2017年中国北方希望之星数学邀请赛第7题别证及推广

合集下载

2017年全国初中数学联合竞赛(初二年级)试题参考答案及

2017年全国初中数学联合竞赛(初二年级)试题参考答案及

在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛1.设素数p 、正整数n 满足()2211nk p k=+∏.证明:2p n <.1.按照()211nk k=+∏中的因子所含p 的幂次分情形讨论.(1)若存在()1k k n ≤≤,使得()221pk+,则221p n ≤+.于是,2p n ≤<.(2)若对任意的()1k k n ≤≤,()221pk+,由条件,知存在1j k n ≤≠≤,使得()21p j +且()21p k +. 则()22p k j-.于是,|()()p k j k j -+.当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <.2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()1212100n n x x x x x x n +++=,求n 的最大可能值.2、n 的最大可能值为9702, 显然:由已知等式得1nii xn =≥∑,所以:1100ni i x =≤∏又等号无法成立,则199nii x=≤∏而()()()111111111n nnniiiii i i i x x x x n =====-+≥-+=-+∑∑∏∏则11198nniii i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ⇒+⇒≤⨯=取123970299,1x x x x =====,可使上式等号成立3.如图1,在ABC ∆中,D 为边BC 上一点,设ABD ACD ∆∆、的内心分别为12,I I ,12,AI D AI D ∆∆的外心分别为12O O 、,直线12I O 与21I O 交于点P .证明:PD BC ⊥.3.由1111O A O I O D ==及内心的性质,知1O 为ABD ∆外接圆弧AD 的中点.如图2,延长12,BI DI 交于点1J ,则1J 为ABD ∆中B ∠内的旁心,且1O 为11I J 的中点 类似地,延长12,DI CI 交于点2J ,则2J 为ACD ∆ 中C ∠内的旁心,且2O 为22I J 的中点过点D 作DP BC '⊥.只需证明12I O 、21I O 、DP '三线共点 对12DI I ∆用角元塞瓦定理,只需证明:212121121221sin sin sin 1sin sin sin P DI DI O O I I P DI O I I DI O '∠∠∠⋅⋅='∠∠∠ 事实上,由2222O J O I =,知212212O I J O I I S S ∆∆=,则212212122121212122122121212122sin sin 2sin sin O I J o I I S DI O O I J I J I O I I S O I I O I I I J I I I O ∆∆∠∠===∠∠⋅⋅同理:121212112sin sin O I I I J DI O I I ∠=∠,又2211sin cos sin cos P DI CDI P DI BDI '∠∠='∠∠所以只需证明:212121cos 1cos I J CDI I J BDI ∠=∠即2112I J I J 、在边BC 上的投影长度相同.如图3,设1212,,I I J J ,在边BC 上的投影分别为1212,,,H H K K则2112H K DK DH =-11()()221()2AB AD BD AD CD AC AB AC BC =+--+-=+-同理:121()2H K AB AC BC =+- 所以:2112H K H K =,命题得证4、给定整数(),2n k n k ≥≥,甲、乙两人在一张每个小方格都是白色的n n ⨯的方格纸上玩游戏:两人轮流选择一个白色小方格将其染为黑色,甲先进行.如果某个人染色后,每个k k ⨯的正方形中都至少有一个黑色小方格,则游戏结束,此人获胜.问谁有必胜策略?4、解将方格纸按从上到下标记行,从左到右标记列.若21n k ≤-,则甲将第k 行第k 列的小方格染为黑色后,每个k k ⨯正方形中至少有一个黑格,因此甲获胜.下面假设2n k ≥,我们证明当n 为奇数时,甲存获胜策略;当n 是偶数时,乙有获胜策略.对于一个已经有若干个方格染为黑色的局面:如果有两个不相交的k k ⨯正方形所含的全是白格,并且方格纸内白格总数为奇数,我们称其为“好局面”;如果有两个不相交的k k ⨯正方形所含的全是白格,并且方格纸内白格总数为偶数,称其为“坏局面”.我们证明当某人面对好局面时,他有获胜策略^假设甲面对好局面,他先取定两个不相交的k k ⨯正方形A 和B ,其中都是白格,由于白格总数为奇数,可选取不在,A B 中的另一个白格,将它染为黑色,此时白格总数为偶数,且,A B 中仍然都是白格,因此变为一个坏局面轮到乙面对坏局面,如果他染色后.仍有两个不相交的k k ⨯正方形中都 是白格,此时白格总数是奇数,又回到好局面;如果他染色后,不存在两个不相交的k k ⨯正方形,注意到此时至少有一个全白格的k k ⨯正方形,设1,,m A A 是所有全白格k k ⨯正方形,则它们两两相交,故必包含于某个()()2121k k -⨯-的正方形S ,因此S 的中心方格P 是1,,m A A 的公共格,这样甲将P 染为黑色后,所有k k ⨯正方形中都含有黑格,于是甲获胜.总之,当某人面对好局面时,他可以在自己的下一回合获胜或是仍面对好局面,而游戏必在有限步内结束,因此他有获胜策略.由上述论证亦可知.当某人面对坏局面时,他要么让对方下一回合即可获胜,要么留给对方好局面,因此对方有获胜策略;在2n k ≥时.由于四个角上的k k ⨯正方形互不相交,且一开始都是白格.因此当n 是奇数时,一幵始是好局面,甲有获胜策略; 当n 是偶数时.一开始是坏局面,乙有获胜策略.5.已知九个正整数129,,,a a a (允许相同)满足:对任意的19i j k ≤<<≤,均存在与i j k 、、不同的()19l l ≤≤,使得100i j k l a a a a +++=;求满足上述要求的有序九元数组()129,,,a a a 的个数.5.对满足条件的正整数组()129,,,a a a ,将129,,,a a a 从小到大排列为129b b b ≤≤≤.由条件,知分别存在{4,5,,9}l ∈及{1,2,,6}l '∈,使得123789100l l b b b b b b b b '+++=+++=.①注意到,172839,,,l l b b b b b b b b '≥≥≥≥.② 结合式①,知结论②中的不等号均为等号 于是,238b b b ===.因此,设()1289,,,,(,,,,)b b b b x y y z =,其中,x y z ≤≤.由条件,知使100l x y z b +++=的l b 的值只能为y ,即2100x y z ++=.③ (1)当25x y z ===时,有()129,,,(25,25,,25)b b b =,此时,得到一组()129,,,a a a .(2)当,x z 中恰有一个为y 时,记另一个为w ,由式③知3100w y +=.该条件也是充分的.此时,y 可以取1,2,,24,26,27,,33这32种不同值,且每个y 值对应一组()129,,,b b b ,进而,对应九组不同的()129,,,a a a ,共有329288⨯=个数组()129,,,a a a .(3)当x y z <<时,由条件,知存在某个{,,}l b x y z ∈,使得3100l y b +=, 与式③比较得l y b x z +=+,则必有l b y =.故5025,x y z +==.该条件也是充分的.此时,对1224x =,,,,每个x 值对应一组()129,,,b b b ,进而,对应9872⨯=组不同的()129,,,a a a ,共有24721728⨯=个数组()129,,,a a a .综上,知符合条件的数组个数为128817282017++=.6.如图,在锐角ABC ∆中,点D E 、分别在边AB AC 、上,线段BE 与DC 交于点H M N ,、分别为线段BD CE 、的中点。

这八大赛事数竞党必须了解

这八大赛事数竞党必须了解

常有学生问:学竞赛有没有什么秘诀?当然有,秘诀就4个字,勤思多练。

这可不是灌鸡汤,至少在CMO之前,还远没有到需要拼智商或天赋的程度,学好每一个知识点,打牢基础,多刷题,常总结,想不获奖都很难呐。

此外,学竞赛闭门造车是行不通的,多和大佬切磋交流,多见识不同题型,非常非常重要,所以,今天要给大家介绍八大不可错过的赛事,那里高手云集,任思想激扬碰撞,那里好题无数,亦是高联前练兵的好机会。

下面进入正题,首先隆重推出今天要聊的八大赛事:1、中国女子数学奥林匹克2、中国西部数学奥林匹克3、中国东南地区数学奥林匹克4、北方希望之星数学邀请赛5、中国数学奥林匹克协作体夏令营6、中国数学奥林匹克希望联盟数学夏令营7、陈省身杯全国高中数学奥林匹克夏令营8、爱尖子数学能力测评如果你对以上赛事如数家珍,欢迎跳到文末,有历届试题可以下载哦(超级福利);如果你是萌新,请仔细往下阅读,下面将逐一详细介绍每项赛事的时间、参赛对象、考试形式、奖项等。

(点击可查看大图)中国女子数学奥林匹克简称女奥(CGMO),这是一项专门为女生而设的数学竞赛,参赛对象是高一、高二女生(也有人称之为“妹赛”)。

自首届女奥在珠海举办,迄今已成功举办了16届,比赛时间一般在每年8月中旬。

由全国各省市、港澳台及部分国外代表队各组织一个代表队参赛,另外会邀请近3年承办过女奥的学校各派一个代表队参赛。

每支代表队最多由4名高中女学生和1名领队教师组成。

竞赛分两天,每天4道题,共8道题,每题15分,满分120分,考试时间均为8:00~12:00,试题难度介于全国高中数学联赛和中国数学奥林匹克之间,最终根据成绩评出团体总分第1名和个人金、银、铜牌。

其奖项对高校自主招生及清北学科营有一定参考意义,个人总分前12名的同学可直接进入中国数学奥林匹克(CMO)。

此外,和其他数学竞赛相比,女奥还别具一格地设有健美操团体比赛。

中国西部数学奥林匹克中国西部数学奥林匹克(CWMO),是由中国数学会奥林匹克委员会创办,主要面向中国中西部地区及亚洲地区高一、高二年级学生的数学探究活动。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A 卷)试题及答案考点分析2017年全国高中数学联合竞赛一试卷〉参考答案及评分标准说明孑1.评阅试卷时*请依据本评分标淮.填空趣只设S 分和o 分两档1其他备题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.N 如果考生的解??方法和本解答不同+只要思路合理"步骤1E 确,在评卷时训 参苇本评分标准适为划分档次评仆.解芥题中第9小题*分対--个栉次.第10. 11小题5分为一个档次,不得增加其他中间档次*一、填空题;本大题共*小题,每小題*分,共64分.设八龙)屣走文任H 上的噌数,对任意实^xfTf(x+3)f(x-4) = -l.又 当0冬“V7时・/(x)=log 3(9-x)・则/X-100)的値为 ____________________________ ・答案;■齐比庄平面現角坐标系xQy 中.fffiEfC 的方程为芝■ +匚=1, F 为C 的上煉点,A 的右顶点.戶是(?上位丁第象限内的別点*则四边Jg OAPF 的面积 的燧大值为 ”解:易知#(3,0), F(O,D.设尸的酸掠圧(3ws 罠JTB 抽叭,w九秤=孔加 V S s^r- = | ■ 3 ■sin 0 + | ■ I ■ 3 cos!〔中 y : — arctan —.当(9 — arctanVTo 时.四边形OAPF iff | 积的fit 大備为卫■土*解:由篆件知,/U + 14) = ---------------- = f (x} t 所以./<x + 7)2.若实数工j 满足”F 4- 2 cosy = 1 .则x — cos y 的収值范围足i _______ 答案:H1,広+ 1].解:由 +.Y 1- 1 -2cos yG[-l > 故GX 时F 可以収?Th 由于扌U+1)'—1的恤域筍-h J5 + 1],从而X-CGSJ 的耿值范围是[一匕J5 + 1]・si n ( 4 *} +4. 若一个三位数中任总两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是____________ ・答案:75. _解:考虑平稳数赢.若6 = 0,则。

2017年全国初中数学联合竞赛试题(pdf版,含答案)

2017年全国初中数学联合竞赛试题(pdf版,含答案)

D.4.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
若 a =2,由 ab 6 可得 b 2 或 3, b 2 时可得 c 4 , b 3 时可得 c 5 (不是整数); 2
若 a =1,则 bc 2(1 b c) ,于是可得 (b 2)(c 2) 6 ,可求得 (a,b, c) =(1,3,8)或(1,4,
若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
2017 年全国初中数学联合竞赛试题参考答案及评分标准 第 4 页(共 7 页)
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 BAD ACB 180,且 BC 3,AD 4 ,
(2)以 a 2,b 3,c 4 为边长可以构成三角形,但以 a2 4,b2 9,c2 16 为边长的三角形不存在;
(3)因为 a b c ,所以 | a b | 1 a b 1,| b c | 1 b c 1,| c a | 1 a c 1 ,故三条边中 | c a | 1 大于或等于其余两边,而(| a b | 1)(| b c | 1)(a b 1)(b c 1)=a c 11 a c 1 | c a | 1 ,故
2
4
2
设 m 是最接近 n 的整数,则| m n | 1 , m 1. 2
易知:当 m 1时,| m n | 1 (m 1)2 n (m 1)2 m2 m 1 n m2 m 1 .

“希望杯”全国数学邀请赛简介

“希望杯”全国数学邀请赛简介

“希望杯”全国数学邀请赛简介 这⼀邀请赛⾃1990年以来,已经连续举⾏了⼆⼗⼆届。

22年来,主办单位始终坚持⽐赛⾯向多数学校、多数学⽣,从命题、评奖到组织⼯作的每个环节,都围绕着⼀个宗旨:激发⼴⼤中学⽣学习的兴趣,培养他们的⾃信,不断提⾼他们的能⼒和素质。

这⼀活动只涉及初⼀、初⼆、⾼⼀、⾼⼆四个年级,不涉及初三、⾼三,不与奥赛重复,不与中考、⾼考挂钩,不增加师⽣负担,因此受到⼴⼤师⽣的欢迎。

该竞赛⼀直受到原国家教委的肯定,并被列⼊原国家教委批准的全国性竞赛活动的名单中,同时愈来愈多的数学家、数学教育家对邀请赛给予热情的关⼼和⽀持。

到第⼗届为⽌,参赛城市已超过500个,参赛学⽣累计598万。

“希望杯”全国数学邀请赛已经成为中学⽣中规模、影响最⼴的学科课外活动之⼀。

据介绍,该竞赛活动分两试进⾏。

第⼀试(每年三⽉进⾏)以各地(省、市、县、〔区〕、学校)为单位组织参赛学⽣,在全国各参赛学校同时进⾏,各测试点按命题委员会下发的评分标准进⾏阅卷、评分,从中按七分之⼀的⽐例按成绩择优选拔参加第⼆试的选⼿。

第⼆试(每年四⽉进⾏)由当地《数理天地》编委分会或地、市级教研室或教育学院、教科所、教师进修学校统⼀组织,测试结束后,各测试点将试卷密封,向组委会挂号寄出,由命题委员会阅卷,从中按⼋分之⼀的⽐例按成绩评定⼀、⼆、三等奖,分别授予⾦、银、铜奖牌及获奖证书。

对组织⼯作做得出⾊的地区或学校,组委会颁发“希望杯”数学邀请赛组织奖。

⽇本国算数奥林匹克委员会对此项赛事⾮常关注,该委员会事务局局长若杉荣⼆先⽣专程来华同邀请赛组委会洽谈参赛事宜,并从1996年开始,已连续三年组织⽇本部分中学⽣参加了竞赛活动,由此开创了我国社会团体举办同类竞赛⾛出国门的先例。

近年来,美国、德国的有关组织也与组委会联系合作事宜。

希望杯杯徽 ★圆形,表⽰⼴阔的天空。

★英⽂hope(希望)形如⼀只展翅飞翔的鸟。

喻义:“希望杯”全国数学邀请赛为⼴⼤的青少年在科学思维能⼒上的健康发展开辟了⼀个⼴阔的空间,任他们⾃由翱翔。

2017中国数学奥林匹克希望联盟夏令营(一)

2017中国数学奥林匹克希望联盟夏令营(一)

无正整数解 的最小 正整数 m.
二、 ( 4 0分 ) 如图 1 , 在 非等腰△ A B C中 , , 为 内心 , o 0为△ A B C的外接 圆 , M 为B C 的中点 , , 在B C上 的射影为 D, Ⅳ为 弧B A C 的 中点 , A M与 D N交于点 证 明 : A D上 I K .
2 2
7 . 已知 s 为数列 { a } 的前 1 l 项和 , 规定 S 。 = 0 . 若 对任 意的 n∈ Z+ , 均有

— — — — — 。 — — —
2 01 7+



— ——— —-— ——— —— —— ———— ——— -—— ——— —- ——— 一
填空题 ( 每小题 8 分, 共6 4 分) 1 . 已知集合

锥 底 面 内 的 动 点.则
的 最 大 值 为

A={ l 1 ≤ ≤ 2 } , B:{ I x 一 + 4 > 1 0 } . 若 B, 则 实 数 a 的 取 值 范 围 是
2 . 函数 f ( )=7 s i n +s i n 2 x的最 大值 为— — .
1 O . ( 2 0分 ) 已知
最小值 为.

椭 圆 c: + =l ( n>b> o )


( ,
6 . 已 知 P 是 轴 截 面 为 等 腰 直 角 三 角 形 的圆锥 的顶 点 , 为 圆锥 的母 线 , 为 圆 下 面证 明 : 存在正整数 n , 使得 、 B 、 c

3 3
3 . 设 D为坐标原 点 , P为椭 圆 C上 一点 ,
易知 , 关 于 的不等式 一 n + 4 ≥O在

2017年全国初中数学竞赛试题及答案

2017年全国初中数学竞赛试题及答案

“《数学周报》杯”2017年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C .解:由题设可知1y yx -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >. 二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 第(5)题是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=. 三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得 ()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,第(10)题第(9)题所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分 (12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. ……………………………………………………10分 又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. ………………………………………………15分 所以点P 为CH 的中点. ………………………………………………20分 (13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b .所以a b +=.由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是,可求得2==a b将b =代入223y x =,得到点Q ,12). …………………15分再将点Q 的坐标代入1y kx =+,求得=k所以直线PQ 的函数解析式为1y x =+. 根据对称性知,所求直线PQ 的函数解析式为1y x =+,或1y =+. ………………20分 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得2P x =-从而2()3P Q k x x =+.所以,直线PQ 的函数解析式为1y =+,或1y x =+. ………………………………………20分 (14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分 则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2017, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。

2017年第二十八届希望杯初赛初三试卷真题(PDF版,含解析)

2017年第二十八届希望杯初赛初三试卷真题(PDF版,含解析)

第二十八届“希望杯”全国数学邀请赛初三 第1试试题一、选择题(每小题4分,共40分)1、在四个数,,,,5435432中,最大的是( )(A )2 (B )33 (C )44 (D )55 【答案】B【解析】2与33比较:()3622=,()26333=;44与33比较:()312444=,()412333=;55与33比较:()315555=,()515333=;2、函数xky =(k 是非零常数)图像的对称轴是( ) (A)x kky = (B )x k y = (C )kx y -= (D )kx y = 【答案】A3、无理数32+的小数部分是( )(A )232-+ (B )324-- (C )332-+ (D )[]232-+【答案】C【解析】 1.412≈。

1.733≈4、化简424242422222-++--++--+-++n n n n n n n n ,结果是( )(A )2n(B )n (C )n-2 (D )n+2 【答案】B 【解析】[]n nn n n n n n n n n n n n n n n n n n n n n n n n n n n n ==-++-++=-+++--+++--++-+++=-+++-+-++-+-+-+++44)2()2()2()2(2)22(2)22(2)22(2)22(2)2)(2(2)2)(2(2)2)(2(2)2)(2(25、若关于x 的二次三项式n x mx 322++在实数范围内不能分解因式,则(m.n )一定在( ) (A )第二象限 (B )第四象限 (C )第一或第三象限 (D )第二或第四象限 【答案】C【解析】实数范围内不能因式分解,即0322=++n x mx 无解,则0344<⨯-=∆n m31>∴mn 同为正数或者同为负数。

6、如图1,一次函数y=x 与二次函数c bx ax y ++=2的图像相交于点),(),,(2211y x Q y x P 两点,则函数c x b ax y +-+=)1(2的图像可能是( )(A ) (B ) (C ) (D ) 【答案】B【解析】由图可知有两个交点,则x c bx ax =++2有两个解,等价于函数c x b ax y +-+=)1(2与x 轴有两个交点,且由图可知,P ,Q 两点的横坐标为负,则c x b ax y +-+=)1(2与x 轴必在负半轴 7、若正整数c b a ,,满足1111=++cb a ,则这样的正整数组(a,b,c )共有( )组 (A )1 (B )3 (C )9 (D )10 【答案】D【解析】不妨设c b a c b a 11100≤≤<→>≥≥,311,31111c cc c b a c ≤<∴≤++<∴则c 可取的2,3当c=2时有两种情况: ① 1612131=++由轮换对称的结构可知,共6组② 1412141=++同理有三组c=3时,只有1313131=++这1组8、若二次函数c bx ax y ++=2(a,b,c 是常数)的图像如图2所示,对称轴是直线x=-2,则下列说法中不正确的是( )(A )0>abc (B )0<++c b a (C )05<+c a (D )0<+-c b a【答案】D【解析】由图可知,在1-=x 时,函数值在x 轴上半部分9、The radius of cricle O is 52,chord AB perpendicular chord CD at point E,and AE=6,ED=2,then the lengthof EB is( )(A )5 (B )2 (C )52 (D )4【答案】B【解析】设BC=x,EB=y,由相交弦定理可知,6y=2x ,则x=3y,分别由圆心向两条弦作垂线OM,ON, 则四边形MENO 为矩形,在Rt △ANO 中,222AN ON AE +=,即22)12()23(20-=+-xy 得y=210、关于x 的方程24222-=+-a ax x 有且仅有一个正根,则a 的取值范围是( ) (A )a<-12 (B )24≤a (C )a<-12或a=24 (D )a<12【答案】A【解析】方程有且仅有一个正根,即说明不存在两相等的正跟,又开口向上,120242,0)0(-<∴<+<a a f二、A 组填空题11、2007...4321-+++-+++-x x x x x 的最小值是______.【答案】2035152【解析】表示x 到1,-2,3,-4.....2016,-2017各个点之间的距离和,最中间点为1.当x=1时,整体最小将x =1代入即可12、在直角坐标系中,若x,y 都是整数,则称(x,y )是整点,满足不等式y x y x 4422-≤+的整点的个数是_______. 【答案】25【解析】化简式子:()()82222≤++-y x ,即以)2,2(-为圆心,22为半径的圆内有多少个整数点,画图,数点的数量即可13、方程组⎩⎨⎧==+65xy y x 的解是_______.【答案】⎩⎨⎧-=-=32y x 或者⎩⎨⎧-=-=23y x14、如图3,Rt △ABC 中,153090===∠BC AC C ,,,若以点C 为圆心,BC 为半径的圆交AB 于点D ,则AD 的长度是______ 【答案】59【解析】设AC 与圆左交点为F ,延长AC 交圆于右点E ,割线定理可知AF AE AB AD ⋅=⋅有勾股定理可得,515=AB 4515515⨯=⋅AD15、在正方形ABCD 中,点M,N 分别在BC ,CD 上,BM =4,DN =6,且MAN BAM ∠=∠,则AN 的长是_______【答案】10【解析】延长AN,DC 交于点E ,由平行可知,E MAN BAM ∠=∠=∠, 则有NE=NA,设NC=x,MC=y ,可得:MC MB NC DN AN DN AD +=+=+,222,代入数据即可得AN=1016、Suppose real numbers a and b satisfy ,0≠ab and 222)3()(10b a b a +=+,then the value of abb a 223+is_________ 【答案】328 【解析】化简式子:06922=+-b ab a 即a b b a 30)3(2=∴=-代入即可17、在△ABC 中,点D 在BC 上,点F 在AB 上,点E 在AC 上,四边形FDEA 是平行四边形,且BC AC AB 23==,,则△ABC 与四边形FDEA 的周长之比是________【答案】34【解析】 四边形FDEA 周长为AC+AB 两条线段长,设BC=2a ,则△ABC 周长为8a,四边形FDEA 周长6a.18、如图2,将面积为2的Rt △ABC 沿直线BC 翻折,再向左平移得到Rt △DCE ,延长AC 交DE 于点M ,则△AME 的面积是__________.【答案】3【解析】由翻折平移可知两三角形全等. 延长CM 使得C M=FM,连接FD,EF , 可证明四边形CEFD 为矩形19、若二次函数2017)1(2---=x y 的图像上有不同的两点A (m,-4036),B (n,-4036),则当点C(m+n ,p)在这函数图像上时,p =_________. 【答案】2018-【解析】点)4036,(),4036,(--n B m A 在函数图像上,代入即可知,n m ,是方程020182=-+-x x 的两根,则2=+n m ,代入得到2018-=p20、如图5,CD AB DE DC BE CB ACB ⊥===∠,,90,于点M,ED 的延长线交AC 于点N ,若AN =3,NC =5,则BC 的长度是____【答案】52【解析】由同余可知,2240CB ACCBCE NC E A =→=∴∠=∠ 21、若120163,2016201622=--=++x xy y y xy x 则y x -=_______或_______.【答案】-1或2017【解析】两式相加得:0201720162016222=-+--+y x xy y x化简:02017)(2016)(2=----y x y x22、如图6,在直角坐标系中,边长为1的正△ABC (C 与O 重合)的边BC 在x轴上,顶点A 在第一象限,现在进行以下操作:(1)把△ABC 沿X 轴向右平移一个单位,此时A 变为1A (2)将三角形沿X 轴翻折,此时1A 变为2A (3)将三角形绕点O 旋转180°,此时2A 变为3A (4)将三角形沿Y 轴翻折,此时3A 变为4A (5)将三角形绕点O 旋转180°,此时4A 变为5A按照此规律,重复以上五步,则17A 的坐标是(_______,______)【答案】)23,21(-【解析】)23,23()23,23()23,23()23,23()23,23()23,21(54321--→→-→-→→A A A A A A ⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--→23,2123,2123,2123,2123,21109876A A A A A 从推导过程可知,10个一循环,则717A A =23、已知-2是三次方程03=++c bx x 的唯一实根,则b 的取值范围是______,c 的取值范围是______ 【答案】,3->b 2>c【解析】因为方程只有-2一个实根,则分解因式之后()()c bx x n mx x x ++=+++322对比系数,左边化简:2,2cn m =-=,且方程02=++n mx x ,化简得:n x n m x m x 2)2()2(23+-+-+ 没有实数根则0244<⨯-=∆c,3)4(2->→+=b b c 24、如图7,在边长为1的正方形ABCD 中,点E 在边AD 上运动(不与A ,D 重合),点A ,G 关于BE对称,连接EG 并延长交DC 于点F ,则∆DEF 的周长是_________,_____=∠EBF .【答案】2,45°【解析】连接BG ,可证三角形全等即可25、设21,x x 是一元二次方程02=++q x p x 的两根,若q 为质数,p =17q +4是完全平方数,则q=_________,______1121=+x x . 【答案】131513-,【解析】q x x p x x =⋅-=+2121,,417+=q p 且为完全平方数,设()()22174172-+=→+==k k q q p k ⎩⎨⎧=-=+∴q k k 2172或⎩⎨⎧=-=+1722k qk 则21,1321==q q (舍)225=∴p 则原方程可化为:013152=++x x。

2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛试题及解答.(A卷)



2 2 1 AM AN 3 AB AC 4 AB AC , 8
由 3 S ABC
1 3 AB AC sin A AB AC 得 AB AC 4 2 4
2
所以 AB AC 2 ,所以 3 AB
AC 8 3 ,当且仅当 AB
x x1 3x 2 5 x3 x1 2 3
★解析:由柯西不等式

x3 的最小值和最大值。 5 x2 5 x3 3 x3 5 1
2
x x x1 3x 2 5 x3 x1 x1 3 x 2 x1 2 3 3 5
当 x1 1 , x 2 0 , x 3 0 时取等号,故所求的最小值为 1 ; 又 x1 3 x 2 5 x 3 x1

x 2 x3 1 5x x1 3 x 2 5 x 3 5 x1 2 x 3 3 5 5 3
2
512 b1 ② 55
★证明:记 f ( x ) x kx m , x a, b ,则 f ( x ) 1,1 。于是
2
f (a ) a 2 ka m 1 ①; f (b) b 2 kb m 1 ② ab ab 2 ab )( ) k( ) m 1 ③ 2 2 2 ①+②- 2 ③知 f(
2017 年全国高中数学联合竞赛一试(A 卷)
一、填空题:本大题共 8 个小题,每小题 8 分,共 64 分。 2017A1、设 f ( x ) 是定义在 R 上函数,对任意的实数 x 有 f ( x 3) f ( x 4) 1 ,又当 0 x 7 时, f ( x ) log 2 (9 x ) ,则 f ( 100) 的值为 ◆答案:

2017成都小升初哪个证书含金量最高

2017成都小升初哪个证书含金量最高

第一级:六年级获华罗庚金杯赛决赛(高年级组)一等奖第二级:六年级获华罗庚金杯赛决赛(高年级组)二等奖五年级获华罗庚金杯赛决赛(高年级组)一等奖六年级获国奥赛一等奖、区三好、区优干第三级:五年级获华罗庚金杯赛决赛(高年级组)二等奖太阳神鸟杯语文综合能力大赛一等奖cctv希望之星英语风采大赛一等奖成都市艺术人才大赛一等奖 ? 是书法、钢琴都可以么?第四级:六年级获华罗庚金杯赛决赛(高年级组)三等奖六年级获国奥赛二等奖五年级获国奥赛一等奖七中嘉祥外国语学校嘉祥杯(报考嘉祥)奥林匹克杯全国作文大赛一等奖全国小学生英语竞赛(NECPS)一等奖才第四等???成都市艺术人才大赛二等奖、成都青少年科技创新大赛一等奖校三好、校优干这是学校的新三好?第五级:五年级获华罗庚金杯赛决赛(高年级组)三等奖少文杯一等奖太阳神鸟杯语文综合能力大赛二等奖“为学杯”全国中小学生创新作文大赛复赛一等奖“阳光杯”征文比赛一等奖“古诗词竞赛”一等奖cctv希望之星英语风采大赛二等奖全国中小学英语测试(NEAT)4级这是个什么考试?怎么参加? 第六级:五年级获国奥赛二等奖奥林匹克杯全国作文大赛二等奖全国小学生英语竞赛(NECPS)二等奖级别太低了吧?成都市艺术人才大赛三等奖这也是任何一个项目,书法钢琴都可以么?成都青少年科技创新大赛二等奖第七级:六年级获国奥赛三等奖少文杯二等奖太阳神鸟杯语文综合能力大赛三等奖“为学杯”全国中小学生创新作文大赛复赛二等奖“阳光杯”征文比赛二等奖“古诗词竞赛”二等奖cctv希望之星英语风采大赛三等奖全国中小学英语测试(NEAT)3级成都青少年科技创新大赛三等奖第八级:六年级获华罗庚金杯赛决赛(高年级组)优秀奖五年级获华罗庚金杯赛决赛(高年级组)优秀奖五年级获国奥赛三等奖希望杯全国数学邀请赛(四川赛区)一等奖奥林匹克杯全国作文大赛三等奖全国小学生英语竞赛(NECPS)三等奖青少年科普知识竞赛一等奖青少年机器人创新实践活动一等奖第九级:少文杯三等奖希望杯全国数学邀请赛(四川赛区)二等奖世奥赛一等奖少奥赛一等奖青少年宫冬令营一等奖ACTS中国校园学业素质能力竞赛特别金奖“为学杯”全国中小学生创新作文大赛复赛三等奖“阳光杯”征文比赛三等奖“古诗词竞赛”三等奖剑桥少儿英语3级全国中小学英语测试(NEAT)2级社会艺术水平音乐考级社会艺术水平美术考级青少年科普知识竞赛二等奖青少年机器人创新实践活动二等奖第十级:少文杯优胜奖希望杯全国数学邀请赛(四川赛区)三等奖世奥赛二等奖少奥赛二等奖青少年宫冬令营二等奖ACTS中国校园学业素质能力竞赛金奖剑桥少儿英语2级青少年科普知识竞赛三等奖青少年机器人创新实践活动三等奖第十一级:世奥赛三等奖少奥赛三等奖青少年宫冬令营三等奖ACTS中国校园学业素质能力竞赛银奖剑桥少儿英语1级全国中小学英语测试(NEAT)1级青少年机器人创新实践活动优秀奖第十二级:ACTS中国校园学业素质能力竞赛铜奖可得出的结论:1、华赛、奥赛依然是最具含金量的比赛,在私立大规模面试的情况下,这两项比赛的分量继续升高;2、学校更加看重综合能力强的孩子,而不仅仅是偏重某一科的奖项;3、写简历的时候应该按照级别的顺序填写,把重要的奖项排在前面,奖项最多不超过7个。

2017年全国高中数学联赛A卷和B卷试题和答案(全文

2017年全国高中数学联赛A卷和B卷试题和答案(全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。

5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 . 2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 . 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来的速度的2倍去C 地.又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是 千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是 .6.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 6048 . 【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和. 【解答】解:根据分析,原式为: 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++ 1592610[550][733][916][1100][1283][1466]111111111111=+++++ 550733916110012831466=+++++6048=.故答案是6048.【点评】本题考查了高斯取整,本题突破点是:先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 20 . 【分析】根据题意,设原来给定的4个整数分别是a 、b 、c 、d ,则83a b cd +++=(1),123a b d c +++=(2),21033a c d b +++=(3),1933b c d a +++=(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a 、b 、c 、d , 83a b cd +++=(1), 123a b dc +++=(2), 21033a c db +++=(3),1933b c d a +++=(4), (1)+(2)+(3)+(4),可得 212()81210933a b c d +++=+++,所以20a b c d +++=,所以原来给定的4个整数的和为20. 故答案为:20.【点评】此题主要考查了平均数问题,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数. 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法. 【解答】解:根据分析,份三种情况:①当正中间即E 处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80240÷=(千米/时);甲速度加速变成40280⨯=(千米/时);甲再经过2小时路程为:280160⨯=(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160 2.564÷=(千米/时)故答案为:64【点评】本题考查对追及问题的理解和运用,同时关键在求出BC之间的路程,隐含中知道乙的时间是2.5小时.问题解决.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是3:4.【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是27172÷=,只参加朗诵小组人数的分率是1155÷=,则参加书法小组人数的分率是79122+=,参加朗诵小组人数的分率是156+=,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,21(11):(11)75+÷+÷9:62=3:4=答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.【点评】本题关键是把中间量两个小组都参加的人数看作单位“1”,然后都统一到这个单位“1”就容易解答了.6.(10分)如图,ABC∆的面积为100平方厘米,ABD∆的面积为72平方厘米.M为CD 边的中点,90MHB∠=︒,已知20AB=厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 10 222430 14 5 31 10 1 3266由上表可以得出:4289a a ==,428()()9S a S a ==; 52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法. 综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,0n=,即5条直线互相平行;n=,即五条直线交于一点;1n=,3,不存在;2n=,5,6,7,8,9,10的情况分别如下图:4n的取值共有9种不同的数,故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定n 的取值. 10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a 、同时选苹果和香蕉的人数b 、同时选梨和苹果的人数c 、同时选香蕉和梨的人数d ,再根据选每种水果的人数列关系式,270403010040a b c d +++=++-=,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a 人,同时选了苹果和香蕉的人数有b 人,同时选了梨和苹果的人数有c 人, 同时选了香蕉和梨的人数有d人,则:40()2704030100402b c d a b c d a -+++++=++-=⇒=,又b c d ++,400202a-∴=, 故当0b c d ++=时,a 取最大值20,即占总数的20% 故答案是20%.【点评】本题考查了分数和百分数的应用,本题突破点是:根据容斥原理列出三种水果都选的人数与总数及两种都选的人数的关系式,再求解.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x 个,17克的珠子有y 个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值. 【解答】解:根据分析,设有x 个19克的珠子,y 个17克的珠子,则有: 19172017x y +=,又x ,y 均为正整数 2017171200011061919x-⨯∴=<,2017191199611181717y -⨯=<;2017171917201719yx y x -+=⇒=,由余数定理,要使x 为正整数,201717y -必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即171368y y=⇒=,20171789919x-⨯==,998107x y+=+=;②459,即1745927y y=⇒=,20174598219x-==,8227109x y+=+=;③782,即1778246y y=⇒=,20177826519x-==,6546111x y+=+=;④1105,即17110565y y=⇒=,201711054819x-==,4865113x y+=+=;⑤1428,即17142884y y=⇒=,201714283119x-==,3184115x y+=+=;⑥1751,即171751103y y=⇒=,201717511419x-==,14103117x y+=+=.综上,两种珠子的数量和即x y+所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.【点评】本题考查了不定方程的分析求解,本题突破点是:通过列出关系式,再根据未知数的范围确定取值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950 =答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于12315120260+++⋯+==⨯,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60123457891011=+++++++++这一种分散情况,不妨设这是同月份的人数,和另一种情况:60612131415=++++,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.【点评】本题难点是分析出同月份和同号数的人数的数字不会重复,难度较大.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,123678936++++++=,填入的x是其它五个数的因数,故x只能是3、6、9,若9x=,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=时,如图所示,易知6x=符合题意.6故答案是:6.【点评】本题考查最大与最小,突破点是:可以先求出7个数的和,再求最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档