流为20A(也可另行制做)。

B:不受负载电压变化范围限制的设备:充电电流≤200A,负载电流为50A。

充电电流>200A,负载电流为70A。

2.合理分配太阳能方阵电流:
1)太阳能方阵的合理分配是使太阳能得到充分的利用、对蓄电池更合理的充电和太阳能控制器不频繁启动。

2)太阳能方阵电流分配:一般原则是使方阵的充电曲线愈接近蓄电池的最佳充电曲线,故:
A 首先计算负载电流,由蓄电池容量计算出每天蓄电池自放电安时数。

再由蓄电
池自放电安
时数计算出其在白天需要的电流大小,再把两个电流加在一起来选择A路方阵大小即可。

B 其它三路由剩余的方阵均分即可。

C 原因为在白天一般情况下太阳能方阵均为饱和状态,只由一路方阵来维持负载
电流即可。

10-3
3)太阳能控制器工作原理和蓄电池各控制点的设置:
①太阳能控制器各点的设置:根据所选的蓄电池种类而确定,从免维护蓄电池资
料得到:浮充电压2.25V、均充电压2.35V、极限电压2.4V。

由48V电源系统和太阳能控制器原理得各点设置如下:
A 最小浮充电压: 52.8V
B 电大浮充电压: 54.8V
C 均充电压: 56.4V
D 最高极限电压: 57.6V
E 浮充转均充电压:50V
F 梯度电压: 55.2V
②太阳能控制器工作原理:
初次对蓄电池充电,蓄电池都是不饱和的,首先控制器进入均充状态,四路方阵同时对蓄电池充电,经过一段时间后,蓄电池进入饱和状态,此时蓄电池电压变化较快,蓄电池电压达到56.4V。

控制器经过延时,首先关断D路,判断蓄电池电压是否高于56.4V,如不高于,则维持现状,如高于,经过一段延时后断开C路,重复执行,直到全部关断,转入浮充状态。

由于有负载,所以蓄电池电压下降到52.8V 时接通A路,如电压继续下降则接通B路,如电压再继续下降则接通C路,如电压继续再下降则接通D路。

当A路接通时电压上升到54.8V,则关断A路,使蓄电池电压维持在52.8V到54.8V之间。

从而保证蓄电池不过充电。

对负载的控制,本控制器设置有低电压负载开路设置点,一般设置为44V,低
电压告警设置为
46.4V,负载再接通电压设置为52V,以保证蓄电池可靠供电。

相关文档
最新文档