2009年各地中考组合的四份题解直 角三角形

合集下载

09年中考数学解直角三角形与中考

09年中考数学解直角三角形与中考

第十二章解直角三角形与中考中考要求及命题趋势1、理解锐角三角形函数角的三角函数的值;2、会由已知锐角求它的三角函数,由已知三角函数值求它对应、的锐角 ;3、会运用三角函数解决与直角三角形有关的简单实际问题。

2007年将继续考查锐角三角形函数的概念,其中特殊三角函数值为考查的重点。

解直角三角形为命题的热点,特别是与实际问题结合的应用题 应试对策1要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值,会使用科学计算器进行三角函数的求值;2掌握根据已知条件解直角三角形的方法,运用解直角三角形的知识解决实际问题。

具体做到:1)了解某些实际问题中的仰角、俯角、坡度等概念;2)将实际问题转化为数学问题,建立数学模型;3)涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题第一节 锐角三角函数与解直角三角形【回顾与思考】【例题经典】 锐角三角函数的定义和性质【例1】在△ABC 中,∠C=90°.(1)若cosA=12,则tanB=______;(•2)•若cosA=45,则tanB=______. 【例2】(1)已知:cos α=23,则锐角α的取值范围是( ) A .0°<α<30° B .45°<α<60°C .30°<α<45°D .60°<α<90°(2)(2006年潜江市)当45°<θ<90°时,下列各式中正确的是( )A .tan θ>cos θ>sin θB .sin θ>cos θ>tan θC .tan θ>sin θ>cos θD .cot θ>sin θ>cos θ解直角三角形【例3】(1)如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC∠的平分线,∠CAB=60°,AC ,AB 的长. (2)(2005年黑龙江省)“曙光中学”有一块三角形状的花园ABC ,•有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗?(3)某片绿地形状如图所示,其中AB ⊥BC ,CD ⊥AD ,∠A=60°,AB=200m ,CD=100m ,•求AD 、BC 的长. 【点评】设法补成含60°的直角三角形再求解.第二节 解直角三角形的应用【回顾与回顾】问题⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩转化---直角三角形视角常用术语坡度方位角 【例题经典】关于坡角【例1】(2005年济南市)下图表示一山坡路的横截面,CM 是一段平路,•它高出水平地面24米,从A 到B ,从B 到C 是两段不同坡角的山坡路.山坡路AB 的路面长100米,•它的坡角∠BAE=5°,山坡路BC 的坡角∠CBH=12°.为了方便交通,•政府决定把山坡路BC 的坡角降到与AB 的坡角相同,使得∠DBI=5°.(精确到0.01米)(1)求山坡路AB 的高度BE .(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)方位角.【例2】(2006年襄樊市)如图,MN 表示襄樊至武汉的一段高速公路设计路线图,•在点M 测得点N在它的南偏东30°的方向,测得另一点A 在它的南偏东60°的方向;•取MN 上另一点B ,在点B测得点A 在它的南偏东75°的方向,以点A 为圆心,500m•为半径的圆形区域为某居民区,已知MB=400m ,通过计算回答:如果不改变方向,•高速公路是否会穿过居民区?【点评】通过设未知数,利用函数定义建立方程来寻求问题的解决是解直角三角形应用中一种常用方法.坡度【例3】(2005年辽宁省)为了农田灌溉的需要,αCB A 某乡利用一土堤修筑一条渠道,•在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形)•,并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米(如图所示)求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.例题精讲例1、在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 则sinA 的值是 ( )A 、1515B 、41C 、31D 、415 答案:B例2.在A ABC 中,已知∠C=90°,sinB=53,则cosA 的值是 ( ) A .43 B .34 c .54 D .53 答案:D例3.在Rt ΔABC 中,∠C=900,则下列等式中不正确的是( )(A )a=csinA ;(B )a=bcotB ;(C )b=csinB ;(D )c=cos b B .答案:D例4.为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为( )B(A )30tan α米;(B )30tan α米; (C )30sin α米; (D )30sin α米答案:B例5.在ABC ∆中,︒=∠90C ,23cos =A ,则B ∠为( )C A .︒30 B .︒45 C .︒60 D .︒90答案:C例6.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影长MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室的距离AC 为( )A.23米 B.3米 c.3.2米 D.233米答案:B例7.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是米答案:100sinβ例8.如图7,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C点用测角器测得旗杆顶A点的仰角∠AFE=60°,再沿直线CB后退8米到D点,在D 点又用测角器测得旗杆顶A点的仰角∠AGE=45°;已知测角器的高度是1.6米,求旗杆AB的高度.(3的近似值取1.7,结果保留小数)解:设AE为x米,在Rt△EF中,∠AFE=60°,∴EF=3x/3在Rt△AGE中,∠AGE=45° AE=GE8+3x/3=x ∴x=12+43即x≈18.8(3的近似值取1.7,结果保留小数)∴AB=AE+EB≈20.4答:旗杆高度约为20.4米例9.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形。

2009年各地中考组合的四份题解直 角三角形

2009年各地中考组合的四份题解直 角三角形

αBCAO .解直角三角形(1)一、选择题 1. sin30°的值为()AB C.12D 32.(2009年湖州)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是() A.sin A =B .1tan 2A = C .cosB =D .tan B =3.三角形在方格纸中的位置如图所示,则tan α的值是( )A .34B .43C .35D .454.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m 5.菱形O A B C 在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,B 的坐标为()A .B .C .11), D .1) 6.(2009年宁德市)如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为()A .B .4C .6.D .27.图是某商场场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点高度h 是() A mB .4 m C . m D .8 m8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l的距离为( )米. A .25B .C .3D .25+9.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54 D .34B AlAA k CB 图4l 1l 2 l3ACB60P Q2cm10.(2009年齐齐哈尔市)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23B .32C .34D .4311.(2009年吉林省)将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是()A.2cm 12.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是()A .3B .5C .25D .22513.如图5,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2 BC .D . 14.(2009丽水市)如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .715.(2009湖南怀化)如图4,在Rt ABC △中, 90=∠ACB ,86AC BC ==,,将ABC △绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为( )A .30π B .40πC .50π D .60π16. (2009年鄂州)如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos∠DCA=54,BC =10,则AB 的值是( )A .3B .6C .8D .9 17(2009白银市)7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()A .8米 B. C .3 D .3米18.(2009年清远)如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=( )A .35B .45C .34D .43A19(2009年衢州)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是A .14B .4C D20(2009年益阳市)如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为A. αcos 5B. αcos 5C. αsin 5D. αsin 521(2009年衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE=3cm ; ②EB=1cm ; ③2A BCD 15S cm =菱形.A .3个B .2个C .1个D .022.(2009年广州市)已知圆锥的底面半径为5cm 圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( ) (A )125 (B )135 (C )1310 (D )131224.(2009年湖北十堰市)如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ). A .π5168 B .π24 .C .π584D .π12二.25.图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干?26 (2009年锦州)为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A 处观测河对岸水边有一点C ,测得C 在北偏东60°的方向上,沿河岸向东前行30米到达B 处,测得C 在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度.(结果保留根号)CαβD 乙A 甲 C 60° 38°BD E 23° AF AB27.(2009年常德市)如图5,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73≈,结果保留整数).28..(2009年内蒙古包头)(本小题满分8分)如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米. (1)求乙建筑物的高DC ;(2)求甲.乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)29.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=°,量得树干倾斜角38BAC ∠=°,大树被折断部分和坡面所成的角604m ADC AD ∠==°,. (1)求CAE ∠的度数;(2)求这棵大树折断前的高度?1.4= 1.7=2.4=)解直角三角形(2)一.填空题图5图21.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠2.九年级三班小亮同学学习了“测量物体高度”筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度 1.5AB =米.根据测量数据,CE 约为_____ 米.(精确到0.1 1.73≈)3.(2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 4..长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角.则梯子的顶端沿墙面升高了 m .5..如图,在一次数学课外活动中,测得电线杆底部B 离为4米,钢缆与地面的夹角为60º地面的距离AB 是 米.(保留根号).6..(2009年齐齐哈尔市)用直角边分别为3和4成凸四边形,所得的四边形的周长是____________.7..(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 cm 2 (结果 精确到0.1,73.13≈)8.(09湖南怀化)如图8,小明从A 地沿北偏东30方向走到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .9.小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.9.(2)(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .10.如图,一艘海轮位于灯塔P 的东北方向,距离灯塔海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号). 12(2009白银市)17.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O ,且经过点B .C ,那么线段AO = cm .(第18题图)AC B图813.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是_______cm .14.如图,在ABC △中,120AB AC A BC =∠==,°,,A ⊙BC 相切于点D ,且交AB AC 、于M N 、积是__- (保留π).15.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为___ cm (保留根号).16.在Rt ABC △中,9032C A B B C ∠===°,,,则c o sA 的值是 .17(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .18.图7,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠t an 的值为 .19如图8,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题: (1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 . (4) 若E 为BC 中点,则tan ∠CAE 的值是 20.如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现绳子刚好比旗杆长11米,若把绳子拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为________ 21.图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD=_________二解答题22.(2009辽宁朝阳)一艘小船从码头A 出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C 处,AC (B ′) BA ′ 图7 C ′B A 6cm3cm 1cm A E C (F ) B 图(1) E AGB C D 图(2)这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离1.4 1.7,结果保留整数). 23.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号) 24.(2009年郴州市)如图7,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB 的高度为1.5米,测得仰角 为30°,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN,结果保留两位小数)25.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)26.图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B30.(2009柳州)22.(本题满分6分) 如图8,热气球的探测器显示,从热气球看一栋高楼顶部C DBA北 60°30°αN B AP M 图7 B AB C D的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m , 这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)31.图,山顶建有一座铁塔,塔高80BC =米,测量人员在一个小山坡的P 处测得塔的底部B 点的仰角为45 ,塔顶C 点的仰角为60.已测得小山坡的坡角为30,坡长40MP =米.求山的高度AB (精确到1米).1.414≈1.732≈)32.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:1.732 1.414)解直角三角形(3)CP B A M1海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.3.(2009年南充)如图6,在平面直角坐标系中,已知点(42)B ,BA x ⊥轴于A .(1)求tan BOA ∠的值;(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标;(3)将O A B △平移得到O A B '''△,点A 的对应点是A ',点B 对应点B '的坐标为(22)-,,在坐标系中作出O A B '''△O '.A '的坐标.4..(2009临沂)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5.求(1)O ⊙的半径;(2)sin BAC ∠的值.5.(2009年凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上. (1)MN1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?6(2009年赤峰市)公园里有一块形如四边形ABCD 的草地,米,∠B=∠C=120°,∠A=45°.请你求出这块草地的面积C NM (第21题)C7.. (2009年泸州)如图11,在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作DF ⊥BC , 交AB 的延长线于E ,垂足为F .(1)求证:直线DE 是⊙O 的切线; (2)当AB=5,AC=8时,求cosE 的值.8.如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin 360.59cos360.81tan 360.73===°,°,°.】9.如图,在海面上生产了一股强台风,台风中心(记为点M )位于海滨城市(记作点A )的南偏西15°,距离为千米,且位于临海市(记作点B )正西方向千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市.临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?10某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)图ABC D11.(2009年安顺)如图,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E . (1) 求证:DE 是⊙O 的切线;(2) 作DG ⊥AB 交⊙O 于G ,垂足为F ,若∠A =30°,AB =8,求弦DG 的长.12.如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin 760.97°≈,cos760.24°≈,tan 76 4.01°≈)13京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB 的坡角由45°减至30°.已知原坡面的长为6cm (BD 所在地面为水平面)(1)改造后的台阶坡面会缩短多少?(2)改造后的台阶高度会降低多少?(精确到0.1m ,参考数据:2 1.413 1.73≈≈,)14如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明). 问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论.问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.15.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,27.把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知 =36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)16.如图10,AB 是⊙O 的直径,AB=10, DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E .(1)求证:AC 平分∠BAD ;(2)若sin ∠BEC=53,求DC 的长.17.(2009年娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)CAC DFE NM O E BC DH A F NM1 2 图1图2 图3ABC DF GE解直角三角形(4) 1.(09湖南邵阳)如图(十一),家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin 370.60cos370.80tan 370.75︒°≈,≈,°≈.2.(2009年湖北荆州)22.安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE 与支架BF 所在直线相交与水箱横截面⊙O 的圆心O,⊙O 的半径为0.2m,AO 与屋面AB 的夹角为32°,与铅垂线OD 的夹角为40°,BF ⊥AB 于B ,OD ⊥AD 于D ,AB =2m,求屋面AB 的坡度和支架BF 的长.(参考数据:13121tan18,tan 32,tan 4035025≈≈≈)3..(2009年鄂州)如图所示,某居民楼Ⅰ高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距I 楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?4..如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)D CB F E A 江北广场渡口 渡口 教育局西湖桥 资 江53° 图十一37°图10(1) 图10(2)5..(2009年天津市)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.6.(2009年湘西自治州)22.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:(1) 未开始收绳子的时候,图中绳子BC 的长度是多少米? (2) 收绳8秒后船向岸边移动了多少米?(结果保留根号)7.(2009白银市)22..图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73图58.在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)9..(2009年新疆乌鲁木齐市)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥于点N . (1)求证MN 是O ⊙的切线; (2)若1202BAC AB ∠==°,,求图中阴影部分的面积.10..(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?CG E DB AF第5题图图7A米 山顶11.坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子. (1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β= ,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数D 据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数). (2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? .12..(2009年黄石市)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC13.(2009年铁岭市)某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C . (1)求ADB ∠的度数;(2)求索道AB 的长.(结果保留根号)。

2009中考数学试题分类10 解直角三角形教师版(含答案)

2009中考数学试题分类10 解直角三角形教师版(含答案)

2009中考试题分类——解直角三角形1.(2009浙江5题)的数据(单位:米),则该坡道倾斜角α的正切值是A.14B.4CD2. (2009四川乐山10)如图(5),在Rt ABC△中,9068C AC BC O∠===°,,,⊙为ABC△的内切圆,点D是斜边AB的中点,则tan ODA∠=()A B C D.23. (2009安徽13).长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了_______- m.4.(2009长春20 ).如图,两条笔直的公路AB、CD相交于点O,∠AOC为36°.指挥中心M设在OA路段上,与O地的距离为18千米.一次行动中,王警官带队从O地出发,沿OC方向行进.王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话.通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73.】图(5)第13题图第15题图45°30°FEPB5.(2009广东15)如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)6.(2009天津23)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.7. (2009山西太原23)有一水库大坝的横截面是梯形ABCD ,AD BC EF ∥,为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=∠=°,°,求水深.(精确到0.11.73==)8. (2009福建23) 如图所示,一棵大树在一次强烈的地震中于C 处折断倒下,树顶落在地面B 处,测得B 处与树的底端A 相距25米,∠ABC=24°. (1)求大树折断倒下部分BC 的长度;(精确到1米) (2)问大树在折断之前高多少米?(精确到1米)(第23题)D9. (2009北京19题)如图,在梯形ABCD 中,AD ∥BC ,∠B=90,∠C=45,AD=1,BC=4,E 为AB 中点,EF ∥DC 交BC 于点F,求EF 的长.10. (2009北京20)已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过B,M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC=4,cosC=13时,求⊙O 的半径. 11.(2009天津22)如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=°(Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).12. (2009重庆市綦江县24)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.P C AO DA B CE F13. (2009四川乐山24)如图(14),某学习小组为了测量河对岸塔AB 的高度,在塔底部点B 的正对岸点C 处,测得塔顶点A 的仰角为60ACB ∠=°.(1)若河宽BC 是36米,求塔AB 的高度;(结果精确到0.1米)(2)若河宽BC 的长度不易测量,如何测量塔AB 的高度呢?小强思考了一种方法:从点C 出发,沿河岸前行a 米至点D 处,若在点D 处测出BDC ∠的度数θ,这样就可以求出塔AB 的高度了.小强的方法可行吗?若行,请用a 和θ表示塔AB 的高度,若不能,请说明理由.14. (2009河南20.)(如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)A B C aD θ图(14) 友情提示: (1)河的两岸互相平行; (2)这是一个立体图形; (3)B 、C 、D 在同一平面内,A 、B 、C 也在同一平面内; (4)AB ⊥BC ,BC ⊥CD .15.(2009包头22).如图,线段AB DC、分别表示甲、乙两建筑物的高,AB BC DC BC⊥,⊥,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高36AB=米.(1)求乙建筑物的高DC;(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).1.414 1.732)16.(2009江苏25).如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D 处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据: 1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)αβD乙CBA甲A第15题图45°30°FEP BA答案1.(2009浙江5)选:B2. 选 D3.(2009安徽13).填空:()232-4.(2009长春20)解:过点M 作MH ⊥OC 于点H. 在Rt △MOH 中,sin ∠MOH=OMMH. ∵OM=18,∠MOH=36°,∴MH=18×sin36°=18×0.59=10.62>10.即王警官在行进过程中不能实现与指挥中心用对讲机通话. 5.(2009广东15).解:过点P 作PQ ⊥AB 于Q ,则有∠APQ=30°,∠BPQ=45° 设PQ=x ,则PQ=BQ=x ,AP=2AQ=2(100-x).在Rt △APQ 中,∵tan ∠APQ=tan30º =AQ PQ ,100xx-=.∴50(3x =又∵50(363.4≈>50,∴计划修筑的这条高速公路会穿越保护区6. (2009天津23题)解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD ==,-,65BD ∴==.651550AB BD AD ∴=-=-=, 答:AB ,两个凉亭之间的距离为50m.第13题图7. (2009山西太原23)解:分别过A D 、作AM BC ⊥于M DG BC ⊥,于G .过E 作EH DG ⊥于H ,则四边形AMGD 为矩形.,135120AD BC BAD ADC ∠=∠=∥°,°. ∴456030B DCG GDC ∠=∠=∠=°,°,°. 在Rt ABM △中,sin 122AM AB B ==⨯=·∴DG =在Rt DHE △中,cos 22DH DE EDH =∠=⨯=·∴ 1.41 1.73HG DG DH =-=⨯-6≈6.7. 答:水深约为6.7米.8. (2009福建23)解:如图,在Rt △ABC 中,∠CAB=90°,∠ABC=24°,AB=25米(1)∵cos ∠ABC=BCAB∴BC=ABC AB ∠cos =024cos 25≈27(米) 即大树折断倒下部分BC 的长度约为27米. (2)∵tan ∠ABC=ABAC∴AC=AB·tan ∠ABC=25·tan24°≈11.1(米) ∴BC+A C≈27+11.1≈38(米) 即大树折断之前高约为38米.9. (2009北京19题)19.解法一:如图1,过点D 作DG BC ⊥于点G . ∵90AD BC B ∠=∥,°, ∴90A ∠=°.可得四边形ABGD 为矩形. ∴1BG AD AB DG ===,. ∵4BC =, ∴3GC =.∵9045DGC C ∠=∠=°,°, ∴45CDG ∠=°. ∴3DG GC ==. ∴3AB =.MA DBE CF 图1G又∵E 为AB 中点,∴1322BE AB ==. ∵EF DC ∥, ∴45EFB ∠=°.在BEF △中,90B ∠=°.∴sin 45BE EF ==° 解法二:如图2,延长FE 交DA 的延长线于点G . ∵AD BC EF DC ∥,∥,∴四边形GFCD 为平行四边形,1G ∠=∠. ∴GD FC =.∵23EA EB =∠=∠,, ∴GAE FBE △≌△. ∴AG BF =.∵14AD BC ==,, 设AG x =,则BF x =,41CF x GD x =-=+,. ∴14x x +=-.解得32x =. 45C ∠=°, ∴145∠=°.在BEF △中,90B ∠=°,∴cos 45BF EF ==°10. (2009北京20题)(1)证明:连结OM ,则OM OB =. ∴12∠=∠.∵BM 平分ABC ∠. ∴13∠=∠. ∴23∠=∠. ∴OM BC ∥.∴AMO AEB ∠=∠.在ABC △中,AB AC =,AE 是角平分线, ∴AE BC ⊥. ∴90AEB ∠=°.∴90AMO ∠=°. ∴OM AE ⊥. ∴AE 与O ⊙相切.(2)解:在ABC △中,AB AC =,AE 是角平分线, ∴12BE BC ABC C =∠=∠,. A DBE F 图2G3 1 2∵14cos 3BC C ==,, ∴11cos 3BE ABC =∠=,. 在ABE △中,90AEB ∠=°,∴6cos BEAB ABC==∠. 设O ⊙的半径为r ,则6AO r =-. ∵OM BC ∥,∴AOM ABE △∽△. ∴OM AOBE AB =. ∴626r r -=. 解得32r =.∴O ⊙的半径为32.11. 解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径,PA AB ∴⊥. 90BAP ∴∠=°. 30BAC ∠=°,9060CAP BAC ∴∠=-∠=°°. 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°.(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.PA ∴=12. (2009重庆市綦江县24)(1)证明:在矩形ABCD 中,90BC AD AD BC B =∠=,∥,°DAF AEB ∴∠=∠DF AE AE BC ⊥=, 90AFD B ∴∠=∠°=PCBAODABCEFAE AD=ABE DFA∴△≌△.(2)解:由(1)知ABE DFA△≌△6AB DF∴==在直角ADF△中,8 AF==2EF AE AF AD AF∴=-=-=在直角DFE△中,DE=sin10EFEDFDE∴∠===.13. (2009四川乐山24)解:(1)在ACB△中,6036AB BC ACB BC⊥∠==,°,米,tan60AB BC∴==·°1.732,36 1.73262.35262.4AB∴⨯≈≈≈(米)答:塔AB的高度约为62.4米.(2)在BCD△中,tanBC CD BDC CD a BC aθθ⊥∠==∴=,,,.在Rt ABC△中,tan60tanAB BCθ==·°(米).答:塔AB tanθ米.14. (2009河南20).过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE=12BC=0.5.在Rt△ABC和Rt△DFC中,∵tan780=AEEC,∴AE=EC×tan780≈0.5×4.70=2.35.又∵sinα=AEAC=DFDC,ABCaDθ图15. (2009包头22). 解:(1)过点A 作AE CD ⊥于点E ,根据题意,得6030DBC DAE αβ∠=∠=∠=∠=°,°, 36AE BC EC AB ===,米, ························· (2分) 设DE x =,则36DC DE EC x =+=+,在Rt AED △中,tan tan 30DEDAE AE∠==°,AE BC AE ∴=∴==,,在Rt DCB △中,tan tan 60DC DBC BC ∠===°,, 3361854x x x DC ∴=+=∴=,,(米).(6分)16.(2009江苏25).解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos 60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,. 在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ).∴观测点B 到航线l 的距离为3km .(2)在Rt AOD △中,3260tan =︒∙=BE OD .. 在Rt BOE △中,3360tan =︒∙=BE OE .DE OD OE ∴=+=在Rt CBE △中,︒=∠76CBE ,3=BE ,︒=∠∙=76tan 3tan CBE BE CE .3tan76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h .α βD 乙BA 甲E。

2009年中考数学三角形与全等三角形经典题

2009年中考数学三角形与全等三角形经典题

2009年中考数学三角形与全等三角形1、如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°.(1)求DBC ∠的度数; (2)求证:BD CE =.2、已知:如图,在四边形ABCD 中,AB=CB,AD=CD 。

求证:∠C=∠A.图3图43、如图2,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+.4、如图3,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F .求证:ABC DEF △≌△.5、如图4,在□ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F .求证:FA =AB .图2DCBA EFG DCBA第13(3)题 图C E B FDAA DCB E图5 图6 6、如图5,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.7、如图6,在等腰梯形ABCD 中,E 为底BC 的中点,连结AE 、DE .求证:ABE DCE △≌△.8、如图7,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.图8 图9 图10 9、如图8:在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O .(1)图中共有 对全等三角形; (2)写出你认为全等的一对三角形,并证明.10、如图9,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.A D OC B EC B A DD C AB EF7图12 图13图1111、如图10:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上的中线,将ADC △沿AC 边所在的直线折叠,使点D 落在点E 处,得四边形ABCE . 求证:EC AB ∥.12、如图11:在直角梯形ABCD 中,AB∥DC,AB⊥BC,∠A=60°,AB =2CD ,E 、F 分别为AB 、AD 的中点,连结EF 、EC 、BF 、CF 。

(2009-2018)十年河南中考数学试题汇编---解直角三角形专题

(2009-2018)十年河南中考数学试题汇编---解直角三角形专题

2009-20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)2011-19(9分)如图所示,中原福塔(河南广播电视塔)是世界第—高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B 的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°。

请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.( 1.7321.414.结果精确到0.1米)2012-20.(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅,如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定,小明为了测量此条幅的长度,他先在楼前D 处测得楼顶A 点的仰角为31°,再沿DB 方向前进16米到达E 处,测得点A 的仰角为45°,已知点C 到大厦的距离BC=7米,90ABD ∠=︒,请根据以上数据求条幅的长度(结果保留整数.参考数据:tan310.6,sin310.52,cos310.86︒≈︒≈︒≈)2013-19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE =68°,新坝体的高为DE ,背水坡坡角∠DCE =60°. 求工程完工后背水坡底端水平方向增加的宽度AC (结果精确到0.1米. 参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3≈1.73).图2014-19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

2009年部分省市中考压轴题精选(含详细解答过程)

2009年部分省市中考压轴题精选(含详细解答过程)

全国各省市中考专题压轴题及分析1.(2009江苏盐城)如图甲,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC = 90º,① 当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .② 当点D 在线段BC 的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC =24,BC = 3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值.解:(1)① CF 与BD 位置关系是 垂 直 、数量关系是 相 等 ; ② 当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,∠DAF=90º. ∵ ∠BAC=90º, ∴ ∠DAF=∠BAC , ∴ ∠DAB=∠FAC , 又AB=AC ,∴ △DAB ≌△FAC , ∴ CF=BD ∠ACF=∠ABD . ∵ ∠BAC=90º, AB=AC , ∴ ∠ABC=45º,图甲图乙 C 第1题图 图丙D E∴ ∠ACF=45º,∴ ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(2)画图正确当∠BCA = 45º时,CF ⊥BD (如图丁). 理由是:过点A 作AG ⊥AC 交BC 于点G , ∴ AC=AG可证:△GAD ≌△CAF ∴ ∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(3)当具备∠BCA = 45º时,过点A 作AQ ⊥BC 交BC 的延长线于点Q ,(如图戊) ∵ DE 与CF 交于点P 时, ∴ 此时点D 位于线段CQ 上, ∵∠BCA=45º,可求出AQ= CQ=4. 设CD = x ,∴ DQ = 4-x ,容易说明△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-,221(2)144x CP x x ∴=-+=--+.∵0<x ≤3 ∴当x =2时,CP 有最大值1.GABCDE FPQ AB CD EF2.(2009浙江湖州) 已知:在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数xky =(k >0)的图象与AC 边交于点E 。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年中考数学试题分类整理三角形部分

2009年中考数学试题分类整理三角形部分

(2009,泉州)如图,ABC ∆中,,50,60︒=∠︒=∠B A 点D 在的延长线上,则ACD ∠=__________度. 110(2009,龙岩)将一副三角板按图中方式叠放,则角α等于( )D A .30° B .45°C .60°D .75°(2009,龙岩)如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的长为12cm ,则△DEF 的周长是 cm. 6(2009,清远)如图5,若111A B C A B C△≌△,且11040A B ∠=∠=°,°,则1C ∠= .30°(2009,汕头))如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.ABD图4A B C C 1 A 1 B 1 图5 A D解:(1)作图见答案17题图,··········································································· 2分 (2)ABC △是等边三角形,D 是AC 的中点, BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠. ················································································································ 4分 CE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠, 2ACB E ∴∠=∠. ······················································································································ 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥, BM EM ∴=.(2009,肇庆)如图3,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是(A ) A .35° B .45° C .55° D .65°(2009,宁德)如图:点A 、D 、B 、E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)答案17题图AC BD EMA B E 图3 A FED C B解法1:图中∠CBA =∠E ……1分 证明:∵AD =BE∴AD +DB =BE +DB 即AB =DE …3分 ∵AC ∥DF ∴∠A =∠FDE …5分 又∵AC =DF∴△ABC ≌△DEF ……7分 ∴∠CBA =∠E ……8分解法2:图中∠FCB =∠E ………1分 证明:∵AC =DF ,AC ∥DF∴四边形ADFC 是平行四边形 ………3分 ∴CF ∥AD ,CF =AD ………5分 ∵AD =BE ∴CF =BE ,CF ∥BE ∴四边形BEFC 是平行四边形 ………7分 ∴∠FCB =∠E ………8分 (2009,柳州)如图1所示,图中三角形的个数共有( C )A .1个B .2个C .3 个D .4个(2009,河池)如图7,在△ABC 中,∠ACB =2B ∠. (1)根据要求作图:① 作ACB ∠的平分线交AB 于D ; ② 过D 点作DE ⊥BC ,垂足为E . (2)在(1)的基础上写出一对全等三角形 和一对相似比不为.......1.的相似三角形: △ ≌△ ;△ ∽△ . 请选择其中一对加以证明.解:(1)①正确作出角平分线CD ; ························ (2分)②正确作出DE . ·································· (4分)(2)△BDE ≌△CDE ; ·································· (5分) △ADC ∽△ACB . ·································· (6分)选择△BDE ≌△CDE 进行证明: ∵ DC 平分∠ACB ∴ ∠DCE =12∠ACB 又∵ ∠ACB =2∠B ∴ ∠B =12∠ACB ∴ ∠DCE =∠B ··························································································· (7分) ∵ DE ⊥BC ∴ ∠DEC =∠DEB =90° ·················································· (8分) 又∵ DE =DE ∴ △BDE ≌△CDE (AAS ) ············································ (9分) 或选择△ADC ∽△ACB 进行证明:CDBA图1ACB图7∵ DC 平分∠ACB ∴∠ACD =12∠ACB 又∵ ∠ACB =2∠B ∴∠B =12∠ACB ······················································· (7分) ∴ ∠ACD =∠B ····························································································· (8分)又∵ ∠A =∠A ∴ △ADC ∽△ACB(2009,河池)如图7,在△ABC 中,∠ACB =2B ∠. (1)根据要求作图:① 作ACB ∠的平分线交AB 于D ; ② 过D 点作DE ⊥BC ,垂足为E . (2)在(1)的基础上写出一对全等三角形 和一对相似比不为.......1.的相似三角形: △ ≌△ ;△ ∽△ . 请选择其中一对加以证明.解:(1)①正确作出角平分线CD ; ························ (2分)②正确作出DE . ·································· (4分)(2)△BDE ≌△CDE ; ·································· (5分) △ADC ∽△ACB . ·································· (6分)选择△BDE ≌△CDE 进行证明: ∵ DC 平分∠ACB ∴ ∠DCE =12∠ACB 又∵ ∠ACB =2∠B ∴ ∠B =12∠ACB ∴ ∠DCE =∠B ··························································································· (7分) ∵ DE ⊥BC ∴ ∠DEC =∠DEB =90° ·················································· (8分) 又∵ DE =DE ∴ △BDE ≌△CDE (AAS ) ············································ (9分) 或选择△ADC ∽△ACB 进行证明:∵ DC 平分∠ACB ∴∠ACD =12∠ACB 又∵ ∠ACB =2∠B ∴∠B =12∠ACB ······················································· (7分) ∴ ∠ACD =∠B ····························································································· (8分)又∵ ∠A =∠A ∴ △ADC ∽△ACBACEBDACB图7 ACEBD(2009,桂林)如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1 得∠A 1 ,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2 , 得∠A 2 , ……,∠A 2008BC 的平分线与∠A 2008CD 的平分线交于点A 2009 ,得∠A 2009 ,则∠A 2009= 。

三角形全等各地考题

三角形全等各地考题

三角形的边角与全等三角形一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 3、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对ADO4、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18005、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°6、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS7、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS8、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

09年中考数学专题训练——解直角三角形提高检测

09年中考数学专题训练——解直角三角形提高检测

3 1.已知:S^BC =50;解:专题训练一一解直角三角形(提高检测)选择题(本题15分,每小题3 分):1 •下列相等、不等关系中,成立的是 ......... (A) sin 60°> cos 30°, tan 30°v cot 60°(B)sin 60°> cos 30°, tan 30°> cot 60 ° (C) sin 60°- cos 30°= tan 30°- cot 60°= 022(D)sin 60°+ cos 30°= 1 sin30 - tan45 cot 30 -2 cot 453 .当锐角:-W 45°时,角〉的正切和余切值的大小关系应是 ........................ ()(A ) tan : W cot :(B ) tan : >cot :(C ) tan : = cot :(D )不确定4 .在直角三角形中,各边的长度都扩大3倍,则锐角 A 的四个三角形函数的值()(A )也扩大3倍(B )缩小为原来的1( C )都不变35 .在三角形 ABC 中,C 为直角, 2 sinA = —,贝U tanB 3的值为…―、35/c 、亦(A )-(B )(C)-(D)——5 352二填空题(本题20分,每小题4分):51.已知tan 〉= ,:-是锐角,则 sin 〉= ;122 .等于1的三角函数有 ____________________________ ; 3.tan 2 40 cot 2 40 -2 = _________________ ;224. cos (50° + :)+ cos (40°—:)— tan (30°—: ) tan (60°+ : ) = ______________________35. atan 45°+- a btan 60°+ 3ab cot 60°= _________________解下列直角三角形(本题 32分,第小题8 分): 在直角三角形ABC 中,/ C = 90° :△2.(A )- 1-32(B )(C )3 2、3 -12(D ) 1+ 兰(D )有的扩大,有的缩小4.已知:B = 30°, CD 为AB 边上的高,且CD = 4.解:四(本题16分)在四边形 ABCD 中,AC 恰好平分/代 AB = 21, AD = 9, BC = CD = 10,试求AC 的长. 解:五(本题17分)一艘船向正东方先航行,上午 10点在灯塔的西南方向 k 海里处,到下午2点时航行到 灯塔的东偏南60 °的方向,画出船的航行方位图,并求出船的航行速度. 解:N n2. 已知:/ B = 45°, a + b = 10;解:3 .已知:c 边上的高h = 4, b = 5 ;解:22参考答案选择题答案:l.C;2.D;3.A;4.C;5.D.5填空题答案:1. 一 ;2. sin 90°, cos 0°, tan 45°, cot 451323. tan 50° -tan 40° ;4. 0;5. a (a + b ).解下列直角三角形: 在直角三角形 ABC 中,/ C = 90°:A10 50 1•已知:b = — V 3, S ^BC = — V 3 ;3 於 3 1 1 10 50解:S^ABC = ab a 3 ■ ■ 3 , ••• a = 10.2 23 310 10「33c = 2b = 2x 10阴 =■20、,'3 .3 32 .已知:/ B = 45°, a + b = 10;解:依题意,/ A =/ B = 45°, 所以a = b = 5;a5 J 21—由 sinA = sin 45°=得 •,• c = 5、..2 .cc 23 .已知:c 边上的高h = 4, b = 5 ;另一方面,亠 AC b 一V3 8^3 有EC 二tan30 ,• b = 8 -BC 833tanA=—b / A = 60 ° ,/ B = 30°,解:依题意,有h =si n A 二4b 5B ~ 36 52';另一方面, 有 a = b tan A = 5 x―弘 A_ = 5X.1 - sin 2 A5 1一(;)220 34.已知:解:如图, 20 a 3 4 sinA =cc520 5 25 • c =343B = 30°, CD 为AB 边上的高,且CD = 4.CDsin 30CD = 4,在 Rt △ CDB 中,有 BC = a = =8 , A = 60°8、3b c= 316、3sin 30 1 322四、在四边形 ABCD 中,AC 恰好平分/ A , AB = 21, AD = 9, BC = CD = 10,试求AC 的长.略解:利用角平分线的性质,构造直角三角形:作 CE 丄AB 于E , CF 丄AD 于F ,易证CEB ^A CFD ,则有 EB = FD ;又可证△ CEA ^^ CFA ,于是由 AE = AF 可得 21 - EB =9 + FD , - EB = FD = 6; 在 Rt △ AFC 中,有 AC =、AF 2 DF 2 二:152 ( 102 - 62 )2=225 64 = $289 =17.五(本题17分)一艘船向正东方先航行,上午 10点在灯塔的西南方向 k 海里处,到下午2点时航行到灯塔的东偏南60 °的方向,画出船的航行方位图,并求出船的航行速度.P 点,船丛A 点向东航行,12点到达C 点, ,/ BPC = 30 °;AB = PB = AP cos 45 在厶 PBC 中,又有 BC = PB tan 30° =所以 AC =^k 注 6k2 6 6可知船的航行速度为v =3.23、.2 24解:如图,依题意,灯塔位于且有PB 丄AC , A = 45工已在厶ABP 中,有 是,。

2009年中考动态几何题答案和评分标准[1]

2009年中考动态几何题答案和评分标准[1]

一、动态几何1。

如图,在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t 秒. (1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?2. 已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.(3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标.3。

如图,在梯形ABCD中,3545AD BC AD DCAB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.4。

已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S6。

2009年部分省市中考三角形

2009年部分省市中考三角形

2009年中考数学题分类 三角形2009年温州如图,△ABC 中,AB=AC=6,BC=8,AE 平分么BAC 交BC 于点E ,点D 为AB 的中点,连结DE ,则△BDE 的周长是( ) A .7+5 B .10 C .4+25 D .12如图,等边ABC △的边长为3,P 为BC 上一点, 且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .34如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°, AB =1,则B′点的坐标为 A.3)22 B.3(22 C.1(22 D.1)222009年包头如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).2009年包头如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?ADCPB(第10题图)60°A EC (F )D B图(1)EA GB C (F )D图(2)2009年温州一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿 底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张 C.第6张 D .第7张2009年温州如图,将△OAB 绕点0按逆时针方面旋转至△0′A ′B ′, 使点B 恰好落在边A ′B ′上.已知AB=4cm ,BB′=lcm , 则A ′B 长是 cm2009年河北如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .2009年河北如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.2009年陕西省如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .图8P图16ABCDNM2009年浙江省嘉兴如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( ▲ )A .a k 2B .a k 3C .2k aD .3k a浙江省2009年初中毕业生学业考试(湖州市)如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( )A .1∶3 B .2∶3C2D 32009年潍坊已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的长的最大值是浙江省2009丽水市如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .ADC EB (第10题)(第11题)D CEFA B(第16题)…① ② ③ ④浙江省2009丽水市如图,已知在等腰△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC 交AB 于点D .(1)尺规作图:过A ,D ,C 三点作⊙O (只要求作出图形,保留痕迹,不要求写作法); (2)求证:BC 是过A ,D ,C 三点的圆的切线;(3)若过A ,D ,C 三点的圆的半径为3,则线段BC 上是否存在一点P ,使得以P ,D ,B 为顶点的三角形与△BCO 相似.若存在,求出DP 的长;若不存在,请说明理由.黄石市2009年图8,AD//BC ,AE=FC ,求证:BE//DF.2009年潍坊已知ABC △,延长BC 到D ,使CD B C =.取AB 的中点F ,连结FD 交AC 于点E . (1)求AEAC的值; (2)若AB a FB EC ==,,求AC 的长.ABF E CD(第23题)ABCD仙桃市天门市潜江市江汉油田2009)如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =21BD ,EN =21CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是________________;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)若AB =k ·AC(k >1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明.A B C D E (第24题图①) (第24题图②) B CD AEA B C DE (第24题图③) N M(第24题图④)哈尔滨市2009已知:△ABC 的高AD 所在直线与高BE 所在直线相交于点F .(1)如图l ,若△ABC 为锐角三角形,且∠ABC =45°,过点F 作FG ∥BC ,交直线AB 于点G ,求证:FG +DC =AD ;(2)如图 2,若∠ABC =135°,过点F 作FG ∥BC ,交直线AB 于点G ,则FG 、DC 、AD 之间满足的数量关系是 ;(3)在(2)的条件下,若AG =25,DC =3,将一个45°角的顶点与点B 重合并绕点B 旋转,这个角的两边分别交线段FG 于M 、N 两点(如图3),连接CF ,线段CF 分别与线段BM 、线段BN 相交于P 、Q 两点,若NG =23,求线段PQ 的长.浙江省2009年初中毕业生学业考试(湖州市)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示)浙江省2009年初中毕业生学业考试(湖州市)如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,. (1)求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.2009年浙江嘉兴如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 ▲ .BCAE 1 E 2 E 3D 4D 1D 2D 3(第18题)(第20题)DC B E AF (第15题)CBS 1S 22009年上海市已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.广东省中山市2009如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使C E C D =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.(2009山东省日照)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .E(第16题图)AB ′CFA C D 第13题图AD P C B Q 图8 D A PC B(Q ) 图9 图10C AD P B Q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

αBCAO .解直角三角形(1)一、选择题 1. sin30°的值为()AB C.12D 32.(2009年湖州)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是() A.sin A =B .1tan 2A = C .cosB =D .tan B =3.三角形在方格纸中的位置如图所示,则tan α的值是( )A .34B .43C .35D .454.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m 5.菱形O A B C 在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,B 的坐标为()A .B .C .11), D .1) 6.(2009年宁德市)如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为()A .B .4C .6.D .27.图是某商场场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点高度h 是() A mB .4 m C . m D .8 m8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l的距离为( )米. A .25B .C .3D .25+9.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54 D .34B AlAA k CB 图4l 1l 2 l3ACB60P Q2cm10.(2009年齐齐哈尔市)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23B .32C .34D .4311.(2009年吉林省)将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是()A.2cm 12.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是()A .3B .5C .25D .22513.如图5,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2 BC .D . 14.(2009丽水市)如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .715.(2009湖南怀化)如图4,在Rt ABC △中, 90=∠ACB ,86AC BC ==,,将ABC △绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为( )A .30π B .40πC .50π D .60π16. (2009年鄂州)如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos∠DCA=54,BC =10,则AB 的值是( )A .3B .6C .8D .9 17(2009白银市)7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()A .8米 B. C .3 D .3米18.(2009年清远)如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=( )A .35B .45C .34D .43A19(2009年衢州)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是A .14B .4C D20(2009年益阳市)如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为A. αcos 5B. αcos 5C. αsin 5D. αsin 521(2009年衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE=3cm ; ②EB=1cm ; ③2A BCD 15S cm =菱形.A .3个B .2个C .1个D .022.(2009年广州市)已知圆锥的底面半径为5cm 圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( ) (A )125 (B )135 (C )1310 (D )131224.(2009年湖北十堰市)如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ). A .π5168 B .π24 .C .π584D .π12二.25.图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干?26 (2009年锦州)为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A 处观测河对岸水边有一点C ,测得C 在北偏东60°的方向上,沿河岸向东前行30米到达B 处,测得C 在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度.(结果保留根号)CαβD 乙A 甲 C 60° 38°BD E 23° AF AB27.(2009年常德市)如图5,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73≈,结果保留整数).28..(2009年内蒙古包头)(本小题满分8分)如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米. (1)求乙建筑物的高DC ;(2)求甲.乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)29.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=°,量得树干倾斜角38BAC ∠=°,大树被折断部分和坡面所成的角604m ADC AD ∠==°,. (1)求CAE ∠的度数;(2)求这棵大树折断前的高度?1.4= 1.7=2.4=)解直角三角形(2)一.填空题图5图21.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠2.九年级三班小亮同学学习了“测量物体高度”筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度 1.5AB =米.根据测量数据,CE 约为_____ 米.(精确到0.1 1.73≈)3.(2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 4..长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角.则梯子的顶端沿墙面升高了 m .5..如图,在一次数学课外活动中,测得电线杆底部B 离为4米,钢缆与地面的夹角为60º地面的距离AB 是 米.(保留根号).6..(2009年齐齐哈尔市)用直角边分别为3和4成凸四边形,所得的四边形的周长是____________.7..(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 cm 2 (结果 精确到0.1,73.13≈)8.(09湖南怀化)如图8,小明从A 地沿北偏东30方向走到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .9.小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.9.(2)(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .10.如图,一艘海轮位于灯塔P 的东北方向,距离灯塔海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号). 12(2009白银市)17.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O ,且经过点B .C ,那么线段AO = cm .(第18题图)AC B图813.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是_______cm .14.如图,在ABC △中,120AB AC A BC =∠==,°,,A ⊙BC 相切于点D ,且交AB AC 、于M N 、积是__- (保留π).15.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为___ cm (保留根号).16.在Rt ABC △中,9032C A B B C ∠===°,,,则c o sA 的值是 .17(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .18.图7,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠t an 的值为 .19如图8,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题: (1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 . (4) 若E 为BC 中点,则tan ∠CAE 的值是 20.如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现绳子刚好比旗杆长11米,若把绳子拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为________ 21.图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD=_________二解答题22.(2009辽宁朝阳)一艘小船从码头A 出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C 处,AC (B ′) BA ′ 图7 C ′B A 6cm3cm 1cm A E C (F ) B 图(1) E AGB C D 图(2)这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离1.4 1.7,结果保留整数). 23.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号) 24.(2009年郴州市)如图7,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB 的高度为1.5米,测得仰角 为30°,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN,结果保留两位小数)25.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)26.图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B30.(2009柳州)22.(本题满分6分) 如图8,热气球的探测器显示,从热气球看一栋高楼顶部C DBA北 60°30°αN B AP M 图7 B AB C D的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m , 这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)31.图,山顶建有一座铁塔,塔高80BC =米,测量人员在一个小山坡的P 处测得塔的底部B 点的仰角为45 ,塔顶C 点的仰角为60.已测得小山坡的坡角为30,坡长40MP =米.求山的高度AB (精确到1米).1.414≈1.732≈)32.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:1.732 1.414)解直角三角形(3)CP B A M1海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.3.(2009年南充)如图6,在平面直角坐标系中,已知点(42)B ,BA x ⊥轴于A .(1)求tan BOA ∠的值;(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标;(3)将O A B △平移得到O A B '''△,点A 的对应点是A ',点B 对应点B '的坐标为(22)-,,在坐标系中作出O A B '''△O '.A '的坐标.4..(2009临沂)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5.求(1)O ⊙的半径;(2)sin BAC ∠的值.5.(2009年凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上. (1)MN1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?6(2009年赤峰市)公园里有一块形如四边形ABCD 的草地,米,∠B=∠C=120°,∠A=45°.请你求出这块草地的面积C NM (第21题)C7.. (2009年泸州)如图11,在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作DF ⊥BC , 交AB 的延长线于E ,垂足为F .(1)求证:直线DE 是⊙O 的切线; (2)当AB=5,AC=8时,求cosE 的值.8.如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin 360.59cos360.81tan 360.73===°,°,°.】9.如图,在海面上生产了一股强台风,台风中心(记为点M )位于海滨城市(记作点A )的南偏西15°,距离为千米,且位于临海市(记作点B )正西方向千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市.临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?10某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)图ABC D11.(2009年安顺)如图,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E . (1) 求证:DE 是⊙O 的切线;(2) 作DG ⊥AB 交⊙O 于G ,垂足为F ,若∠A =30°,AB =8,求弦DG 的长.12.如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin 760.97°≈,cos760.24°≈,tan 76 4.01°≈)13京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB 的坡角由45°减至30°.已知原坡面的长为6cm (BD 所在地面为水平面)(1)改造后的台阶坡面会缩短多少?(2)改造后的台阶高度会降低多少?(精确到0.1m ,参考数据:2 1.413 1.73≈≈,)14如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明). 问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论.问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.15.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,27.把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知 =36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)16.如图10,AB 是⊙O 的直径,AB=10, DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E .(1)求证:AC 平分∠BAD ;(2)若sin ∠BEC=53,求DC 的长.17.(2009年娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)CAC DFE NM O E BC DH A F NM1 2 图1图2 图3ABC DF GE解直角三角形(4) 1.(09湖南邵阳)如图(十一),家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin 370.60cos370.80tan 370.75︒°≈,≈,°≈.2.(2009年湖北荆州)22.安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE 与支架BF 所在直线相交与水箱横截面⊙O 的圆心O,⊙O 的半径为0.2m,AO 与屋面AB 的夹角为32°,与铅垂线OD 的夹角为40°,BF ⊥AB 于B ,OD ⊥AD 于D ,AB =2m,求屋面AB 的坡度和支架BF 的长.(参考数据:13121tan18,tan 32,tan 4035025≈≈≈)3..(2009年鄂州)如图所示,某居民楼Ⅰ高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距I 楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?4..如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)D CB F E A 江北广场渡口 渡口 教育局西湖桥 资 江53° 图十一37°图10(1) 图10(2)5..(2009年天津市)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.6.(2009年湘西自治州)22.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:(1) 未开始收绳子的时候,图中绳子BC 的长度是多少米? (2) 收绳8秒后船向岸边移动了多少米?(结果保留根号)7.(2009白银市)22..图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73图58.在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)9..(2009年新疆乌鲁木齐市)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥于点N . (1)求证MN 是O ⊙的切线; (2)若1202BAC AB ∠==°,,求图中阴影部分的面积.10..(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?CG E DB AF第5题图图7A米 山顶11.坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子. (1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β= ,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数D 据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数). (2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? .12..(2009年黄石市)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC13.(2009年铁岭市)某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C . (1)求ADB ∠的度数;(2)求索道AB 的长.(结果保留根号)。

相关文档
最新文档