2011年7月浙江自考真题概率论与数理统计

合集下载

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专) 16课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分)1.函数f(x)=arcsin的定义域是( )A.(-1,1) B.[1,5]C.(-∞,0) D.(2,4)2.函数y=( )A.奇函数 B.偶函数C.周期函数 D.非奇非偶函数3.函数f(x)=|sinx|的周期是( )A.2π B.C.π D.( )A.∞ B.不存在C.0 D.5.f(x)在点x0可导是f(x)在点x0可微的( )A.充分条件 B.必要条件C.充分必要条件 D.无关条件6.曲线y=e x上点(0,1)处的切线方程为( )A.y-1=e x·x B.y=x-1C.y-1=-x D.y=x+17.设y=arcsinx2,则dy=( )A. B.C. D.8.设,则( )A.t B.C.2t D.29.函数f(x)=x2+1的单调减区间是( )A.(-∞,0] B.(0,+∞)C.(-∞,+∞) D.(-1,+∞)10.函数y=x-ln(1+x2)的极值是( )A.0 B.1-ln2C.-1-ln2 D.不存在11.曲线y=1+( )A.只有一条水平渐近线 B.只有一条垂直渐近线C.有一条水平渐近线及一条垂直渐近线 D.无渐近线12.曲线y=的拐点有( )A.0个 B.2个C.3个 D.4个13.某运动物体的速度函数为υ(t)=sec2t·tgt,则路程与时间的关系为( )A.- B.C. D.14.已知f(x)=( )A.- B.C. D.15.广义积分( )A.收敛于-2 B.收敛于2C.发散 D.的敛散性不能确定16.设z=xtg(x+y),则dz|(π,0)=( )A.dx+dy B.π(dx+dy)C.π(dx-dy) D.-π(dx+dy)17.直线( )A.90° B.60°C.45° D.30°18.若区域(σ)为:(x-1)2+y2≤1,则二重积分化为极坐标下的累次积分应为( )A. B.C. D.19.与点P(3,2,1)关于xoz坐标平面对称的点的坐标为( )A.(3,-2,1) B.(-3,2,1)C.(3,2,-1) D.(-3,-2,1)20.微分方程xy″+2y′+x2y=0是( )A.一阶线性微分方程 B.三阶线性微分方程C.二阶线性微分方程 D.三阶非线性微分方程(二)(每小题2分,共20分)21.( )A.e B.1C. D.-e22.( )A.sina B.-sinaC.不存在 D.∞23.设f(x)=(x-1)(x-2)2(x-3)3,则f′(1)=( )A.8 B.6C.0 D.-824.一物体以速度υ=3t2+2t(米/秒)作直线运动,则它在t=0到t=3秒一段时间内速度的平均值为( )A.12米/秒 B.15.5米/秒C.24米/秒 D.36米/秒25.已知( )A.-2 B.2C. D.426.曲线y2=x,y=x,y=所围图形的面积是( )A. B.C. D.27.曲面z=x2+y2与平面y+z=1的交线在xoy坐标平面上的投影曲线为( )A.椭圆 B.抛物线C.双曲线 D.圆28.设区域(σ)为:0≤x≤1,-1≤y≤1,则( )A.-1 B.0C.1 D.229.用待定系数法求微分方程y″+2y′-8y=2x2+3的特解时应设特解( )A.=x(ax2+bx+c) B.=ax2+cC.=ax2+bx+c D.=x(bx+c)30.级数的收敛区间为( )A.(-∞,0) B.(-1,1)C.(-∞,+∞) D.(0,+∞)二、计算题(本大题共7小题,每小题6分,共42分)31.求.32.设y=ln(1+x2),求y″(0).33.求34.判别级数的敛散性.35.计算36.求方程4y″+4y′+y=0满足初始条件y(0)=2,y′(0)=0的特解.37.设u=y(x2-y2),其中y≠0,(t)可导,求.三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求f(x)=x3-x在[0,2]上的最大值与最小值.39.求由圆柱面x2+y2=1,平面y+z=2,坐标平面z=0所围立体在第一卦限(x≥0,y≥0,z≥0)部分的体积V.40.证明:当x>0时,1+。

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

第 1 页2011年7月浙江自考真题高等数学(工专) 1课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列各对函数中,互为反函数的是( )A .y=sinx,y=cosxB .y=e x ,y=e -xC .y=tanx,y=cotxD .y=2x,y=2x 2.当x →+∞时,下列变量中为无穷大量的是( )A .x1 B .ln(1+x) C .sinxD .e -x 3.级数 ++++43225252525( ) A .收敛 B .的敛散性不能确定C .发散D .的和为+∞ 4.设f(x)可微,则d(e f(x))=( )A .f’(x)dxB .e f(x)dxC .f’(x)e f(x) dxD .f’(x)de f(x)5.矩阵A=⎥⎦⎤⎢⎣⎡d c b a 为非奇异矩阵的充要条件是( ) A .ad-bc=0B .ad-bc ≠0C .ab-cd=0D .ab-cd ≠0二、填空题(本大题共10小题,每小题3分,共30分)6.曲线y=e x 在点(0,1)处的切线方程为________.7.设函数f(x)=⎩⎨⎧>≤-0x ,x 0x ,1x 2,则极限)x (f lim 0x →________. 8.设y=x(x+1)(x+2),则0x dx dy ==________. 9.不定积分⎰=dx x1cos x 12________.第 2 页 10.dx d ⎰x20)dt 2t sin (=________. 11.设由参数方程x=dxdy ),x (y y t 1y ,2t 2则确定的函数为=-==________. 12.曲线y=1+2)3x (x 36+的铅直渐近线为________. 13.无穷限反常积分⎰+∞-0x 5dx e =________. 14.矩阵3100010011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=________. 15.行列式631321111=________.三、计算题(本大题共8小题,每小题6分,共48分)16.求极限5x 4x 1lim5x ---→. 17.设y='y ,)3x (x 1x 3求--. 18.求由方程y=1+xe y 所确定的隐函数y=y(x)的导数dx dy . 19.确定函数f(x)=e x -x-1的单调区间.20.求不定积分⎰-dx )x cot x (csc x csc .21.求微分方程(1+y)dx-(1-x)dy=0的通解.22.计算定积分⎰--+1122dx )x 1x (.23.λ为何值时,线性方程组⎪⎩⎪⎨⎧=++λ=+λ+=λ++1x x x 1x x x 1x x x 321321321有唯一解?四、综合题(本大题共2小题,每小题6分,共12分)24.从一块边长为a 的正方形铁皮的四个角各截去一个大小相等的方块,做成一个无盖的盒子,问截去的方块边长为多少时,所做成的盒子容积最大?25.求由曲线y=x 3与直线x=2,y=0所围平面图形绕x 轴旋转一周而成的旋转体的体积.。

自考概率论与数理统计(二)11年7月真题答案

自考概率论与数理统计(二)11年7月真题答案

浙02197# 概率论与数理统计(二)试卷 第1页(共11页)全国2011年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3} D .{1,2,3,4}【答案】B【解析】A -B=A-AB={2,4,6,8}-{2,4}={6,8}2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15 B .14C .13D .12【答案】C【解析】10件产品任取4件,共有210123478910410=⨯⨯⨯⨯⨯⨯=C 种取法没有取出次品共有701234567848=⨯⨯⨯⨯⨯⨯=C 种取法故没有取出次品的概率为3121070=3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4 D .0.5【答案】D【解析】事件A ,B 相互独立,则P (AB )=P (A )P (B )7.0)(4.0)(4.0)()()()(=-+=-+=B P B P AB P B P A P B A P ,解得()P B =0.5浙02197# 概率论与数理统计(二)试卷 第2页(共11页)4.设某试验成功的概率为p ,独立地做5次该试验,成功3次的概率为( ) A .35C B .3325(1)C p p -C .335C pD .32(1)p p -【答案】B【解析】本题为5次贝努力实验,成功三次的概率为3325(1)C p p -5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他【答案】A【解析】X 服从[0,1]上的均匀分布,Y =2X -1也服从均匀分布。

历年最全自学考试概率论与数理统计真题 (二)

历年最全自学考试概率论与数理统计真题 (二)

2012年4月全国高等教育自学考试概率论与数理统计(二)课程代码02197试题来自省自考委 答案由绥化市馨蕾園的王馨磊导师提供()()()()()()()()()()()(){}{}{}{}{}()()()()(){}{}()()()()()()()()()[]()()()()()()()()()()()()nx D nx C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92.32.92.32....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04.44.14.2~.8.21..21..75,1.5,0.1,1.10.~12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43.06331.3....2.....12122-----=>==+++-≤=≤⎩⎨⎧≤>+=⎩⎨⎧≤>-=⎩⎨⎧≤>-=⎩⎨⎧≤>=≤<≤<≤<≤<≤<⎪⎩⎪⎨⎧<<=-++---=-⊂----中服从正态分布的是计量为样本均值,则下列统的样本,为来自总体,,,,,设总体等于,则,令存在,且的设随机变量和和和和的值为和,则参数,,且,设的概率密度为,,则、分别为相互独立,其概率密度、设随机变量,准正态分布,则相互独立,且都服从标、设随机变量等于,则,,设,,,,,,,,的分布函数为的指数分布,则服从参数为设随机变量等于,则其他,,,的概率密度为设随机变量是随机变量,则、设等于,则是随机变量,且、设ρσλλλλλλλ选择题答案:1.C 2.B 3.B 4.C 5.A 6D 7D 8.B 9.A 10.C()()()()()()()._______.232.14___8.04.05.0.13.______3.05.0.12._________242.11一个黑球的概率为取到,每次取一个,则至少次取个白球,有放回地连续个黑球,设袋中有,则,,,且、设随机变量,则,相互独立,且、设随机变量是的书都是科技书的概率本,则选中本文艺书中任选本科技书,同学从在一次读书活动中,某=======A B P B A P B P A P Y X A P B A P A P Y X15.设则()._________12=≥X P()()()()()()._______.17._____11220.16===≤≤≤≤Y X P Y X f y x f Y X y o x D D Y X ,则、设二维离散型随机变量,,则,的概率密度为、设,,:上服从均匀分布,其中,在、设二维随机变量()()()(){}()().__0.20.______3,3.19.__________1100011.18=-==-=≤≤⎩⎨⎧>>--=--b a X E b a X X E X Y X P y x e e xy F Y X y x ,则为常数,且,的分布律为,设离散型随机变量则的泊松分布服从参数等于设随机变量,则其他,,,的分布函数为、设二维随机变量()(){}()()()().___~10~.23.______32~.22._____211~.212232221321=++=≤≥-n n x x x X x x x N X E B X X E X P N X ,则且的一个样本,为来自总体,,,,设总体,设随机变量估计概率,应用切比雪夫不等式,设随机变量χ()._____01.0.25._____3231ˆ2121ˆ1~.240021221121的概率为接受成立,,则在原假设类错误的概率为在假设检验中,犯第一是,则方差较小的估计量,,估计量为来自总体的一个样本,,,设总体H H x x x x x x N X +=+=μμμ ()99.0.25ˆ.243.236.0.2241.212.0.200.19-1.184.0.170.168.0.1564.0.1464.0.134.0.12151.11121μ-e 填空题答案:2012年4月全国自考概率论与数理统计(二)大题及答案参考答案由绥化市馨蕾園的王馨磊导师提供()()()()()()的分布律为,设二维随机变量;的分布函数;常数求,其他,,,的概率密度设随机变量Y X x P X F X c x cx x f X .27.210.3.2.1010.262⎭⎬⎫⎩⎨⎧<<⎩⎨⎧≤≤=()()()()()()()()()()()()()..2.15.0,5.0,9.022.30 (1)0101.29.21.28.2.12121p p B C B A B C C B A x x x x x x f X D D E E Y X Y X Y X Y X X Y X n 概率抽检后设备不需调试的;类产品的概率抽到两件产品都是影响。

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专) 12一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题2分,共40分)1. 函数f(x)=2x1x +在定义域内是( ) A.无界函数 B.有界函数C.上无界下有界D.上有界下无界2.设y=sin(7x+2),则=dxdy ( ) A.7sin(7x+2) B.7cos(7x+2)C.cos(7x+2)D.sin(7x+2)3.曲线y=3xx sin -的水平渐近线方程为( ) A.x=0 B.y=-3C.y=0D.y=-24.曲线y=ctgx 在点(1,4π)处的切线的斜率是( ) A.21- B.-2 C.22 D.-csc 21 5.在区间[-1,1]上满足罗尔定理条件的函数是( ) A.2x-1B.x 1C.x 2D.x 2/36.设f(x)=⎪⎩⎪⎨⎧<>0x x 1sin x 0x x 1sin ,则)x (f lim 0x →不存在的原因是( ) A.f(0)无定义B. )x (f lim 0x -→不存在C. )x (f lim 0x +→不存在D. )x (f lim 0x +→和)x (f lim 0x -→都存在但不等 7.⎰=b xdt )t (f dx d ( ) A.f(b)B.-f(x)C.f(b)-f(x)D.08.⎰=+dx )1x (x 10( ) A.C )1x (11111++ B.C )1x (111)1x (1211112++-+C.C )1x (111x 21112++⋅ D. C )1x (111)1x (1211112++++ 9.⎰-=+222dx )x 1(1( ) A.34- B.32- C.34D.不存在10.由曲线y=e x 和y=e -x 及直线x=1所围平面图形的面积等于( )A.e+e -1-2B.e+e -1C.2-e-e -1D.e-e -1-211.设=⨯-=-=→→→→b a },2,1,3{b },5,3,2{a 则( )A.{1,-19,-11}B.{0,19,11}C.{1,19,11}D.-712.过点(3,0,0)且平行于y=1的平面方程是( )A.x=0B.y=0C.z=0D.x=313.设f(x,y 0)和f(x 0,y)均在点P 0(x 0,y 0)处连续,则f(x,y)在点P 0处( )A.连续B.不连续C.没有意义D.可能连续,可能不连续14.设Z=x y e ,则=∂∂y z( )A. x y eB.y x x y eC.y x x y e lnyD.xy x-1x y e15.设曲线C :是从A (1,0)到B (-1,2)的直线段,则曲线积分=+⎰c ds )y x (() A.22 B.0 C.2 D.216.设积分区域B:x 2+y 22R ≤,则⎰⎰=σ+B22d )y x (x ( )A.2R πB.0C.22R πD.117.在下列级数中,发散的是( ) A.∑∞=1n n 32B.∑∞=--1n 1n n )1( C.∑∞=+1n 421n 3n D.∑∞=+1n 3)1n (n 118.级数∑∞=1n n )x (lg 的收敛区间是( )A.(-1,1)B.(-10,10)C.(101,101-) D.(10,101) 19.微分方程0y 4y =-''的通解是( ) A.y=C 1e 2x +C 2e -2x B.y=C 1+C 2e 4xC.y=C 1cos2x+C 2sin2xD.y=Ce 2x +e -2x20.微分方程0y ln y y x =-'的满足y(1)=e 的特解为( )A.y=exB.y=e xC.y=xe 2x-1D.y=elnx二、填空题(每小题2分,共20分)21.设f(x)=⎩⎨⎧>-≤+0x 1e 0x x sin a x 在x=0处连续,则常数a=_____________. 22.曲线y=lnx 在点(1,0)处的法线斜率为_____________.23.⎰=.______________xdx sec e 2tgx 2 24.⎰-=++113.______________________dx )1x cos x x 3(25.设⎩⎨⎧==-t t ey te x 则=dx dy ______________. 26.设f(x,y)=ln(x 2+y 2),g(x,y)=e (x+y),则f[x 2,g(x,y)]=__________.27.已知曲面z=4-x 2-y 2上点P 0处的切平面平行于平面2x+2y+z-1=0,则P 0点的坐标应为_____.28.设B :22224y x π≤+≤π,则⎰⎰=B._____________dxdy29.设常数项级数∑∞==1n n ,2002a则.__________a lim n n =∞→ 30.微分方程.__________0y 6y 5y 的通解是=+'-''三、计算题(每小题5分,共25分) 31.)x1)x 1ln(1(lim 0x -+→ 32.⎰xarctgxdx 33.求过点(2,0,-1)且与直线⎩⎨⎧=-+-=++-06z y 3x 209z 3y 2x 4 平行的直线方程. 34.计算二重积分⎰⎰σB 2d xy,其中B 是由y=x 2,y=x 所围成的区域.35.求幂级数∑∞=1n n nx的收敛区间(考虑端点).四、应用和证明题(每小题5分,共15分)36.证明:当x>0时,e x >1+x.37.用薄钢板做一体积为V 的有盖圆柱形桶。

2011年7月浙江自考真题高等数学(工本)

2011年7月浙江自考真题高等数学(工本)

第一单元词语解释荒.山野岭搭窝筑.巢子曰.云.成千盈.百座无隙.地聚.精会.神无处.浑.身解.数停云小憩.急走..笔墨纸砚.润泽透..明枝繁.叶茂.径.游园不值.应怜..屐齿纯净疏.淡小扣....苔篱落..柴扉..印苍第二单元词语解释面面相觑.一览.无余神采.奕奕处.之泰然习.以为常高瞻.远瞩卓.有成效濒临..灭绝.免遭厄.运家常便.饭孪.生兄弟寒风凛冽.肃然伫.立直指苍穹.第三单元词语解释前所未.有不分昼.夜不屈不挠.如饥似.渴树木葱茏..藤萝摇曳.饱.经风霜静影沉璧.委.婉连绵.升腾跌宕.势不可当.享.有盛誉..规模宏.大扶老携.幼惊叹不已.名扬.海外镇定自若.波峰.浪谷.化险为夷.严阵以待.振.臂一呼络绎于途.惊涛骇.浪水土不服.讲和.同好观风.问俗.奇.珍异.宝心悦诚.服夜以继.日专心致志....悲愤交加了.此残.生飞来横.祸波涛.滚滚浩.如烟海悲愤交加..第四单元举.世无双南征.北战所向披靡.殊.死拼搏昂首..挺胸惟妙惟肖.神态自若.肩负.重任久经沙场..张弓搭.箭跃跃欲.试神态各异.若.有所思绝.无仅有巍.然屹立举.世闻名波光粼粼..金碧.辉煌山清水秀.镂.花梁柱星罗.棋布.摩.天大厦.第五单元天资聪颖.豁.然开朗高深莫.测莫名....其妙平淡无奇.一本正经失.色于.人出言不逊.信.口开河理直.气壮无稽.之谈讨.人嫌.第六单元等闲..奔腾不息...逶迤浑.身上下尽.开颜.磅礴..饥寒交.迫惊心动魄.肆虐..敌重.兵重.飞渡日夜兼.程苍龙..泥丸.气壮.山河长缨....缚.住摇摇欲坠第七单元排.空而至.毕竟..不假.思索..翻墨风光..遥望..:跳珠..翘首风雪交加......:别样红..四时..无穷碧骄.阳似火一元复..新芳草..始万象更如茵.血肉之躯.第一单元荒.山野岭荒凉搭窝筑.巢建筑成千盈.百充满座无隙.地空聚.精会.神会合浑.身解.数全本领停云小憩.休息笔墨纸砚.砚台润泽透..明湿穿透枝繁.叶茂.繁多茂盛游园不值.遇到应怜..屐齿应该爱惜纯净疏.淡事物之间距离远小扣..轻轻地敲柴.扉.柴门印.苍.苔踏坏深绿色篱落..快速跑..篱笆径.小路急走无处.地方子曰.说诗云.说第二单元面面相觑.偷看一览无余看神采奕奕精神神色处之泰然对待习以为常习惯平常高瞻远瞩往前看卓有成效杰出濒临灭绝接近靠近尽免遭厄运不好的家常便饭简单的孪生兄弟一胎两个寒风凛冽寒冷肃然伫立长时间站着第三单元词语解释前所未.有没有不分昼.夜白天不屈不挠.弯曲如饥似.渴像藤萝摇曳.拖拉饱.经风霜充分静影沉璧.古代玉器心悦诚.服真心委.婉连绵.曲折绵延升腾跌宕.不受拘束势不可当.担任;充当享.有盛誉..享受规模宏.大宏大扶老携.幼带惊叹不已.停止名扬.海外传布镇定自若.像.波峰.浪谷.形状像山峰的事物化险为夷.平安严阵以待.等待振.臂一呼挥动络绎于途.道路惊涛骇.浪惊吓水土不服.适应讲和.同好结束战争观风.问俗.风俗..奇.珍异.宝罕见的特别的波涛.滚滚大的波浪夜以继.日连续专心致志..尽;志向了.此残.生结束剩余的飞来横.祸意外的浩.如烟海广博树木葱茏..葱:青色草木茂盛悲愤交加..同时合在一起第四单元举.世无双全南征.北战征讨所向披靡.倒下殊.死拼搏断.绝昂首..挺胸仰头惟妙惟肖.相像神态自若.好像肩负.重任担负久经沙场..战场张弓搭.箭架起跃跃欲.试想要神态各异.不同若.有所思好像绝.无仅有绝对巍.然屹立高大举.世闻名全波光粼粼..形容水清澈金碧.辉煌青绿色山清水秀.美丽镂.花梁柱雕刻摩.天大厦.接近大楼星罗.棋布.罗列分布色彩和谐..配合的适当第五单元天资聪颖.:才能出众豁.然开朗:敞亮高深莫.测:不莫名..其妙 不:说出 平淡无奇. 奇特 出言不逊.谦恭 失.色于.人:改变常态 对 理直.气壮 公正合理 信.口开河 随意 无稽.之谈 查考 讨.人嫌.招惹 厌恶 第六单元逶迤..:.弯弯曲曲的样子 奔腾不息.:停止。

全国2011年7月高等教育自学考试概率论与数理统计(二)试题

全国2011年7月高等教育自学考试概率论与数理统计(二)试题

全国2011年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A={2,4,6,8},B={1,2,3,4},则A-B=()A.{2,4} B.{6,8}C.{1,3} D.{1,2,3,4}2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为()A. B.C. D.3.设事件A,B相互独立,,则=()A.0.2 B.0.3C.0.4 D.0.54.设某试验成功的概率为p,独立地做5次该试验,成功3次的概率为()A. B.C. D.5.设随机变量X服从[0,1]上的均匀分布,Y=2X-1,则Y的概率密度为()A. B.C. D.6.设二维随机变量(X,Y)的联合概率分布为()则c=A. B.C. D.7.已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是()A.E[E(X)]=E(X) B.E[X+E(X)]=2E(X)C.E[X-E(X)]=0 D.E(X2)=[E(X)]28.设X为随机变量,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤()A. B.C. D.9.设0,1,0,1,1来自X~0-1分布总体的样本观测值,且有P{X=1}=p,P{X=0}=q,其中0<p<1,q=1-p,则p的矩估计值为()A.1/5 B.2/5C.3/5 D.4/510.假设检验中,显著水平表示()A.H0不真,接受H0的概率 B.H0不真,拒绝H0的概率C.H0为真,拒绝H0的概率 D.H0为真,接受H0的概率二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________.12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________. 14.掷一枚均匀的骰子,记X为出现的点数,则P{2<X<5}=________. 15.设随机变量X的概率密度为,则常数C=________.16.设随机变量X服从正态分布N(2,9),已知标准正态分布函数值Φ(1)=0.8413,则P{X>5}=________.17.设二维随机变量(X,Y)的联合概率分布为则P(X>1)=________.18.设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴、y轴和直线x+y≤1所围成的三角形区域,则P{X<Y}=________. 19.设X与Y为相互独立的随机变量,X在[0,2]上服从均匀分布,Y服从参数的指数分布,则(X,Y)的联合概率密度为________.20.已知连续型随机变量X的概率密度为,则E(X)=________.21.设随机变量X,Y相互独立,且有如下分布律COV(X,Y)=________.22.设随机变量X~B(200,0.5),用切比雪夫不等式估计P{80<X<120}≥________.23.设随机变量t~t(n),其概率密度为f t(n)(x),若,则有________.24.设分别是假设检验中犯第一、二类错误的概率,H0,H1分别为原假设和备择假设,则P{接受H0|H0不真}=________.25.对正态总体,取显著水平=________时,原假设H0∶=1的接受域为.三、计算题(本大题共2小题,每小题8分,共16分)26.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:(1)该地区成年男性居民患高血压病的概率;(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?27.设随机变量X在区间[-1,2]上服从均匀分布,随机变量求E(Y),D(Y).四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X的概率密度函数为求(1)求知参数k;(2)概率P(X>0);(3)写出随机变量X的分布函数.29.设二维随机变量(X,Y)的概率密度为试求:E(X);E(XY);X与Y的相关系数.(取到小数3位)五、应用题(本大题共1小题,10分)30.假定某商店中一种商品的月销售量X~N(),均未知。

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

第 1 页2011年7月浙江自考真题高等数学(工专) 16课程代码:00020一、单项选择题(本大题共40小题,每小题1分,共40分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题干后的括号内。

1.2x 1arccosx 1y ++-=的定义域是( ) A.(]1,∞-B.[)1,3-C.[-3,1]D.())1,3(3,--∞-2.设函数f(x+1)=x+cosx ,则f(1)=( )A.0B.1C.2π D.1+cosx 3.下列函数中为偶函数的是( )A.e sinxB.(e x )2C.x 1e D.e |x| 4.=+→)x 21ln(x 4sin lim0x ( ) A.4B.1C.0D.2 5.=+-+∞→x1x 1coslim x ( ) A.cos1B.πC.0D.cos π 6.设则),0a (a |x |lim n n ≠=∞→( )A.数列{x n }收敛B.a x lim n n =∞→C.a x lim n n -=∞→D.数列{x n }可能收敛,也可能发散7.当x →0时,下列变量中为无穷大量的是( ) A.01.0x B.|x | C.2-xD.xx 21+ 8.函数y=f(x)在点x=x 0处有有限极限是它在该点附近有界的( )A.必要条件B.充分条件C.充分必要条件D.无关条件第 2 页 9.设函数在(a,b)上连续(a,b 为有限数,a<b),则f(x)( )A.在(a,b)上有界B.在(a,b)上无界C.在(a,b)内的任一闭区间上有界D.在[a,b]上有界10.函数f(x)=2x 3x 3x 2+--的间断点是( )A.x=1,x=2B.x=3C.x=1,x=2,x=3D.无间断点11.设f(x)=ln2,则f(x+1)-f(x)=( ) A.23ln B.ln2C.0D.ln312.设f(x)在x 0处不连续,则f(x)在x 0处( )A.一定可导B.必不可导C.可能可导D.无极限13.设f(x)=x|x|,则=')0(f ( )A.0B.1C.-1D.不存在14.设有成本函数C(Q)=100+400Q-Q 2,则当Q=100时,其边际成本是()A.0B.30100C.301D.20015.曲线y=x 3+x-2在点(1,0)处的切线方程是( )A.y=2(x-1)B.y=4(x-1)C.y=4x-1D.y=3(x-1)16.设y=3sinx ,则='y ( )A.3sinx ln3B.3sinx cosxC.3sinx (cosx)ln3D.sinx3sinx-117.设y=ln(1+2x),则=''y ( ) A.2)x 21(1+ B.2)x 21(2+ C.2)x 21(4+ D.2)x 21(4+- 18.=)x (d )x (ln d ( ) A.x 2B.x 2C.x x 2D.x x 2119.函数y=(x-1)2+2的极小值点是( )A.3B.2C.1D.020.曲线y=(x-1)3的拐点是( )A.(-1,8)B.(1,0)C.(0,-1)D.(2,1)第 3 页 21.2x e x 3y --=的垂直渐近线方程是( ) A.x=2 B.x=3C.x=2或x=3D.不存在 22.设f(x)在()+∞∞-,上有连续的导数,则下面等式成立的是( ) A.⎰+='C )x 2(f 21dx )x 2(f B.⎰+='C )x 2(f dx )x 2(f C.⎰+='C )x (f dx )x 2(fD.⎰=')x 2(f 2)dx )x 2(f ( 23.⎰=-x51dx ( ) A.C |x 51|ln 51+--B.C |x 51|ln 51+-C.C |x 51|ln 5+--D.C )x 51(52+- 24.⎰=+dx 3x x 4( ) A.C 3x arctg 212+ B.C 3x arctg 3212+ C.C 3x arctg 212+ D.C 3x arctg 612+ 25.设tgx 是f (x )的一个原函数,则⎰=dx )x (xf ( )A.xtgx-ln|sinx|+CB.xtgx+ln|sinx|+CC.xtgx+ln|cosx|+CD.xtgx-ln|cosx|+C 26.⎰=-10x 34dx ( ) A.ln4B.4ln 31C.4ln 31- D.4ln 3- 27.⎰=π10dx )x 2cos(( ) A.π2 B.π-2 C.2πD.2π- 28.经过变换=+=⎰40x 1dx,x t ( ) A.⎰+40t 1dt B.dt t 1t 240⎰+第 4 页 C.dt t 1t 220⎰+ D.⎰+20t 1dt 29.⎰+∞=e 2)x (ln x dx ( )A.-1B.1C.e1 D.+∞ 30.⎰=-102)1x 2(dx ( ) A.0B.1C.-1D.发散 31.级数∑∞=-1n 1p n5一定收敛的条件是( )A.p ≤0B.p<0C.p ≤1D.p<132.下列级数中,绝对收敛的是( ) A.∑∞=--1n 1n n)1( B.∑∞=---1n 1n 1n 2n )1( C.∑∞=--1n 2n1n 31)1( D.∑∞=-+-1n 1n )1n ln(1)1( 33.函数f(x)=x31+的x 的幂级数展开式是( ) A.)1,1(,x )1(310n n n --∑∞= B.)3,3(,)3x ()1(n 0n n --∑∞= C.)3,3(,)3x ()1(31n 0n n --∑∞= D.∑∞=-0n n )3,3(,)3x (31 34.下列各点中在平面3x-2y=0上的点是( )A.(1,1,0)B.(1,0,4)C.(1,1,-1)D.(2,3,5)35.设f(xy,x+y)=x 2+y 2+xy ,则f(x,y)=( )A.y 2-xB.x 2-yC.x 2+y 2D.x 2+y 2+xy36.函数f(x,y)=sin(x 2+y)在点(0,0)处( )A.无定义B.无极限C.有极限但不连续D.连续37.设z=e xy +yx 2,则)2,1(y z∂∂=( )第 5 页A.e+1B.e 2+1C.2e 2+1D.2e+138.下列函数中为微分方程y ''+2y '+y=0的解的是( )A.y=sinxB.y=cosxC.y=e xD.y=e -x39.微分方程y ''-4y ' =0的通解是( )A. y=e 4xB. y=e -4xC. y=Ce 4xD. y=C 1+C 2e 4x40.设D 是由x+y=1,x-y=1,x=0所围成的区域,则⎰⎰D dxdy =( ) A.23 B.41 C.1 D.2二、计算题(一)(本大题共3小题,每小题4分,共12分)41.求极限4x 5x 8x 6x lim 224x +-+-→. 42.设z=sin(xy)+cos 2(xy),求xz ∂∂. 43.求微分方程ydx+(x 2-4x)dy=0的通解.三、计算题(二)(本大题共4小题,每小题7分,共28分)44.设y=ln(x+2x 1+),求22dx y d . 45.求定积分⎰-12122dx xx 1. 46.将函数f(x)=x 1展开成(x-3)的幂级数. 47.求二重积分⎰⎰D 2dxdy xy ,其中D 是由圆周x 2+y 2=4,及y 轴所围成的右半闭区域.四、应用题(本大题共2小题,每小题8分,共16分)48.求由曲线x1y =,直线y=x,x=2所围成的图形的面积。

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

第 1 页2011年7月浙江自考真题高等数学(工专) 7高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1-20每小题1分,21-30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分) 1.函数xx )x (f -+=11 的定义域是( ) A .(-∞,+∞) B .(0,+∞) C .(-1,1)D .[)11,-2.函数3x )x (f =,则=+)y x (f ( ) A .)y (f )x (f B .)x (f 2 C .)x (fD .)y (f3.函数|x |)x (f -=2是( ) A .偶函数 B .非奇非偶函数 C .奇函数D .周期函数4.=→x x x 1sinlim 20( ) A .1 B .∞ C .0D .不存在 5.曲线y =sin x 在点(π,0)处的法线斜率为( ) A .-1 B .1 C .0D .26.设x)x(f =1,则=')x (f ( ) A .1 B .21xC .-21xD .2x7.设⎪⎩⎪⎨⎧-==t y t x 122,则=dydx ( )第 2 页A .tB .-1C .-t1D .-t8.函数x x y -=sin 在[0,2π]上( ) A .单调减少 B .单调增加 C .无界D .没有最大值 9.曲线y=x 4( ) A .的拐点为(0,0) B .有两个拐点 C .有一个拐点D .没有拐点10.曲线xx y ln 2=的垂直渐近线是( ) A .x =0 B .x =1 C .y =0D .y =111.=⎰)dx )x (f (d 1( ) A .dx )x (f B .dx )x (f x21-C .dx )x(f x112-D .dx)x(f 112.=⎰dx x x 2( ) A .C x +2992 B .C x +2772C .2992xD .2772x13.广义积分⎰+∞22ln )x (x dx( ) A .发散 B .收敛于1C .收敛于2ln 1D .的敛散性不能判定14.过点(2,-1,2)且与直线211z y x =-=垂直的平面方程为( )A .072=-+-z y xB .02=+-z y xC .032=+-+z y xD .0922=-+-z y x15.设)y x (e )y ,x (f x +=arctg ,则='),(f y 10( ) A .0B .1第 3 页C .2D .2116.区域(σ)由抛物线2x y =与直线x y =围成,函数)y ,x (f 在(σ)上连续,二重积分⎰⎰)(d )y ,x (f σσ化为累次积分应为( ) A .⎰⎰102xxdydx )y ,x (f B .⎰⎰12xxdydx)y ,x (f C .⎰⎰101dydx )y ,x (fD .⎰⎰xxdydx)y ,x (f 2117.空间区域(V )由抛物面22y x z +=与平面z =1围成,三重积分⎰⎰⎰++)V (dV )z y x (222可化为累次积分( )A .⎰⎰⎰+πρθρρ20101222d dzd )z( B .⎰⎰⎰+πρθρρρ20101222d dzd )z ( C .⎰⎰⎰+πθρρρ2010122d dzd )z (D .⎰⎰⎰+πρθρρρ20101222d dzd )z (18.微分方程023=+'-''y y y 的通解为( ) A .x x e C e C y 221+= B .x x e C e C y 221+=- C .x x e C e C y -+=221D .x x e C e C y --+=22119.级数∑∞=++-111n n nn )(( ) A .绝对收敛 B .发散C .收敛D .的部分和S n 无界20.幂级数∑∞=-01n n n nx )(的收敛半径为( )A .R =0B .R =1C .R =2D .R =+∞(二)(每小题2分,共20分) 21.=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯+∞→)n )(n (15451161111161611lim n ( )A .1B .61C .51D .41第 4 页22.设⎪⎩⎪⎨⎧>-=<=010001x ,x ,,x ,)x (f ,则x =0为)x (f 的( )A .连续点B .无穷间断点C .可去间断点D .跳跃间断点23.设)x (y +=1ln ,则=)(y )(09( ) A .8! B .-9! C .-8!D .9!24.⎰=-dx x112( )A .|x |1ln 2-B .C |x |+-1ln 2 C .|x x |11ln 21-+D .C|x x |++-11ln 2125.=⎰→2x sin lim xtdtx( ) A .∞ B .0 C .21D .126.直线521221+=-+=-z y x 与平面034=-+z y x 的关系是( ) A .直线与平面垂直 B .直线在平面上C .直线与平面无公共点D .直线与平面相交于一点27.设y x z 2=,则=dz ( ) A .xdy x dx x y y y ln 22212+∙- B .dy x dx x y y y 21222+∙- C .dy x dx x y y 222+D .dy x dx x y y 22+28.设区域(σ)为42π≤22y x +≤2π,则⎰⎰++)(d yx yxσσ2222cos=( )A .0B .π2C .-π2D .π329.微分方程xyy dxdy +=62是( )A .一阶线性齐次方程B .一阶线性非齐次方程第 5 页C .二阶线性微分方程D .六阶线性微分方程30.级数∑∞=12sinn nπ( )A .发散B .的部分和n S 无界C .是交错级数D .收敛二、计算题(本大题共7小题,每小题6分,共42分) 31.求2301cos lim/x xx -+→.32.设⎪⎩⎪⎨⎧=≠=0001sin2x x ,xx )x (f , ,求)x (f '.33.求) (022>++⎰a dx xax a .34.计算⎰1xarctgxdx .35.求方程 011=+-+xydy yxdx 满足10=)(y 的特解.36.计算⎰⎰)(d xy σσ3,其中(σ)是由直线x y ,y ==2及y 轴围成的三角区域.37.判别级数∑∞=12n nnn!n 的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分) 38.求心形线)a ()cos (a 01>-= θρ所围成的平面图形的面积. 39.求函数y x y xy x )y ,x (f --+-=22的极值. 40.证明:当x >0时,e x >1+x .。

2011年1,4,7,10月自考《概率论与数理统计》(经管类)试题和参考答案

2011年1,4,7,10月自考《概率论与数理统计》(经管类)试题和参考答案

2011年1月全国自考概率论与数理统计(经管类)试题全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABCD.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为P{-2<X≤4 }=( )A.0.2 C.0.55 D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。

回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。

其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。

在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。

为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。

如果大家有新的试题,也请及时更新与共享。

谢谢!注:更新时麻烦更新目录,以方便大家查找。

其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。

目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。

浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

课程代码为04183的概率论与数理统计-试题及答案(2011年1月、4月、7月、10月)

课程代码为04183的概率论与数理统计-试题及答案(2011年1月、4月、7月、10月)

课程代码为04183的概率论与数理统计试题及答案(2010年1月、4月、7月、10月)全国2011年1月自考概率论与数理统计(经管类)参考答案27、解:(1)E (X )=10111101+=+=+-⎰λλλλλλλx dx x xX =E (X )=1+λλ 1ˆλ=xx -1. (2) 似然函数为L()λ=∏∏=-==ni i n i i x x f 111)(λλ2011年4月高等教育自学考试全国统一命题考试概率论与数理统计(经管类) 试卷(课程代码 04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B,C 为随机事件,则事件“A,B,C 都不发生”可表示为 【 】A .CB A B .BC A C .A B CD .ABC2.设随机事件A 与B 相互独立,且P(A)=51,P(B)=53,则P(AUB)= 【 】 A .253 B .2517 C .54 D . 2523 3.设随机变量X-B(3,0.4),则P{X ≥1}= 【 】A .0.352B .0.432C .0.784D .0.9364.已知随机变量X 的分布律为,则P{-2≤4}=【 】A .0.2B .0.35C .0.55D .O.8二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设A,B为随机事件, P(A)=0.6, P(B/A)=0.3,则P(P(AB)= 12.设随机事件A与B互不相容,P面=o.6,P(AUB)=0.8,则P(B)= 13.设随机变量x服从参数为3的泊松分布,则P{X=2}=14.设随机变量x-N(0.42),且p{x>1}=0.4013,φ(x)为标准正态分布函数,则φ(0.25)=三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A表示“第二次取到的全是新球”,求P(A).四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单 位:小时)服从参数10001的指数分布,另一个电子元件的使用寿命y(单位:小 时)服从参数20001的指数分布.试求:(1)(X ,J ,)的概率密度;(2)E(X),E(y): (3)两个电子元件的使用寿命均大于1200小时的概率.2011年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码 04183)2011年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试题答案及评分参考一、单项选择题1.B2.C3.B4.D5.D6.C7.A8.C9.D 10.A二、填空题11.12.13.14.15.16.17.18.19.20.21. 1/422.23.[2.728,3.032]24.25.-6三、计算题26.27.28.29.30.全国2011年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

概率论与数理统计(浙大) 习题答案 第1章

概率论与数理统计(浙大) 习题答案 第1章

第一章 概率论的基本概念1 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)解 }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数(2)同时掷三颗骰子 记录三颗骰子点数之和 解 S ={3 4, ⋅⋅⋅ 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数解 S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品 停止检查, 记录检查的结果.解 S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111}其中0表示次品 1表示正品.(5)在单位圆内任意取一点 记录它的坐标解 S ={(x y )|x 2+y 2<1}.(6)将一尺之棰成三段 观察各段的长度解 S ={(x y z )|x >0 y >0 z >0 x +y +z =1} 其中x y z 分别表示第一、二、三段的长度2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生解 表示为: A B C 或A -(AB +AC )或A -(B C )(2)A , B 都发生, 而C 不发生解 表示为: AB C 或AB -ABC 或AB -C(3)A , B , C 中至少有一个发生解 表示为: A +B +C(4)A , B , C 都发生解 表示为: ABC(5)A , B , C 都不发生解 表示为: ⎺A B C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生解 即A , B , C 中至少有两个同时不发生相当于⎺A B B C ⎺A C 中至少有一个发生. 故表示为: ⎺A B B C ⎺A C .(7)A , B , C 中不多于二个发生解 相当于: A B C 中至少有一个发生.故表示为: A B C 或ABC(8)A , B , C 中至少有二个发生.解 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC3 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问 (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解 (1)因为P (AB )=P (A )+P (B )-P (A B ) 且P (A )<P (B )≤P (A B ) 所以当A B 时 P (A B )=P (B ) P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6(2)当A B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4 设A , B , C 是三事件, 且P (A )P (B )P (C )1/4 P (AB )P (BC )0, P (AC )1/8. 求A , B , C 至少有一个发生的概率.解 P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) (3/4)(1/8)05/85 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解 记A 表“能排成上述单词” 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个 所以1301155)(226==A AP6 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率解 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯ 所以1211)(31025=⨯=C C AP (2)求最大的号码为5的概率.解 记“三人中最大的号码为5”为事件B , 同上 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于:有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种 所以2011)(31024=⨯=C C BP 7 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯ 故2431252)(6172334410=⨯⨯=C C C C A P8 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率解 用A 表示取出的产品恰有90个次品 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种 因此2001500110110090400)(C C C A P= (2)至少有2个次品的概率.解 用B 表示至少有2个次品 B 0表示不含有次品, B 1表示只含有一个次品 同上, 200个产品不含次品, 取法有2001100C 种, 200个产品含一个次品, 取法有19911001400C C种 因为B B 0B 1且B 0, B 1互不相容 所以P (B )1P (B )1[P (B 0)P (B 1)]20015002001100199110014001C C C C +-=9 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解 样本空间所含的样本点数为410C 用A 表示4只全中至少有2支配成一对 则A 表示4只全不配对 A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双 再从每双中任取一只) 因此2182)(410445=⋅=C C AP 21132181)(1)(=-=-=A P AP10 在11张卡片上分别写上Probabitity 这11个字母 从中任意连抽7张 求其排列结果为Abitity的概率解 所有可能的排列构成样本空间 其中包含的样本点数为711P 用A 表示正确的排列 则A 包含的样本点数为411111*********=C C C C C C C 则0000024.04)(711==P A P11 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3解 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3)三只球放入四只杯中, 放法有43种, 每种放法等可能 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P 12 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P13 已知3.0)(=A P P (B )=0.4 5.0)(=B A P 求)|(B A B P ⋃.解 7.0)(1)(=-=A P A P 6.0)(1)(=-=B P BPB A AB B B A AS A ⋃=⋃==)( 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B AP 于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A BP14 已知41)(=A P 31)|(=A B P 21)|(=B A P求P (A ⋃B ).解 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==61213141)|()|()()(=⨯==B A P A B P A P BP根据乘法公式1214131)()|()(=⨯==A P A B P ABP根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B AP15 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一 (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}故 3162)(==A P解法二 用公式)()()|(B P AB P B A P = S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6} 每种结果均可能A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P 262)(=AB P , 故31626162)()()|(2====B P AB P B A P 16 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病} 则P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率(1)两只都是正品(2)二只都是次品(记为事件B )(3)一只是正品, 一只是次品(记为事件C )(4)第二次取出的是次品(记为事件D )解 设A i ={第i 次取出的是正品)(i =1 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P18 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率 (2)若已知最后一个数字是奇数, 那么此概率是多少?解 设A i ={第i 次拨号拨对}(i =1 2 3) A ={拨号不超过3次而拨通} 则321211A A A A A A A ++= 且三种情况互斥 所以)|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++= 于是(1)103819810991109101)(=⨯⨯+⨯+=A P(2)53314354415451)(=⨯⨯+⨯+=A P19 (1)设甲袋中装有n 只白球 m 只红球, 乙袋中装有N 只白球 M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少? 解 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋” 再记B 表“再从乙袋中取得白球”. 因为 B =A1B +A 2B 且A 1, A 2互斥所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n)1)(()(+++++=N M n m n N m n19 (2)第一只盒子装有5只红球, 4只白球 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1C 2C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C CC20 某种产品的高标为“MAXAM” 其中有2个字母已经脱落 有人捡起随意放回 求放回后仍为“MAXAM”的概率解 设A 1 A 2 ⋅⋅⋅ A 10分别表示字母MAMX MA MM AX AA AM XA XM AM 脱落的事件 则101)(=i A P (i =1 2, ⋅⋅⋅ 10) 用B 表示放回后仍为“MAXAM”的事件 则21)|(=i A B P (i =1 2, ⋅⋅⋅10) 1)|()|(64==A B P A B P 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P BP21 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解 A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1A 2=S , A 1 A 2= 由已知条件知21)()(21==A P A P %5)|(1=A B P ,%25.0)|(2=A BP 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +==2120100002521100521100521=⋅+⋅⋅=22 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p 若第一次不及格则第二次及格的概率为2p (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解 A i ={他第i 次及格}(i =1, 2)已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P= (1)B ={至少有一次及格} 则21}{A A B ==两次均不及格 所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---= (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p2 由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅= 于是 1222)|(2221+=+=p p p p p A AP23 将两信息分别编码为A 和B 传递出去 接收站收敛到时 A 被误收作B 的概率为002 而B 被误收作A 的概率为0.01 信息A 与信息B 传送的频繁程度为21 若收站收到的信息是A 问原发信息是A 的概率是多少? 解 设B 1 B 2分别表示发报台发出信号“A ”及“B ” 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有 32)(1=B P 31)(2=B P P (A 1|B 1)=0.98 P (A 2|B 1)=0.08 P (A 1|B 2)=0.01 P (A 2|B 2)=0.91 从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=24 有两箱同种类的零件 第一箱装50只 其中10只一等品 第二箱装30只 其中18只一等品 今从两箱中任挑出一箱 然后从该箱中取零件两次每次任取一只 作不放回抽样 试求(1)第一次取到的零件是一等品的概率(2)第一次取到的零件是一等品的条件下 第二次取到的也是一等品的概率解 (1)记A i ={在第i 次中取到一等品}(i =1 2) B ={挑到第i 箱} 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯= 4856.04.019423.0)()()|(12112===A P A A P A A P .25 某人下午5:00下班, 他所积累的资料表明:的, 试求他是乘地铁回家的概率.解 设A={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意 AB =∅, A B =S已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P AP A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=26 (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4), A 表示系统正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4)=p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立)26. (2)设有5独立工作的元件1 2 3 4 5 它们的可靠性均为p 将它们按图1-4的方式联接 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4 5), B 表示系统正常 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=27 如果一危险情况C 发生时 一电路闭合并发出警报 我们可以借用两个或多个开关并联以改善可靠性 在C 发生时这些开关每一个都应闭合 且至少一个开关闭合了 警报就发出 如果两个这样开关并联接 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率) (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的解 (1)设A i 表示第i 个开关闭合 A 表示电路闭合 于是A =A1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1 A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合 则∏==≥-=--=⋃=n i i i n i A P A P A P 1419999.004.01)](1[1)()(即 0.04n≤0.00001所以 58.304.0lg 00001.0lg =≥n 故至少需要4只开关联28 三个独立地去破译份密码 已知各人能译出的概率分别为1/5 1/3 1/4 问三个中至少有一个能将此密码译出的概率是多少?解 设A B C 分别表示{第一、二、三人独立译出密码} D 表示{密码被译出} 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=29 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率(2)求有一只蓝球一只白球的概率(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解 记A 1 A 2 A 3分别表示是从第一只盒子中取到一只蓝球 一只绿球 一只白球, B 1 B 2 B 3分别表示是从第二只盒子中取到一只蓝球 一只绿球 一只白球. 则A i 与B i 独立(i =1 2 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯= (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30 A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5 2/5 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2 1/4 1/4, 设三人的行动相互独立, 求(1)无人接电话的概率(2)被呼叫人在办公室的概率若某一时间段打进3个电话, 求(3)这3个电话打给同一人的概率(4)这3个电话打给不同人的概率(5)这3个电话都打给B , 而B 却都不在的概率. 解 设A 1 B 1 C 1分别表示A B C 三个人外出的事件 A B C 分别表示打给三个人的电话的事件(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯= (2)用D 表示被呼叫人在办公室的事件, 则CC B B A AD 111++= )()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=(3)用E 表示3个电话打给同一个人的事件 E 1 E 2 E 3分别表示3个电话是打给A B C 则E =E 1+E 2+E 3)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=(4)用F 表示3个电话打给不同的人的事件 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯于是1252412546)(=⨯=F P (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立 于是P (3个电话都打给B , B 都不在的概率)641)41(3==31 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解 用A 表示出现r 次国徽的事件 B 表示任取一只是正品的事件 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=)()|()()|(A P B A P B P A B P =r n m m2⋅+=32 设一枚深炸弹击沉一潜水艇的概率为1/3 击伤的概率为1/2 击不中的概率为1/6 并设击伤两次也会导致潜水艇下沉 求施放4枚深炸能击沉潜水艇的概率解 用A 表示施放4枚深炸击沉潜水艇的事件 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P33 设根据以往记录的数据分析 某船只运输某种物品损坏的情况共有三种 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3) 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ) P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率)解 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B 且三种情况互斥由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3)=0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.86248731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P34 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解 用A B C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA 由于每个字母的输出是相互独立的 于是有4)1(]2/)1[()|(2222αααα-=-=A H P8)1(]2/)1[()|(33αααα-=-=B H P8)1(]2/)1[()|(33αααα-=-=C HP又P (A )=p 1 P (B )=p 2 P (C )=p 3 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα。

2011年7月浙江自考真题高等数学(工专)

2011年7月浙江自考真题高等数学(工专)

第 1 页2011年7月浙江自考真题高等数学(工专) 4课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列函数中在所给的区间上是有界函数的为( )A .f (x)=11+x [0,1]B .f (x)=11+x (-1,0)C .f (x)=ex (-∞,+∞)D .f (x)=lnx (0,+∞)2.函数y=1--x 的反函数是( )A .y=x2+1 (-∞<x<+∞)B .y=x2+1 (x ≥0)C .y=x2+1 (x ≤0)D .不存在3.设y=f (sinx),其中f 连续可导,则dy=( )A .f ′(sinx)sinxdxB .f ′(sinx)dsinxC .f ′(sinx)dxD .f ′(cosx)dx4.='⎰)(x F d ( )A .F(x)B .F(x)+CC .F ′(x)D .F ′(x)+C 5.设行列式01110212=-kk,则k 的取值为( ) A .2B .-2或3C .0D .-3或2二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.级数∑∞=02)3(ln n n n 的和为_________.第 2 页 7.极限=--∞→2)123(lim n n n _________.8.若x →0时,f (x)为无穷小量,且f (x)是比x2高阶的无穷小量,那么=→x x f x 20sin )(lim _________. 9.设函数f (x)=2232-+-x x x ,由于x=2时,f (x)没有定义,所以f (x)在x=2处不连续,要使f (x)在x=2处连续,应补充定义f (2)=_________.10.设y=arctan x ,则y ′=_________.11.设曲线y=x2+x-1在其上点M 的切线的斜率为3,则点M 的坐标为_________. 12.⎰-=113dx x _________.13.设⎰++=C x dx x f )]13ln[sin()(,则f (x)=_________.14.设行列式= - - -,则3332312322211312113332312322211312113332222223a a a a a a a a a a a a a a a a a a =_________. 15.设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100310231-,则A 的逆矩阵A-1=_________.三、计算题(本大题共8小题,每小题6分,共48分)16.设y=sin2x+sin2x ,求y ″(0).17.求极限).tan (sec lim 2x x x -π→18.求由方程yex+lny=1所确定的隐函数y=y(x)的一阶导数dx dy.19.求微分方程dx dy =y x y x )1()1(22++满足初始条件10==x y 的特解.20.求曲线y=xe-x 的凹凸区间和拐点.21.求不定积分⎰+dx x x 23. 22.计算定积分⎰+-10ln 2.2dx e x x第 3 页 23.λ为何值时,线性方程组⎪⎩⎪⎨⎧+λ=+++λ=++λ=+324622432132131x x x x x x x x有解?四、综合题(本大题共2小题,每小题6分,共12分)24.求函数f (x)=sin2x-x 在区间]22[ππ-,上的最大值和最小值. 25.求椭圆12222=+b y ax 绕x 轴旋转所得旋转体体积.。

全国自学考试概率论与数理统计二历年真题及答案

全国自学考试概率论与数理统计二历年真题及答案

全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

浙江大学大二信息技术专业概率论与数理统计考试A卷及答案

浙江大学大二信息技术专业概率论与数理统计考试A卷及答案

《概率论与数理统计》试卷(A )适用专业:信计091 考试日期:2011年7月 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1.设事件B A ,互不相容,若()(),5.0,3.0==B P A P 则()AB P 为__________. 设事件B A ,相互独立,若()(),5.0,3.0==B P A P 则()AB P 为__________.2.设n ξξξ,,21 为取自母体服从正态分布()2,σμN 的子样,ξ为子样均值,2nS为子样方差。

则ξ服从的分布为____________,()nS n 1--μξ服从的分布为_____________.3. 设n ξξξ,,21 为取自母体服从正态分布()1,0N 的子样,则∑=ni i12ξ服从的分布为_____________.4. 设ξ与η相互独立,分别是服从自由度为n 及m 的2x 分布的随机变量,则mn ηξς=服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设B A ,为互不相容事件,且()(),0,0>>B P A P 则结论正确的有( ) (A )()0>B A P (B )())(A P B A P > (C) ()0=B A P (D) ()()()B P A P B A P = 2、设随机变量ξ的概率密度函数为()x ϕ,且有()x ϕ()x -=ϕ,()x F 是ξ的分布函数,则对任意实数a ,有( ) (A )()()dx x a F a⎰-=-01ϕ (B )()()dx x a F a ⎰-=-021ϕ (C)()()a F a F =- (D)()()12-=-a F a F3、设随机变量X 服从正态分布()2,σμN,则随着σ的增大,()σμ<-X P ( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数()x ϕ一定满足( )(A )()10≤≤x ϕ;(B )定义域内单调不减;(C )()1=⎰+∞∞-dx x ϕ;(D )()1lim =+∞→x x ϕ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2011年7月自学考试概率论与数理统计试题
课程代码:02197
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( )
A .{2,4}
B .{6,8}
C .{1,3}
D .{1,2,3,4}
2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为(

A .1
5 B .1
4
C .1
3 D .1
2
3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( )
A .0.2
B .0.3
C .0.4
D .0.5
4.设某试验成功的概率为p ,独立地做5次该试验,成功3次的概率为( )
A .3
5C B .3325(1)C p p -
C .33
5C p D .32(1)p p -
5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )
A .1
,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,
()0,,Y y f y -≤≤⎧=⎨
⎩其他
C .1
,01,
()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他 D .1,01,
()0,,Y y f y ≤≤⎧=⎨
⎩其他
6.设二维随机变量(X ,Y )的联合概率分布为( )
则c =
A.
1
12
B.
1
6
C.1
4
D.
1
3
7.已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立
....的是()
A.E[E(X)]=E(X) B.E[X+E(X)]=2E(X)
C.E[X-E(X)]=0 D.E(X2)=[E(X)]2
8.设X为随机变量2
()10,()109
E X E X
==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤
()
A.1
4
B.
5
18
C.3
4
D.
109
36
9.设0,1,0,1,1来自X~0-1分布总体的样本观测值,且有P{X=1}=p,P{X=0}=q,其中0<p<1,q=1-p,则p 的矩估计值为()
A.1/5 B.2/5
C.3/5 D.4/5
10.假设检验中,显著水平α表示()
A.H0不真,接受H0的概率B.H0不真,拒绝H0的概率
C.H0为真,拒绝H0的概率D.H0为真,接受H0的概率
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________.
12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.
13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________.
14.掷一枚均匀的骰子,记X为出现的点数,则P{2<X<5}=________.
15.设随机变量X的概率密度为
2
3
()8
x x C
f x

≤≤

=⎨
⎪⎩其它
,则常数C=________.
16.设随机变量X服从正态分布N(2,9),已知标准正态分布函数值Φ(1)=0.8413,则P{X>5}=________. 17.设二维随机变量(X,Y)的联合概率分布为
则P(X>1)=________.
18.设二维随机变量(X ,Y )服从区域D 上的均匀分布,其中D 为x 轴、y 轴和直线x +y ≤1所围成的三角形区域,则P {X <Y }=________.
19.设X 与Y 为相互独立的随机变量,X 在[0,2]上服从均匀分布,Y 服从参数2λ=的指数分布,则(X ,Y )的联合概率密度为________.
20.已知连续型随机变量X 的概率密度为2(1)01()0x x f x -≤≤⎧=⎨⎩
其它,则E (X )=________. 21.设随机变量X ,Y 相互独立,且有如下分布律
COV (X ,Y )=________.
22.设随机变量X ~B (200,0.5),用切比雪夫不等式估计P {80<X <120}≥________.
23.设随机变量t ~t (n ),其概率密度为f t (n )(x ),若/2{||()}P t t n αα>=,则有/2()
()()t n t n f x dx α-∞=⎰________.
24.设,αβ分别是假设检验中犯第一、二类错误的概率,H 0,H 1分别为原假设和备择假设,则P {接受H 0|H 0不真}=________.
25.对正态总体2(,)N μσ,取显著水平a =________时,原假设H 0∶2σ=1的接受域为2220.950.05(1)(1)(1)n n S n χχ-<-<-.
三、计算题(本大题共2小题,每小题8分,共16分)
26.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:
(1)该地区成年男性居民患高血压病的概率;
(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?
27.设随机变量X 在区间[-1,2]上服从均匀分布,随机变量
1,00,0,1,0X Y X X >⎧⎪==⎨⎪-<⎩
求E (Y ),D (Y ).
四、综合题(本大题共2小题,每小题12分,共24分)
28.设随机变量X 的概率密度函数为
(1),11,()0,k x x f x +-<<⎧=⎨⎩
其它. 求(1)求知参数k ;
(2)概率P (X >0);
(3)写出随机变量X 的分布函数.
29.设二维随机变量(X,Y)的概率密度为
2,01,01(,)0,Cxy x y f x y ⎧<<<<⎪=⎨⎪⎩
其它 试求:E (X );E (XY );X 与Y 的相关系数xy ρ.(取到小数3位)
五、应用题(本大题共1小题,10分)
30.假定某商店中一种商品的月销售量X ~N(2,μσ),2,μσ均未知。

现为了合理确定对该商品的进货量,需对2,μσ进行估计,为此,随机抽取7个月的销售量,算得,65.143,11.246,x S ==试求μ的95%的置信区间及2σ的90%的置信区间.(取到小数3位)
(附表:t 0.025(6)=2.447. t 0.05(6)=1.943
22220.0250.050.9750.95(6)14.449.(6)12.595.(6) 1.237.(6) 1.635χχχχ====)。

相关文档
最新文档