导数及导数应用专题练习题

合集下载

高中数学专题练习《导数的概念及其几何意义》含详细解析

高中数学专题练习《导数的概念及其几何意义》含详细解析

5.1.2 导数的概念及其几何意义基础过关练题组一 导数的定义及其应用1.函数y=f(x)的自变量x 由x 0变化到x 0+Δx 时,函数值的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0)2.函数f(x)在x=x 0处的导数可表示为( )A.f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)ΔxB.f'(x 0)=lim Δx→0[f(x 0+Δx)-f(x 0)]C.f'(x 0)=f(x 0+Δx)-f(x 0)D.f'(x 0)=f (x 0+Δx )-f (x 0)Δx3.已知函数f(x)=ax+4,若f'(1)=2,则a= .4.如图是函数y=f(x)的图象.(1)函数f(x)在区间[-1,1]上的平均变化率为 ; (2)函数f(x)在区间[0,2]上的平均变化率为 . 5.求函数y=x 2+1在x=0处的导数.题组二 导数的几何意义及其应用6.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是( )A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率7.某司机看见前方50m处有行人横穿马路,这时司机开始紧急刹车,在刹车的过程中,汽车的速度v是关于刹车时间t的函数,其图象可能是( )8.已知函数f(x)在R上有导函数,且f(x)的图象如图所示,则下列不等式正确的是( )A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)9.如图,函数y=f(x)的图象在P点处的切线方程是y=-x+8,若点P的横坐标是5,则f(5)+f'(5)=( )B.1C.2D.0A.12题组三 求曲线的切线方程10.若曲线f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则( )A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-111.函数f(x)=x3+x-2的图象在点P处的切线平行于直线y=4x-1,则P点的坐标为( )A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)12.若点A(2,1)在曲线y=f(x)上,且f'(2)=-2,则曲线y=f(x)在点A处的切线方程是 .13.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是 .14.试求过点M(1,1)且与曲线y=x3+1相切的直线方程.能力提升练题组一 导数的定义及其应用1.(2020浙江宁波中学高二下期中测试,)甲、乙两厂污水的排放量W与时间t的关系如图所示,则治污效果较好的是( )A.甲厂B.乙厂C.两厂一样D.不确定2.(2020河南新乡高二上期末,)若f'(2)=3,则lim Δx→0f (2+2Δx )-f (2)Δx= . 3.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组二 导数的几何意义及其应用4.(2020黑龙江佳木斯一中高二上期末,)函数f(x)的图象如图所示,则下列数值排序正确的是( )A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)5.()已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在a到b之间的平均变化率大于g(x)在a到b之间的平均变化率B.f(x)在a到b之间的平均变化率小于g(x)在a到b之间的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率6.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是( )A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0>f(x1)+f(x2)2<f(x1)+f(x2)2题组三 求曲线的切线方程7.(2020浙江金华一中高二下期中,)已知f(x)=x2+2x+3,P为曲线C:y=f(x)上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )A.-∞,-B.[-1,0]C.[0,1]D.-1,+∞28.(2020浙江丽水高二下期末,)已知过点P(-1,1)的直线m交x轴于点A,若抛物线y=x2上有一点B,使得PA⊥PB,且AB是抛物线y=x2的切线,则直线m的方程为 .,过9.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1x两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率,否则只得结论分)答案全解全析基础过关练1.D 分别写出x=x 0和x=x 0+Δx 时对应的函数值f(x 0)和f(x 0+Δx),两函数值相减就得到了函数值的改变量,所以Δy=f(x 0+Δx)-f(x 0).2.A 由导数的定义知A 正确.3.答案 2解析 由题意得,Δy=f(1+Δx)-f(1)=a(1+Δx)+4-a-4=aΔx,∴lim Δx→0ΔyΔx =a,∴f'(1)=a=2.4.答案 (1)12 (2)34解析 (1)函数f(x)在区间[-1,1]上的平均变化率为f (1)-f (-1)1―(―1)=2―12=12.(2)由函数f(x)的图象知,,-1≤x ≤1,<x ≤3,所以函数f(x)在区间[0,2]上的平均变化率为f (2)-f (0)2―0=3―322=34.5.解析 Δy=(0+Δx )2+1-0+1=(Δx )2+1―1(Δx )2+1+1=(Δx )2(Δx )2+1+1,∴ΔyΔx =Δx (Δx )2+1+1,∴y'x=0=lim Δx→0ΔyΔx =lim Δx→0Δx (Δx )2+1+1=0.6.D f'(x 0)的几何意义是函数y=f(x)的图象在点(x 0,f(x 0))处的切线的斜率.7.A 在刹车过程中,汽车速度呈下降趋势,排除选项C,D;由于是紧急刹车,所以汽车开始时速度下降非常快,图象较陡,排除选项B,故选A.8.A 由题意可知,f'(a),f'(b),f'(c)分别是函数f(x)在x=a 、x=b 和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选A.9.C ∵函数y=f(x)的图象在x=5处的切线方程是y=-x+8,∴f'(5)=-1,又f(5)=-5+8=3,∴f(5)+f'(5)=3-1=2.故选C.10.B 由题意得,f'(1)=lim Δx→0ΔyΔx=lim Δx→0(1+Δx )2+a(1+Δx )+b -1-a -bΔx =lim Δx→0(Δx )2+2Δx +aΔxΔx =2+a.∵曲线f(x)=x 2+ax+b 在点(1,1)处的切线方程为3x-y-2=0,∴2+a=3,解得a=1.又∵点(1,1)在曲线y=x 2+ax+b 上,∴1+a+b=1,解得b=-1,∴a=1,b=-1.故选B.11.C f'(x)=lim Δx→0ΔyΔx=lim Δx→0(x +Δx )3+(x +Δx )-2-x 3-x +2Δx=3x 2+1.设P(x 0,y 0),则f'(x 0)=3x 20+1=4,所以x 0=±1,当x 0=1时,f(x 0)=0,当x 0=-1时,f(x 0)=-4,因此P 点的坐标为(1,0)或(-1,-4).12.答案 2x+y-5=0解析 由题意知,切线的斜率k=-2.∴在点A(2,1)处的切线方程为y-1=-2(x-2),即2x+y-5=0.13.答案 2x-y-1=0解析 设切点坐标为(x 0,y 0),y=f(x)=x 2,则由题意可得,切线斜率f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)Δx=2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y-1=2(x-1),即2x-y-1=0.14.解析 Δy Δx =(x +Δx )3+1―x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx=3xΔx+3x 2+(Δx)2,则lim Δx→0ΔyΔx =3x 2,因此y'=3x 2.设过点M(1,1)的直线与曲线y=x 3+1相切于点P(x 0,x 30+1),根据导数的几何意义知曲线在点P 处的切线的斜率为k=3x 20①,过点M 和点P 的切线的斜率k=x 30+1―1x 0-1②,由①-②得3x 20=x 30x 0-1,解得x 0=0或x 0=32,所以k=0或k=274,因此过点M(1,1)且与曲线y=x 3+1相切的直线有两条,方程分别为y-1=274(x-1)和y=1,即27x-4y-23=0和y=1.能力提升练1.B 在t 0处,虽然有W 甲(t 0)=W 乙(t 0),但W 甲(t 0-Δt)<W 乙(t 0-Δt),所以在相同时间Δt 内,甲厂比乙厂的平均治污率小,所以乙厂治污效果较好.2.答案 6解析 limΔx→0f (2+2Δx )-f (2)Δx=2lim Δx→0f (2+2Δx )-f (2)2Δx =2f'(2)=6.3.解析 f'(10)=1.5表示服药后10 min 时,血液中药物的质量浓度上升的速度为1.5 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL. f'(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.4.B 如图所示, f'(2)是函数f(x)的图象在x=2(即点A)处切线的斜率k 1, f'(3)是函数f(x)的图象在x=3(即点B)处切线的斜率k 2,f (3)-f (2)3―2=f(3)-f(2)=k AB 是割线AB 的斜率.由图象知0<k 2<k AB <k 1,即0<f'(3)<f(3)-f(2)<f'(2).故选B.5.D ∵f(x)在a 到b 之间的平均变化率是f (b )-f (a )b -a,g(x)在a 到b 之间的平均变化率是g (b )-g (a )b -a ,f(b)=g(b),f(a)=g(a),∴f (b )-f (a )b -a=g (b )-g (a )b -a,∴A 、B 错误;易知函数f(x)在x=x 0处的瞬时变化率是函数f(x)在x=x 0处的导数,即函数f(x)在该点处的切线的斜率,同理函数g(x)在x=x 0处的瞬时变化率是函数g(x)在该点处的导数,即函数g(x)在该点处的切线的斜率,由题中图象知C 错误,D 正确.故选D.6.AD 由题中图象可知,导函数f'(x)的图象在x 轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A 选项表示x 1-x 2与f(x 1)-f(x 2)异号,即f(x)图象的割线斜率f (x 1)-f(x 2)x 1-x 2为负,故A 正确;B 选项表示x 1-x 2与f(x 1)-f(x 2)同号,即f(x) 图象的割线斜率f (x 1)-f(x 2)x 1-x 2为正,故B 不正确表示x 1+x 22对应的函数值,即图中点B 的纵坐标,f (x 1)+f(x 2)2表示当x=x 1和x=x 2时所对应的函数值的平均值,即图中点A 的纵坐标,显然有<f (x 1)+f(x 2)2,故C 不正确,D 正确.故选AD.7.D 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为tan α=f'(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α,∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12,∴点P 的横坐标的取值范围为-12,+∞.8.答案 x-y+2=0或x+3y-2=0解析 令y=f(x)=x 2,设B(t,t 2),则k AB =lim Δx→0f (t +Δx )-f (t )Δx =2t,则直线AB 的方程为y=2tx-t 2.当t=0时,符合题意,此时A(-2,0),∴直线m 的方程为x-y+2=0.当t ≠0时,0,PA=+1,―1,PB =(t+1,t 2-1),∵PA ⊥PB,∴PA ·PB =0,+1(t+1)-(t 2-1)=0,解得t=4或t=-1(B,P重合,舍去),此时A(2,0),∴直线m 的方程为x+3y-2=0.综上,直线m 的方程为x-y+2=0或x+3y-2=0.9.解析 由y =x 2,y =1x,得x =1,y =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=lim Δx→0f (Δx +1)―f (1)Δx =lim Δx→0(Δx +1)2-12Δx =lim Δx→0(Δx+2)=2,g'(1)=lim Δx→0g (Δx +1)―g (1)Δx =lim Δx→01Δx +1-11Δx=lim Δx→0-所以两条切线的方程分别为y-1=2(x-1),y-1=-(x-1),即y=2x-1与y=-x+2,两条切线与x,0,(2,0),所以两切线与x轴围成的三角形的面积为12×1×|2―12|=34.。

导数运算法则的应用试题及答案

导数运算法则的应用试题及答案

导数运算法则的应用试题及答案导数运算法则的应用试题1.若函数()f x 在R 上可导,且满足'()()f x xf x < ,则( ) A.2(1)(2)f f < B.2(1)(2)f f > C.2(1)(2)f f = D.(1)(2)f f =2.已知函数()f x 的导函数为 '()f x ,满足 ln '()2()x xf x f x x +=,且1()2f e e=,则()f x 的单调性情况为( )A .先增后减B 单调递增C .单调递减D 先减后增3.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e为自然对数的底数)的解集为( ) A .()0,+∞ B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞5.)0)()((),(≠x g x g x f 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''<,且0)()(,0)3(<=-x g x f f的解集为( ) A .(-∞,-3)∪(3,+∞) B .(-3,0)∪(0,3) C .(-3,0)∪(3,+∞) D .(-∞,-3)∪(0,3)6.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定7.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ) Aππ()2()43f B .(1)2()sin16πf f C ππ()()64f D ππ()()63f8.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <9.函数f(x)的定义域是R ,f(0)=2,对任意x ∈R ,f(x)+f′(x)>1,则不等式e x ·f(x)>e x +1的解集为( ) A .{x|x>0} B .{x|x<0}C .{x|x<-1或x>1}D .{x|x<-1或0<x<1}10.设函数在R 上存在导数,对任意的R ,有,且(0,+)时,.若,则实数a 的取值范围为( )(A)[1,+∞) (B)(-∞,1] (C)(-∞,2] (D)[2,+∞)()f x '()f x x ∈2()()f x f x x -+=x ∈∞'()f x x >(2)()22f a f a a --≥-11.设()f x 是定义在R 上的可导函数,且满足()()f x f x '<-,对于任意的正数a ,下面不等式恒成立的是( )A.()()0a f a e f <B.()()0a f a e f >C.()()0a f f a e <D.()()0af f a e>12.已知函数f (x )的定义域为R ,对任意x R ∈,有()3f x '>,且()13f -=,则f (x )<3x +6的解集为( ) A.(-1, 1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)13.已知()f x 为定义在(,)-∞+∞上的可导函数,()()f x f x '>对于x R ∈恒成立,且e 为自然对数的底数,则( ) A .20132014(2014)(2013)e f e f ⋅<⋅ B .20132014(2014)(2013)e f e f ⋅=⋅ C .20132014(2014)(2013)e f e f ⋅>⋅D .2013(2014)e f ⋅与2014(2013)e f ⋅的大小不能确定14.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( ) A. (-2,0) ∪(2,+∞) B. (-2,0) ∪(0,2) C. (-∞,-2)∪(2,+∞) D . (-∞,-2)∪(0,2)15.已知定义在R 上的函数)(x f 满足1)1(=f ,且)(x f 的导函数)(x f '在R 上恒有21)(<'x f ,则不等式212)(+<x x f 的解集为( ) A. ),1(+∞ B. )1,(-∞ C. )1,1(- D. )1,(-∞),1(+∞16.已知函数()y f x =是定义在数集R 上的奇函数,且当(,0)x ∈-∞时,()()xf x f x '<-成立,若)3(3f a =,)3(lg )3(lg f b =,)41(log )41(log 22f c =,则,,a b c 的大小关系是( )A. c a b >>B. c b a >>C. a b c >>D. a c b >>17.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >成立,则( ) A .3(ln 2)2(ln3)f f > B. 3(ln 2)2(ln3)f f =C. 3(ln 2)2(ln3)f f <D. 3(ln 2)f 与2(ln 3)f 的大小不确定导数运算法则的应用试题参考答案1.【答案】A试题分析:设x x f x g )()(=,则2)()()(xx f x f x x g -'=', ∵'()()f x xf x <,∴0)(>'x g ,即g (x )在(0,+∞)上单调递增,∴),2()1(g g <即)2()1(22)2(1)1(f f f f <⇒<,故选:A .2.【答案】C试题分析:由ln '()2()xxf x f x x+=知,22()2()(())ln x f x xf x x f x x ''+==,故2()x f x =ln x x x c -+,所以()f x =2ln 1x c x x x -+,因为1()2f e e =,所以c=2e ,所以()f x =2ln 12x ex x x-+,所以()f x ' =2231ln 1x e x x x -+-=32ln x x x ex --,设()h x =2ln x x x e --,所以()h x '=1ln x -,当0<x <e 时,()h x '>0,当x >e 时,()h x '<0,则()h x 在(0,e )是增函数,在(e ,+∞)上是减函数,所以当x e =时,()h x 取最大值()h e =0,所以当x >0时,()h x ≤0,即()f x '≤0,所以()f x 单调递减,故选C . 3.【答案】A 试题分析:∵()f x 为(0,)上的单调递减函数,∴0fx ,又∵'()()f x x f x ,∴>0⇔<0⇔[]′<0,设h (x )=,则h (x )=为(0,+∞)上的单调递减函数,∵>x >0,f′(x )<0,∴f (x )<0.∵h (x )=为(0,)上的单调递减函数,∴>⇔>0⇔2f (3)﹣3f (2)>0⇔2f (3)>3f (2),故A 正确;由2f (3)>3f (2)>3f (4),可排除C ;同理可判断3f (4)>4f (3),排除B ;1•f(2)>2f (1),排除D ;故选A . 4.【答案】A 试题分析:令()()3--=x x e x f e x g ,由于()()03100=--=f g ,()()()x x x e x f e x f e x g -'+='()()()01>-'+=x f x f e x 所用()x g 在R 上是增函数,()()0,0>∴>∴x g x g5.【答案】C .试题分析:由题意()()f xg x 是奇函数,当0x <时,()()()()f x g x f x g x ''<时,2()()()()()0()()f x f x g x f x g x g x g x '''⎡⎤-=<⎢⎥⎣⎦,则()()f x g x 在(),0-∞上为减函数,在()0,+∞上也为减函数,又有(3)0f -=,则有(3)(3)0,0(3)(3)f f g g -==-,可知()0()f xg x <的解集为()3,0(3,)-⋃+∞.6.【答案】C 试题分析:构造函数x e x f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 7.【答案】D 【解析】()()tan f x f x x '<⋅0cos sin )(cos )(0cos sin )()('<'-⇔<⋅-⇔xxx f x x f x x x f x f ,又因为0cos ),2,0(>∴∈x x π,从而有:0sin )(cos )(<'-x x f x x f ;构造函数,sin )()(xx f x F =则)2,0(,0sin cos )(sin )()(2π∈>-'='x xx x f x x f x F ,从而有)(x F 在(0,)2π上是增函数,所以有)3()6(ππF F <即:)3()6(33sin )3(6sin )6(ππππππf f f f <⇒<,故选D.8.【答案】A 试题分析:∵f(x)在(0,)+∞上单调递减,∴'()0f x <,又∵x x f x f >')()(,∴f(x)<'()xf x ,令0)()(')('g ,)()(g 2>-=∴=x x f x xf x x x f x ,∴g(x)在(0,)+∞上单调递增,∴g(2)>g(1),即2)2(f 3)3(f >,即3f(2)<2f(3),A 正确. 9.【答案】A 【解析】构造函数g(x)=e x ·f(x)-e x ,因为g′(x)=e x ·f(x)+e x ·f′(x)-e x =e x [f(x)+f′(x)]-e x >e x -e x =0, 所以g(x)=e x ·f(x)-e x 为R 上的增函数. 又因为g(0)=e 0·f(0)-e 0=1, 所以原不等式转化为g(x)>g(0), 解得x>0.故选A.10.【答案】B 【解析】()221)(x x f x g -=,()()0>-'='x x f x g ,()()()()02=--+=-+x x f x f x g x g ,所以()x g 既是增函数又是奇函数,()()()()()()22221,2221222122a a f a g a a a f a a f a g -=-+--=---=-,由已知,得()()⇔≥-a g a g 21222≤⇒≥⇒≥-a a a a ,故选B.11.【答案】C 【解析】试题分析:构造函数()()x g x e f x =,则''()()()x x g x e f x e f x =+0<,∴()g x 在R 内单调递减,所以(a)g(0)g <,即:()(0)a e f a f <,∴()()0af f a e<. 12.【答案】C 试题分析:构造函数()()36g x f x x =--,则()()30g x f x ''=->,所以函数()g x 是增函数,又()()1130g f -=--=,所以()0g x <的解集是(),1-∞-,即()36f x x <+的解集是(),1-∞-.13.【答案】A 试题分析:函数()f x 为定义在(,)-∞+∞上的可导函数,满足()()f x f x '>,则函数为指数函数,可设函数()()xf xg x e=,则导函数'''22()()(()())()x x x x xf x e f x e f x f x eg x e e --==,因为()()f x f x '>,所以'()0g x <,()g x 在(,)-∞+∞上为减函数,(2013)(2014)g g >,即20132014(2013)(2014)f f e e>,从而得20132014(2014)(2013)e f e f ⋅<⋅.(2)()22f a f a a --≥-14.【答案】D 试题分析:根据2()()0xf x f x x '-<和构造的函数()()f x g x x=在(0,+∞)上单调递减,又)(x f 是定义在R 上的奇函数,故)(x f 是定义在R 上单调递减. 因为f (2)=0,所以在(0,2)内恒有f (x )>0;在(2,+∞)内恒有f (x )<0.又因为f (x )是定义在R 上的奇函数,所以在(-∞,-2)内恒有f (x )>0;在(-2,0)内恒有f (x )<0.又不等式x 2f (x )>0的解集,即不等式f (x )>0的解集.所以答案为(-∞,-2)∪(0,2).15.【答案】A 试题分析:212)(+<x x f 可化为0212)(<--x x f ,令212)()(--=x x f x g ,则21)()(-'='x f x g ,因为21)(<'x f ,所以0)(<'x g 0,所以)(x g 在R 上单调递减,当1>x 时,02121)1()1()(=--=<f g x g ,即212)(+<x x f .所以不等式212)(+<x x f 的解集为),1(+∞.故选A .16.【答案】12试题分析:因为(,0)x ∈-∞时,()()xf x f x '<-,所以当(,0)x ∈-∞时,()()0xf x f x '--<,又因为函数()y f x =是定义在R 上的奇函数,所以当(,0)x ∈-∞时,()()0xf x f x '+<,构造函数()()g x xf x =,则()()()0,(,0)g x xf x f x x ''=+<∈-∞,所以()g x 在(,0)-∞上是减函数,又()()g x g x -=,所以()g x 是R 上的偶函数,所以()g x 在(0,)+∞上是增函数,因2lg 30>>>,所以(2)(lg 3)g g g >>,而21(2)(2)(log )4g g g =->,所以有c a b >>,选A.17.【答案】C 试题分析:令()()x f x g x e=,则'''2()()()()()x x x xf x e f x e f x f xg x e e --==,因为对任意x R ∈都有'()()0f x f x ->,所以'()0g x >,即()g x 在R 上单调递增,又ln 2ln3<,所以(ln 2)(ln3)g g <,即ln 2ln3(ln 2)(ln 3)f f e e <,所以(ln 2)(ln 3)23f f <,即3(ln 2)2(ln3)f f <,故选C .。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

第一章导数及其应用练习题

第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。

导数练习题(含答案)

导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于A193B103C163D1332 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A3B-3C 5D -53 函数2y x a a =+2()(x-)的导数为 A222()x a -B223()x a +C223()x a -D 222()x a +4 曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 A19B 29C 13D 235 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 A3B52C 2 D326 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B()2(1)f x x =-C2()2(1)f x x =-D ()1f x x =-7 下列求导数运算正确的是 A 211()1x x x'+=+B21(log )ln 2x x '=C3(3)3log x x e '=⋅D 2(cos )2sin x x x x '=-8 曲线32153y x x =-+在1x =处的切线的倾斜角为 A6π B 34π C 4π D 3π9 曲线3231y x x =-+在点(1,1)-处的切线方程为 A34y x =-B32y x =-+C43y x =-+ D 45y x =-10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为11 一质点的运动方程为253s t =-,则在一段时间[1,1]t +∆内相应的平均速度为 A36t ∆+B36t -∆+C36t ∆- D 36t -∆-12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是ABCD 013 过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为 A (0,1)(1,0)-或B(1,4)(1,0)--或C(1,4)(0,2)---或D (2,8)(1,0)或14 点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 A[0,]2πB3[0,)[,)24πππ C 3[,)4ππ D 3(,]24ππ二、填空题15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________16 函数2sin x y x=的导数为_________________________________17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f '+=_________ 18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题19 求下列函数的导数(1)1sin 1cos x y x-=+ (2) 52sin x x y x +=(3) y = (4) tan y x x =⋅ 20 已知曲线21:C y x =与22:(2)C y x =--,直线l 与12,C C 都相切,求直线l 的方程21 设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。

导数及其应用试题及详细解答(基础)

导数及其应用试题及详细解答(基础)
x
当 x 1时, f x 0 ,即 f x 1 ln x 单调递减,
x
又函数 f x 1 ln x 在区间 a, a 2 上不是单调函数,
x
a 0 所以有 a 1 ,解得 0 a 1 .故选 C.
a 2 1
8.【答案】B
(2)求曲线 y = f (x) 过原点 O 的切线方程.
20.(12 分)已知函数 (1)当 时,求曲线 (2)求 的单调区间.
. 在点
处的切线方程;
18.(12 分)设函数 f (x) a ln x bx2 ,若函数 f (x) 的图象在点 (1, f (1)) 处与直线 y 1 x 相切. 2
可得切线斜率 k 3m2 3 ,
由点斜式方程可得切线方程为 y﹣m3+3m=(3m2-3)(x﹣m),
代入点 P(2, 6) ,可得﹣6﹣m3+3m=(3m2-3)(2﹣m),解得 m=0 或 m=3,
当 m=0 时,切线方程为 3x y 0 ; 当 m=3 时,切线方程为 24x y 54 0 ,故选 A.
x
x
若函数 f x 有两个不同的极值点,则 g x x2 2x a 在(0,+∞)由 2 个不同的实数根,
Δ 4 4a 0


x1

2

4
4a

,解得 0 0

a
1 ,故选
D.
2
6.【答案】A
【解析】设切点为(m,m3-3m), f (x) x3 3x 的导数为 f (x) 3x2 3 ,
,即
1 3 5 2a 8 12 5 3a 27 27 5 4a

六道大题训练之《导数及其应用》(滨江十八班)

六道大题训练之《导数及其应用》(滨江十八班)

2013届高三一轮复习:重、难点强化训练题(高叁拾捌班專輯)导数及其应用1.设函数 () f x 在 R 上可导,其导函数 () f x ¢ ,且函数 () f x 在 2 x =- 处取得极小值,则函数() y xf x ¢ = 的图象可能是( )2.设 a >0,b >0,e 是自然对数的底数,则下列结论正确的是( )A . 若 e a +2a =e b +3b ,则 a >bB . 若 e a +2a =e b+3b ,则a <bC . 若 e a ­2a =e b ­3b ,则 a >bD . 若 e a ­2a =e b­3b ,则 a <b 3.设函数 f (x )= 2x+lnx 则 ()A .x = 1 2 为 f (x )的极大值点B .x = 1 2为 f (x )的极小值点 C .x =2 为 f (x )的极大值点D .x =2 为 f (x )的极小值点4.函数 y = 1 2x 2 -㏑ x 的单调递减区间为( )A . (-1,1]B . (0,1]C . [1,+∞)D . (0,+∞)5.已知 f (x )=x ³­6x ²+9x ­abc ,a <b <c ,且 f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④ 6.已知 P ,Q 为抛物线x 2 =2y 上两点,点 P ,Q 的横坐标分别为 4,-2,过 P ,Q 分别作抛物线的切线, 两切线交于点 A ,则点 A 的纵坐标为 ( )(A ) 1 (B ) 3 (C ) -4 (D ) -8 7.曲线 y =x (3lnx +1)在点 ) 1 , 1 ( 处的切线方程为________ 8. 已知函数 f (x )=ax 2 +1(a >0),g (x )=x 3 +bx 。

导数及其应用五年(2018-2022)高考数学真题专项汇编卷

导数及其应用五年(2018-2022)高考数学真题专项汇编卷

考点三 :导数及其应用——五年(2018-2022)高考数学真题专项汇编卷 新高考版1.【2019年 北京卷】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg2E m m E -=,其中星等为k m 的星的亮度为(1,2)k E k =.已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.10.110B.10.1C.lg10.1D.10.110-2.【2022年 新高考Ⅰ卷】(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A.(0)0f =B.102g ⎛⎫-= ⎪⎝⎭C.(1)(4)f f -=D.(1)(2)g g -=3.【2022年 新高考Ⅱ卷】曲线ln ||y x =过坐标原点的两条切线的方程为____________,_________.4.【2018年 江苏卷】若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为__________.5.【2021年 新高考Ⅰ卷】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e ab<+<. 6.【2021年 新高考Ⅱ卷】已知函数2()(1)e x f x x ax b =--+. (1)讨论()f x 的单调性.(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21e 22a <≤,2b a >; ②102a <≤,2b a ≤.7.【2020年 天津卷】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数. (1)当6k =时:(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值.(2)当3k ≥-时,求证:对任意的1x ,2[1,)x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.8.【2020年 北京卷】已知函数2()12f x x =-.(1)求曲线()y f x =的斜率等于2-的切线方程;(2)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.9.【2019年 浙江卷】已知实数0a ≠,设函数()=ln 1,0.f x a x x x +>(1).当34a =-时,求函数()f x 的单调区间;(2).对任意21[,)ex ∈+∞均有()2x f x a ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.10.【2018年 北京卷】设函数2(){(41)43}x f x ax a x a e =-+++ (1).若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a (2).若f ()x 在2x =处取得极小值,求a 的取值范围答案以及解析1.答案:A解析:依题意,126.7m =-,2 1.45m =-,所以125lg1.45(26.7)25.252E E =---=,所以122lg25.2510.15E E =⨯=,所以10.11210E E =.故选A. 2.答案:BC解析:通解(转化法)因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象关于直线32x =对称,3535222424f f ⎛⎫⎛⎫-⨯=+⨯ ⎪ ⎪⎝⎭⎝⎭,即(1)(4)f f -=,所以C 正确;因为(2)g x +为偶函数,所以(2)(2)g x g x +=-,函数()g x 的图象关于直线2x =对称,因为()()g x f x '=,所以函数()g x 的图象关于点3,02⎛⎫⎪⎝⎭对称,所以()g x 的周期34222T ⎛⎫=⨯-= ⎪⎝⎭,因为(1)(4)f f -=,所以(1)(4)f f ''-=-,即(1)(4)(2)g g g -=-=-,所以D 不正确;因为332222f f ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,即1722f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以1722f f ⎛⎫⎛⎫''-=- ⎪ ⎪⎝⎭⎝⎭,所以1711(22)2222g g g g ⎛⎫⎛⎫⎛⎫-=-=-⨯-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以102g ⎛⎫-= ⎪⎝⎭,所以B 正确;不妨取()1()f x x =∈R ,经验证满足题意,但(0)1f =,所以选项A 不正确.综上,选BC. 光速解(特例法)因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以函数()f x 的图象关于直线32x =对称,函数()g x 的图象关于直线2x =对称.取符合题意的一个函数()1()f x x =∈R ,则(0)1f =,排除A ;取符合题意的一个函数()sin f x x =π,则()cos f x x '=ππ,即()cos g x x =ππ,所以(1)cos()g -=π-π=-π,(2)cos2g =ππ=π,所以(1)(2)g g -≠,排除D.故选BC.3.答案:1e y x =,1ey x =-解析:先求当0x >时,曲线ln y x =过原点的切线方程,设切点为()00,x y ,则由1y x'=,得切线斜率为01x ,又切线的斜率为00y x ,所以0001yx x =,解得01y =,代入ln y x =,得0e x =,所以切线斜率为1e ,切线方程为1e y x =.同理可求得当0x <时的切线方程为1e y x =-.综上可知,两条切线方程为1e y x =,1ey x =-.4.答案:-3解析:解: '()2(3),(0,)f x x x a x =⋅-∈+∞ 当0a ≤时, '()0f x >()f x ∴在(0,)+∞递增,(0)1f =时,则在(0,)+∞为零点,舍去当0a >时,()f x 在(0,)3a递减,(,)3a +∞递增,又()f x 只有一个零点, ()033a f a =⇒=32()231f x x x =-+ []'()6(1),1,1f x x x x =-∈-5、(1)答案:()f x 的递增区间为()0,1,递减区间为()1,+∞解析:函数的定义域为()0,+∞,又1ln 1)n (l f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<,故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)答案:见解析解析:因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=,故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,设11x a =,21x b =,由(1)可知不妨设101x <<,21x >.因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立. 若22x <,要证:122x x +>,即证122x x >-,而2021x <-<, 故即证12()(2)f x f x >-,即证:22()(2)f x f x >-,其中212x <<. 设()()()2g x f x f x =--,12x <<则()()()()()2ln ln 2ln 2g x f x f x x x x x '''⎡⎤=+-=---=--⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.设21x tx =,则1t >,结合ln 1ln +1a b a b +=,11x a =,21x b=可得:()()11221ln 1ln x x x x -=-, 即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-, 要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<, 令()()()1ln 1ln S t t t t t =-+-,1t >,则()112()ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+-⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+.设()()ln 1u x x x =+-,则1()111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故max ()(0)0u x u ==,故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t tt ⎛⎫+≤<⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立.综上所述,112e a b<+<. 6.答案:(1)由题意得()()e 2x f x x a '=-,当0a ≤时,令()0f x '>,得0x >;令()0f x '<,得0x <. 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 当0a >时,令()0f x '=,得0x =或ln2x a =,①当102a <<时,令()0f x '>,得ln2x a <或0x >,令()0f x '<,得ln20a x <<.所以()f x 在(,ln 2)a -∞,(0,)+∞上单调递增,在(ln 2,0)a 上单调递减,②当12a =时,()()e 10x f x x '=-≥且等号不恒成立,所以()f x 在R 上单调递增.③当12a >时,令()0f x '>,得0x <或ln2x a >; 令()0f x '<,得0ln2x a <<,所以()f x 在(,0)-∞,(ln 2,)a +∞上单调递增,在(0,ln 2)a 上单调递减. (2)选择条件①,证明如下:由(1)知当12a >时,()f x 在(,0)-∞,(ln 2,)a +∞上单调递增,在(0,ln 2)a 上单调递减.所以()f x 在0x =处取得极大值(0)f ,在ln2x a =处取得极小值(ln 2)f a , 且(0)1fb =-+,(ln 2)(2ln 2)ln 22f a a a a a b a =-+-.由于21e 22a <≤,2b a >,所以(0)0f >,ln20a >,20b a ->.令()2ln 2g x x x x =-,则()2ln 211ln 2g x x x '=--=-,令()0g x '=,得e2x =,当1e 22x <<时,()0g x '>.当2e e 22x <≤时,()0g x '<. 所以()g x 在1e ,22⎛⎫⎪⎝⎭上单调递增,在2e e ,22⎛⎤ ⎥⎝⎦上单调递减,所以()g x 在e 2x =处取得极大值e2g ⎛⎫⎪⎝⎭. 由于e e 022g ⎛⎫=> ⎪⎝⎭,102g ⎛⎫> ⎪⎝⎭,2e 02g ⎛⎫= ⎪⎝⎭,所以()0g x ≥在21e ,22⎛⎤⎥⎝⎦上恒成立,所以(ln 2)0f a >.当x →-∞时,()f x →-∞,所以()f x 有一个零点,得证. 选择条件②,证明如下:由(1)知,当102a <<时,()f x 在(,ln 2)a -∞,(0,)+∞上单调递增,在(ln 2,0)a 上单调递减,所以()f x 在ln2x a =处取得极大值(ln 2)f a , 在0x =处取得极小值(0)f .由于102a <<,2b a ≤,所以(0)0f <,20b a -≤,ln20a <,ln20a a ->, 则2ln20a a a ->,所以(ln 2)0f a <.当x →+∞,()f x →+∞,所以()f x 有一个零点,得证.7.答案:(1)(i )当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.所以(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-.(ii )依题意,323()36ln g x x x x x =-++,(0,)x ∈+∞,从而可得2263()36g x x x x x '=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如表:x(0,1) 1 (1,)+∞()g x ' -0 + ()g x单调递减极小值单调递增()g x (0,1)(1,)+∞()g x (1)1g =,无极大值.(2)由3()ln f x x k x =+,得2()3kf x x x'=+. 对任意的1x ,2[1,)x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭.①令1()2ln h x x x x=--,[1,)x ∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭, 由此可得()h x 在[1,)+∞上单调递增,所以当1t >时,()(1)h t h >,即12ln 0t t t-->. 因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+--≥-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-.②由(1)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>,故32336ln 10t t t t-++->.③由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->. 所以当3k ≥-时,对任意的1x ,2[1,)x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.8.答案:()212f x x =-(1)设切点为()()00,x f x ()2f x x '=-()0022f x x '=-=-01x ∴= ()111f =∴切线()1121y x -=--213y x ∴=-+(2)()212f x x =-定义域R ,()()f x f x -=.∴()f x 为偶函数()f x 关于y 轴对称∴只须分析0x ≥既可当0x =不合题意舍0t ∴>()2f x x '=- ()2f t x '=-:在()()t f t 、处切线()()2122y t t x t --=-- 令0x = 得212y t =+;令0y =时2122t x t+= ()()22221211244t S t xy tt +=== ∴t x =()0x >()412x g x x+=()()()(234223222412x x x x x x g x x x +---+'==()0g x '> 2x ()0g x '< 02x <<()min 282g x g∴==()()()2min min 1324S t g x ∴== 9.答案:(1).当34a =-时,3()ln 1,04f x x x x =-++>.3(12)(211)()42141x x f 'x x x x x+-++=-=++ 所以,函数()f x 的单调递减区间为03(,),单调递增区间为3+∞(,). (2).由1(1)2f a≤,得20a <≤当204a <≤时,()2x f x a ≤等价于212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设()212ln ,2g t t x t x x t =+≥,则()(22)4212ln g t g x x x ≥=+.①.当1,7x ⎡⎫∈+∞⎪⎢⎣⎭1122x + ()(22)4212ln g t g x x x ≥=+.记1()4221ln ,7p x x x x x =+≥,则 212121()11x x x x p'x x x x x x +--+==++. 故x17 1(,1)71 (1,)+∞()p'x+ ()p x1()7p 单调递减极小值(1)p单调递增()(1)0p x p ≥=因此,()(22)2()0g t g p x ≥=≥.②.当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x --+≥+=. 令211()(1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫≤ ⎪⎝⎭.由(i )得127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此1()102g t g x x ≥+=>. 由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞≥,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a ≤.综上所述,所求a 的取值范围是20,4⎛ ⎝⎦.10.答案:(1). 1a =(2). a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭解析:(1). 因为2()(41)43xf x ax a x a e ⎡⎤=-+++⎣⎦,所以()()()()()22 2414143212x x xf x ax a e ax a x a e x R ax a x e ⎡⎤⎡⎤--⎡⎤⎣⎦⎣'=-+++++∈=++⎦⎣⎦,()()11.f a e '=-由题设知()10,f '=即()10,a e -=解得1a =. 此时()130f e =≠.所以a 的值为1(2).由(1)得()()()()221212x xf x ax a x e ax x e ⎡'=++-⎣⎦-⎤-=.若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时, ()'0f x <;当()2,x ∈+∞时, ()0f x '>.所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时, 1–20,1102x ax x <-≤-<,所以()0f x '>. 所以2不是()f x 的极小值点.综上可知, a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭。

导数及其应用复习题

导数及其应用复习题

导数及其应用专项训练一. 选择题1.若函数f (x )可导,则lim Δx →0(1)(1)2f x f x∆∆--等于( )A .-2f ′(1) B.12 f ′(1) C .-12f ′(1) D .f ′12⎛⎫ ⎪⎝⎭2.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-3.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+= 4.已知函数f (x )的图象如图所示,则下列不等关系中正确的是( ) A .0<f ′(2)<f ′(3)<f (3)-f (2) B .0<f ′(2)<f (3)-f (2)<f ′(3) C .0<f ′(3)<f (3)-f (2)<f ′(2) D .0<f (3)-f (2)<f ′(2)<f ′(3) 5.下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C. ()()222sin sin x x x x x '''-⎛⎫= ⎪⎝⎭D .(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x 6.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2 B .0 C .钝角 D .锐角 7.设曲线11x y x +=-在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B.12 C .-12D .-2 8. 函数2cos(2)3y x x π=-的导数为( )A .22cos(2)sin(2)33y x x x x ππ'=---B . 22cos(2)2sin(2)33y x x x x ππ'=---C .2cos(2)2sin(2)33y x x x x ππ'=---D . 22cos(2)2sin(2)33y x x x x ππ'=-+-9.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A .0 B .1 C .2 D .310.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )11.已知函数y =f (x )的定义域为[-1,5],部分对应值如下表.f (x )的导函数y =f ′(x )的图象如图所示.x -1 0 4 5 f (x )1221①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中正确说法的个数是( )A .4B .3C .2D .1 12.函数f (x )=3+x ·ln x 的单调递增区间是( ) A. 10,e ⎛⎫ ⎪⎝⎭B .(e ,+∞) C. 1,e ⎛⎫+∞ ⎪⎝⎭D. 1,e e ⎛⎫ ⎪⎝⎭13.函数f (x )的导函数f ′(x )的图象如图所示,若△ABC 为锐角三角形,则下列不等式一定成立的是( )A .f (cos A )<f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (sin A )>f (cos B )14.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A. 31,2⎡⎫⎪⎢⎣⎭B. 31,2⎛⎤ ⎥⎝⎦C .(1,2]D .[1,2)15.设函数()2ln f x x x=+,则( ) A .12x =为f (x )的极大值点 B .12x =为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点16.设三次函数f (x )的导函数为f ′(x ),函数y =xf ′(x )的图象的一部分如图所示,则( )A .f (x )极大值为f (3),极小值为f (-3)B .f (x )极大值为f (-3),极小值为f (3)C .f (x )极大值为f (-3),极小值为f (3)D .f (x )极大值为f (3),极小值为f (-3)17.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值和最小值分别是( )A .1,-1B .1,-17C .3,-17D .9,-1918.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元 二. 填空题19.若f ′(x 0)=2,则lim Δx →000()()2f x f x x x∆∆-+ =________.20.一物体的运动方程为s (t )=7t 2-13t +8,则t 0=________时该物体的瞬时速度为1. 21.已知f (x )=ln x 且()0201f x x '=,则x 0= . 22.函数()2(1)21xf x f x x '=+-,则f ′(0)=________. 23.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .24.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.25.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________. 26.函数f (x )=(x 2+2x )e x (x ∈R )的单调递减区间为____________.27.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为[-1,2],则b =________,c =________. 28.若函数f (x )的导函数为f ′(x )=x 2-4x +3,则函数f (x +1)的单调递减区间是________. 29.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________. 30.若函数343y x ax =-+有三个单调区间,则a 的取值范围是________. 31.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________. 32.将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm.33.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为313812800080y x x =-+,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 34.已知,若对任意两个不等的正实数都有恒成立,则的取值范围是 .21()ln (0)2f x a x x a =+>12x x 、1212()()2f x f x x x ->-a三. 解答题35.已知曲线y =f (x )=x ,y =g (x )=1x,过两条曲线交点作两条曲线的切线,求两切线与x 轴所围成的三角形面积.36.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数为f ′(x )=2x -8. (1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.37.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调区间.38.已知函数f (x )=ax 2+ln(x +1). (1)当a =-14时,求函数f (x )的单调区间; (2)若函数f (x )在区间[1,+∞)上为减函数,求实数a 的取值范围.61.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量)55.讨论函数f (x )=12ax 2+x -(a +1)ln x (a ≥0)的单调性.。

导数的计算练习题

导数的计算练习题

导数的计算练习题导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

计算导数是解决各种数学问题的基础和关键步骤。

本文将提供一些导数计算的练习题,以帮助读者加深对导数的理解和应用。

练习一:求导基本函数1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。

解答:首先,我们可以使用导数的定义公式来计算导数。

导数的定义是函数的极限值,即f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

将x = 2代入公式,可以得到f'(2) = lim(h->0) [(3(2+h)^2 - 2(2+h) + 1 - (3(2)^2 - 2(2) + 1))/h。

化简后得到f'(2) = lim(h->0) [12h+16]/h,进一步化简得到f'(2) = 12。

2. 求函数g(x) = sin(x) + cos(x)在x = π/4处的导数。

解答:使用导数的基本公式,可以得到g'(x) = cos(x) - sin(x)。

将x= π/4代入公式可以得到g'(π/4) = cos(π/4) - sin(π/4) = (√2/2) - (√2/2) = 0。

练习二:求导复合函数3. 求函数h(x) = (2x + 1)^3在x = 2处的导数。

解答:这是一个复合函数,我们可以使用链式法则来计算其导数。

链式法则表示当一个函数由两个函数复合而成时,它的导数等于两个函数的导数的乘积。

首先,我们需要计算内层函数[ϕ(x)]的导数,即ϕ'(x) = (2x + 1)^2。

然后,计算外层函数[ψ(x)]的导数,即ψ'(x) = 3x^2。

最后,将两个导数相乘得到h'(x) = ψ'(ϕ(x)) * ϕ'(x)。

将x = 2代入公式可以得到h'(2) = ψ'(ϕ(2)) * ϕ'(2) = ψ'(5) * ϕ'(2) = 3(5)^2 * (2(2) + 1)^2 = 225* 25 = 5625。

同步练习】基本初等函数的导数公式及运算法则基础练习题及答案

同步练习】基本初等函数的导数公式及运算法则基础练习题及答案

同步练习】基本初等函数的导数公式及运算法则基础练习题及答案1.函数$y=x^2$在点$x=1$处的导数是2.2.函数$f(x)=(2x+1)^2(4x-2x+1)$的导数是$24x^2-1$。

3.函数$f(x)=(x+2a)(x-a)^2$的导数为$f'(x)=2(x^2-a^2)+2(x-a)\cdot 2x=2(3x^2-2ax-a^2)$。

4.函数$f(x)=1+\sin x$,其导函数为$f'(x)=\cos x$,则$f'(\pi/3)=1/2$。

5.已知函数$f(x)=3x^2$,则$f'(3)=18$。

6.函数$f(x)=(2e^x)+\sin x$的导数是$f'(x)=2e^x+\cos x$。

7.已知$f(x)=\sin x+\cos x+\pi/2$,则$f'(\pi/2)=-1$。

8.已知函数$f(x)=2\sin x+\cos x$,则$f'(\pi)=-2$。

9.已知函数$f(x)=\frac{1}{2}x^2$,则$f(x)=\frac{1}{2}x^2+C$,其中$C$为常数。

10.某物体的瞬时速度为0时,$t=2$。

11.已知函数$f(x)=ax^2+b$的图像开口向下,$\lim\limits_{\Delta x\rightarrow 0}\frac{f(a+\Delta x)-f(a)}{\Delta x}=4$,则$a=-2$。

12.已知函数$f(x)=x^4+ax^2-bx$,且$f'(-1)=-13$,$f'(-1)=-27$,则$a+b=-18$。

13.已知函数$f(x)=x\sin x+\cos x$,则$f'(\frac{\pi}{2})=-1$。

14.函数$f(x)=x\mathrm{e}^x$的导函数为$f'(x)=(x+1)\mathrm{e}^x$,所以$f'(x)>0$的解集为$(0,+\infty)$。

高三导数及应用练习题

高三导数及应用练习题

高三导数及应用练习题导数是微积分中非常重要的概念,对于高中生来说,学习导数是必不可少的一部分内容。

导数的概念以及其应用能力的培养对于高三学生来说具有重要的意义,因此在这篇文章中,我将为大家提供一些导数及应用的练习题,希望能够帮助大家提升自己的学习水平。

【练习题一】1. 求函数 f(x) = 3x^2 - 2x + 1 在点 x = 2 处的导数。

解: 首先,我们可以利用导数的定义来求解该题目。

导数的定义是函数 f(x) 在某一点 x 附近的变化率。

对于给定的函数 f(x) = 3x^2 - 2x + 1,我们可以通过求函数在 x = 2 处的变化率来求解该导数值。

根据定义,我们可以得到如下结果:f'(2) = lim(h→0) [f(2+h) - f(2)] / h代入 f(x) = 3x^2 - 2x + 1,得到:f'(2) = lim(h→0) [(3(2+h)^2 - 2(2+h) + 1 - (3(2)^2 - 2(2) + 1)] / h化简上述表达式,我们可以得到:f'(2) = lim(h→0) [(12h + 9)] / h进一步简化,我们得到:f'(2) = lim(h→0) [12h + 9] / h利用极限的性质,我们可以得到:f'(2) = 12因此,函数 f(x) = 3x^2 - 2x + 1 在点 x = 2 处的导数为 12。

2. 求函数 g(x) = sin(2x) 在点x = π/4 处的导数。

解: 对于函数g(x) = sin(2x),我们需要利用链式法则来求解其导数。

根据链式法则的定义,我们可以得到如下结果:g'(x) = cos(2x) * 2代入x = π/4,我们可以得到:g'(π/4) = cos(2 * π/4) * 2化简表达式,我们可以得到:g'(π/4) = cos(π/2) * 2利用三角函数的性质,我们可以得到:g'(π/4) = 0 * 2因此,函数 g(x) = sin(2x) 在点x = π/4 处的导数为 0。

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.对于函数2ln ()xf x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .fff <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x =,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x--=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.5.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nn a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.7.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

高等数学导数求导练习题

高等数学导数求导练习题

高等数学导数求导练习题一、基本初等函数求导1. 求函数 f(x) = x^3 3x^2 + 2x 5 的导数。

2. 求函数 f(x) = (3x + 1)^4 的导数。

3. 求函数 f(x) = 1/(x^2 1) 的导数。

4. 求函数f(x) = √(x^2 + 3) 的导数。

5. 求函数 f(x) = 2^x 3^x 的导数。

二、复合函数求导6. 求函数 f(x) = (x^2 + 1)^3 的导数。

7. 求函数 f(x) = sin(2x + 1) 的导数。

8. 求函数 f(x) = ln(e^x + 1) 的导数。

9. 求函数 f(x) = cos^2(x) 的导数。

10. 求函数 f(x) = (1 + x^2)^5 的导数。

三、隐函数求导11. 已知 y = x^3 + y^3,求 dy/dx。

12. 已知 x^2 + y^2 = 25,求 dy/dx。

13. 已知 e^y = x^2 + y^2,求 dy/dx。

14. 已知 sin(x + y) = y^2,求 dy/dx。

15. 已知 ln(x^2 + y^2) = 2x,求 dy/dx。

四、参数方程求导16. 已知参数方程 x = t^2,y = t^3,求 dy/dx。

17. 已知参数方程 x = cos(t),y = sin(t),求 dy/dx。

18. 已知参数方程 x = 2t + 1,y = 3t^2 2,求 dy/dx。

19. 已知参数方程 x = e^t,y = e^(2t),求 dy/dx。

20. 已知参数方程 x = asin(t),y = acos(t),求 dy/dx。

五、高阶导数21. 求函数 f(x) = x^4 2x^3 + 3x^2 的二阶导数。

22. 求函数 f(x) = e^x sin(x) 的一阶和二阶导数。

23. 求函数 f(x) = ln(x^2 + 1) 的一阶和二阶导数。

24. 求函数 f(x) = (x^2 + 1)^(3) 的一阶和二阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学《变化率与导数及导数应用》专练(十)一、选择题1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点(2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .22. 函数()1xf x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-⋅+ B .1y x =-+ C .y x =- D .y e x =-⋅3. 曲线)0(1)(3>-=x xx x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( )A .3B .3 C. 32 D .64. 设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P 的横坐标的取值范围为( )A . []0,1B .[]1,0-C .11,2⎡⎤--⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦5. 已知23()1(1)(1)(1)(1)nf x x x x x =+++++++++L ,则(0)f '=( ).A .nB .1n -C .(1)2n n - D .1(1)2n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A .B .2C .3D .27. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0B .1C .2D .38. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3C .4D .59. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线12y x =垂直的切线,则实数m 的取值范围是( )A. 12m ≤-B. 12m >- C. 2m ≤ D. 2m >10. 函数y=f (x )的图象如图所示,则导函数y=f'(x )的图象可能是( )A .B .C .D .11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2'()()0xf x f x x-<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2)12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )A. B.π C.π D.二、选择题13. 若cbxaxxf++=24)(满足=-=)1(,2)1(//ff则14. 如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于.15.已知f(x)=xe x,g(x)=﹣(x+1)2+a,若∃x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围是16.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于.三、解答题17. 已知函数1()2lnf x xx=+.(1)求函数()f x的最小值;(2)若1()2f x tx≤-对任意的[1,]x e∈恒成立,求实数t的取值范围.18.设()()320f x ax bx cx d a =+++≠.(1) 若()f x 是奇函数,且在13x =时,()f x 取到极小值-2,求()f x 的解析式;(2)若1a c d ===,且()f x 在 (0,+∞)上既有极大值,又有极小值,求实数b 的取值范围.19. 设函数2()[(31)32]e xf x ax a x a =-+++.(1)若曲线y = f (x )在点(2, f (2))处的切线斜率为0,求a ; (2)若f (x )在x =1处取得极小值,求a 的取值范围.20.已知向量(sin ,cos ),(cos ,cos )m b x a x n x x ==-u r r ,()f x m n a =⋅+u r r,其中,,a b x R ∈.且满足()2,(0)6f f π'==(1)求,a b 的值;(2)若关于x 的方程13()log 0f x k -=在区间2[0,]3π上总有实数解,求实数k 的取值范围.21.某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m 与商品单价的降低值x (单位:元,0≤x <9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件. (1)将一星期的商品销售利润y 表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大22.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围;(2)当0x >时,()0f x <恒成立,比较a e 与2e的大小.高二文科数学《变化率与导数及导数应用》专练(十)参考答案一、选择题二、填空题 13. -2 14、三、解答题。

17.(1)函数的定义域为()0,+∞ 222121'()x f x x x x -=-=,()f x 在11(0,)+22∞上递减,在(,)上递增,所以当12x =时,()f x 取最小值且为1()22ln 22f =-(2)问题等价于:1ln t x x ≥+对[1,]x e ∀∈恒成立,令1()ln g x x x =+,则21'()x g x x-=, 因为[1,]x e ∈,所以'()0g x >,所以()g x 在[1,]e 上单调递增,所以max 1()()1g x g e e==+, 所以11t e ≥+ 18.解:(Ⅰ)因为()f x 是奇函数,所以()()f x f x -=-,即()32320ax bx cx d ax bx cx d a -+-+=----≠,所以0,0b d ==,所以()()30f x ax cx a =+≠ 由()23f x ax c '=+,依题意,111110,2333273f a c f a c ⎛⎫⎛⎫'=+==+=- ⎪ ⎪⎝⎭⎝⎭,解得27,9a c ==-.经检验符合题意,故所求函数的解析式为()3279f x x x =-.(Ⅱ)当1a c d ===时,()()3221,321f x x bx x f x x bx '=+++=++.Θ()f x 在(0,+∞)上既有极大值,又有极小值,∴()23210f x x bx '=++=有两个不等正根.即24120203b b⎧∆=->⎪⎨->⎪⎩ ,解得b<19.解:(Ⅰ)因为2()[(31)32]e x f x ax a x a =-+++,所以2()[(1)1]e x f x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)由(Ⅰ)得2()[(1)1]e (1)(1)e x x f x ax a x ax x '=-++=--.若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>.所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<,所以()0f x '>.所以1不是()f x 的极小值点.综上可知,a 的取值范围是(1,)+∞.20. (Ⅰ)由题意知,2()sin cos cos f x m n a b x x a x a =⋅+=-+u r r (1cos 2)sin 222a bx x =-+由()26f π=得,8a =, ∵()sin 2cos2f x a x b x '=+,又(0)f '=,∴b =∴2a =(Ⅱ)由(Ⅰ)得()1cos22f x x x =-2sin(2)16x π=-+ ∵203x π⎡⎤∈⎢⎥⎣⎦,,72666x πππ-≤-≤,∴12sin(2)26x π-≤-≤,[]()03f x ∈,. 又∵13()log 0f x k -=有解,即3()log f x k =-有解,∴33log 0k -≤≤,解得1127k ≤≤,所以实数k 的取值范围为1[,1]27. 21【解答】解:(1)依题意,设m=kx 2,由已知有5=k •12,从而k=5,∴m=5x 2,∴y=(14﹣x ﹣5)(75+5x 2)=﹣5x 3+45x 2﹣75x+675(0≤x <9); (2)∵y′=﹣15x 2+90x ﹣75=﹣15(x ﹣1)(x ﹣5),由y′>0,得 1<x <5,由y′<0,得 0≤x <1或5<x <9,可知函数y 在[0,1)上递减,在(1,5)递增,在(5,9)上递减,从而函数y 取得最大值的可能位置为x=0或是x=5, ∵y (0)=675,y (5)=800,∴当x=5时,y max =800,答:商品每件定价为9元时,可使一个星期的商品销售利润最大.22.解:(1)∵213'()2f x a x x =--为(0,)+∞上的减函数,∴'(1)0'(2)0f f >⎧⇒⎨<⎩111(,)22a ∈--,∴1(1)(0,5)2f a =--∈. (2)当0x >时,()0f x <恒成立,则31ln 02x ax x --<,2ln 12x a x x >-对0x >恒成立. 设2ln 1()2x g x x x =-(0)x >,321ln '()x x g x x --=, 设3()1ln h x x x =--(0)x >,21'()30h x x x=--<,∴()h x 在(0,)+∞上递减, 又(1)0h =,则当01x <<时,()0h x >,'()0g x >;当1x >时,()0h x <,'()0g x <.∴max ()(1)g x g =12=-,∴12a >-,即a 的取值范围为1(,)2-+∞. 设()ap a e =a e =-1()2a >-,则'()a p a e =120ae e -=->, ∴()p a 在1(,)2-+∞上递增,∴1()()2p a p >-0==,∴a e >.。

相关文档
最新文档