AD8062ARMZ-R7中文资料

合集下载

TH8062中文资料

TH8062中文资料

Featureso Compatible to LIN Specification 2.0 and SAE J2602o Operating voltage V S = 6 ... 18 Vo Low standby current consumption of typ. 15 μA in sleep mode“noload” current < 200µAo Linear low drop voltage regulator 5V/70mA ±2%Output current limitationo LIN-Bus TransceiverCompatible to ISO9141 functionsBaud rate up to 20 kBaudSlew rate control for best EME behaviorLow slew mode for optimized SAE J2602 transmissionHigh EMI immunityHigh signal symmetry for using in RC – based slave nodes up to 2% clock toleranceCurrent limitationBus input voltages -24V to 30V independent from VBato Wake-up via LIN bus traffico Reset output (default 8ms/4.65V)Reset time adjustable to 4ms, 15ms and 30ms during IC final test o Over temperature shutdowno Automotive temperature range of –40°C to 125°Co CMOS compatible interface to microcontrollero Load dump protected (40V)o Small SOIC8 packageo Pin compatible to the Melexis TH8061Ordering InformationPart No. Temperature Range Package Version POR-Time TH8062 KDC AA K (-40 to 125 °C) DC (SOIC8) A A (8ms)On RequestTH8062 KDC AB K (-40 to 125 °C) DC (SOIC8) A B (4ms) TH8062 KDC AC K (-40 to 125 °C) DC (SOIC8) A C (30ms) TH8062 KDC AD K (-40 to 125 °C) DC (SOIC8) A D (15ms) General DescriptionThe TH8062 consists of a low-drop voltage regulator 5V/70mA and a LIN bus transceiver. The LIN transceiver is suitable for LIN bus systems conform to LIN specification revision 2.0 and SAE J2602.The combination of voltage regulator and bus transceiver makes it possible to develop simple, but powerful and cheap slave nodes in LIN Bus systems.Contents1.Functional Diagram (4)2.Electrical Specification (5)2.1Operating Conditions (5)2.2Absolute Maximum Ratings (5)2.3Static Characteristics (6)2.3.1.Voltage Regulator and Reset Unit (6)2.3.2.LIN Bus Interface (8)2.4Dynamic Characteristics (9)2.5Timing Diagrams (11)3.Functional Description (13)3.1Operating Modes (13)3.2Initialization (15)3.3Wake-Up (15)3.4VSUP under voltage reset (16)3.5Overtemperature Shutdown (16)3.6LIN BUS Transceiver (17)3.7Linear Regulator (20)3.8RESET (21)3.8.1.Programmability of Power-ON-Reset Delay (21)3.9Mode Input EN (22)4.Application Hints (24)4.1Safe Operating Area (24)4.2Low Dropout Regulator (25)4.3Application Circuitry (27)4.4EMI Supressing (27)4.5Connection to Flash-MCU (28)5.Operating during Disturbance (29)5.1Operating without VSUP or GND (29)5.2Short Circuit BUS against VBAT (29)5.3Short Circuit BUS against GND (29)5.4Short Circuit TxD against GND (29)5.5TxD open (29)5.6Short Circuit VCC against GND (29)5.7Overload of VCC (29)5.8Undervoltage VCC (29)5.9Undervoltage VSUP (30)5.10Short circuit RxD, RESET against GND or VCC (30)6.PIN Description (31)7.Mechanical Specification (32)8.Tape and Reel Specification (33)8.1Tape Specification (33)8.2Reel Specification (34)9.ESD/EMC Remarks (35)9.1General Remarks (35)9.2ESD-Test (35)9.3EMC (35)10.Revision History (36)11.Assembly Information (37)12.Disclaimer (38)List of FiguresFigure 1 - Block diagram (4)Figure 2 - Timing diagram for propagation delays (11)Figure 3 - Timing diagram for duty cycle acc. to LIN 2.0 and J2602 (11)Figure 4 - Timing Diagram for EN mode selection (12)Figure 5 - State diagram of operating modes (13)Figure 6 - Operating of power-on and under-voltage reset (15)Figure 7 - Receive mode impulse diagram (17)Figure 8 - TxD input circuitry (18)Figure 9 - RxD output circuitry (19)Figure 10 - Characteristic of current limitation VCC = f (I VCC) (20)Figure 11 - Reset behaviour (21)Figure 12 - Output current of reset output vs. VCC voltage (21)Figure 13 - EN input circuitry (22)Figure 14 - EN controlled via MCU (22)Figure 15 - Permanent normal mode (23)Figure 16 - Power dissipation LIN transceiver @ 20kbit (24)Figure 17 - Save operating area (25)Figure 18 - ESR Curves for 6.8μF ≤ C L≤ 100μF and Frequency of 100 kHz (26)Figure 19 - Application circuit (slave node) (27)Figure 20 – Example circuitry for connection of RxD to MCU for flash programming (28)Normal ModeThis mode is the base mode. The bus transceiver is able to send with a max baud rate of 20kbit/s.The whole TH8062 is active. Switching to normal mode can be done via the following actions: - Start of V SUP or after under voltage reset- Rising edge at EN (EN=high) and TxD=high (local wake-up)- Activity on the LIN bus (remote wake-up)Sleep ModeSleep mode is most current saving. With a falling edge on EN (EN=low) the TH8062 is switched from normal mode into sleep mode. The voltage regulator and the reset unit will be switched off and the LIN transceiver is in recessive state.Switching into sleep mode can be done independently from the current transceiver state. That means if the transmitter is in dominant state this state will be cancelled and it will be switched to recessive state.Low Slew ModeIn this mode the slew rate is switched from the normal value of typ. 1.6V/µs to a low value of typ. 0.8V/µs. This mode is optimized to send with a maximum baud rate of 10.4kbit/s (SAE J2602). Because of this reduction of the slew rate the EME behaviour is improved especially in the frequency range of 100 kHz to 10MHz.Switching to this mode is possible with a combination of rising edge on EN together with a low level on TxD. The IC operates in this mode until the next under voltage reset occurs.POR-stateThis is the power-on-reset state of the TH8062, while Vsup < V SUVR_OFF. If the prior state was sleep mode, the TH8062 switches via the ini-state to normal mode.Ini-stateThis is an intermediate state, which will pass through after switch on of VSUP or VCC. The TH8062 remains in this state if V CC is below V RES (Reset output = L) and Vsup > V SUVR_ON.Thermal ShutdownIf the junction temperature T J is higher than T JSHD (>155°C), the TH8062 will be switched into the thermal shutdown mode. The behaviour within this mode is comparable with the sleep mode except for LIN transceiver operating. The transceiver is completely disabled; no wake-up functionality is available.If T J falls below the thermal recovery temperature T JREC (typ. 140°C) the TH8062 will be recover to the previous state (normal, sleep or low slew).3.4 VSUP under voltage resetThe under voltage detection unit inhibits an undefined behaviour of the TH8062 under low voltage condition (VSUP < 4V). If VSUP drops below V SUVR_ON (typ. 3.1V) the under voltage detection becomes active and the IC will be switched to POR state. The following increasing of VSUP above V SUVR_OFF (typ. 3.7V) cancels this POR state and the voltage regulator starts with the initialization sequence.VSUP under voltage in Normal ModeSupply Voltages below V SUVR_OFF do not influence the voltage regulator. The output voltage Vcc follows VSUP.VSUP under voltage in Sleep ModeNo exit from the sleep mode will take place if the VSUP voltage drops down to V SUVR_ON (typ. 3.5V). The under voltage reset becomes active (POR-state) if the voltage drops below 2.7V. As a result of this functioning, the sleep mode is left to the normal mode. If VSUP rises again above V SUVR_OFF (typ. 4.2V) the IC initializes the voltage regulator and continues to work with the normal mode.The under voltage reset unit secures stable functioning in the under voltage range of VSUP down to GND level. The dynamic Power-On-Reset secures a defined internal state independent from the duration of the VSUP drop, which guarantees a stable restart.VSUP under voltage in Low Slew ModeThe behaviour of TH8062 at low VSUP voltages is equal to the sleep mode. The low slew mode will be cancelled, if VSUP drops below V SUVR_ON in this mode. The TH8062 enters the normal mode, if VSUP rises again above V SUVR_OFF.3.5 Overtemperature ShutdownIf the junction temperature is 155°C < T J < 175°C the over-temperature recognition will be activated and the regulator voltage will be switched off. The V CC voltage drops down, the reset state is entered and the bus-transceiver is switched off (recessive state).After T J falls below 140°C the TH8062 will be initialized again (see Figure 11). This initialisation starts independently from the voltage levels on EN and BUS. Within the thermal shutdown mode the transceiver can not switch to the normal mode neither with local nor with remote wake-up.The operation of the TH8062 is possible between T Amax (125°C) and the switch off temperature, but small parameter differences can appear.After over-temperature switch-off the IC behaves as described in chapter 3.8 RESET.Figure 12 - Output current of reset output vs. VCC voltage Programmability of Power-ON-Reset Delay4. Application Hints4.1 Safe Operating AreaThe maximum power dissipation depends on the thermal resistance of the package and the PCB, the temperature difference between Junction and Ambient as well as the airflow. The power dissipation can be calculated with: P D = (V SUP – V CC ) * I VCC + P D_TXThe power dissipation of the transmitter P D_TX depends on the transceiver configuration and its parameters as well as on the bus voltage V BUS =V BAT -V D , the resulting termination resistance R L , the capacitive bus load C L and the bit rate. Figure 16 shows the dependence of power dissipation of the transmitter as function of V SUP . The conditions for calculation of the power dissipation is R L =500Ω, C L =10nF, bit rate=20kbit and duty cycle on TxD of 50%055045403530252015105191817161514131211109876P D [m W ]V SUP [V]Figure 16 - Power dissipation LIN transceiver @ 20kbitThe permitted package power dissipation can be calculated:ATHJ j D R T −−=Amax T PIf we consider that P D_TX_max = f (V SUP ) the max output current I VCC on V CC can be calculated:VCCVSUP P R T VSUPTX D ATHJ j V −−−=−@max __ACCmax T IT J -T A is the temperature difference between junction and ambient and R th is the thermal resistance of the package. The thermal energy is transferred via the package and the pins to the ambient. This transfer can be improved with additional ground areas on the PCB as well as ground areas under the IC.5.Operating during Disturbance5.1 Operating without VSUP or GNDThe absence of V SUP or GND connection will not influence or disturb the communication between other bus nodes. No reverse supply of the IC can appear if without GND or VSUP connection the BUS pin is on VBAT level.5.2 Short Circuit BUS against VBATThe reaction of the IC depends on the send state of the transceiver:- Recessive LIN bus is blocked, no influence to the TH8062- Dominant Current limitation, thermal shut down of TH8062 if power dissipation will make an overrun of T J5.3 Short Circuit BUS against GNDLIN bus is blocked. No influence on the TH8062.5.4 Short Circuit TxD against GNDThe LIN transceiver is permanently in the dominant state, which means the whole LIN bus. This state can only be detected from the LIN controller. In this case the controller must switch off the LIN node via the EN input of the TH8062. A thermal shut down of TH8062 will appear if the power dissipation will make an overrun of T J.5.5 TxD openThe internal pull-up resistor forces the LIN node to the recessive state. The communication between the other bus-nodes will not be disturbed.5.6 Short Circuit VCC against GNDThe VCC pin is protected via a current limitation. This state is comparable with the behaviour in the sleep mode.5.7 Overload of VCCThermal switch offThe power dissipation is increasing if the load current is between I VCC_max and I LVCC. If the max junction temperature of >155°C is reached, the IC will be switched off. The voltage regulator will also be switched off and a reset signal is forced.Over currentIf the current limitation is active the voltage on VCC drops down. If this voltage under-runs the threshold V RES, a reset will be forced.5.8 Undervoltage VCCThe reset unit ensures the correct behaviour of the driver during under-voltage. The BUS pin generates the recessive state if V CC < V MRes (3.15V). The inputs EN and TxD have pull-up or pull-down characteristics.If V CC≥ V MRes the TxD signal is transmitted to the bus. The receive mode is also active.5.9 Undervoltage VSUPThe combination of dynamic power on reset and low voltage reset guarantees a defined start up behaviour. If the supply voltage VSUP drops below 3V the low voltage detection becomes active. If the VSUP voltage rises again above 3.5V the low voltage reset will be terminated and the 5V voltage regulator will be started. 5.10 Short circuit RxD, RESET against GND or VCCBoth outputs are short circuit proof to VCC and ground.9.ESD/EMC Remarks9.1 General RemarksElectronic semiconductor products are sensitive to Electro Static Discharge (ESD).Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 9.2 ESD-TestThe TH8062 is tested according CDF-AEC-Q100-002 / MIL883-3015.7 (human body model).9.3 EMCThe test on EMC impacts is done according to ISO 7637-1 for power supply pins and ISO 7637-3 for data-and signal pins.12.DisclaimerDevices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services.© 2002 Melexis NV. All rights reserved.For the latest version of this document. Go to our website atOr for additional information contact Melexis Direct:Europe and Japan: All other locations:Phone: +32 1367 0495 Phone: +1 603 223 2362E-mail: sales_europe@ E-mail: sales_usa@ISO/TS16949 and ISO14001 Certified。

AD8042资料

AD8042资料

G=1 RL = 2k⍀ TO +2.5V 5V
2.5V
0V
1V
1␮s
Figure 1. Output Swing: Gain = –1, VS = +5 V
AD8042
CONNECTION DIAGRAM 8-Lead Plastic DIP and SOIC
OUT1 1 –IN1 2 +IN1 3
APPLICATIONS Video Switchers Distribution Amplifiers A/D Driver Professional Cameras CCD Imaging Systems Ultrasound Equipment (Multichannel)
PRODUCT DESCRIPTION The AD8042 is a low power voltage feedback, high speed amplifier designed to operate on +3 V, +5 V or ± 5 V supplies. It has true single supply capability with an input voltage range extending 200 mV below the negative rail and within 1 V of the positive rail.
CLOSED–LOOP GAIN – dB
15
VS = +5V 12 G = +1
9
CL = 5pF RL = 2k⍀ TO 2.5V
6
3
0
–3
–6
–9
–12
–15 1
10

AD8062ARZ-RL中文资料

AD8062ARZ-RL中文资料

Low Cost, 300 MHzRail-to-Rail AmplifiersAD8061/AD8062/AD8063 Rev. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.FEATURESLow costSingle (AD8061), dual (AD8062)Single with disable (AD8063)Rail-to-rail output swingLow offset voltage: 6 mVHigh speed300 MHz, −3 dB bandwidth (G = 1)650 V/μs slew rate8.5 nV/√Hz at 5 V35 ns settling time to 0.1% with 1 V step Operates on 2.7 V to 8 V suppliesInput voltage range = −0.2 V to +3.2 V with V S = 5 Excellent video specs (R L = 150 Ω, G = 2)Gain flatness 0.1 dB to 30 MHz0.01% differential gain error0.04° differential phase error35 ns overload recoveryLow power6.8 mA/amplifier typical supply currentAD8063 400 μA when disabled APPLICATIONSImagingPhotodiode preampsProfessional video and camerasHand setsDVDs/CDsBase stationsFiltersADC driversCONNECTION DIAGRAMSNC–IN+IN–V S165-1V–V SSOUT2165-3 Figure 1. 8-Lead SOIC (R) Figure 2. 8-Lead SOIC (R)/MSOP (RM)–VV+INS–V–INV165-4 Figure 3. 6-Lead SOT-23 (RT) Figure 4. 5-Lead SOT-23 (RT)GENERAL DESCRIPTIONThe AD8061, AD8062, and AD8063 are rail-to-rail outputvoltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input common-mode voltage range and output voltage swing, making them easy to use on single supplies as low as 2.7 V.Despite being low cost, the AD8061, AD8062, and AD8063 provide excellent overall performance. For video applications their differential gain and phase errors are 0.01% and 0.04° into a 150 Ω load, along with 0.1 dB flatness out to 30 MHz. Addi-tionally, they offer wide bandwidth to 300 MHz along with 650 V/μs slew rate.The AD8061, AD8062, and AD8063 offer a typical low power of 6.8 mA/amplifier, while being capable of delivering up to50 mA of load current. The AD8063 has a power-down disable feature that reduces the supply current to 400 μA. These features make the AD8063 ideal for portable and battery-powered applications where size and power are critical.FREQUENCY (MHz)3–1211NORMALIZEDGAIN(dB)–610010–3–9k165-5 Figure 5. Small Signal Response, R F = 0 Ω, 50 ΩAD8061/AD8062/AD8063Rev. D | Page 2 of 20TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Absolute Maximum Ratings............................................................6 Maximum Power Dissipation.....................................................6 ESD Caution..................................................................................6 Typical Performance Characteristics.............................................7 Circuit Description.........................................................................14 Headroom Considerations........................................................14 Overload Behavior and Recovery............................................15 Capacitive Load Drive...............................................................15 Disable Operation......................................................................16 Board Layout Considerations...................................................16 Applications.....................................................................................17 Single-Supply Sync Stripper......................................................17 RGB Amplifier............................................................................17 Multiplexer..................................................................................18 Outline Dimensions.......................................................................19 Ordering Guide.. (20)REVISION HISTORY12/05—Rev. C to Rev. DUpdated Format..................................................................Universal Change to Features and General Description...............................1 Updated Outline Dimensions.......................................................19 Changes to Ordering Guide..........................................................20 5/01—Rev. B to Rev. CReplaced TPC 9 with new graph....................................................7 11/00—Rev. A to Rev. B 2/00—Rev. 0 to Rev. A11/99—Revision 0: Initial VersionAD8061/AD8062/AD8063SPECIFICATIONST A = 25°C, V S = 5 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 3 of 20AD8061/AD8062/AD8063T A = 25°C, V S = 3 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 4 of 20AD8061/AD8062/AD8063 T A = 25°C, V S = 2.7 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 5 of 20AD8061/AD8062/AD8063Rev. D | Page 6 of 20ABSOLUTE MAXIMUM RATINGSTable 4.Parameter Rating Supply Voltage 8 VInternal Power Dissipation 18-lead SOIC (R) 0.8 W 5-lead SOT-23 (RT) 0.5 W 6-lead SOT-23 (RT) 0.5 W 8-lead MSOP (RM) 0.6 W Input Voltage (Common-Mode) (−V S − 0.2 V) to (+V S − 1.8 V) Differential Input Voltage ±V SOutput Short-Circuit Duration Observe Power Derating CurvesStorage Temperature RangeR-8, RM-8, SOT-23-5, SOT-23-6−65°C to +125°C Operating Temperature Range −40°C to +85°CLead Temperature Range(Soldering 10 sec)300°C1Specification is for device in free air.8-Lead SOIC: θJA = 160°C/W; θJC = 56°C/W. 5-Lead SOT-23: θJA = 240°C/W; θJC = 92°C/W. 6-Lead SOT-23: θJA = 230°C/W; θJC = 92°C/W. 8-Lead MSOP: θJA = 200°C/W; θJC = 44°C/W.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.MAXIMUM POWER DISSIPATIONThe maximum power that can be safely dissipated by theAD806x is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junc-tion temperature of 175°C for an extended period can result in device failure. While the AD806x is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions.To ensure proper operation, it is necessary to observe the maximum power derating curves.AMBIENT TEMPERATURE (°C)2.01.0–50–40M A X I M U M P O W E R D IS S I P A T I O N (W )–307080901.50.5605040300–10–20201001065-006Figure 6. Maximum Power Dissipation vs. Temperature forAD8061/AD8062/AD8063ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.AD8061/AD8062/AD8063Rev. D | Page 7 of 20TYPICAL PERFORMANCE CHARACTERISTICSLOAD CURRENT (mA)00V O L T A G E D I F F E R E N T I A L F R O M V S0.20.40.60.81.01.201065-007Figure 7. Output Saturation Voltage vs. Load CurrentSINGLE POWER SUPPLY (V)1880P O W E R S U P P L Y C U R R E N T (m A )1614121064201065-0082875463Figure 8. I SUPPLY vs. V SUPPLYFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-009Figure 9. Small Signal Response, R F = 0 Ω, 50 ΩFREQUENCY (MHz)3–1211kN OR M A L I Z E D G A I N (d B )–6100100–3–901065-010Figure 10. Small Signal Frequency ResponseFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-011Figure 11. Large Signal Frequency ResponseFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-012Figure 12. Small Signal Frequency ResponseAD8061/AD8062/AD8063Rev. D | Page 8 of 20FREQUENCY (MHz)3–1211k N O R M A L I Z E D G A I N (d B )–6100100–3–901065-013Figure 13. Large Signal Frequency ResponseFREQUENCY (MHz)11kN O R M A L I Z E D G A I N (d B )1001001065-014Figure 14. 0.1 dB Flatness0.01 0.1 1 10 100 1k80604020–20–40200150100500–50–100–150–200–250–300O P E N -L O O P G A I N (d B )P H A S E (D e g r e e s )FREQUENCY (MHz)SERIES 2SERIES 101065-015Figure 15. AD8062 Open-Loop Gain and Phase vs. Frequency,V S = 5 V, R L = 1 kΩINPUT SIGNAL BIAS (V)0–50–1000.5H A R M O N I C D I S T O R TI O N (d B c )1.03.03.5–10–20–30–40–60–70–80–90 2.52.01.501065-016Figure 16. Harmonic Distortion for a 1 V p-p Signal vs. Input Signal DC BiasFREQUENCY (MHz, START = 10kHz, STOP = 30MHz)–700.01D I S T O R T I O N (d B )–40–50–60–80–90–100–1100.101065-01711050Figure 17. Harmonic Distortion for a 1 V p-p Output Signal vs.Input Signal DC BiasOUTPUT SIGNAL DC BIAS (V)–50–120D I S T O R T I O N (d B )–30–40–60–70–80–90432–110–100501065-018Figure 18. Harmonic Distortion vs. Output Signal DC BiasAD8061/AD8062/AD8063Rev. D | Page 9 of 20RTO OUTPUT (V p-p)–100D I S T O R T I O N (d B )1.03.03.5–40–50–60–70 2.52.01.5–90–80 4.04.5–11001065-019Figure 19. Harmonic Distortion vs. Output Signal AmplitudeFREQUENCY (MHz, START = 10kHz, STOP = 30MHz)D I S T O R T I O N (d B )0.010.1110–30–40–50–60–70–80–90–100–11001065-020Figure 20. Harmonic Distortion vs. FrequencyTIME (μs)0.70O U T P U T V O L T A G E (V )0.21.00.90.80.60.50.40.30.10.10.20.30.40.501065-021Figure 21. 400 mV Pulse ResponseD I F FE R E N T I A L P H A S E (D e g r e e s )0.020–0.02–0.04–0.06D I F FE R E N T I A L G A I N (%)0.010–0.01–0.02–0.04–0.0601065-022Figure 22. Differential Gain and Phase Error, G = 2,NTSC Input Signal, R L = 1 kΩ, V S = 5 V1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH0.040.030.020.0100.0100.0050–0.005–0.010–0.01–0.02D I F FE R E N TI A L P H A S E (D e g r e e s )D I F FE R E N T I A L G A I N (%)1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH01065-023Figure 23. Differential Gain and Phase Error, G = 2,NTSC Input Signal, R L = 150 Ω, V S = 5 VOUTPUT STEP AMPLITUDE (V)1000500S L E W R A T E (V /μs )7001.0900800600 1.52.02.53.0400100300200001065-024Figure 24. Slew Rate vs. Output Step AmplitudeAD8061/AD8062/AD8063Rev. D | Page 10 of 20OUTPUT STEP (V)14000 4.0S L E W R A T E (V /μs )2.0 2.51200100080060040020000.5 3.0 3.51.0 1.501065-025Figure 25. Slew Rate vs. Output Step Amplitude, G = 2, R L = 1 kΩ, V S = 5 VV O L T A G E N O I S E (nV H z )FREQUENCY (Hz)1k1010M1001k 100k 1M 10010110k 01065-026Figure 26. Voltage Noise vs. FrequencyFREQUENCY (Hz)1001010MC U R R E N T N O I S E (p A H z )1001k 100k 1M 10010k 101065-027Figure 27. Current Noise vs. Frequency20406080100120140160180200V O L T STIME (ns)01065-028Figure 28. Input Overload Recovery, Input Step = 0 V to 2 V20406080100120140160180200V O L T STIME (ns)01065-029Figure 29. Output Overload Recovery, Input Step = 0 V to 1 VFREQUENCY (MHz)0.01500C M R R (d B )0.110100–100–90–80–70–60–50–40–30–20–100101065-030Figure 30. CMRR vs. FrequencyAD8061/AD8062/AD8063P S R R (d B )FREQUENCY (MHz)5000.110100–100–90–80–70–60–50–40–30–20–10010.0101065-031Figure 31. ±PSRR vs. Frequency DeltaFREQUENCY (MHz)0.01500O U T P U T T O O U T P U T C R O S S T A L K (d B )0.110100–120–110–100–80–70–60–50–40–30–201–9001065-032Figure 32. AD8062 Crosstalk, V OUT = 2.0 V p-p, R L = 1 kΩ, G = 2, V S = 5 VFREQUENCY (MHz)011kD I S A B LE D I S O L A T I O N (d B )–2010010–10–30–50–40–60–70–80–90Figure 33. Disabled Output Isolation Frequency ResponseDISABLE VOLTAGE71.05.0I S U P P L Y (m A )1.52.0 2.5654310 3.02 3.5 4.0 4.501065-034Figure 34. DISABLE Voltage vs. Supply CurrentTIME (μs)62.0O U T P U T V O L T A G E (V )0.454320–10.811.2 1.601065-035Figure 35. DISABLE Function, Voltage = 0 V to 5 VFREQUENCY (MHz)1k0.11kI M P E D A N C E (Ω)1011010010010.10.0101065-036Figure 36. Output Impedance vs. Frequency,V OUT = 0.2 V p-p, R L = 1 kΩ, V S = 5 VAD8061/AD8062/AD8063Figure 37. Output Settling Time to 0.1%OUTPUT VOLTAGE STEP0.5S E T T L I N G T I M E (n s )1.01.52.0352.501065-038Figure 38. Settling Time vs. V OUTFigure 39. Output SwingFigure 40. 1 V Step Response01065-041Figure 41. 100 mV Step Response01065-042Figure 42. Output Rail-to-Rail SwingAD8061/AD8062/AD806301065-043Figure 44. 2 V Step ResponseFigure 43. 200 mV Step ResponseAD8061/AD8062/AD8063CIRCUIT DESCRIPTIONThe AD8061/AD8062/AD8063 family is comprised of high speed voltage feedback op amps. The high slew rate input stage is a true, single-supply topology, capable of sensing signals at or below the minus supply rail. The rail-to-rail output stage can pull within 30 mV of either supply rail when driving light loads and within 0.3 V when driving 150 Ω. High speed perform-ance is maintained at supply voltages as low as 2.7 V. HEADROOM CONSIDERATIONSThese amplifiers are designed for use in low voltage systems. To obtain optimum performance, it is useful to understand the behavior of the amplifier as input and output signals approach the amplifier’s headroom limits.The AD806x’s input common-mode voltage range extends from the negative supply voltage (actually 200 mV below this), or ground for single-supply operation, to within 1.8 V of the positive supply voltage. Thus, at a gain of 2, the AD806x can provide full rail-to-rail output swing for supply voltage as low as 3.6 V, assuming the input signal swing from −V S (or ground) to +V S/2. At a gain of 3, the AD806x can provide a rail-to-rail output range down to 2.7 V total supply voltage.Exceeding the headroom limit is not a concern for any inverting gain on any supply voltage, as long as the reference voltage at the amplifier’s positive input lies within the amplifier’s input common-mode range.The input stage is the headroom limit for signals when the amplifier is used in a gain of 1 for signals approaching the positive rail. Figure 45 shows a typical offset voltage vs.input common-mode voltage for the AD806x amplifier ona 5 V supply. Accurate dc performance is maintained from approximately 200 mV below the minus supply to within1.8 V of the positive supply. For high-speed signals, however, there are other considerations. Figure 46 shows −3 dB bandwidth vs. dc input voltage for a unity-gain follower. As the common-mode voltage approaches the positive supply,the amplifier holds together well, but the bandwidth begins to drop at 1.9 V within +V S.This manifests itself in increased distortion or settling time. Figure 16 plots the distortion of a 1 V p-p signal with theAD806x amplifier used as a follower on a 5 V supply vs. signal common-mode voltage. Distortion performance is maintained until the input signal center voltage gets beyond 2.5 V, as the peak of the input sine wave begins to run into the upper common-mode voltage limit.V CM (V)VOS(mV)–4.0–3.6–3.2–2.8–2.4–2.0–1.6–1.2–0.8–0.4–0.500.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0165-45 Figure 45. V OS vs. Common-Mode Voltage, V S = 5 VFREQUENCY (MHz)2–80.1GAIN(dB)–4–2–61101001k10k Figure 46. Unity-Gain Follower Bandwidth vs. Input Common Mode, V S = 5 V Higher frequency signals require more headroom than lower frequencies to maintain distortion performance. Figure 47 illustrates how the rising edge settling time for the amplifier configured as a unity-gain follower stretches out as the top of a 1 V step input approaches and exceeds the specified input common-mode voltage limit.For signals approaching the minus supply and inverting gain and high positive gain configurations, the headroom limit is the output stage. The AD806x amplifiers use a common emitter style output stage. This output stage maximizes the available output range, limited by the saturation voltage of the output transistors. The saturation voltage increases with the drive current the output transistor is required to supply, due to the output transistors’ collector resistance. The saturation voltage is estimated using the equation V SAT = 25 mV + I O × 8 Ω, where I O is the output current, and 8 Ω is a typical value for the output transistors’ collector resistance.AD8061/AD8062/AD8063TIME (ns)2.0O U T P U T V O L T A G E (V )2.22.42.62.83.03.23.43.64812162024283201065-047Figure 47. Output Rising Edge for 1 V Step at Input Headroom Limits, G = 1, V S = 5 V, 0 VAs the saturation point of the output stage is approached, the output signal shows increasing amounts of compression and clipping. As in the input headroom case, the higher frequency signals require a bit more headroom than lower frequency signals. Figure 16, Figure 17, and Figure 18 illustrate this point, plotting typical distortion vs. output amplitude and bias for gains of 2 and 5.OVERLOAD BEHAVIOR AND RECOVERYInputThe specified input common-mode voltage of the AD806x is −200 mV below the negative supply to within 1.8 V of the positive supply. Exceeding the top limit results in lower bandwidth and increased settling time as seen in Figure 46 and Figure 47. Pushing the input voltage of a unity-gain follower beyond 1.6 V within the positive supply leads to the behavior shown in Figure 48—an increasing amount of output error and much increased settling time. Recovery time from input voltages 1.6 V or closer to the positive supply is approxi-mately 35 ns, which is limited by the settling artifacts caused by transistors in the input stage coming out of saturation.The AD806x family does not exhibit phase reversal, even for input voltages beyond the voltage supply rails. Going more than 0.6 V beyond the power supplies will turn on protection diodes at the input stage, which will greatly increase the device’s current draw.TIME (ns)2.1O U T P U T V O L T A G E (V )2.31002.52.72.93.13.33.53.720030040050060001065-048Figure 48. Pulse Response for G = 1 Follower, Input Step Overloading the Input StageOutputOutput overload recovery is typically within 40 ns after theamplifier’s input is brought to a nonoverloading value. Figure 49 shows output recovery transients for the amplifier recovering from a saturated output from the top and bottom supplies to a point at midsupply.TIME (ns)–0.2I N P U T A N D O U T P U T V O L T A G E (V )0.20.61.01.41.82.22.63.03.43.84.24.65.010203040506070Figure 49. Overload Recovery, G = −1, V S = 5 VCAPACITIVE LOAD DRIVEThe AD806x family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance creates a pole in the amplifier’s feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are as follows:1. Use a small resistor in series with the amplifier’s output andthe load capacitance. 2. Reduce the bandwidth of the amplifier’s feedback loop byincreasing the overall noise gain.AD8061/AD8062/AD8063Figure 50 shows a unity-gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.01065-052V OV IN01065-050Figure 34 shows the AD8063 supply current vs. DISABLEvoltage. Figure 35 plots the output seen when the AD8063 input is driven with a 10 MHz sine wave, and the DISABLE is toggled from 0 V to 5 V , illustrating the part’s turn-on and turn-off time. Figure 33 shows the input/output isolation response with the AD8063 shut off.Voltage feedback amplifiers like those in the AD806x family are able to drive more capacitive load without excessive peaking when used in higher gain configurations, because the increased noise gain reduces the bandwidth of the overall feedback loop. Figure 51 plots the capacitance that produces 30% overshoot vs.noise gain for a typical amplifier.CLOSED-LOOP GAIN10k1k1012C A P A C I T I V E L O A D (p F )10034501065-051BOARD LAYOUT CONSIDERATIONSMaintaining the high speed performance of the AD806x family requires the use of high speed board layout techniques and low parasitic components.The PCB should have a ground plane covering unused portions of the component side of the board to provide a low impedance path. Remove the ground plane near the package to reduce parasitic capacitance.Proper bypassing is critical. Use a ceramic 0.1 μF chip capacitor to bypass both supplies. Locate the chip capacitor within 3 mm of each power pin. Additionally, connect in parallel a 4.7 μF to 10 μF tantalum electrolytic capacitor to provide charge for fast, large signal changes at the output.Figure 51. Capacitive Load vs. Closed-Loop GainMinimizing parasitic capacitance at the amplifier’s inverting input pin is very important. Locate the feedback resistor close to the inverting input pin. The value of the feedback resistor may come into play—for instance, 1 kΩ interacting with 1 pF of parasitic capacitance creates a pole at 159 MHz. Use stripline design techniques for signal traces longer than 25 mm. Design them with either 50 Ω or 75 Ω characteristic impedance and proper termination at each end.DISABLE OPERATIONThe internal circuit for the AD8063 disable function is shown in Figure 52. When the DISABLE node is pulled below 2 V from the positive supply, the supply current decreases from typically 6.5 mA to under 400 μA, and the AD8063 output will enter a high impedance state. If the DISABLE node is not connected and allowed to float, the AD8063 stays biased at full power.AD8061/AD8062/AD8063APPLICATIONSSINGLE-SUPPLY SYNC STRIPPERWhen a video signal contains synchronization pulses, it is sometimes desirable to remove them prior to performing certain operations. In the case of A-to-D conversion, the sync pulses consume some of the dynamic range, so removing them increases the converter’s available dynamic range for the video information.Figure 53 shows a basic circuit for creating a sync stripper using the AD8061 powered by a single supply. When the negative supply is at ground potential, the lowest potential to which the output can go is ground. This feature is exploited to create a waveform whose lowest amplitude is the black level of the video and does not include the sync level.Ω01065-053In this case, the input video signal has its black level at ground, so it comes out at ground at the input. Since the sync level is below the black level, it will not show up at the output. However, all of the active video portion of the waveform will be amplified by a gain of two and then be normalized to unity gain by the back-terminated transmission line. Figure 54 is an oscilloscope plot of the input and output waveforms.01065-054INPUTOUTPUT12Video Sync Stripper Using an AD8061Some video signals with sync are derived from single-supply devices, such as video DACs. These signals can contain sync, but the whole waveform is positive, and the black level is not at ground but at some positive voltage.The circuit can be modified to provide the sync stripping function for such a waveform. Instead of connecting R G to ground, connect it to a dc voltage that is two times the black level of the input signal. The gain from the +input to the output is two, which means the black level will be amplified by two to the output. However, the gain through R G is –unity to the output. It takes a dc level of twice the input black level to shift the black level to ground at the output. When this occurs, the sync will be stripped, and the active video will be passed as in the ground-referenced case.01065-055RGB AMPLIFIERMost RGB graphics signals are created by video DAC outputs that drive a current through a resistor to ground. At the video black level, the current goes to zero, and the voltage of the video is also zero. Before the availability of high speed rail-to rail op amps, it was essential that an amplifier have a negative supply to amplify such a signal. Such an amplifier is necessary if one wants to drive a second monitor from the same DAC outputs. However, high speed, rail-to-rail output amplifiers like the AD8061 and AD8062 accept ground level input signals and output ground level signals. They are used as RGB signal amplifiers. A combination of the AD8061 (single) and the AD8062 (dual) amplifies the three video channels of an RGB system. Figure 55 shows a circuit that performs this function.AD8061/AD8062/AD8063The SELECT signal and the output waveforms for this circuit are shown in Figure 57. For synchronization clarity, two differ-ent frequency synthesizers, whose time bases are locked to each other, generate the signals.MULTIPLEXERThe AD8063 has a disable pin used to power down the ampli-fier to save power or to create a mux circuit. If two (or more) AD8063 outputs are connected together, and only one is enabled, then only the signal of the enabled amplifier will appear at the output. This configuration is used to select from various input signal sources. Additionally, the same input signal is applied to different gain stages, or differently tuned filters, to make a gain-step amplifier or a selectable frequency amplifier.01065-057Figure 56 shows a schematic of two AD8063s used to create a mux that selects between two inputs. One of these is a 1 V p-p, 3 MHz sine wave; the other is a 2 V p-p, 1 MHz sine wave.3MHz1MHzFigure 56. Two-to-One Multiplexer Using Two AD8063s。

锐能微电测芯片选型指南

锐能微电测芯片选型指南
深圳市锐能微科技有限公司第2页版本 1.2
目录
锐能微电测芯片选型指南
锐能微电测芯片选型指南 ......................................................................................................................................... 1 1. SOC 芯片 RN721X ............................................................................................................................................. 4
锐能微电测芯片选型指南
锐能微电测芯片选型指南
V1.1
日期: 2014-4-3
V1.2
日期: 2014-9-10
深圳市锐能微科技有限公司
第1 页
版本 1.2
版本号 V1.0 V1.1
V1.2
修改时间 2014-3-10 2014-4-3
2014-9-10
锐能微电测芯片选型指南
版本更新说明
修改内容 创建 ①增加 3.2 章 RN8207C 产品说明;②增加 2.5 节 RN7302 典型应用。③修订 3.1.5 节典型应用。 表 1-1,修改 RN7211 不支持硬件温补 RTC
1.1 简介 .............................................................................................................................................................. 4 1.2 芯片特性 ...................................................................................................................................................... 5 1.3 系统框图 ...................................................................................................................................................... 7 1.4 管脚排列 ...................................................................................................................................................... 7 1.5 电气特性 .................................................................................................................................................... 12 2. 三相计量芯片 RN7302........................................................................................................................................ 15 2.1 简介 ............................................................................................................................................................ 15 2.2 芯片特性 .................................................................................................................................................... 15 2.3 功能框图 .................................................................................................................................................... 16 2.4 管脚排列 .................................................................................................................................................... 17 2.5 典型应用 .................................................................................................................................................... 19 2.6 电气特性 .................................................................................................................................................... 19 3. 单相计量芯片 RN820X....................................................................................................................................... 22

HC32F002系列32位ARM Cortex-M0+微控制器用户手册说明书

HC32F002系列32位ARM Cortex-M0+微控制器用户手册说明书

HC32F002系列 32位 ARM ® Cortex ®-M0+ 微控制器 用户手册Beta 版本,仅供参考 P r el i m i n a r y t o 立创商城声 明➢ 华大半导体有限公司(以下简称:“HDSC”)保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。

用户可在下单前获取最新相关信息。

HDSC 产品依据购销基本合同中载明的销售条款和条件进行销售。

➢ 用户对HDSC 产品的选择和使用承担全部责任,用户将HDSC 产品用于其自己或指定第三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。

➢ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。

➢ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。

➢ 任何带有“®”或“™”标识的图形或字样是HDSC 的商标。

所有其他在HDSC 产品上显示的产品或服务名称均为其各自所有者的财产。

➢ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利P r el i m i n a r y t o 立创商城目 录声 明 (2)目 录 (3)产品特性 低功耗 MCU (22)1 功能模块 (23)1.1功能模块框图 ...................................................................................................................................... 23 1.232 位 Cortex M0+ 内核 .................................................................................................................... 24 1.3 存储器.. (24)1.3.1 18 Kbytes FLASH ....................................................................................................................... 24 1.3.2 2 Kbytes RAM ............................................................................................................................. 24 1.4 时钟系统.............................................................................................................................................. 24 1.5 工作模式.............................................................................................................................................. 25 1.6 端口控制器 GPIO .............................................................................................................................. 25 1.7 中断控制器 NVIC .............................................................................................................................. 25 1.8 复位控制器 RESET ........................................................................................................................... 25 1.9 定时器 TIM ........................................................................................................................................ 25 1.10 看门狗 WDT ...................................................................................................................................... 26 1.11 低功耗同步异步收发器 LPUART .................................................................................................... 26 1.12 串行外设接口 SPI .............................................................................................................................. 27 1.13 I2C 总线.............................................................................................................................................. 27 1.14 时钟校准器 CTRIM ........................................................................................................................... 27 1.15 蜂鸣器 Buzzer .................................................................................................................................... 28 1.16 模数转换器 ADC ............................................................................................................................... 28 1.17 低电压检测器 LVD ............................................................................................................................ 28 1.18 嵌入式调试系统 .................................................................................................................................. 29 1.19 编程模式.............................................................................................................................................. 29 1.20 器件电子签名 ...................................................................................................................................... 29 1.21 高安全性.............................................................................................................................................. 29 2 引脚配置及功能 ................................................................................................................................................. 302.1 引脚配置图.......................................................................................................................................... 30 2.2 引脚功能说明 ...................................................................................................................................... 33 2.3 模块信号说明 ...................................................................................................................................... 35 3 系统结构 ............................................................................................................................................................. 363.1概述...................................................................................................................................................... 36 3.2存储器和模块地址分配 ...................................................................................................................... 37 4工作模式 ............................................................................................................................................................. 38 4.1工作模式概述 ...................................................................................................................................... 38 4.2工作模式切换 ...................................................................................................................................... 38 4.3运行模式(Active Mode ) ................................................................................................................. 41 4.4休眠模式(Sleep Mode ) .................................................................................................................. 41 4.5 深度休眠模式(Deep Sleep Mode ) ................................................................................................. 41 P r el i m i n a r y t o 立创商城4.7寄存器.................................................................................................................................................. 43 4.7.1 系统控制寄存器(SCB_SCR ) ................................................................................................ 43 5 系统控制器(SYSCTRL ) . (44)5.1 系统时钟介绍 (44)5.1.1 时钟架构图 (45)5.1.2 内部高速 RC 时钟 RCH (45)5.1.3 内部低速 RC 时钟 RCL (46)5.1.4 外部输入时钟EXTCLK (46)5.2系统时钟切换 (47)5.2.1 标准的时钟切换流程 (47)5.2.2 RCH 不同输出频率间切换流程 (48)5.2.3 从其它时钟切换到RCL 示例 (48)5.2.4 从其它时钟切换到RCHCLKD 示例 (49)5.3 片内外设时钟控制 (50)5.4 中断唤醒控制 ..................................................................................................................................... 51 5.4.1 从深度休眠模式唤醒后执行中断服务程序的方法 ................................................................. 51 5.4.2 从深度休眠模式唤醒后不执行中断服务程序的方法 ............................................................. 51 5.4.3 退出休眠 ..................................................................................................................................... 52 5.5 寄存器 ................................................................................................................................................. 54 5.5.1 系统控制寄存器0(CR0) ....................................................................................................... 55 5.5.2 系统控制寄存器1(CR1) ....................................................................................................... 56 5.5.3 系统控制寄存器2(CR2) ....................................................................................................... 57 5.5.4 系统控制寄存器3(CR3) ....................................................................................................... 58 5.5.5 RCH 控制寄存器(RCH ) ....................................................................................................... 59 5.5.6 RCL 控制寄存器(RCL ) ........................................................................................................ 60 5.5.7 片内外设时钟控制寄存器0(PeriClkEn0) ............................................................................ 61 5.5.8 片内外设时钟控制寄存器1(PeriClkEn1) ............................................................................ 63 5.5.9 调试模式模块工作状态控制寄存器(DebugActive ) ............................................................ 64 6 复位控制器(RESET ) ..................................................................................................................................... 656.1复位控制器介绍 .................................................................................................................................. 65 6.1.1 上电下电复位POR .................................................................................................................... 65 6.1.2 外部复位管脚复位 ..................................................................................................................... 66 6.1.3 WDT 复位 ................................................................................................................................... 66 6.1.4 LVD 低电压复位 ........................................................................................................................ 66 6.1.5 Cortex-M0+ SYSRESETREQ 复位 ............................................................................................ 66 6.1.6 Cortex-M0+ LOCKUP 复位 ....................................................................................................... 66 6.2寄存器.................................................................................................................................................. 67 6.2.1 复位标识寄存器(Reset_Flag ) ............................................................................................... 67 6.2.2 片内外设复位控制寄存器0(PeriReset0) ............................................................................. 69 6.2.3 片内外设复位控制寄存器1(PeriReset1) ............................................................................. 71 7中断控制器(NVIC ) ....................................................................................................................................... 72 P r el i m i n a r y t o 立创商城7.2中断优先级.......................................................................................................................................... 73 7.3中断向量表.......................................................................................................................................... 74 7.4中断输入和挂起行为 .......................................................................................................................... 75 7.5中断等待.............................................................................................................................................. 78 7.6中断源.................................................................................................................................................. 79 7.7中断结构图.......................................................................................................................................... 80 7.8 软件基本操作 .. (82)7.8.1 外部中断使能 (82)7.8.2 NVIC 中断使能和清除使能 (82)7.8.3 NVIC 中断挂起和清除挂起 (82)7.8.4 NVIC 中断优先级 (82)7.8.5 NVIC 中断屏蔽 (83)7.9 寄存器 (84)7.9.1 中断使能设置寄存器(NVIC_ISER ) (84)7.9.2 中断使能清除寄存器(NVIC_ICER ) (85)7.9.3 中断挂起状态设置寄存器(NVIC_ISPR ) (85)7.9.4 中断挂起状态清除寄存器(NVIC_ICPR ) (86)7.9.5 中断优先级寄存器(NVIC_IPR0) (87)7.9.6 中断优先级寄存器(NVIC_IPR1) (88)7.9.7 中断优先级寄存器(NVIC_IPR2) (89)7.9.8 中断优先级寄存器(NVIC_IPR3) (90)7.9.9 中断优先级寄存器(NVIC_IPR4) (91)7.9.10 中断优先级寄存器(NVIC_IPR5) (92)7.9.11 中断优先级寄存器(NVIC_IPR6) (93)7.9.12 中断优先级寄存器(NVIC_IPR7) (94)7.9.13 中断屏蔽特殊寄存器(PRIMASK ) (95)8 通用输入输出端口控制器(GPIO ) ................................................................................................................ 96 8.1 简介 (96)8.2 主要特性 (96)8.3功能描述.............................................................................................................................................. 97 8.3.1 端口电路框图 ............................................................................................................................. 97 8.3.2 端口模式配置 ............................................................................................................................. 98 8.3.3 端口复位状态 ............................................................................................................................. 99 8.3.4 端口模拟功能 ............................................................................................................................. 99 8.3.5 端口通用输入输出功能 ........................................................................................................... 100 8.3.5.1 输入模式 ......................................................................................................................... 101 8.3.5.2 输出模式 ......................................................................................................................... 102 8.3.6 端口复用功能 ........................................................................................................................... 103 8.3.7 端口时钟输出 ........................................................................................................................... 105 8.3.7.1 输出HCLK ...................................................................................................................... 105 8.3.7.2 输出TCLK ...................................................................................................................... 105 P r el i m i n a r y t o 立创商城8.3.8 端口外部中断 (106)8.4 寄存器描述 (107)8.4.1 寄存器列表 (107)8.4.2 端口数模配置寄存器(GPIOx_ADS ) (109)8.4.3 端口方向配置寄存器(GPIOx_DIR) (110)8.4.4 端口输出类型寄存器(GPIOx_OpenDrain ) (111)8.4.5 端口上拉寄存器(GPIOx_PU ) (111)8.4.6 端口数据输入寄存器(GPIOx_IN ) (112)8.4.7 端口数据输出寄存器(GPIOx_OUT ) (112)8.4.8 端口复位寄存器 (GPIOx_BRR) (113)8.4.9 端口置位复位寄存器(GPIOx_BSRR ) (114)8.4.10 端口复用功能低位寄存器(GPIOx_AFRL ) (115)8.4.11 端口高电平中断使能配置寄存器(GPIOx_HIGHIE) (116)8.4.12 端口低电平中断使能配置寄存器(GPIOx_LOWIE) (116)8.4.13 端口上升沿中断使能配置寄存器(GPIOx_RISEIE) (117)8.4.14 端口下降沿中断使能配置寄存器(GPIOx_FALLIE) (117)8.4.15 端口中断状态寄存器(GPIOx_IFR) (118)8.4.16 端口中断清除寄存器(GPIOx_ICR) (119)8.4.17 端口辅助功能配置寄存器1(GPIOx_CR1) (120)8.4.18 端口辅助功能配置寄存器4 (GPIO_CR4) (121)9 FLASH 控制器(FLASH )............................................................................................................................. 122 9.1 概述. (122)9.2 容量划分 (122)9.3 读等待周期 (122)9.4 FLASH 操作(读、写、擦) (123)9.4.1 页擦除(Sector Erase ) ........................................................................................................... 123 9.4.2 全片擦除(Chip Erase ) ......................................................................................................... 123 9.4.3 写操作(Program ) ................................................................................................................. 124 9.4.4 读操作(Read ) ....................................................................................................................... 126 9.5 FLASH 安全保护 .............................................................................................................................. 127 9.5.1 页面擦写保护 ........................................................................................................................... 127 9.5.2 PC 地址擦写保护 ..................................................................................................................... 127 9.5.3 寄存器写保护 ........................................................................................................................... 127 9.5.4 数据读出保护 ........................................................................................................................... 128 9.6寄存器描述........................................................................................................................................ 129 9.6.1 控制寄存器列表 ....................................................................................................................... 129 9.6.2 控制寄存器(FLASH_CR ) ................................................................................................... 130 9.6.3 中断标志寄存器(FLASH_IFR ) .......................................................................................... 131 9.6.4 中断标志清除寄存器(FLASH_ICLR )................................................................................ 131 9.6.5 序列寄存器(FLASH_BYPASS ) .......................................................................................... 132 9.6.6 擦写保护寄存器(FLASH_SLOCK ) ................................................................................... 132 9.6.7 读等待周期寄存器(FLASH_WAIT ) ................................................................................... 133 P r el i m i n a r y t o 立创商城9.6.8 读保护状态寄存器(FLASH_LockState ) (133)10 RAM 控制器(RAM ) (134)10.1概述.................................................................................................................................................... 134 10.2 功能描述.. (134)10.2.1 RAM 地址范围 (134)10.2.2 读写位宽 (134)11 基本定时器(BTIM ) (135)11.1概述.................................................................................................................................................... 135 11.2主要特性............................................................................................................................................ 135 11.3 功能描述.. (136)11.3.1 功能框图................................................................................................................................... 136 11.3.2 滤波单元................................................................................................................................... 136 11.3.3 计数单元................................................................................................................................... 136 11.3.4 定时器模式............................................................................................................................... 137 11.3.5 计数器模式............................................................................................................................... 138 11.3.6 触发启动模式 ........................................................................................................................... 138 11.3.7 门控模式................................................................................................................................... 139 11.3.8 定时器级联............................................................................................................................... 140 11.4 寄存器描述........................................................................................................................................ 141 11.4.1 重载寄存器(BTIMx_ARR )(x=3,4,5) .................................................................................. 142 11.4.2 计数寄存器(BTIMx_CNT )(x=3,4,5) .................................................................................. 142 11.4.3 控制寄存器(BTIMx_CR ) (x=3,4,5)................................................................................... 143 11.4.4 中断使能(BTIMx_IER ) (x=3,4,5) ..................................................................................... 144 11.4.5 中断标志寄存器(BTIMx_IFR ) (x=3,4,5) .......................................................................... 144 11.4.6 中断标志清除寄存器(BTIMx_ICR )(x=3,4,5) ................................................................... 145 11.4.7 复合中断标志寄存器(BTIM345_AIFR ) ............................................................................ 146 11.4.8 复合中断标志清除寄存器(BTIM345_AICR ) ................................................................... 147 12 通用定时器(GTIM ) ..................................................................................................................................... 148 12.1 概述.................................................................................................................................................... 148 12.2 主要特性............................................................................................................................................ 148 12.3功能描述............................................................................................................................................ 149 12.3.1 功能框图 .................................................................................................................................. 149 12.3.2 滤波单元 .................................................................................................................................. 149 12.3.3 计数单元 .................................................................................................................................. 150 12.3.4 定时器模式 .............................................................................................................................. 151 12.3.5 计数器模式 .............................................................................................................................. 151 12.3.6 触发启动模式........................................................................................................................... 151 12.3.7 门控模式 .................................................................................................................................. 152 12.3.8 比较捕获功能........................................................................................................................... 153 12.3.8.1 捕获功能........................................................................................................................ 153 12.3.8.2 比较功能........................................................................................................................ 154 12.3.9 定时器级联 .............................................................................................................................. 155 P r el i m i n a r y t o 立创商城12.3.10 片内外设互联 (155)12.4 寄存器描述 (156)12.4.1 重载寄存器(GTIM_ARR ) (157)12.4.2 计数寄存器(GTIM_CNT ) (157)12.4.3 控制寄存器1(GTIM_CR1) (158)12.4.4 控制寄存器0(GTIM_CR0) (159)12.4.5 中断使能控制寄存器(GTIM_IER ) (160)12.4.6 中断标志寄存器(GTIM_IFR ) (161)12.4.7 中断标志清除寄存器(GTIM_ICR ) (162)12.4.8 比较捕获控制寄存器(GTIM_CMMR ) (163)12.4.9 比较捕获寄存器(GTIM_CCRy )(y=0,1,2,3) (164)13 高级定时器(ATIM ) ..................................................................................................................................... 165 13.1 概述. (165)13.2 主要特性 (165)13.3功能描述 (167)13.3.1 定时器时钟 .............................................................................................................................. 167 13.3.2 定时计数器 .............................................................................................................................. 167 13.3.3 定时器预分频........................................................................................................................... 167 13.3.4 模式0 计数定时器功能 .......................................................................................................... 168 13.3.4.1 功能框图........................................................................................................................ 168 13.3.4.2 计数波形........................................................................................................................ 169 13.3.4.3 计数功能........................................................................................................................ 170 13.3.4.4 定时功能........................................................................................................................ 170 13.3.4.5 时序图............................................................................................................................ 170 13.3.4.6 Buzzer 功能 .................................................................................................................... 171 13.3.4.7 设置示例........................................................................................................................ 171 13.3.5 模式1 脉宽测量PWC ............................................................................................................ 172 13.3.5.1 PWC 功能框图 ............................................................................................................... 172 13.3.5.2 PWC 波形测量时序图 ................................................................................................... 173 13.3.5.3 PWC 单次触发模式 ....................................................................................................... 175 13.3.5.1 设置示例........................................................................................................................ 175 13.3.6 模式2/3比较捕获模式 ........................................................................................................... 177 13.3.6.1 计数器............................................................................................................................ 177 13.3.6.2 计数器波形.................................................................................................................... 178 13.3.6.3 重复计数........................................................................................................................ 181 13.3.6.4 数据缓存........................................................................................................................ 183 13.3.6.5 比较输出OCREF .......................................................................................................... 186 13.3.6.6 独立PWM 输出 ............................................................................................................ 189 13.3.6.7 互补PWM 输出 ............................................................................................................ 190 13.3.6.8 有死区的PWM 输出 .................................................................................................... 191 13.3.6.9 单脉冲输出.................................................................................................................... 192 13.3.6.10 比较中断...................................................................................................................... 193 P r el i m i n a r y t o 立创商城13.3.6.11 捕获输入 (194)13.3.6.12 设置示例 (197)13.3.7 模式2/3从模式 (200)13.3.7.1 门控计数 (200)13.3.7.2 触发功能 (201)13.3.7.3 复位计数 (201)13.3.8 正交编码计数功能 (202)13.3.9 Timer 触发ADC (204)13.3.10 刹车控制 (205)13.3.11 定时器互联 (205)13.3.12 CH0B 捕获输入互联 (205)13.4寄存器描述 (206)13.4.1 模式0寄存器描述................................................................................................................... 207 13.4.1.1 16位模式重载寄存器(A TIMx_ARR ) . (207)13.4.1.2 16位模式计数寄存器(A TIMx_CNT ) (207)13.4.1.3 32位模式计数寄存器(A TIMx_CNT32) (208)13.4.1.4 控制寄存器(A TIMx_M0CR ) (209)13.4.1.5 中断标志寄存器(A TIMx_IFR ) (211)13.4.1.6 中断标志清除寄存器(A TIMx_ICLR ) (211)13.4.1.7 死区时间寄存器(A TIMx_DTR ) (212)13.4.2 模式1寄存器描述................................................................................................................... 213 13.4.2.1 16位模式计数寄存器(A TIMx_CNT ) . (213)13.4.2.2 控制寄存器(A TIMx_M1CR ) (214)13.4.2.3 中断标志寄存器(A TIMx_IFR ) (216)13.4.2.4 中断标志清除寄存器(A TIMx_ICLR ) (216)13.4.2.5 主从模式控制寄存器(A TIMx_MSCR ) (217)13.4.2.6 输出控制滤波(A TIMx_FLTR ) (218)13.4.2.7 控制寄存器(A TIMx_CR0) (219)13.4.2.8 比较捕获寄存器 (A TIMx_CCR0A ) (219)13.4.3 模式2,3寄存器描述................................................................................................................ 220 13.4.3.1 16位模式重载寄存器(A TIMx_ARR ) . (220)13.4.3.2 16位模式计数寄存器(A TIMx_CNT ) (220)13.4.3.3 控制寄存器(A TIMx_M23CR ) (221)13.4.3.4 中断标志寄存器(A TIMx_IFR ) (224)13.4.3.5 中断标志清除寄存器(A TIMx_ICLR ) (226)13.4.3.6 主从模式控制寄存器(A TIMx_MSCR ) (227)13.4.3.7 输出控制/输入滤波(A TIMx_FLTR ) (229)13.4.3.8 ADC 触发控制寄存器(A TIMx_ADTR ) (232)13.4.3.9 通道0控制寄存器(A TIMx_CRCH0) (233)13.4.3.10 通道1/2控制寄存器(TIM3_CRCH1/2) (235)13.4.3.11 死区时间寄存器(A TIMx_DTR ) (237)13.4.3.12 重复周期设置值寄存器(A TIMx_RCR ) ................................................................ 238 P r e l i m i n a r y t o 立创商城。

AD8062中文资料

AD8062中文资料
OUTPUT CHARACTERISTICS Output Voltage Swing—Load Resistance Is Terminated at Midsupply Output Current Capacitive Load Drive, VOUT = 0.8 V
POWER-DOWN DISABLE Turn-On Time Turn-Off Time DISABLE Voltage—Off DISABLE Voltage—On
NC = NO CONNECT
AD8063
VOUT 1
6 +VS
–VS 2
5 DISABLE
+IN 3
4 –IN
(Not to Scale)
SOIC-8 (R) and ␮SOIC (RM)
SOT-23-5 (RT)
VOUT1 1 –IN1 2 +IN1 3
AD8062
8 +VS 7 VOUT2 6 –IN2
Input Offset Voltage Drift Input Bias Current
Input Offset Current Open-Loop Gain
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio
f = 100 kHz
1.2
G = 2, RL = 150 Ω
0.01
G = 2, RL = 150 Ω
0.04
f = 10 MHz
28
f = 5 MHz
62
MHz MHz MHz MHz V/µs V/µs ns

ARM仿真器使用手册

ARM仿真器使用手册
最新的 USB 接口仿真器,解决笔记本没有并口的问题
上海勤旺电子技术有限公司 Intel XScale 实测芯片:PXA250,IXP420,IXP422,IOP321 80200 等 ARM7EJ-S ARM740T ARM9E-S ARM922T ARM966E-S ARM1020E 测试芯片:ARM 通用平台以及用户自己定制的 SoC 芯片 支持的操作平台: Windows 95、98、NT、2000、XP、MeRedHat Linux 6.2 / 7.1 支持的开发环境: IAR EWARM,MULTI2000,ADS1.2,ADS1.1,SDT2.51,MetaWare ARM Product 4.5a 等 所有支 RDI 协议调试的开发环境。 使用方法: 通过 20 芯带线 JTAG 连接目标板,目标板可以有一个 ARM 内核 CPU,或者几个 ARM 内核 CPU。witrace-ice 通过 DB25 连线连接计算机并口,同时计算机运行服务程序,开 发者可以 直接在这台计算机进行开发,也可以在网络中其他计算机上进行开发,可以同 时多人进 行开发,每个开发者可以同时对目标板上不同内核进行调试。
出现如下界面:
最新的 USB 接口仿真器,解决笔记本没有并口的问题
上海勤旺电子技术有限公司 导入配置文件。
最新的 USB 接口仿真器,解决笔记本没有并口的问题
上海勤旺电子技术有限公司 在出现的文件选择筐中选择 S3C2410 的配置文件。
点击打开。
最新的 USB 接口仿真器,解决笔记本没有并口的问题
上海勤旺电子技术有限公司 这时,打开 ADS,就可以开始你的 2410 的调试之旅啦。
最新的 USB 接口仿真器,解决笔记本没有并口的问题
点击红圈所示位置,出现如下界面:

AD S 芯片手册 中文

AD S 芯片手册 中文
应用
直流和交流伺服电机控制 编码器仿真 电动助力转向 电动汽车 集成的启动发电机/交流发电机 汽车运动检测与控制
概述
AD2S1210是一款10位至16位分辨率旋变数字转换器,集成 片上可编程正弦波振荡器,为旋变器提供正弦波激励。
转换器的正弦和余弦输入端允许输入3.15 V p-p ± 27%、频率 为2 kHz至20 kHz范围内的信号。Type II伺服环路用于跟踪 输入信号,并将正弦和余弦输入端的信息转换为输入角度 和速度所对应的数字量。最大跟踪速率为3125 rps。
旋变-数字转换 ....................................................................... 16 故障检测电路 ......................................................................... 16 片上可编程正弦波振荡器 ................................................... 18 合成参考生成 ......................................................................... 18 AD2S1210配置............................................................................. 20 工作模式................................................................................. 20 寄存器映射................................................................................... 21 位置寄存器 ............................................................................. 21 速度寄存器 ............................................................................. 21

深圳市英锐恩科技有限公司车载充电芯片说明书

深圳市英锐恩科技有限公司车载充电芯片说明书

一、 车载充电器基本原理1、本质上是DC-DC 降压,小轿车车载电压为12V,卡车车载电压为24V,手机或导航等消费类电子充电器需要的电压为5V,车载充电器本质上就是DC-24V/12V 转为5V。

二、车载充电器IC 型号说明该系列车充IC 提供稳定的电压输出,可编程软启动,转换效率可达90%以上,内部集成VDD 过压保护、欠压保护、过流保护等功能。

型号 输入参数 车充方案 特 性 频率电感封装EN301S 4.75V-30V 5V/1.6A 可替代CX8508,内置MOS 340Khz 15uHSOP8EN302E 4.75V-30V5V/1.8A 可替代CX8508,内置MOS340Khz 15uH ESOP8 EN303E4.75V-30V 5V/2.4A 可替代CX8505,内置MOS340Khz 10uHESOP8EN5302BS 8V-30V 5V/2.4A 可过EMI 认证,内置MOS,输出限流,内置5.6V 稳压管 150Khz 33uH SOP8 EN5402BS 8V-40V 5V/2.4A 可过EMI 认证,内置MOS,输出限流,内置5.6V 稳压管 150Khz 33uH SOP8 EN5414S 8V-40V 5V/3.6A 可过EMI 认证,外置MOS,输出限流,内置5.6V 稳压管 150Khz 33uH SOP8 EN5414E 8V-40V 5V/4.2A 可过EMI 认证,外置MOS,输出限流,内置5.6V 稳压管 150Khz 33uHESOP8EN5415S8V-40V5V/4.2A 可过EMI 认证,外置MOS,双路独立输出,双路输出限流,内置5.6V 稳压管100Khz 33uH SOP8EN5415E 8V-40V 5V/4.8A 可过EMI 认证,外置MOS,双路独立输出,双路输出限流,内置5.6V 稳压管100Khz 33uH ESOP8IC 详细参数和原理可参阅IC 数据手册单片机集成方案全方位解决服务商优质智能电子产品“芯”方案解决商大中华地区联系信息:深圳市英锐恩科技有限公司ENROO-TECH (SHENZHEN )CO.,LTD中国·深圳市福田区福华路嘉汇新城汇商中心27楼2701室Enroo-Tech T echnologies CO., Limited香港新界荃灣青山道388號中國染廠大廈7樓P 室联系电话:86-755-82543411,83167411,83283911,88845951 联系传真:86-755-82543511 全国热线:4007-888-234 联系邮件:***************公司网站: 单片机集成方案全方位解决服务商优质智能电子产品“芯”方案解决商。

FPGA可编程逻辑器件芯片AD8132ARZ-R7中文规格书

FPGA可编程逻辑器件芯片AD8132ARZ-R7中文规格书

AD8132FEATURESHigh speed350 MHz, −3 dB bandwidth 1200 V/μs slew rate Resistor set gainInternal common-mode feedbackImproved gain and phase balance: −68 dB @ 10 MHz Separate input to set the common-mode output voltage Low distortion: −99 dBc SFDR @ 5 MHz, 800 Ω load Low power: 10.7 mA @ 5 VPower supply range: +2.7 V to ±5.5 V Fully AEC-Q100 qualified (AD8132W)APPLICATIONSLow power differential ADC driversDifferential gain and differential filtering Video line driversDifferential in/out level shiftingSingle-ended input to differential output drivers Active transformersAutomotive driver assistance Automotive infotainmentGENERAL DESCRIPTIONThe AD8132 is a low cost differential or single-ended input to differential output amplifier with resistor set gain. The AD8132 is a major advancement over op amps for driving differential input ADCs or for driving signals over long lines. The AD8132 has a unique internal feedback feature that provides output gain and phase matching balanced to −68 dB at 10 MHz, suppressing harmonics and reducing radiated EMI.Manufactured using the next-generation of Analog Devices, Inc., XFCB bipolar process, the AD8132 has a −3 dB bandwidth of 350 MHz and delivers a differential signal with −99 dBc SFDR at 5 MHz, despite its low cost. The AD8132 eliminates the need for a transformer with high performance ADCs, preserving the low frequency and dc information. The common-mode level of the differential output is adjustable by applying a voltage on the V OCM pin, easily level shifting the input signals for driving single-supply ADCs. Fast overload recovery preserves sampling accuracy.CONNECTION DIAGRAM–INV OCM V++OUT NC = NO CONNECT01035-001Figure 1.The AD8132 is also used as a differential driver for the trans-mission of high speed signals over low cost twisted pair or coaxial cables. The feedback network can be adjusted to boost the high frequency components of the signal. The AD8132 is used for either analog or digital video signals or for other high speed data trans-mission. The AD8132 is capable of driving either a Category 3 or Category 5 twisted pair or coaxial cable with minimal line attenuation. The AD8132 has considerable cost and performance improvements over discrete line driver solutions.Differential signal processing reduces the effects of ground noise that plagues ground-referenced systems. The AD8132 can be used for differential signal processing (gain and filtering) throughout a signal chain, easily simplifying the conversion between differential and single-ended components.The AD8132W is the automotive grade version, qualified for 125°C operation per the AEC-Q100. See the Automotive Products section for more details.The AD8132 is available in both 8-lead SOIC and 8-lead MSOP packages for operation over the extended industrial temperaturerange of −40°C to +125°C.FREQUENCY (MHz)61G A I N (d B )3–3–6–9–12101001k01035-002Figure 2. Large Signal Frequency ResponseAD8132Rev. I | Page 21 of 32OPERATIONAL DESCRIPTIONDEFINITION OF TERMSDifferential VoltageIt is the difference between two node voltages. For example, the output differential voltage (or equivalently output differential mode voltage) is defined asV OUT, dm = (V +OUT − V −OUT )where V +OUT and V −OUT refer to the voltages at the +OUT and −OUT terminals with respect to a common reference.Common-Mode VoltageIt is the average of two node voltages. The output common-mode voltage is defined asV OUT, cm = (V +OUT + V −OUT )/2C +D IN V OCM –D IN01035-064Figure 64. Circuit DefinitionsBASIC CIRCUIT OPERATIONOne of the more useful and easy to understand ways to use the AD8132 is to provide two equal ratio feedback networks. To match the effect of parasitics, comprise these networks of two equal value feedback resistors (R F ) and two equal value gain resistors (R G ). This circuit is shown in Figure 64.Like a conventional op amp, the AD8132 has two differential inputs that can be driven with both differential mode input voltage (V IN, dm ) and common-mode input voltage (V IN, cm ). There is another input to consider (V OCM ) on the AD8132 that is not present on conventional op amps. V OCM is completely separate from the previous inputs.There are two complementary outputs whose response can be defined by a differential mode output (V OUT, dm ) and a common-mode output (V OUT, cm ).Table 10 shows the gain from any type of input to either type of output.Table 10. Differential and Common-Mode GainsInput V OUT, dm V OUT, cmV IN, dm R F /R G 0 (by design) V IN, cm 0 0 (by design) V OCM1 (by design)As listed in Table 10, the differential output (V OUT, dm ) is equal to the differential input voltage (V IN, dm ) times R F /R G . In this case, it does not matter if both differential inputs are driven, or only one output is driven and the other is tied to a reference voltage, such as ground. As seen from the two zero entries in the V OUT , dm column, neither of the common-mode inputs has any effect on this gain. The gain from V IN, dm to V OUT, cm is 0, and first-order, does not depend on the ratio matching of the feedback networks. The common-mode feedback loop within the AD8132 provides a corrective action to keep this gain term minimized. The term balance error describes the degree that this gain term differs from 0.The gain from V IN, cm to V OUT , dm directly depends on the matching of the feedback networks. The analogous term for this transfer function (used in conventional op amps) is common-mode rejection ratio (CMRR). Therefore, if it has a high CMRR, the feedback ratios must be well matched.The gain from V IN, cm to V OUT, cm is ideally 0 and is first-order independent of the feedback ratio matching. As in the case of V IN, dm to V OUT, cm , the common-mode feedback loop keeps this term minimized.The gain from V OCM to V OUT , dm is ideally 0 when the feedback ratios are matched only. The amount of differential output signal that is created by varying V OCM is related to the degree of mismatch in the feedback networks.V OCM controls the output common-mode voltage V OUT, cm with a unity-gain transfer function. With equal ratio feedback networks (as previously assumed), its effect on each output is the same, that is the gain from V OCM to V OUT, dm is 0. If not driven, the output common-mode voltage is set with an internal voltage divider to a level that is nominally midsupply. It is recommended that a 0.1 μF bypass capacitor be connected to V OCM .When unequal feedback ratios are used, the two gains associated with V OUT, dm become nonzero. This significantly complicates the mathematical analysis along with any intuitive understanding of how the part operates.AD8132Rev. I | Page 22 of 32AD8132Rev. I | Page 23 of 32OTHER β2 = 1 CIRCUITSThe preceding simple configuration with β2 = 1 and its gain of 2 is the highest gain circuit that can be made under this condition. Because β1 was equal to 0, only higher β1 values are possible. The circuits with higher values of β1 have gains lower than 2. However, circuits with β1 equal to 1 are not practical because they have no effective input and result in a gain of 0.T o increase β1 from 0, it is necessary to add two resistors in a feed-back network. A generalized circuit that has β1 with a value higher than 0 is shown in Figure 69. A couple of different convenient gains that can be created are a gain of 1, when β1 is equal to 1/3, and a gain of 0.5, when β1 equals 0.6.With β2 equal to 1 in these circuits, V OCM serves as the refer-ence voltage that measures the input voltage and the individual output voltages. In general, when V OCM is varied in circuits with unmatched feedback networks, a differential output signal is generated that is proportional to the applied V OCM voltage.VARYING β2Though the β2 = 1 circuit sets β2 to 1, another class of simple circuits can be made that sets β2 equal to 0. This means that there is no feedback from +OUT to −IN. This class of circuits is very similar to a conventional inverting op amp. However, the AD8132 circuits have an additional output and common-mode input that can be analyzed separately (see Figure 71). With −IN connected to ground, +IN becomes a virtual ground in the sense that the term is used for conventional op amps. Both inputs must maintain the same voltage for equilibrium operation; therefore, if one is set to ground, the other is driven to ground. The input impedance can also be seen to be equal to R G , just as in a conventional op amp.In this case, however, the positive input and negative output are used for the feedback network. Because a conventional op amp does not have a negative output, only its inverting input can be used for the feedback network. The AD8132 is symmetrical, therefore, the feedback network on either side can be used to produce the same results.Because +IN is a summing junction, by an analogy to conven-tional op amps, the gain from V IN to −OUT is −R F /R G . This holds true regardless of the voltage on V OCM , and because +OUT moves the same amount in the opposite direction from −OUT, the overall gain is −2(R F /R G ).V OCM still governs V OUT , cm ; therefore, +OUT must be the only output that moves when V OCM is varied. Because V OUT , cm is theaverage of the two outputs, +OUT must move twice as far, and in the same direction as V OCM , to create the proper V OUT , cm . Therefore, the gain from V OCM to +OUT must be 2.With β2 equal to 0 in these circuits, the gain can theoretically be set to any value from close to 0 to infinity, just as it can with a conventional op amp in the inverting mode. However, practical real-world limitations and parasitics limit the range of acceptable gain to more modest values.β1 = 0There is yet another class of circuits where there is no feedback from −OUT to +IN. This is the case where β1 = 0. The differential amplifier without a resistor described in the Differential Amplifier Without Resistors (High Input Impedance Inverting Amplifier) section meets this condition, but it was presented only with the condition that β2 = 1. Recall that this circuit had a gain equal to 2. If β2 decreases in this circuit from unity, a smaller part of +V OUT is fed back to −IN and the gain increases (see Figure 68). This circuit is very similar to a noninverting op amp configuration, except for the presence of the additional complementary output. Therefore, the overall gain is twice that of a noninverting op amp or 2 × (1 + R F2/R G2) or 2 × (1/β2).Once again, varying V OCM does not affect both outputs in the same way; therefore, in addition to varying V OUT, cm with unity gain, there is also an effect on V OUT, dm by changing V OCM .ESTIMATING THE OUTPUT NOISE VOLTAGESimilar to the case of a conventional op amp, the differential output errors (noise and offset voltages) can be estimated by multiplying the input-referred terms, at +IN and −IN, by the circuit noise gain. The noise gain is defined as⎟⎟⎠⎞⎜⎜⎝⎛+=GFN RR G 1To compute the total output-referred noise for the circuit of Figure 64, consideration must be given to the contribution of resistors, R F and R G . See Table 11 for estimated output noise voltage densities at various closed-loop gains. Table 11. Recommended Resistor Values and Noise Performance for Specific GainsGain R G (Ω) R F (Ω)Bandwidth −3 dB (MHz) Output Noise AD8132 Only (nV/√Hz) Output Noise AD8132 + R G , R F (nV/√Hz) 1 499 499 360 16 17 2 499 1.0 k 160 24.1 26.1 5 499 2.49 k 65 48.4 53.3 10 499 4.99 k2088.998.6AD8132Rev. I | Page 24 of 32When using the AD8132 in gain configurations where β1 ≠ β2, differential output noise appears due to input-referred voltage noise in the V OCM circuitry according to the following formula:In cases where more accurate control of the output common-modelevel is required, it is a best practice that an external source or resistor divider (with R SOURCE < 10 kΩ) be used. The output common-mode offset values in the Specifications section assume the V OCM input is driven by a low impedance voltage source.⎥⎦⎤⎢⎢⎣⎡+−=β2β1β2β1V V NOCM OND 2DRIVING A CAPACITIVE LOADA purely capacitive load can react with the pin and bond wire inductance of the AD8132, resulting in high frequency ringing in the pulse response. One way to minimize this effect is to place a small capacitor across each of the feedback resistors. The added capacitance must be small to avoid destabilizing the amplifier. An alternative technique is to place a small resistor in series with the amplifier outputs, as shown in Figure 60.OPEN-LOOP GAIN AND PHASEOpen-loop gain and phase plots are shown in Figure 65 and Figure 66.where:V OND is the output differential noise.V NOCM is the input-referred voltage noise on V OCM .CALCULATING INPUT IMPEDANCE OF THE APPLICATION CIRCUITThe effective input impedance of a circuit, such as that in Figure 64, at +D IN and −D IN , depends on whether the amplifier is being driven by a single-ended or differential signal source. For balanced differential input signals, the input impedance (R IN, dm ) between the inputs (+D IN and −D IN ) is simplyR IN, dm = 2 × R G。

IC-R71操作说明书(中文版)

IC-R71操作说明书(中文版)
优异的接收性能
应用 ICOM 开发的毫瓦分贝 J-FET IC-R71 具有 105dB 的动态范围 70.4515MHz 的第一中频实际上 消除了寄生噪声影响 加上使用了 ICOM 通带调谐技术 PBT 的高增益 9.0115MHz 第二中频 一个深度 的中频陷波器 可调的自动增益和噪音消隐 可用于调节消除脉冲噪音 音频音调调节控制 即使在 存在强干扰或高噪声水平情况下都可清晰接收
6 电源开关 这是一个带锁的按压开关 它控制整机的交
流电源输入 当开关按下并锁定时 电源供给接 收机 开关再次按下并松开 全部电路的电源都 被切断
-5 -
广播爱好者 m222 翻译 有建议请联系 邮件地址 m_fanqiang@
第四章 操作控制装置
7 功能键 按下此键时扩展了 AM 模式选择键和存储
注意 若需使用直流电源时 请联系您最近 的 ICOM 维修中心或授权的 ICOM 代理商
-3 -
广播爱好者 m222 翻译 有建议请联系 邮件地址 m_fanqiang@
第四章 操作控制装置 3-4 天线
天线在无线电通讯中担负着非常重要的作 用 如果天线质量很差 您的接收机就不能给您 最好的性能表现 使用一副良好的天线和 50 欧姆 阻抗的馈线电缆 您会很容易地得到期望的匹配 和良好的性能表现 细心地安装一副适合您要操 作的频段的高性能的天线 并且将它架设到最大 可能的高度 尤其要注意接头的状况 接头连接 不牢靠将使天线性能变差
第一章技术规格广播爱好者m2翻译有建议请联系邮件地址整机半导体数量晶体三极管集成电路包括cpumhz澳大利亚版本mhz德国版本mhz频段频率调节控制基于中央处理器cpu的有两个可变频率调节器vfhz步进数字频率锁相环系统频率示值读数hz示值读数频率稳定性开机1hz输入电源要求使用要求的内置变换器天线阻抗欧姆不平衡式单根导线可用于0nhz重量接收机接收系统具有连续带宽控制的四重变换超外差三重变换超外差接收模式a1a3输出fsk音频信号a3中频频率第一中频mhz第二中频mhz第三中频khz第四中频除外连续带宽调节控制除外第二中频中心频率ssba3ama3mhzcwa1mhz灵敏度当前置放大器打开时ssbcwrtam小于0sinad选择性ssbcwrtkhzcwkhzamkhz镜像抑制比大于6音频输出大于3选配件已安装时技术规格为近似值并可能在不做任何通告的情况下更改第二章功能特性广播爱好者m2翻译有建议请联系邮件地址mhz之间有3mhz频段的通用频率覆盖范围接收机除此之外通过从bandupdown键给出的一个电信号指令可选的低通和带通滤波器造就了一个不需调整的系统双重1hz步进数字可变频震荡器双重数字可变频震荡器具有微机控制调节系统它们拥有两个环路的频率锁相环并且用逻辑单元来控制调节频率锁相环正常的调谐比率为1hz增量步进增加旋转主调谐轮的速度时自动转换调谐增量步进到5下调谐速度按钮提供1khz调谐步进可获得数字输出为可选来用计算机控制接收机频率和功能并且可用于合成音频输出键键盘用于简捷地设置期望的频率通过按下所期望的频率数字的数字键操作频率将无需改变波段和旋转调谐轮而被改变个可调的存储信道提供模式和频率存储内置随机存储器由一个内置锂电池后备供电可维持存储长达7年之久通过此单元可实现频率存储信道和波段的扫描在mo模式只有那些具有特定接收模式的存储信道被扫描其它的被略过数据可以在可变频震荡器vf之间可变频震荡至记忆信道或记忆信道至可变频震荡器vf之间被传递优异的接收性能应用icom开发的毫瓦分贝jmhz的第一中频实际上消除了寄生噪声影响加上使用了icom通带调谐技术pbt的高增益9mhz第二中频一个深度的中频陷波器可调的自动增益和噪音消隐可用于调节消除脉冲噪音音频音调调节控制即使在存在强干扰或高噪声水平情况下都可清晰接收通带调谐具有一个内置的由icom公司开发的通带调谐系统它允许用户连续地调节中频带通通过旋转控制钮您可

集成运放芯片资料简介

集成运放芯片资料简介

集成运放芯片资料简介dsm_tdcq 发表于 2006-6-17 21:32:00AD824 JFET输入,单电源,低电压,低功耗,精密四运算放大器 MC33171 单电源,低电压,低功耗运算放大器AD826 低功耗,宽带,高速双运算放大器 MC33172 单电源,低电压,低功耗双运算放大器AD827 低功耗,高速双运算放大器 MC33174 单电源,低电压,低功耗四运算放大器AD828 低功耗,宽带,高速双运算放大器 MC33178 大电流,低功耗,低噪音双运算放大器AD844 电流反馈型,宽带,高速运算放大器 MC33179 大电流,低功耗,低噪音四运算放大器AD846 电流反馈型,高速,精密运算放大器 MC33181 JFET输入,低功耗运算放大器AD847 低功耗,高速运算放大器 MC33182 JFET输入,低功耗双运算放大器AD8531 COMS单电源,低功耗,高速运算放大器 MC33184 JFET输入,低功耗四运算放大器AD8532 COMS单电源,低功耗,高速双运算放大器 MC33201 单电源,大电流,低电压运算放大器AD8534 COMS单电源,低功耗,高速四运算放大器 MC33202 单电源,大电流,低电压双运算放大器AD9617 低失真,电流反馈型,宽带,高速,精密运算放大器 MC33204 单电源,大电流,低电压四运算放大器AD9631 低失真,宽带,高速运算放大器 MC33272 单电源,低电压,高速双运算放大器AD9632 低失真,宽带,高速运算放大器 MC33274 单电源,低电压,高速四运算放大器AN6550 低电压双运算放大器 MC33282 JFET输入,宽带,高速双运算放大器AN6567 大电流,单电源双运算放大器 MC33284 JFET输入,宽带,高速四运算放大器AN6568 大电流,单电源双运算放大器 MC33502 BIMOS,单电源,大电流,低电压,双运算放大器BA718 单电源,低功耗双运算放大器 MC34071A 单电源,高速运算放大器BA728 单电源,低功耗双运算放大器 MC34072A 单电源,高速双运算放大器CA5160 BIMOS,单电源,低功耗运算放大器 MC34074A 单电源,高速四运算放大器CA5260 BIMOS,单电源双运算放大器 MC34081 JFET输入,宽带,高速运算放大器CA5420 BIMOS,单电源,低电压,低功耗运算放大器 MC34082 JFET输入,宽带,高速双运算放大器CA5470 BIMOS单电源四运算放大器 MC34084 JFET输入,宽带,高速四运算放大器CLC400 电流反馈型,宽带,高速运算放大器 MC34181 JFET输入,低功耗运算放大器CLC406 电流反馈型,低功耗,宽带,高速运算放大器 MC34182 JFET输入,低功耗双运算放大器CLC410 电流反馈型,高速运算放大器 MC34184 JFET输入,低功耗四运算放大器CLC415 电流反馈型,宽带,高速四运算放大器 MC35071A 单电源,高速运算放大器CLC449 电流反馈型,宽带,高速运算放大器 MC35072A 单电源,高速双运算放大器CLC450 电流反馈型,单电源,低功耗,宽带,高速运算放大器 MC35074A 单电源,高速四运算放大器CLC452 单电源,电流反馈型,大电流,低功耗,宽带,高速运算放大器 MC35081 JFET输入,宽带,高速运算放大器CLC505 电流反馈型,高速运算放大器 MC35082 JFET输入,宽带,高速双运算放大器EL2030 电流反馈型,宽带,高速运算放大器 MC35084 JFET输入,宽带,高速四运算放大器EL2030C 电流反馈型,宽带,高速运算放大器 MC35171 单电源,低电压,低功耗运算放大器EL2044C 单电源,低功耗,高速运算放大器 MC35172 单电源,低电压,低功耗双运算放大器EL2070 电流反馈型,宽带,高速运算放大器 MC35174 单电源,低电压,低功耗四运算放大器EL2070C 电流反馈型,宽带,高速运算放大器 MC35181 JFET输入,低功耗运算放大器EL2071C 电流反馈型,宽带,高速运算放大器 MC35182 JFET输入,低功耗双运算放大器EL2073 宽带,高速运算放大器 MC35184 JFET输入,低功耗四运算放大器EL2073C 宽带,高速运算放大器 MM6558 低电压,低失调电压,精密双运算放大器EL2130C 电流反馈型,宽带,高速运算放大器 MM6559 低电压,低失调电压,精密双运算放大器EL2150C 单电源,宽带,高速运算放大器 MM6560 低电压,低失调电压,精密双运算放大器EL2160C 电流反馈型,宽带,高速运算放大器 MM6561 低功耗,低电压,低失调电压,精密双运算放大器EL2165C 电流反馈型,宽带,高速,精密运算放大器 MM6564 单电源,低电压,低功耗,低失调电压,精密双运算放大器EL2170C 单电源,电流反馈型,低功耗,宽带,高速运算放大器 MM6572 低噪音,低电压,低失调电压,精密双运算放大器EL2175C 电流反馈型,宽带,高速,精密运算放大器 NE5230 单电源,低电压运算放大器EL2180C 单电源,电流反馈型,低功耗,宽带,高速运算放大器 NE5512 通用双运算放大器EL2224 宽带,高速双运算放大器 NE5514 通用四运算放大器EL2224C 宽带,高速双运算放大器 NE5532 低噪音,高速双运算放大器EL2232 电流反馈型,宽带,高速双运算放大器 NE5534 低噪音,高速运算放大器EL2232C 电流反馈型,宽带,高速双运算放大器 NJM2059 通用四运算放大器EL2250C 单电源,宽带,高速双运算放大器 NJM2082 JFET输入,高速双运算放大器EL2260C 电流反馈型,宽带,高速双运算放大器 NJM2107 低电压,通用运算放大器EL2270C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2112 低电压,通用四运算放大器EL2280C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2114 低噪音双运算放大器EL2424 宽带,高速四运算放大器 NJM2115 低电压,通用双运算放大器EL2424C 宽带,高速四运算放大器 NJM2119 单电源,精密双运算放大器EL2444C 单电源,低功耗,高速四运算放大器 NJM2122 低电压,低噪音双运算放大器EL2450C 单电源,宽带,高速四运算放大器 NJM2130F 低功耗运算放大器EL2460C 电流反馈型,宽带,高速四运算放大器 NJM2132 单电源,低电压,低功耗双运算放大器EL2470C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器 NJM2136 低电压,低功耗,宽带,高速运算放大器EL2480C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器 NJM2137 低电压,低功耗,宽带,高速双运算放大器HA-2640 高耐压运算放大器 NJM2138 低电压,低功耗,宽带,高速四运算放大器HA-2645 高耐压运算放大器 NJM2140 低电压双运算放大器HA-2839 宽带,高速运算放大器 NJM2141 大电流,低电压双运算放大器HA-2840 宽带,高速运算放大器 NJM2147 高耐压,低功耗双运算放大器HA-2841 宽带,高速运算放大器 NJM2162 JFET输入,低功耗,高速双运算放大器HA-2842 宽带,高速运算放大器 NJM2164 JFET输入,低功耗,高速四运算放大器HA-4741 通用四运算放大器 NJM3404A 单电源,通用双运算放大器HA-5020 电流反馈型,宽带,高速运算放大器 NJM3414 单电源,大电流双运算放大器HA-5127 低噪音,低失调电压,精密运算放大器 NJM3415 单电源,大电流双运算放大器HA-5134 低失调电压,精密四运算放大器 NJM3416 单电源,大电流双运算放大器HA-5137 低噪音,低失调电压,高速,精密运算放大器 NJM4556A 大电流双运算放大器HA-5142 单电源,低功耗双运算放大器 NJM4580 低噪音双运算放大器HA-5144 单电源,低功耗四运算放大器 NJU7051 CMOS单电源,低功耗,低电压,低失调电压运算放大器HA-5177 低失调电压,精密运算放大器 NJU7052 CMOS单电源,低功耗,低电压,低失调电压双运算放大器HA-5221 低噪音,精密运算放大器 NJU7054 CMOS单电源,低功耗,低电压,低失调电压四运算放大器HA-5222 低噪音,精密双运算放大器 NJU7061 CMOS单电源,低功耗,低电压,低失调电压运算放大器HA-7712 BIMOS,单电源,低功耗,精密运算放大器 NJU7062 CMOS单电源,低功耗,低电压,低失调电压双运算放大器HA-7713 BIMOS,单电源,低功耗,精密运算放大器 NJU7064 CMOS单电源,低功耗,低电压,低失调电压四运算放大器HA16118 CMOS单电源,低电压,低功耗双运算放大器 NJU7071 CMOS单电源,低功耗,低电压,低失调电压运算放大器AD704 低偏置电流,低功耗,低失调电压,精密四运算放大器 MAX430 CMOS单电源运算放大器AD705 低偏置电流,低功耗,低失调电压,精密运算放大器 MAX432 CMOS单电源运算放大器AD706 低偏置电流,低功耗,低失调电压,精密双运算放大器 MAX4330 单电源,低电压,低功耗运算放大器AD707 低失调电压,精密运算放大器 MAX4332 单电源,低电压,低功耗双运算放大器AD708 低失调电压,精密双运算放大器 MAX4334 单电源,低电压,低功耗四运算放大器AD711 JFET输入,高速,精密运算放大器 MAX473 单电源,低电压,宽带,高速运算放大器AD712 JFET输入,高速,精密双运算放大器 MAX474 单电源,低电压,宽带,高速双运算放大器AD713 JFET输入,高速,精密四运算放大器 MAX475 单电源,低电压,宽带,高速四运算放大器AD744 JFET输入,高速,精密运算放大器 MAX477 宽带,高速运算放大器AD745 JFET输入,低噪音,高速运算放大器 MAX478 单电源,低功耗,精密双运算放大器AD746 JFET输入,高速,精密双运算放大器 MAX478A 单电源,低功耗,精密双运算放大器AD795 JFET输入,低噪音,低功耗,精密运算放大器 MAX479 单电源,低功耗,精密四运算放大器AD797 低噪音运算放大器 MAX479A 单电源,低功耗,精密四运算放大器AD8002 电流反馈型,低功耗,宽带,高速双运算放大器 MAX480 单电源,低功耗,低电压,低失调电压,精密运算放大器AD8005 电流反馈型,低功耗,宽带,高速双运算放大器 MAX492C 单电源,低功耗,低电压,精密双运算放大器AD8011 电流反馈型,低功耗,宽带,高速运算放大器 MAX492E 单电源,低功耗,低电压,精密双运算放大器AD8031 单电源,低功耗,高速运算放大器 MAX492M 单电源,低功耗,低电压,精密双运算放大器AD8032 单电源,低功耗,高速双运算放大器 MAX494C 单电源,低功耗,低电压,精密四运算放大器AD8041 单电源,宽带,高速运算放大器 MAX494E 单电源,低功耗,低电压,精密四运算放大器AD8042 单电源,宽带,高速双运算放大器 MAX494M 单电源,低功耗,低电压,精密四运算放大器AD8044 单电源,宽带,高速四运算放大器 MAX495C 单电源,低功耗,低电压,精密运算放大器。

MEMORY存储芯片ADM3485EARZ-REEL7中文规格书

MEMORY存储芯片ADM3485EARZ-REEL7中文规格书
∆|VOD| for Complementary Output States1 Common-Mode Output Voltage ∆|VOC| for Complementary Output States1 Short-Circuit Output Current
Logic Inputs Input Low Voltage Input High Voltage Logic Input Current
ADM3485E
RO
R
RE
B
A DE
DI
D
03338-001
Figure 1.
should be enabled at any time, the output of a disabled or powered-down driver is tristated to avoid overloading the bus. The receiver has a fail-safe feature that ensures a logic high output when the inputs are floating. Excessive power dissipation caused by bus contention or by output shorting is prevented with a thermal shutdown circuit. The part is fully specified over the industrial temperature range and is available in an 8-lead narrow SOIC package.
ADM3485E
SPECIFICATIONS

常用AD芯片介绍共7页word资料

常用AD芯片介绍共7页word资料

目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI 公司代理权,经营全系列适用各种领域/场合的AD/DA器件。

1. AD公司AD/DA器件AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。

1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705AD7705是AD公司出品的适用于低频测量仪器的AD转换器。

它能将从传感器接收到的很弱的输入信号直接转换成串行数字信号输出,而无需外部仪表放大器。

采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可编程放大器可设置输入信号增益。

通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置数字滤波器的第一个凹口。

在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。

AD7705是基于微控制器(MCU)、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。

应用于微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。

2)3V/5V CMOS信号调节AD转换器:AD7714AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字量。

它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。

输入信号加至位于模拟调制器前端的专用可编程增益放大器。

调制器的输出经片内数字滤波器进行处理。

数字滤波器的第一次陷波通过片内控制寄存器来编程,此寄存器可以调节滤波的截止时间和建立时间。

AD7714有3个差分模拟输入(也可以是5个伪差分模拟输入)和一个差分基准输入。

单电源工作(+3V或+5V)。

FPGA可编程逻辑器件芯片AD8552ARZ-REEL7中文规格书

FPGA可编程逻辑器件芯片AD8552ARZ-REEL7中文规格书
The AD8551/AD8552/AD8554 are specified for the extended industrial/automotive temperature range (−40°C to +125°C). The AD8551 single amplifier is available in 8-lead MSOP and 8-lead narrow SOIC packages. The AD8552 dual amplifier is available in 8-lead narrow SOIC and 8-lead TSSOP surfacemount packages. The AD8554 quad is available in 14-lead narrow SOIC and 14-lead TSSOP packages.
With an offset voltage of only 1 μV and drift of 0.005 μV/°C, the AD8551/AD8552/AD8554 are perfectly suited for applications in which error sources cannot be tolerated. Temperature, position and pressure sensors, medical equipment, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range. The rail-to-rail input and output swings provided by the AD8551/AD8552/AD8554 make both high-side and low-side sensing easy.

FR-8062中文说明书

FR-8062中文说明书

操 作 手 册雷 达 型 号:FAR-80621.1 控制器1.1.1 显示单元该雷达的操作由显示单元(包括遥控器)控制,显示单元包括18个功能按键、3个球型按键、一个轨迹球。

当正确地完成操作时,有发出“BEE”一声。

如果操作错误,会发出几声。

NO. CONTROL DESCRIPTION1BRILL短按:开机;调光 长按:关机注意:今后该键改为“POWER/BRILL”2 STBY/TX 传输脉冲、准备交替 3 MODE 选择模式 4 CUSTOM 调整控制器 5 RANGE 选择雷达范围 6 ZOOM7 TARGET ALARM 设定目标警报 8 EBL 测量移靠目标 9 MENU 打开/关掉菜单10 ENTER 进入要选的菜单选项;获得ARP 目标;显示ARP 或AIS 目标的数据 11 GAIN 调节雷达接收机的敏感度 12 A/C SEA 抑制海浪冲击 13 A/C RAIN 抑制雨水冲击14. 15 F1 F2 可直接进入想用的功能的功能键 16 OFF CENTER 转换显示17 TRAILS 描绘雷达回波的运作 18 VRM 测量与目标间的范围19 TLL在测绘板上显示目标的经度和纬度,或标记在指针上20CANCEL/HL OFF临时拆去路径;删除最后的一个菜单操作;取消跟踪ARP 目标;从数据箱移走ARP 或AIS 目标的数据;返回 21 TRACKBALL选择菜单目录;转换菜单1.1.2 遥控器。

1.1.3 遥控可通过手柄控制传输、信息备用、范围、显示。

(30%在船尾方向)1.2打开/关雷达,发射信号在控制面板的顶部按POWER/BRILL键打开雷达,左边的灯亮。

关雷达,长按,直到屏幕转黑。

在启动的状态时,出现起动屏幕,显示型号名、程序号码和显示只读存储器和随机存储器的检查结果状态,好的或不好。

如出现NG,按任意键(除电源)继续运行。

检验完成后,会出现方向扫描和数据时间记录仪。

AD8067ART-R2资料

AD8067ART-R2资料
元器件交易网
High Gain Bandwidth Product Precision Fast FET ™ Op Amp AD8067
FEATURES
• FET input amplifier: 0.6 pA input bias current • Stable for gains ≥8 • High speed • 54 MHz, –3 dB bandwidth (G = +10) • 640 V/µs slew rate • Low noise • 6.6 nV/√Hz • 0.6 fA/√Hz • Low offset voltage (1.0 mV max) • Wide supply voltage range: 5 V to 24 V • No phase reversal • Low input capacitance • Single-supply and rail-to-rail output • Excellent distortion specs: SFDR 95 dBc @ 1 MHz • High common-mode rejection ratio: –106 dB • Low power: 6.5 mA typical supply current • Low cost • Small packaging: SOT-23-5
28 26 24 22
G = +20
APPLICATIONS
• Photodiode preamplifier • Precision high gain amplifier • High gain, high bandwidth composite amplifier
GENERAL DESCRIPTION

SGM8062资料

SGM8062资料

SGM8061500MHz, Rail-to-Rail OutputSGM8062ELECTRICAL CHARACTERISTICS :V S = +5V (G=+2, R F= 402Ω, R L = 150Ω, unless otherwise noted)Specifications subject to change without notice.PACKAGE/ORDERING INFORMATIONMODEL ORDER NUMBER PACKAGE DESCRIPTIONPACKAGE OPTION MARKING INFORMATIONSGM8061XN5/TR SOT23-5 Tape and Reel, 3000 8061 SGM8061 SGM8061XS/TR SO-8 Tape and Reel,2500 SGM8061XS SGM8062 SGM8062XS/TRSO-8Tape and Reel, 2500SGM8062XSSGM8063XN6/TR SOT23-6 Tape and Reel,30008063SGM8063SGM8063XS/TR SO-8 Tape and Reel,2500 SGM8063XSABSOLUTE MAXIMUM RATINGSSupply Voltage, V+ to V- .......................................... 7.5 VCommon-Mode Input Voltage........................................ (–V S ) – 0.5 Vto (+V S ) +0.5V Storage Temperature Range ................. –65℃ to +150℃ Junction Temperature .............................................. 160℃ Operating Temperature Range ............ –55℃ to +150℃ Package Thermal Resistance @ T A = 25℃SOT23-5, θJA ......................................................... 190/W ℃ SOT23-6, θJA ......................................................... 190/W ℃ SO-8, θJA ................................................................ 125/W ℃ Lead Temperature Range (Soldering 10 sec)...................................................... 260℃ESD SusceptibilityHBM...........................................................................1000V MM...............................................................................400VNOTES1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. CAUTIONThis integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.At T A = +25℃, V S = +5V, G = +2, R F = 402Ω, R G = 402Ω, and R L=150Ωconnected to Vs/2,unless otherwise noted.At T A = +25℃, V S = +5V, G = +2, R F = 402Ω, R G = 402Ω, and R L=150Ωconnected to Vs/2,unless otherwise noted.At T A = +25℃, V S = +5V, G = +2, R F = 402Ω, R G = 402Ω, and R L=150Ωconnected to Vs/2,unless otherwise noted.At T A = +25℃, V S = +5V, G = +2, R F = 402Ω, R G = 402Ω, and R L=150Ωconnected to Vs/2,unless otherwise noted.At T A = +25℃, V S = +5V, G = +2, R F = 402Ω, R G = 402Ω, and R L=150Ωconnected to Vs/2,unless otherwise noted.APPLICATION NOTESDriving Capacitive LoadsThe SGM806x family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier’s feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier’s output and the load capacitance and (2) reducing the bandwidth of the amplifier’s feedback loop by increasing the overall noise gain.Figure 1 shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.V IN V OUTFigure 1. Series Resistor Isolating Capacitive LoadPower-Supply Bypassing and Layout The SGM806x family operates from either a single +2.7V to +5.5V supply or dual ±1.35V to ±2.75V supplies. For single-supply operation, bypass the power supply V DD with a 0.1µF ceramic capacitor which should be placed close to the V DD pin. For dual-supply operation, both the V DD and the V SS supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp’s inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.For the high speed operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing).VnVpV SSVnVpV SS(GND)Figure 2. Amplifier with Bypass Capacitors GroundingA ground plane layer is important for high speed circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.Input-to-Output CouplingTo minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.Typical Application CircuitsDifferential AmplifierThe circuit shown in Figure 3 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then V OUT = ( Vp – Vn ) × R 2 / R 1 + Vref.VnV OUTFigure 3. Differential AmplifierLow Pass Active FilterThe low pass filter shown in Figure 4 has a DC gain of ( - R 2 / R 1 ) and the –3dB corner frequency is 1/2πR 2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation inhigh-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.V V OUTFigure 4. Low Pass Active FilterDriving VideoThe SGM806x can be used in video applications like in Figure 5.V INR GV OUTG = 1 + R F / R GFigure 5. Typical Video DrivingSOT23-5SOT23-6SO-8REVISION HISTORYLocation Page 11/06— Data Sheet changed from Preliminary to REV. AChanges to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Shengbang Microelectronics Co, LtdUnit 3, ChuangYe PlazaNo.5, TaiHu Northern Street, YingBin Road Centralized Industrial ParkHarbin Development ZoneHarbin,150078HeiLongJiangChinaP.R.Tel.: 86-451-84348461Fax: 86-451-84308461。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Low Cost, 300 MHzRail-to-Rail AmplifiersAD8061/AD8062/AD8063 Rev. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.FEATURESLow costSingle (AD8061), dual (AD8062)Single with disable (AD8063)Rail-to-rail output swingLow offset voltage: 6 mVHigh speed300 MHz, −3 dB bandwidth (G = 1)650 V/μs slew rate8.5 nV/√Hz at 5 V35 ns settling time to 0.1% with 1 V step Operates on 2.7 V to 8 V suppliesInput voltage range = −0.2 V to +3.2 V with V S = 5 Excellent video specs (R L = 150 Ω, G = 2)Gain flatness 0.1 dB to 30 MHz0.01% differential gain error0.04° differential phase error35 ns overload recoveryLow power6.8 mA/amplifier typical supply currentAD8063 400 μA when disabled APPLICATIONSImagingPhotodiode preampsProfessional video and camerasHand setsDVDs/CDsBase stationsFiltersADC driversCONNECTION DIAGRAMSNC–IN+IN–V S165-1V–V SSOUT2165-3 Figure 1. 8-Lead SOIC (R) Figure 2. 8-Lead SOIC (R)/MSOP (RM)–VV+INS–V–INV165-4 Figure 3. 6-Lead SOT-23 (RT) Figure 4. 5-Lead SOT-23 (RT)GENERAL DESCRIPTIONThe AD8061, AD8062, and AD8063 are rail-to-rail outputvoltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input common-mode voltage range and output voltage swing, making them easy to use on single supplies as low as 2.7 V.Despite being low cost, the AD8061, AD8062, and AD8063 provide excellent overall performance. For video applications their differential gain and phase errors are 0.01% and 0.04° into a 150 Ω load, along with 0.1 dB flatness out to 30 MHz. Addi-tionally, they offer wide bandwidth to 300 MHz along with 650 V/μs slew rate.The AD8061, AD8062, and AD8063 offer a typical low power of 6.8 mA/amplifier, while being capable of delivering up to50 mA of load current. The AD8063 has a power-down disable feature that reduces the supply current to 400 μA. These features make the AD8063 ideal for portable and battery-powered applications where size and power are critical.FREQUENCY (MHz)3–1211NORMALIZEDGAIN(dB)–610010–3–9k165-5 Figure 5. Small Signal Response, R F = 0 Ω, 50 ΩAD8061/AD8062/AD8063Rev. D | Page 2 of 20TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Absolute Maximum Ratings............................................................6 Maximum Power Dissipation.....................................................6 ESD Caution..................................................................................6 Typical Performance Characteristics.............................................7 Circuit Description.........................................................................14 Headroom Considerations........................................................14 Overload Behavior and Recovery............................................15 Capacitive Load Drive...............................................................15 Disable Operation......................................................................16 Board Layout Considerations...................................................16 Applications.....................................................................................17 Single-Supply Sync Stripper......................................................17 RGB Amplifier............................................................................17 Multiplexer..................................................................................18 Outline Dimensions.......................................................................19 Ordering Guide.. (20)REVISION HISTORY12/05—Rev. C to Rev. DUpdated Format..................................................................Universal Change to Features and General Description...............................1 Updated Outline Dimensions.......................................................19 Changes to Ordering Guide..........................................................20 5/01—Rev. B to Rev. CReplaced TPC 9 with new graph....................................................7 11/00—Rev. A to Rev. B 2/00—Rev. 0 to Rev. A11/99—Revision 0: Initial VersionAD8061/AD8062/AD8063SPECIFICATIONST A = 25°C, V S = 5 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 3 of 20AD8061/AD8062/AD8063T A = 25°C, V S = 3 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 4 of 20AD8061/AD8062/AD8063 T A = 25°C, V S = 2.7 V, R L = 1 kΩ, V O = 1 V, unless otherwise noted.Rev. D | Page 5 of 20AD8061/AD8062/AD8063Rev. D | Page 6 of 20ABSOLUTE MAXIMUM RATINGSTable 4.Parameter Rating Supply Voltage 8 VInternal Power Dissipation 18-lead SOIC (R) 0.8 W 5-lead SOT-23 (RT) 0.5 W 6-lead SOT-23 (RT) 0.5 W 8-lead MSOP (RM) 0.6 W Input Voltage (Common-Mode) (−V S − 0.2 V) to (+V S − 1.8 V) Differential Input Voltage ±V SOutput Short-Circuit Duration Observe Power Derating CurvesStorage Temperature RangeR-8, RM-8, SOT-23-5, SOT-23-6−65°C to +125°C Operating Temperature Range −40°C to +85°CLead Temperature Range(Soldering 10 sec)300°C1Specification is for device in free air.8-Lead SOIC: θJA = 160°C/W; θJC = 56°C/W. 5-Lead SOT-23: θJA = 240°C/W; θJC = 92°C/W. 6-Lead SOT-23: θJA = 230°C/W; θJC = 92°C/W. 8-Lead MSOP: θJA = 200°C/W; θJC = 44°C/W.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.MAXIMUM POWER DISSIPATIONThe maximum power that can be safely dissipated by theAD806x is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junc-tion temperature of 175°C for an extended period can result in device failure. While the AD806x is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions.To ensure proper operation, it is necessary to observe the maximum power derating curves.AMBIENT TEMPERATURE (°C)2.01.0–50–40M A X I M U M P O W E R D IS S I P A T I O N (W )–307080901.50.5605040300–10–20201001065-006Figure 6. Maximum Power Dissipation vs. Temperature forAD8061/AD8062/AD8063ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.AD8061/AD8062/AD8063Rev. D | Page 7 of 20TYPICAL PERFORMANCE CHARACTERISTICSLOAD CURRENT (mA)00V O L T A G E D I F F E R E N T I A L F R O M V S0.20.40.60.81.01.201065-007Figure 7. Output Saturation Voltage vs. Load CurrentSINGLE POWER SUPPLY (V)1880P O W E R S U P P L Y C U R R E N T (m A )1614121064201065-0082875463Figure 8. I SUPPLY vs. V SUPPLYFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-009Figure 9. Small Signal Response, R F = 0 Ω, 50 ΩFREQUENCY (MHz)3–1211kN OR M A L I Z E D G A I N (d B )–6100100–3–901065-010Figure 10. Small Signal Frequency ResponseFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-011Figure 11. Large Signal Frequency ResponseFREQUENCY (MHz)3–1211kN O R M A L I Z E D G A I N (d B )–6100100–3–901065-012Figure 12. Small Signal Frequency ResponseAD8061/AD8062/AD8063Rev. D | Page 8 of 20FREQUENCY (MHz)3–1211k N O R M A L I Z E D G A I N (d B )–6100100–3–901065-013Figure 13. Large Signal Frequency ResponseFREQUENCY (MHz)11kN O R M A L I Z E D G A I N (d B )1001001065-014Figure 14. 0.1 dB Flatness0.01 0.1 1 10 100 1k80604020–20–40200150100500–50–100–150–200–250–300O P E N -L O O P G A I N (d B )P H A S E (D e g r e e s )FREQUENCY (MHz)SERIES 2SERIES 101065-015Figure 15. AD8062 Open-Loop Gain and Phase vs. Frequency,V S = 5 V, R L = 1 kΩINPUT SIGNAL BIAS (V)0–50–1000.5H A R M O N I C D I S T O R TI O N (d B c )1.03.03.5–10–20–30–40–60–70–80–90 2.52.01.501065-016Figure 16. Harmonic Distortion for a 1 V p-p Signal vs. Input Signal DC BiasFREQUENCY (MHz, START = 10kHz, STOP = 30MHz)–700.01D I S T O R T I O N (d B )–40–50–60–80–90–100–1100.101065-01711050Figure 17. Harmonic Distortion for a 1 V p-p Output Signal vs.Input Signal DC BiasOUTPUT SIGNAL DC BIAS (V)–50–120D I S T O R T I O N (d B )–30–40–60–70–80–90432–110–100501065-018Figure 18. Harmonic Distortion vs. Output Signal DC BiasAD8061/AD8062/AD8063Rev. D | Page 9 of 20RTO OUTPUT (V p-p)–100D I S T O R T I O N (d B )1.03.03.5–40–50–60–70 2.52.01.5–90–80 4.04.5–11001065-019Figure 19. Harmonic Distortion vs. Output Signal AmplitudeFREQUENCY (MHz, START = 10kHz, STOP = 30MHz)D I S T O R T I O N (d B )0.010.1110–30–40–50–60–70–80–90–100–11001065-020Figure 20. Harmonic Distortion vs. FrequencyTIME (μs)0.70O U T P U T V O L T A G E (V )0.21.00.90.80.60.50.40.30.10.10.20.30.40.501065-021Figure 21. 400 mV Pulse ResponseD I F FE R E N T I A L P H A S E (D e g r e e s )0.020–0.02–0.04–0.06D I F FE R E N T I A L G A I N (%)0.010–0.01–0.02–0.04–0.0601065-022Figure 22. Differential Gain and Phase Error, G = 2,NTSC Input Signal, R L = 1 kΩ, V S = 5 V1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH0.040.030.020.0100.0100.0050–0.005–0.010–0.01–0.02D I F FE R E N TI A L P H A S E (D e g r e e s )D I F FE R E N T I A L G A I N (%)1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH01065-023Figure 23. Differential Gain and Phase Error, G = 2,NTSC Input Signal, R L = 150 Ω, V S = 5 VOUTPUT STEP AMPLITUDE (V)1000500S L E W R A T E (V /μs )7001.0900800600 1.52.02.53.0400100300200001065-024Figure 24. Slew Rate vs. Output Step AmplitudeAD8061/AD8062/AD8063Rev. D | Page 10 of 20OUTPUT STEP (V)14000 4.0S L E W R A T E (V /μs )2.0 2.51200100080060040020000.5 3.0 3.51.0 1.501065-025Figure 25. Slew Rate vs. Output Step Amplitude, G = 2, R L = 1 kΩ, V S = 5 VV O L T A G E N O I S E (nV H z )FREQUENCY (Hz)1k1010M1001k 100k 1M 10010110k 01065-026Figure 26. Voltage Noise vs. FrequencyFREQUENCY (Hz)1001010MC U R R E N T N O I S E (p A H z )1001k 100k 1M 10010k 101065-027Figure 27. Current Noise vs. Frequency20406080100120140160180200V O L T STIME (ns)01065-028Figure 28. Input Overload Recovery, Input Step = 0 V to 2 V20406080100120140160180200V O L T STIME (ns)01065-029Figure 29. Output Overload Recovery, Input Step = 0 V to 1 VFREQUENCY (MHz)0.01500C M R R (d B )0.110100–100–90–80–70–60–50–40–30–20–100101065-030Figure 30. CMRR vs. FrequencyAD8061/AD8062/AD8063P S R R (d B )FREQUENCY (MHz)5000.110100–100–90–80–70–60–50–40–30–20–10010.0101065-031Figure 31. ±PSRR vs. Frequency DeltaFREQUENCY (MHz)0.01500O U T P U T T O O U T P U T C R O S S T A L K (d B )0.110100–120–110–100–80–70–60–50–40–30–201–9001065-032Figure 32. AD8062 Crosstalk, V OUT = 2.0 V p-p, R L = 1 kΩ, G = 2, V S = 5 VFREQUENCY (MHz)011kD I S A B LE D I S O L A T I O N (d B )–2010010–10–30–50–40–60–70–80–90Figure 33. Disabled Output Isolation Frequency ResponseDISABLE VOLTAGE71.05.0I S U P P L Y (m A )1.52.0 2.5654310 3.02 3.5 4.0 4.501065-034Figure 34. DISABLE Voltage vs. Supply CurrentTIME (μs)62.0O U T P U T V O L T A G E (V )0.454320–10.811.2 1.601065-035Figure 35. DISABLE Function, Voltage = 0 V to 5 VFREQUENCY (MHz)1k0.11kI M P E D A N C E (Ω)1011010010010.10.0101065-036Figure 36. Output Impedance vs. Frequency,V OUT = 0.2 V p-p, R L = 1 kΩ, V S = 5 VAD8061/AD8062/AD8063Figure 37. Output Settling Time to 0.1%OUTPUT VOLTAGE STEP0.5S E T T L I N G T I M E (n s )1.01.52.0352.501065-038Figure 38. Settling Time vs. V OUTFigure 39. Output SwingFigure 40. 1 V Step Response01065-041Figure 41. 100 mV Step Response01065-042Figure 42. Output Rail-to-Rail SwingAD8061/AD8062/AD806301065-043Figure 44. 2 V Step ResponseFigure 43. 200 mV Step ResponseAD8061/AD8062/AD8063CIRCUIT DESCRIPTIONThe AD8061/AD8062/AD8063 family is comprised of high speed voltage feedback op amps. The high slew rate input stage is a true, single-supply topology, capable of sensing signals at or below the minus supply rail. The rail-to-rail output stage can pull within 30 mV of either supply rail when driving light loads and within 0.3 V when driving 150 Ω. High speed perform-ance is maintained at supply voltages as low as 2.7 V. HEADROOM CONSIDERATIONSThese amplifiers are designed for use in low voltage systems. To obtain optimum performance, it is useful to understand the behavior of the amplifier as input and output signals approach the amplifier’s headroom limits.The AD806x’s input common-mode voltage range extends from the negative supply voltage (actually 200 mV below this), or ground for single-supply operation, to within 1.8 V of the positive supply voltage. Thus, at a gain of 2, the AD806x can provide full rail-to-rail output swing for supply voltage as low as 3.6 V, assuming the input signal swing from −V S (or ground) to +V S/2. At a gain of 3, the AD806x can provide a rail-to-rail output range down to 2.7 V total supply voltage.Exceeding the headroom limit is not a concern for any inverting gain on any supply voltage, as long as the reference voltage at the amplifier’s positive input lies within the amplifier’s input common-mode range.The input stage is the headroom limit for signals when the amplifier is used in a gain of 1 for signals approaching the positive rail. Figure 45 shows a typical offset voltage vs.input common-mode voltage for the AD806x amplifier ona 5 V supply. Accurate dc performance is maintained from approximately 200 mV below the minus supply to within1.8 V of the positive supply. For high-speed signals, however, there are other considerations. Figure 46 shows −3 dB bandwidth vs. dc input voltage for a unity-gain follower. As the common-mode voltage approaches the positive supply,the amplifier holds together well, but the bandwidth begins to drop at 1.9 V within +V S.This manifests itself in increased distortion or settling time. Figure 16 plots the distortion of a 1 V p-p signal with theAD806x amplifier used as a follower on a 5 V supply vs. signal common-mode voltage. Distortion performance is maintained until the input signal center voltage gets beyond 2.5 V, as the peak of the input sine wave begins to run into the upper common-mode voltage limit.V CM (V)VOS(mV)–4.0–3.6–3.2–2.8–2.4–2.0–1.6–1.2–0.8–0.4–0.500.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0165-45 Figure 45. V OS vs. Common-Mode Voltage, V S = 5 VFREQUENCY (MHz)2–80.1GAIN(dB)–4–2–61101001k10k Figure 46. Unity-Gain Follower Bandwidth vs. Input Common Mode, V S = 5 V Higher frequency signals require more headroom than lower frequencies to maintain distortion performance. Figure 47 illustrates how the rising edge settling time for the amplifier configured as a unity-gain follower stretches out as the top of a 1 V step input approaches and exceeds the specified input common-mode voltage limit.For signals approaching the minus supply and inverting gain and high positive gain configurations, the headroom limit is the output stage. The AD806x amplifiers use a common emitter style output stage. This output stage maximizes the available output range, limited by the saturation voltage of the output transistors. The saturation voltage increases with the drive current the output transistor is required to supply, due to the output transistors’ collector resistance. The saturation voltage is estimated using the equation V SAT = 25 mV + I O × 8 Ω, where I O is the output current, and 8 Ω is a typical value for the output transistors’ collector resistance.AD8061/AD8062/AD8063TIME (ns)2.0O U T P U T V O L T A G E (V )2.22.42.62.83.03.23.43.64812162024283201065-047Figure 47. Output Rising Edge for 1 V Step at Input Headroom Limits, G = 1, V S = 5 V, 0 VAs the saturation point of the output stage is approached, the output signal shows increasing amounts of compression and clipping. As in the input headroom case, the higher frequency signals require a bit more headroom than lower frequency signals. Figure 16, Figure 17, and Figure 18 illustrate this point, plotting typical distortion vs. output amplitude and bias for gains of 2 and 5.OVERLOAD BEHAVIOR AND RECOVERYInputThe specified input common-mode voltage of the AD806x is −200 mV below the negative supply to within 1.8 V of the positive supply. Exceeding the top limit results in lower bandwidth and increased settling time as seen in Figure 46 and Figure 47. Pushing the input voltage of a unity-gain follower beyond 1.6 V within the positive supply leads to the behavior shown in Figure 48—an increasing amount of output error and much increased settling time. Recovery time from input voltages 1.6 V or closer to the positive supply is approxi-mately 35 ns, which is limited by the settling artifacts caused by transistors in the input stage coming out of saturation.The AD806x family does not exhibit phase reversal, even for input voltages beyond the voltage supply rails. Going more than 0.6 V beyond the power supplies will turn on protection diodes at the input stage, which will greatly increase the device’s current draw.TIME (ns)2.1O U T P U T V O L T A G E (V )2.31002.52.72.93.13.33.53.720030040050060001065-048Figure 48. Pulse Response for G = 1 Follower, Input Step Overloading the Input StageOutputOutput overload recovery is typically within 40 ns after theamplifier’s input is brought to a nonoverloading value. Figure 49 shows output recovery transients for the amplifier recovering from a saturated output from the top and bottom supplies to a point at midsupply.TIME (ns)–0.2I N P U T A N D O U T P U T V O L T A G E (V )0.20.61.01.41.82.22.63.03.43.84.24.65.010203040506070Figure 49. Overload Recovery, G = −1, V S = 5 VCAPACITIVE LOAD DRIVEThe AD806x family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance creates a pole in the amplifier’s feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are as follows:1. Use a small resistor in series with the amplifier’s output andthe load capacitance. 2. Reduce the bandwidth of the amplifier’s feedback loop byincreasing the overall noise gain.AD8061/AD8062/AD8063Figure 50 shows a unity-gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.01065-052V OV IN01065-050Figure 34 shows the AD8063 supply current vs. DISABLEvoltage. Figure 35 plots the output seen when the AD8063 input is driven with a 10 MHz sine wave, and the DISABLE is toggled from 0 V to 5 V , illustrating the part’s turn-on and turn-off time. Figure 33 shows the input/output isolation response with the AD8063 shut off.Voltage feedback amplifiers like those in the AD806x family are able to drive more capacitive load without excessive peaking when used in higher gain configurations, because the increased noise gain reduces the bandwidth of the overall feedback loop. Figure 51 plots the capacitance that produces 30% overshoot vs.noise gain for a typical amplifier.CLOSED-LOOP GAIN10k1k1012C A P A C I T I V E L O A D (p F )10034501065-051BOARD LAYOUT CONSIDERATIONSMaintaining the high speed performance of the AD806x family requires the use of high speed board layout techniques and low parasitic components.The PCB should have a ground plane covering unused portions of the component side of the board to provide a low impedance path. Remove the ground plane near the package to reduce parasitic capacitance.Proper bypassing is critical. Use a ceramic 0.1 μF chip capacitor to bypass both supplies. Locate the chip capacitor within 3 mm of each power pin. Additionally, connect in parallel a 4.7 μF to 10 μF tantalum electrolytic capacitor to provide charge for fast, large signal changes at the output.Figure 51. Capacitive Load vs. Closed-Loop GainMinimizing parasitic capacitance at the amplifier’s inverting input pin is very important. Locate the feedback resistor close to the inverting input pin. The value of the feedback resistor may come into play—for instance, 1 kΩ interacting with 1 pF of parasitic capacitance creates a pole at 159 MHz. Use stripline design techniques for signal traces longer than 25 mm. Design them with either 50 Ω or 75 Ω characteristic impedance and proper termination at each end.DISABLE OPERATIONThe internal circuit for the AD8063 disable function is shown in Figure 52. When the DISABLE node is pulled below 2 V from the positive supply, the supply current decreases from typically 6.5 mA to under 400 μA, and the AD8063 output will enter a high impedance state. If the DISABLE node is not connected and allowed to float, the AD8063 stays biased at full power.AD8061/AD8062/AD8063APPLICATIONSSINGLE-SUPPLY SYNC STRIPPERWhen a video signal contains synchronization pulses, it is sometimes desirable to remove them prior to performing certain operations. In the case of A-to-D conversion, the sync pulses consume some of the dynamic range, so removing them increases the converter’s available dynamic range for the video information.Figure 53 shows a basic circuit for creating a sync stripper using the AD8061 powered by a single supply. When the negative supply is at ground potential, the lowest potential to which the output can go is ground. This feature is exploited to create a waveform whose lowest amplitude is the black level of the video and does not include the sync level.Ω01065-053In this case, the input video signal has its black level at ground, so it comes out at ground at the input. Since the sync level is below the black level, it will not show up at the output. However, all of the active video portion of the waveform will be amplified by a gain of two and then be normalized to unity gain by the back-terminated transmission line. Figure 54 is an oscilloscope plot of the input and output waveforms.01065-054INPUTOUTPUT12Video Sync Stripper Using an AD8061Some video signals with sync are derived from single-supply devices, such as video DACs. These signals can contain sync, but the whole waveform is positive, and the black level is not at ground but at some positive voltage.The circuit can be modified to provide the sync stripping function for such a waveform. Instead of connecting R G to ground, connect it to a dc voltage that is two times the black level of the input signal. The gain from the +input to the output is two, which means the black level will be amplified by two to the output. However, the gain through R G is –unity to the output. It takes a dc level of twice the input black level to shift the black level to ground at the output. When this occurs, the sync will be stripped, and the active video will be passed as in the ground-referenced case.01065-055RGB AMPLIFIERMost RGB graphics signals are created by video DAC outputs that drive a current through a resistor to ground. At the video black level, the current goes to zero, and the voltage of the video is also zero. Before the availability of high speed rail-to rail op amps, it was essential that an amplifier have a negative supply to amplify such a signal. Such an amplifier is necessary if one wants to drive a second monitor from the same DAC outputs. However, high speed, rail-to-rail output amplifiers like the AD8061 and AD8062 accept ground level input signals and output ground level signals. They are used as RGB signal amplifiers. A combination of the AD8061 (single) and the AD8062 (dual) amplifies the three video channels of an RGB system. Figure 55 shows a circuit that performs this function.AD8061/AD8062/AD8063The SELECT signal and the output waveforms for this circuit are shown in Figure 57. For synchronization clarity, two differ-ent frequency synthesizers, whose time bases are locked to each other, generate the signals.MULTIPLEXERThe AD8063 has a disable pin used to power down the ampli-fier to save power or to create a mux circuit. If two (or more) AD8063 outputs are connected together, and only one is enabled, then only the signal of the enabled amplifier will appear at the output. This configuration is used to select from various input signal sources. Additionally, the same input signal is applied to different gain stages, or differently tuned filters, to make a gain-step amplifier or a selectable frequency amplifier.01065-057Figure 56 shows a schematic of two AD8063s used to create a mux that selects between two inputs. One of these is a 1 V p-p, 3 MHz sine wave; the other is a 2 V p-p, 1 MHz sine wave.3MHz1MHzFigure 56. Two-to-One Multiplexer Using Two AD8063s。

相关文档
最新文档