北师大版初二数学上册7.1为什么要证明练习题
北师大版八年级数学(上)第七章 平行线的证明 第1节 为什么要证明
例 4:观察下列关于自然数的等式: (1)32-4×12=5 ① (2)52-4×22=9 ② (3)72-4×32=13 ③ … 根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( );
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性.
解:(1)4,17 (2)第 n 个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1= 右边,∴第 n 个等式成立.
练习:下列问题你不能肯定的是( D )
A.一支铅笔和一瓶矿泉水的体积的大小关系 B.三角形的内角和 C.八边形的外角和 D.三角形与矩形的面积关系
课程导入2:
代数式n2+ n+41的值是质数吗?取n=0,1,2,3,4, 5试一试,你能否 由此得到结论:对于所有自然数n2+ n+41的值都是质数?与同伴进行交流.
2.在学习中,小明发现:当 n=1,2,3 时,n2-6n 的值都是负数,于是小明猜想:当 n 为 任意正整数时,n2-6n 的值都是负数,小明的猜想正确吗?请简要说明你的理由.
解:小明的猜想不正确.理由为:当 n=6 时,n2-6n=62-6×6=0;当 n> 6 时,n2-6n=n(n-6)>0.
练习:观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …
请猜测,第 n 个算式(n 为正整数)应表示为 100n(n-1)+25 .
证明的必要性
1.要判断一个数学结论是否正确,仅仅依靠实验,观察、归纳是不够的,
解:小明的猜想正确,理由:因为 n 为奇数,所以可设 n=2k+1(k 为自然数), 所以 n2﹣1=(2k+1)2﹣1=(2k+1+1)(2k+1﹣1)=(2k+2)×2k=4k(k+1), 因为 k 为自然数,所以 k,k+1 是相邻的自然数, 所以 k,k+1 中必有一个是偶数,一个是奇数,所以 k(k+1)必定是 2 的倍数, 所以 4k(k+1)必定是 8 的倍数,故当 n 为任意正奇数时, n2﹣1 的值一定是 8 的倍数.
北师大版八年级数学上册第七章 为什么要证明
【题型二】数学中的推理验证
例2:在学习中,小明发现:当n=1,2,3时,n2-6n的值都是 负数.于是小明猜想:当n为任意正整数时,n2-6n的值都是负 数.小明的猜想正确吗?请简要说明你的理由.
解:不正确.理由:当n=6时,n2-6n=0,所以当n为任意正 整数时,n2-6n的值不一定为负数,所以小明的猜想不正确.
生活中的图片
彭罗斯楼梯
莫比乌斯环
克莱因瓶
视频导入
大家看 到的这 些魔术 是真实 发生的 吗?
眼见不一定为实,遇见问题需要证明
1.请同学们阅读课本162-163页. 2.观察课本162页的图片,完成下列问题.
①图7-1中两条线段a与b的长度相等吗? 请你先观察, 再测量一下. 结论:a与b 的长度__相_等_____. ②图7-2中的四边形是正方形吗? 将它四个角的度数,四条边的长度测量出来: _四__个__角__都_是__9_0_°_,__四__条_边__都__是__1_.7__c_m______________. 图7-2中的四边形__是__(填“是”或“不是”)正方形.
例4:如图所示,把一根细长的绳子沿中间对折,再将对折后的绳子沿 中间对折,这样连续沿中间对折5次,用剪刀将5次对折后的绳子从中 间全部剪断,此时细绳被剪成____3_3___段.
【题型三】实际生活中的推理验证
例5:甲、乙、丙、丁四人的车的颜色分别是白色、银色、蓝色和红色的其 中一种,且互不相同.在问他们各自车的颜色时,甲说:“乙的车不是白 色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说: “甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实
1 为什么要证明
1. 通过观察、猜想、归纳等得到的结论不一定正确,使学 生对由这些方法得到的结论产生怀疑,从而认识到证明 的必要性,发展推理能力.
北师大版八年级上册数学7.1为什么要证明?
▪ 通过观察、分析图形,体验推理的重要性。
二、情景导入
▪ 曲线幻觉:竖条似乎是弯曲的,但其实他们 是笔直的而且相互平行的。
先观察、再测量
你能判断线段a与线段b长度的大小吗?
a
通过_测__量___,发现_a__=_b___.
已知(1),(2),(3)中只有一句是真的,苹果 在哪个箱子里?
我们发现(1)与(3)互相矛盾,可两件矛盾 的事不能都是真的,必有一假;题设真话只有一 句。这样(2)必是假话,从而苹果在黄箱子里。
本课小节
▪ 要说明一个数学结论是否正确,无论验 证多少个特殊的例子,也无法保证其正 确性。要确定一个数学结论的正确性, 必须进行一步一步、有根有据的推理。
第七章 平行线的证明
7.1 为什么要证明?
一、前置诊测
▪ 1.线段的长短比较? 当两条线段的长度相等时,就可以说这两条 线段相等。
▪ 2.什么是质数? 除了1和他本身外,没有其他约数的数叫做质 数。
二、展示目标
▪ 了解推理的意义,知道要判断一个数学结论 是否正确,仅仅靠经验、观察是不够的,必 须进行推理。
模板中的图片展示页面,您可以根据需要
方法一:更改图片
2. 在图“替换”下拉列表中选择要更改字体。(如下图)
1.选中模版中的图片(有些图片与其他对 而不是组合)。
2.单击鼠标右键,选择“更改图”,选
3. 在“替换为”下拉列表中选择替换字体。 4. 点击“替换”按钮,完成。
PPT放映 设置
PPT放映场合不同,放映的要求也不同,下面将例举几种常用的放映设置方式。 让PPT停止自动播放 1. 单击”幻灯片放映”选项卡,去除“使用计时”选项即可。
河北省邯郸市肥乡区常耳寨中学北师大版八年级数学上册教案:7.1为什么要证明
(五)总结回顾(用时5分钟)
今天的学习,我们了解了证明的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对证明的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在证明“三角形的内角和为180度”时,学生可能难以想到通过“辅助线”的方法来进行证明。
(2)逻辑推理能力的培养:学生在运用证明方法时,可能会出现逻辑错误,需要教师指导学生进行正确的逻辑推理。
举例:在使用反证法时,学生可能无法正确地设定“反设”条件,导致后续推理出现偏差。
(3)数学表达与交流能力的提升:学生在书写证明过程时,可能存在表达不清晰、逻辑关系混乱等问题,需要教师指导学生如何用简洁、准确的语言表达证明思路。
其次,在新课讲授环节,我意识到理论介绍和案例分析的重要性。在讲解证明的基本概念时,我尽量用简洁明了的语言,帮助学生理解。但在讲解难点时,我发现有些学生还是难以跟上节奏。因此,我需要在这方面多下功夫,寻找更多形象生动的例子,帮助学生突破难点。
在实践活动环节,分组讨论和实验操作使学生能够将所学知识应用到实际问题中,这有助于巩固他们对证明方法的理解。不过,我也注意到在讨论过程中,部分学生参与度不高,可能是因为他们对问题不够了解。为了提高学生的参与度,我考虑在下次活动中,提前为学生提供一些参考资料,激发他们的思考。
举例:如教材中的“等边三角形”性质,通过证明,让学生明白为什么等边三角形的三条边相等、三个角相等。
(2)掌握基本的证明方法:重点讲解反证法、归纳法等基本证明方法,并通过典型例题让学生掌握这些方法的应用。
北师大版八年级上册第七章7.1为什么要证明(教案)
在今天的教学中,我尝试了多种方法来帮助学生理解“为什么要证明”这一章节的内容。首先,通过导入生活中的实际问题,让学生感受到证明的必要性,这一点我觉得做得还不错,孩子们的兴趣和好奇心被成功激发。但在讲授过程中,我发现有些学生对证明的基本概念和步骤还是有些模糊,这让我意识到在接下来的教学中,需要更加关注这部分内容的讲解。
具体内容包括:
1.证明的概念和作用;
2.证明的步骤和方法;
3.举例说明证明在数学中的应用;
4.完成课本例题和习题,巩固证明方法。
本节课旨在让学生认识到证明的重要性,学会基本的证明方法,并能在实际问题中运用。
二、核心素养目标
本章节的核心素养目标主要包括逻辑推理、数学抽象和数学建模三个方面。通过学习为什么要证明,培养学生以下能力:
北师大版八年级上册第七章7.1为什么要证明(教案)
一、教学内容
北师大版八年级上册第七章7.1《为什么要证明》主要包括以下内容:引入证明的必要性和重要性,让学生了解证明在数学学习中的应用;通过生活中的实例,使学生体会证明的过程和方法;学习基本的证明方法和步骤,包括直接证明、间接证明等;培养学生逻辑思维能力和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《为什么要证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要证明某个结论正确性的情况?”(例如:为什么三角形的内角和是180度?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索证明的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解证明的基本概念。证明是数学中用来确认某个结论正确性的过程。它是数学逻辑推理的重要体现,帮助我们确信数学结论的正确性。
2014年北师大版数学八上能力培优7.1为什么要证明7.2定义与命题
第七章平行线的证明
7.1为什么要证明、7.2定义与命题(附答案)
专题推理在实际中的应用
1.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.
李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”
甲说:“是乙不小心闯的祸.”
乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.”
丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸
( )
A.甲
B. 乙
C.丙
D.丁
答案:
1.D 【解析】本题可分三种情况进行讨论:
①若甲真,则乙假,丙真,丁真,这种情况下,三人说了实话,显然与条件不符;
②若甲假,乙真,则丙假,丁真,这种情况下,两人说了实话,显然与条件不符;
③若甲假,乙假,则丙真,丁假,这种情况下,只有丙说了实话,符合题目给出的条件.
由于丁说了假话,因此闯祸的人一定是丁.故选D.。
北师大版数学八年级上册 7.1《为什么要证明》教案-最新教学文档
第七章平行线的证明1 为什么要证明教学目标【知识与技能】1.体会通过观察、猜想、归纳等得到的结论不一定正确,使学生对由这些方法得到的结论产生怀疑,从而认识到证明的必要性.2.理解并掌握检验数学结论是否正确的常用方法:试验验证、举出反例推理证明等,理解数学的严谨性.【过程与方法】通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识.【情感、态度与价值观】发展学生的探索意识以及合作交流的习惯;关注现实,培养学生进行深入思考的能力和质疑精神.教学重难点【重点】理解判断一个结论正确与否需要进行推理证明,理解并掌握应用实验进行证明、举反例验证、利用推理论证来验证某些结论是否正确的方法.【难点】体会数学推理的重要性和必要性.教学过程一、创设情境,引入新课师:在以前的学习过程中,我们通过观察、实验、归纳得到了很多正确的结论,那么通过观察、实验、归纳得到的结论一定正确吗?下面我们一起来感受几个例子!1.探究一:观察得到的结论正确吗?教师多媒体出示.(1)图1中两条线段a,b的长度相等吗?图2中的四边形是正方形吗?请你先观察,再设法体验你观察到的结论.(2)如图3,把地球看成球形,假如用一根比地球赤道长1 m的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,看看与你的感觉是否一致,并与同伴进行交流.学生凭着自己的观察和直观感觉说想法后,组织学生动手量一量、算一算,验证结论是否正确.(图1中的两条线段相等;图2是正方形;图3中假设地球半径是R,则赤道长2πR,铁丝长(2πR+1)米,那么这个铁丝围成的半径是(R+)米,所以铁丝与赤道之间的间隙为米≈16厘米,能放进一个拳头).然后引导学生回答下列问题:(1)由观察得到的结论正确吗?(2)你还能举出日常生活中的例子吗?2.探究二:归纳得到的结论正确吗?(1)听故事“公鸡归纳法”:某主妇养小鸡十只,公母各半.她预备将母鸡养大留着生蛋,公鸡则养到一百天就陆续杀以佐餐.天天早晨她拿米喂鸡.到第一百天的早晨,其中的一只公鸡正在想:“第一天早晨有米吃,第二天早晨有米吃,……第九十九天早晨有米吃,所以今天,第一百天的早晨,一定有米吃.”这时,该主妇来了,正好把这只公鸡抓去杀了.第1天有食吃,第2天有食吃……第99天有食吃,一定能推出第100天有食吃吗?从这个故事中你明白了什么道理?同桌之间相互交流.(2)算一算验证“归纳法”:①出示代数式n2-n+11,让学生分别计算当n=1,2,3,4,5时,代数式的值是多少,提问它们的值都是质数吗?②追问学生:我们是不是可以由此得出结论,当n为任意自然数时,n2-n+11的值一定是质数呢?③让学生再多取几个数代入代数式中,验证结论是否正确.(不正确,比如当n=11时,n2-n+11=121,结果是合数.)④思考:由归纳得到的结论一定正确吗?(3)再次验证“归纳法”.如图,在△ABC中,点D,E分别是AB、AC的中点,连接DE,DE与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜想.你能肯定你的结论对所有的△ABC都成立吗?与同伴进行交流.(DE与BC平行,且等于BC长度的一半;引导学生尝试猜想:连接三角形两条边的中点所得的线段平行第三条边,且是第三条边长度的一半;组织学生进行归纳并验证结论,发现这样的结论对所有的三角形都成立.)小结:归纳得到的结论有的正确有的不正确.3.交流与发现.通过上述几类问题的分析,你有什么发现吗?(1)通过实验、观察、归纳得到的结论是否都正确?怎样判断一个结论是否正确呢?(2)总结:实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.二、例题讲解【例1】观察图1中的两条线段a与b,你认为哪条线段长些?图1分析:观察往往会产生错觉,得出的结论不一定正确,想要判断两条线段是否一样长,最科学、合理的方式是量一量,组织学生动手操作量一量.【答案】两条线段一样长【例2】图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.【答案】线段b与线段d在同一直线上三、课堂小结1.通过本节课的学习,我们了解了实验、观察、归纳得到的结论不一定正确,从而明白证明的意义和必要性.2.让学生反思自己在本节课学习中的优缺点、不足之处以及改进的方法,并能积极地参与与总结性的发言.。
八年级数学上册第7章名师教案:为什么要证明(北师大版)
北师大版数学八年级上册 7.1为什么要证明名师教案课题7.1 为什么要证明单元第七单元学科数学年级八学习目标知识与技能:体会检验数学结论的常用方法:实验验证、举出反例、推理等,发展学生的推理能力.过程与方法:经历观察、验证、归纳等过程,使学生对由这些方法所得的结论产生怀疑,以此激发学生的好奇心理,从而认识证明的必要性,培养学生的推理意识.情感态度与价值观:通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.重点要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.难点通过对一些规律的探讨和分析,养成动脑思考问题的习惯.教学过程教学环节教师活动学生活动设计意图新知导入师:同学们,请你们用学过的数学知识解决下面的问题。
从A地到B地有五条道路,时间紧急,张先生要从B地赶往A地乘车,此时张先生应该选择哪条路?你的依据是什么?两点之间,线段最短.你还记得我们是如何得到“两点之间,线段最短”这个结论的吗?张先生应该走第③条路.两点之间,线段最短.从学生已知的数学结论出发,感受有些结论是通过观察、实验、归纳等活动得出的,适时提出问题,通过观察、实验、归纳得到的结论一定正确吗?设置悬念,激发学生的求知欲,为新课的学习做好铺垫.新知讲解我们曾经通过观察、实验、归纳等活动得到了很多正确的结论.但是通过观察、实验、归纳得到的结论一定正确吗?如何才能得到正确的结论呢?图(1)中的两条线段a,b长度相等吗? 学生先观察,再动手验证,然后小组交流.教师巡视、指导学生,在学生回答的同让学生的观察结果与实验结果产生思维上的碰撞,同时让学生明白只有实践才能出真知的道观察的结果是线段a比较长;经过测量,线段a,b长度相等.图(2)中的四边形是正方形吗?请你先观察,再设法检验你观察到的结论.观察的结果是四边形的四条边是曲线;经过直尺验证,四边形是正方形.如图,把地球看成球形,假设用一根比地球赤道长1米的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,看看与你的感觉是否一致,并与同伴进行交流.解:设赤道的周长为C米,则铁丝的长为(C+1)米,那么铁丝与地球赤道间的间隙为R-r,c+1c1-=≈0.16(m)2π2π2π0.16 m=16 cm.通过计算我们可以看出,判断一个结论是否正确,依靠直觉是不可靠的.要想得到正确的结论,必须经过计算来证实.请大家解决下面问题.代数式n2-n+11的值是质数吗?取n=0,1,2,3,4,5试一试,你能否由此得到结论:对于所有自然数n,n2-n+11的值都是质数?与同伴进行交流.当n=0时,n2-n+11=11. 当n=1时,n2-n+11=11. 当n=2时,n2-n+11=13. 当n=3时,n2-n+11=17. 当n=4时,n2-n+11=23. 当n=5时,n2-n+11=31. 因为当n=0,1,2,3,4,5时,代数式n2-n+11的值都是质数,所以对于所有自然数n,n2-n+11的值都是时,教师利用多媒体进行验证.学生先凭感觉想象,再动手验证,然后小组交流.教师巡视、指导学生,在学生回答的同时,教师利用多媒体进行展示.学生先思考,再动手计算,然后小组交理,从而归纳知识:仅仅依靠观察不能判断一个数学结论是否正确.通过理性的计算,验证了很难想象到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为证明的必要性提供素材.对归纳的结论进行验证,让学生通过实验、观察、归纳得到的结论都正确吗?在上面的问题中,你是怎样判断一个结论是否正确的?说说你的经验与困惑.检验数学结论常用的方法:主要有:实验验证、举出反例、推理证明实验验证是最基本的方法,它直接反映由具体到抽象、由特殊到一般的逻辑思维方法;举出反例常用于说明该数学结论不一定成立;推理证明是最可靠、最科学的方法,是我们要掌握的重点.实际上每一个正确的结论都需要我们进行严格的推理证明才能得出.检验数学结论的具体过程:观察、度量、实验→猜想归纳→结论→推理正确结论.应用:检验数学结论常用的三种方法的应用:实验验证法常用于检验一些比较直观、简单的结论;举出反例法多用于验证某结论是不是正确的;推理证明主要用来进行严格的推理论证,既可以验证某结论是正确的,也可以验证某结论是不正确的.实验、观察、归纳得出的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据推的证明.手、作图验证,然后小组交流.教师巡视、指导学生,在学生回答的同时,教师利用多媒体进行成果展示.得出的结论仍有不确定性,需要更合适的方法来解决问题.课堂练习 1.小刚和小明在手工制作课上,用同种小铁丝制作的楼梯模型如图所示.那么他们用的材料长度( A ) 学生认真做课堂练习。
北师大版八年级上册 7.1《为什么要证明》教学设计
北师大版八年级上册 7.1《为什么要证明》教学设计这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识。
三、学情分析:㈠、知识基础:在此之前,学生已经学习了很多与几何相关的知识,为今天的学习作好了知识储备;同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.㈡、活动经验基础:八年级学生有一定的表现欲望和学习兴趣,通过一年多的初中数学学习,学生已经具备一定的观察、比较、动手操作、猜想、归纳和概括的能力,具备一定的小组合作交流的能力。
四、设计理念:本着“以学生的发展为本,为学生的终身学习奠定基础”、“以教师为主导,以学生为主体”的教育理念,针对八年级学生的知识结构和心理特征,本节课先采用一些错觉图片,让学生对“眼见为实”产生困惑激趣引入,再以五个学生活动素材(“看一看”、“猜一猜”、“做一做”、“读一读”、“量一量”)让学生经历观察、猜想、验证、归纳等过程,通过合作交流,认识到观察、猜想、归纳、实验得到的结论不一定可靠,需要进一步计算或推理论证,从而体会证明的意义和证明的必要性。
五、教学目标:㈠、知识与技能目标:1、了解检验数学结论的常用方法:实验验证、举出反例、推理论证等;2、会用实验验证、举反例验证、推理论证等方法来验证某些问题的结论是否正确。
㈡、过程与方法目标:经历观察、猜想、验证、归纳等思维过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识。
㈢、情感态度与价值观:经历观察、猜想、验证、归纳等过程,让学生体会数学的严谨性,培养学生的质疑精神。
六、教学重点和难点:教学重点:让学生充分参与观察、猜想、归纳、实验等学生活动,进而认识到证明的必要性。
教学难点:让学生经历观察、猜想、验证、归纳等思维过程,认识到观察、猜想、归纳、实验方法得到的结论不一定可靠,从而体会证明的必要性。
北师大版八年级上册数学课本课后练习题答案(整理版)
[标签:标题]篇一:北师大版八年级上册数学课本课后练习题答案八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,,¤,♀,∮,≒,均表示本章节内的类似符号。
1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm。
21.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)=AB+CD:也就是BC=a+b。
,222222 这样就验证了勾股定理l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
7.1 为什么要证明-北师大版八年级上册数学作业课件(共15张PPT)
A.若a=10 cm,b=10 cm,则a=b A.甲
B.乙
C.丙
D.丁
解:(2n+1)2-25=4n2+4n+1-25=4n2+4n-
C.300人一定没有两人生日相同 9.警方抓获一个由甲、乙、丙、丁四人组成的盗窃团伙,其中有一人是主谋,经过审讯,A,B,C三名警察各自得出结论.A:主谋
只有可能是甲或乙;
5.下列推理正确的是( A ) A.若a>b,b>c,则a>c B.若a⊥b,a⊥c,则b⊥c C.因为∠AOB=∠BOC,所以两角是对顶角 D.因为两个三角形的面积相等,所以它们全等
知识点二 检验数学结论的常用方法
12.设n为整数,试说明:(2n+1)2-25能被4整除.
B.观察得到了五边形有五个内角 A.若甲对,则乙对
A.甲
B.乙
B.若乙对,则甲对
C.丙
D.丁
A.若a>b,b>c,则a>c
C.物理老师告诉了我们许多关于“引力波” 12.设n为整数,试说明:(2n+1)2-25能被4整除.
6.某班有20位同学参加围棋、象棋比赛,甲说: “只参加一项的人数大于14人.”乙说:“两 项都参加的人数小于5人.”对于甲、乙两人的 说法,下列四种说法中正确的是( B ) A.若甲对,则乙对 B.若乙对,则甲对 C.若乙错,则甲错 D.若甲错,则乙对
解析:若甲对,即只参加一项的人数大于14 人,假设只参加一项的人数是15人,则两项 都参加的人数为5人,故乙错.若乙对,即 两项都参加的人数小于5人,则两项都参加 的人数至多为4人,此时只参加一项的人数 至少为16人,故甲对.故选B.
北师大版八年级上册数学课后辅导专练:7.1 谁的包裹多 同步练习1
7.1 谁的包裹多(1)如果设这个班有x 名女同学,y 名男同学.由女生人数的一半比男生人数少15人,可得什么方程?答:______.由再来4名女同学,男女生人数就相等了,你能得怎样的方程?答:______.(2)如果设小华买了x 张80分的邮票,y 张2元的邮票,你能得到怎样的方程? 答:______.测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案(1)21x +15=y ,x +4=y (2)x +y =16,0.8x +2y =18.87.1 谁的包裹多班级:________ 姓名:________ 一、选择题(1)以下方程中,是二元一次方程的是( )A.8x -y =yB.xy =3C.3x +2yD.y =x1(2)以下的各组数值是方程组⎩⎨⎧-=+=+2222y x y x 的解的是( ) A.⎩⎨⎧-==22y x B.⎩⎨⎧=-=22y x C.⎩⎨⎧==20y x D.⎩⎨⎧==02y x (3)若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-+12)1(2y nx y m x 的解,则m +n 的值是( ) A.1 B.-1 C.2 D.-2(4)二元一次方程3a +b =9在正整数范围内的解的个数是( )A.0B.1C.2D.3二、填空题(1)若方程(2m -6)x |n|-1+(n +2)y 82-m =1是二元一次方程,则m =_________,n =__________. (2)若⎩⎨⎧-==12y x 是二元一次方程ax +by =2的一个解,则2a -b -6的值是__________. (3)图1表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .图1按此规律推断,以S 、n 为未知数的二元一次方程是________.(4)请写出解为⎩⎨⎧==11y x 的一个二元一次方程组________. 三、根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?四、现有布料25米,需裁成大人和小孩的两种服装.已知大人每套用布2.4米,小孩每套用布1米,问各裁多少套恰好把布用完?测验评价结果:________;对自己想说的一句话是:__________________。
为什么要证明--教学设计(聂慧)
为什么要证明--教学设计(聂慧)1.为什么要证明贵阳市第十七中学聂慧内容和内容解析内容感受证明的必要性,了解检验数学结论的常用方法。
内容解析本节课是义务教育教科书数学八年级上册〔北师大版〕第七章第一节。
学生在从小学到初中的三个学段中,认识图形的要求有着明显的层次性,从〝辨认〞到〝初步认识〞,再从〝认识〞到〝探索并证明〞。
这种层次性既表达了从整体到局部的认识过程,也符合学生的认知特点,逐步深入,循序渐进。
这节内容设置在八年级,已经是第三学段中期。
在七年级时教材已经设置了«基本平面图形»、«相交线与平行线»和«三角形»的学习,学生通过观察、测量、实验、操作等活动探究得到了很多正确的结论,学生也尝试进行了一些验证和说理,基本认可这些结论,但并没有进行严格的证明,因而容易给学生造成一些错觉,认为通过探究得到的结论都是正确的。
本节课就是让学生认识到:通过观察、实验、归纳等活动得到的结论未必可靠,就是可靠的结论也需要进行严格的证明,初步感受证明的必要性,从而为后面学习演绎推理埋下伏笔。
根据以上对教材地位和作用的分析,结合课标对本节课的要求,我将本节课的重点确定为:知道观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性,发展学生的推理意识。
【二】目标和目标解析目标〔1〕经历观察、验证、归纳等过程,使学生产生认知冲突,对由这些方法所得到的结论产生怀疑,从而认识证明的必要性。
〔2〕了解检验数学结论的常用方法:实验验证、举反例论证、推理论证等,并能运用这些方法来验证某些问题的结论正确与否,发展学生合情推理和演绎推理能力,培养学生的推理意识.〔3〕在积极参与数学活动的过程中,激发学生的好奇心和求知欲;通过实验和探究活动,养成合作交流、反思质疑的学习习惯,形成修正错误、严谨求实的科学态度。
2、目标解析目标〔1〕达成的标志是学生通过〝观察图片〞、〝比较线段长短〞的问题、〝铁丝围地球〞的问题、〝费马数〞的问题等,发现通过观察、猜测、归纳等活动得到的结论不一定都正确,从而认识到证明的必要性目标〔2〕达成的标志是通过学生在经历多次错误的观察、猜想判断后,不再随意猜测,而是通过测量、计算、推理、举反例等方法来有理有据地证明这些结论正确与否。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1为什么要证明练习题
1、当n为正整数时,n2+3n+1的值一定是质数吗?
2、观察下图,左图中间的圆圈大还是右图中间的圆圈大?
3、我们知道:2×2=4,2+2=4.
试问:对于任意数a与b,是否一定有结论a×b=a+b?
4、如图,在▱ABCD中,DF⊥AC于点F,BE⊥AC于点E,试问DF与BE的位置关系和数量关系如何?你能肯定吗?请说明理由.
5、下列图案均由边长为单位长度的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为__________.
6、我们知道:2×2=4,2+2=4.
试问:对于任意数a与b,是否一定有结论a×b=a+b?
7、有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且:①红箱子盖上写着:“苹果在这个箱子里.”②黄箱子盖上写着:“苹果不在这个箱子里.”③蓝箱子盖上写着:“苹果不在红箱子里.”已知①②③中只有一句是真的,那么苹果在哪个箱子里?。