高中数学人教A版选修2-1 空间向量与立体几何 单元综合测试 (11)
(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(1)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 2.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .43.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC 的值为( ) A .0 B .2 C .12- D .124.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.正方体1111ABCD A BC D -的棱长为a ,点M 在1AC 且112AM MC =,N 为1B B 的中点,则MN 为( )A .216aB .66aC .156aD .153a 7.正方体1111ABCD A BC D -中,点E ,F 分别是棱,CD BC 上的动点,且2BF CE =,当三棱锥1C C EF -的体积取得最大值时,记二面角1111,,C EF C C EF A A EF A ------的平面角分别为,,αβγ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .βγα>> 8.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35+C .45+D .422+ 9.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .7 B .75 C .7 D .7 10.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333 C .5510(,,)333 D .448(,,)33311.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D .3212.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .52二、填空题13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.14.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为10,则线段BD 的长为_______.15.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC =,则二面角B ﹣AD ﹣C 的余弦值为_____.17.已知(1,2,1),(2,2,2)A B -,点P 在z 轴上,且PA PB =,则点P 的坐标为____________.18.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.19.已知,若向量互相垂直,则k 的值为____. 20.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________.三、解答题21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 是一个菱形,3ABC π∠=,2AB =,23PA =.(1)若Q 是线段PC 上的任意一点,证明:平面PAC ⊥平面QBD ;(2)求直线DB 与平面PBC 所成角θ的正弦值.22.如图,多面体PABCDE 的底面ABCD 是菱形,PA ⊥底面ABCD ,//PA DE ,且2PA AD DE ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45︒,求二面角P CE D --的余弦值. 23.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ;(2)求二面角11B AC C --的大小.24.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且3CD =,E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(Ⅰ)证明://BF 平面PCD ;(Ⅱ)求二面角P BD F --的正弦值;(Ⅲ)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为39?若存在,求出此时PM 的长;若不存在,说明理由. 25.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(1)证明:1//BC 平面1AD E ;(2)求直线1BC 到平面1AD E 的距离;(3)求平面1AD E 与平面ABCD 夹角的余弦值.26.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,12AA=,CH ⊥平面11AA B B ,且3CH =.(1)求1AC 与平面ABC 所成角的正弦值;(2)在线段11A B 上是否存在一点P ,使得平面PBC ⊥平面ABC ?若存在,求出1B P 的长;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解.【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=,42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解.【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅ cos cos 33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=.故选A .【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()0,2,PB a b =--=PBC 的面积为(122BC PB ⨯⨯==126105a ==时,面积取得最小值为2655⎛⎫=⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.5.A解析:A【分析】建立空间直角坐标系,求出向量AM 与1BC 的向量坐标,利用数量积求出异面直线A M 与1B C 所成角的余弦值.【详解】以D 为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C 所成角的余弦值为11110cos ,10AM B C AM B C AM B C⋅===⋅ 故选A.【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解.6.A解析:A【分析】建立空间直角坐标系,写出各个点的坐标,利用坐标关系求得线段的长度.【详解】建立如图所示的空间直角坐标系则N(a ,a ,12a),C 1(0,a ,a ),A (a ,0,0) 因为11AM MC 2=所以11AM AC 3= 所以113DM DA AC =+ ()()1211,0,0,,,,3333a a a a a a a ⎛⎫=+-= ⎪⎝⎭所以121,,336MN DN DM a a a ⎛⎫=-= ⎪⎝⎭所以222121213366MN a a a a ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以选A【点睛】本题考查了空间直角坐标系的简单应用,利用坐标求得线段长度,属于基础题. 7.A解析:A【分析】设正方体的棱长为2,CE a =,则22CF a =-,列出三棱锥1C C EF -的体积关系式,可知当12a =时,1C C EF V -取得最大值,以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用法向量求出,,αβγ的余弦值,根据余弦值的大小关系可得结果.【详解】以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系:设正方体的棱长为2,CE a =,则22CF a =-,由0222a <-≤,得01a ≤<,11C C EF C CEF V V --=113CEF CC S =⨯⨯△211211(22)2()32324a a a ⎡⎤=⨯-⨯=--+⎢⎥⎣⎦, 所以当12a =时,1C C EF V -取得最大值16. 此时,3(2,0,0),(020),(00)2A C E ,,,,,(1,2,0)F ,11(2,0,2),(0,2,2)A C , 1(1,,0)2EF =,1(1,0,2)C F =-,1(1,2,2)A F =--, 设平面1C EF 的法向量为111(,,)m x y z =,平面1A EF 的法向量为222(,,)n x y z =,则100m EF m C F ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x y x z ⎧+=⎪⎨⎪-=⎩,取11x =,则1112,2y z =-=,所以1(1,2,)2m =-, 100n EF n A F ⎧⋅=⎪⎨⋅=⎪⎩,即22222102220x y x y z ⎧+=⎪⎨⎪-+-=⎩,取21x =则2252,2y z =-=-,所以5(1,2,)2n =--, 取平面CEF 和平面AEF 的法向量为1(0,0,2)AA =, 由图可知,,,αβγ均为锐角,则cos α=11||||||m AA m AA ⋅1140044=++⨯++21=, ||cos ||||m n m n β⋅==5|14|4125141444+-++⨯++105=,11||cos =||||n AA n AA γ⋅=25140044++⨯++5=, 所以cos cos cos αβγ<<,根据余弦函数在(0,)2π内单调递减,可得αβγ>>.故选:A【点睛】本题考查了三棱锥的体积公式,考查了二面角的向量求法,考查了运算求解能力,属于中档题. 8.B解析:B【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤ (2,,23MP a b ∴=--,(),4,0MC a b =-- •0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-= M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题9.C解析:C【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长.【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,0,3),M (0,0,3),P (x ,y ,0). 于是有AM =(0,1,3),MP =(x ,y ,3-). 由于AM ⊥MP ,所以(0,1,3)•(x ,y ,3-)=0, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为22371()4-=. 故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题10.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 11.B解析:B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解. 【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅=== 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.12.A解析:A【分析】 先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解.【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-, ∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为5 故选:A.【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题. 二、填空题13.【解析】【分析】利用平面可以得到从而为中点同理可得为中点再根据三棱锥为正三棱锥得到故四边形为矩形从而可计算其面积【详解】因为故在底面上的射影为底面三角形的外心又为等边三角形故在底面上的射影为底面三角 解析:452【解析】【分析】利用SB 平面DEFH 可以得到DHSB ,从而H 为SA 中点,同理可得F 为SC 中点,再根据三棱锥S ABC -为正三棱锥得到AC SB ⊥,故四边形HDEF 为矩形,从而可计算其面积.【详解】因为SA SB SC ==,故S 在底面上的射影为底面三角形的外心,又ABC ∆为等边三角形,故S 在底面上的射影为底面三角形的中心,所以三棱锥S ABC -为正三棱锥,所以SB AC ⊥.因SB 平面DEFH ,SB ⊂平面ABS ,平面ABS平面DEFH DH =,故SB DH ,因AD DB =,故AH HS =,1,2DHBS DH BS =,同理1,2EF BS EF BS =, 故,DH EF DH EF =,所以四边形DEFH 为平行四边形,又由,D E 为中点可得DE AC ,故DH DE ⊥,故四边形DEFH 为矩形. 又153,2DE DH ==,故矩形DEFH 的面积为452. 【点睛】 (1)正三棱锥中,对棱是相互垂直的,且顶点在底面的投影是底面正三角形的中心. (2)通过线面平行可以得到线线平行,注意利用线面平行这个条件时,要合理构建过已知直线的平面(该平面与已知平面有交线).14.【分析】以E 为原点EAEC 为xy 轴建立空间直角坐标系设用空间向量法求得t 进一步求得BD 【详解】以E 为原点EAEC 为xy 轴建立空间直角坐标系如下图解得t=1所以填【点睛】利用空间向量求解空间角与距离的解析:【分析】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,设(0,,2)(11)D t t -≤≤,用空间向量法求得t ,进一步求得BD.【详解】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --≤≤ 31(,,2),(0,1,2)2EF BD t ==+2(1)4102cos 5(1)4t EF BD EF BD t θ++⋅===⋅++ 解得t=1,所以22BD =,填22.【点睛】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.15.【分析】将平移到一起利用勾股定理求得线线角为【详解】解:取中点连接中分别为的中点且同理可得且与所成的直角或锐角就是异面直线与所成角中得即异面直线与所成角等于故答案为:【点睛】方法点睛:平移法是立体几 解析:90【分析】将,AD BC 平移到一起,利用勾股定理求得线线角为90.【详解】解:取BD 中点G ,连接EG FG 、,ABD 中,,E G 分别为,AB BD 的中点,//EG AD ∴且132EG AD ==,同理可得//,FG BC 且142FG BC ==, EG ∴与FG 所成的直角或锐角就是异面直线AD 与BC 所成角, EFG △中,3,4,5EG GF EF ===,222EG FG EF ∴+=,得90,EGF ∠=︒即异面直线AD 与BC 所成角等于90,故答案为:90.【点睛】方法点睛:平移法是立体几何中求线线角的常用方法之一,平移时通常结合三角形中位线定理把欲求的角平移到一个三角形中,然后再解三角形即可.16.【分析】如图所示建立空间直角坐标系平面的法向量平面的法向量利用夹角公式计算得到答案【详解】设中点为则故故两两垂直如图所示建立空间直角坐标系平面的法向量设平面的法向量为则解得:则法向量夹角故二面角B ﹣【分析】如图所示建立空间直角坐标系,平面ABD 的法向量()11,0,0n =,平面ACD的法向量()21,n =,利用夹角公式计算得到答案.【详解】设BD 中点为O,则AO CO ==AC =,故AO CO ⊥,故,,OA OC OD 两两垂直,如图所示建立空间直角坐标系.平面ABD 的法向量()11,0,0n =,设平面ACD 的法向量为()2,,n x y z =,()(),,0,1,0A C D ,则220,0n CD n AD ⋅=⋅=,解得:()21,n =,则法向量夹角1212cos 5n n n n θ⋅===⋅.故二面角B ﹣AD ﹣C .【点睛】本题考查了二面角,意在考查学生的空间想象能力和计算能力.17.【解析】设P(00z)由|PA|=|PB|得1+4+(z−1)2=4+4+(z−2)2解得z=3故点P 的坐标为(003)解析:()003,, 【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z−1)2=4+4+(z−2)2,解得z=3,故点P 的坐标为(0,0,3). 18.【解析】即解析:12λλ<≠-且【解析】0a b a b ⋅<且与不共线 ,即212110,1λλ---<≠⇒ 12λλ<≠-且 19.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即 解析:522-或 【分析】由向量垂直的坐标运算直接计算.【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=,解得522k k ==-或, 故答案为522-或. 【点睛】本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.20.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直解析:3【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min 1(cos )CD CA α=== 考点:1、异面直线所成的角;2、线面垂直、线线垂直.三、解答题21.(1)证明见解析;(2. 【分析】(1)通过证明,PA BD AC BD ⊥⊥证得BD ⊥平面PAC ,由此证得平面PAC ⊥平面QBD .(2)建立空间直角坐标系,利用直线DB 的方向向量和平面PBC 的法向量,计算出直线DB 与平面PBC 所成角θ的正弦值.【详解】 (1)证明:PA ⊥平面ABCD ,BD ⊂面ABCD ,PA BD ∴⊥,底面ABCD 是一个菱形,AC BD ∴⊥, 又AC PA A ⋂=,BD ∴⊥平面PAC ,BD ⊂平面QBD ,∴平面PAC ⊥平面QBD .(2)设ACBD O =,取PC 中点E ,连结OE ,则//OE PA ,故OE AC ⊥,如图,建立空间直角坐标系,则(3,0,0)B ,(0,1,0)C,(D ,(0,1,2P -,(3,1,0)CB ∴=-,(0,CP =-,(2DB =,设(,,)m x y z =为平面PBC 的一个法向量,则302230m CBx y m CP y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩, 取3y =,则(1,3,1)m =,5cos ,5m m nn DB m ⋅∴<>==⋅, 5sin |cos ,|m DB θ∴=<>=.【点睛】在利用向量法计算线面角时,要注意利用公式计算所得为线面角的正弦值,而不是余弦值. 22.(1)证明见解析;(2)6 【分析】(1)连接BD ,交AC 于点O ,设PC 中点为F ,连接OF ,EF ,则由三角形中位线定理可得//OF PA ,且12OF PA =,再结合已知条件可得四边形OFED 为平行四边形,从而可得//BD EF ,由线面垂直的判定定理可得BD ⊥平面PAC ,进而得EF ⊥平面PAC ,再利用面面垂直的判定定理可证得结论;(2)由直线PC 与平面ABCD 所成的角为45︒,再结合已知可得ABC 为等边三角形,设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可【详解】解:(1)证明:连接BD ,交AC 于点O , 设PC 中点为F ,连接OF ,EF因为O ,F 分别为AC ,PC 的中点, 所以//OF PA ,且12OF PA =, 因为//DE PA ,且12DE PA =, 所以//OF DE ,且OF DE =, 故四边形OFED 为平行四边形, 所以//OD EF ,即//BD EF ,因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形, 所以BD AC ⊥. 因为PAAC A =,所以BD ⊥平面PAC , 因为//BD EF , 所以EF ⊥平面PAC , 因为FE ⊂平面PCE , 所以平面PAC ⊥平面PCE .(2)设2PA AD ==,则1DE =.因为直线PC 与平面ABCD 所成的角为45︒, 所以45PCA ︒∠=, 所以2AC PA ==, 所以AC AB =, 故ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -(如图所示).则()0,0,2P ,)3,1,0C,()0,2,1E ,()0,2,0D ,()3,1,2PC =-,()3,1,1CE =-,()0,0,1DE =,设平面PCE 的法向量为{}111,,x n y z =,则00n PC n CE ⎧⋅=⎪⎨⋅=⎪⎩,即11111132030x y z x y z ⎧+-=⎪⎨-++=⎪⎩, 令11y =,则1132x z ⎧=⎪⎨=⎪⎩,所以()3,1,2n =,该平面CDE 的法向量为()222,,m x y z =,则00m DE m CE ⎧⋅=⎪⎨⋅=⎪⎩,即2222030z x y z =⎧⎪⎨-++=⎪⎩,令21x =,则223y z ⎧=⎪⎨=⎪⎩,所以()1,3,0m =,设二面角P CE D --的大小为θ,由于θ为钝角, 所以236cos cos ,4222n m n m n mθ⋅=-=-=-=-⋅⋅,所以二面角P CE D --的余弦值为6-. 【点睛】关键点点睛:此题考查面面垂直的判定,考查由线面角求二面角,解题的关键是由直线PC 与平面ABCD 所成的角为45︒,结合已知条件得ABC 为等边三角形,然后取BC 的中点M ,连接AM ,从而以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可,属于中档题 23.(1)证明见解析;(2)56π. 【分析】(1)建立空间直角坐标系,证明平面111A B C 法向量与向量CE 垂直. (2)求二面角两个半平面的法向量所成角即可.【详解】(1)因为点1B 在平面ABC 内的正投影为B ,所以1B B BA ⊥,1B BBC ,又AB BC ⊥,如图建立空间直角坐标系B xyz -,()0,0,0B ,()2,0,0A ,()0,2,0C ,()12,0,4A ,()10,0,4B ,()10,2,2C ,()1,0,2E ,设平面111A B C 的法向量()1,,n x y z =,()112,0,0A B =-,()110,2,2B C =-,即20,220,x y z -=⎧⎨-=⎩取1y =,得1(0,1,1)n =,又()1,2,2CE =-,()10112210CE n ⋅=⨯+⨯-+⨯=, 所以1CE n ⊥,又CE ⊄平面111A B C 所以//CE 平面111A B C ;(2)设平面111A B C 的法向量()2,,n x y z =,()12,0,4B A =-,()110,2,2B C =-, 即240,220,x z y z -=⎧⎨-=⎩取1y =,得()22,1,1n =,同理可求平面1ACC 的法向量()31,1,0n =, 所以2323233cos ,2n n n n n n ⋅==⋅,由图知二面角11B AC C --的平面角是钝角, 所以二面角11B AC C --的平面角是56π. 【点睛】关键点睛:利用题设垂直条件,建立空间直角坐标系. 24.(Ⅰ)证明见解析;(Ⅱ465Ⅲ)存在,7PM =. 【分析】(Ⅰ)建立空间直角坐标系,求出平面BCD 的法向量以及直线BF 的方向向量,根据向量数量积为零,即可证明;(Ⅱ)分别求出平面PBD 与平面FBD 的法向量,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系求出其正弦值;(Ⅲ)设PM PC λ=,()0,1λ∈,利用空间向量法表示出直线BM 和平面BDF 所成角的正弦值,即可得到方程,求出λ,即可求出PM 的长; 【详解】解:(Ⅰ)由题意得://BC DE ,=BC DE ,90ADC ∠=︒, 所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A ,()3,0B,()1,0,0D -,(3P ,()3,0C -,132F ⎛ ⎝⎭设平面PCD 的法向量为(),,m x y z =,()0,3,0DC =,(3DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则3030x z ⎧=⎪⎨=⎪⎩, 则0y =,不妨设3x =-1z =, 可得()3,0,1m =-又13,3,2BF ⎛= ⎝⎭,可得0BF m ⋅=,又因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(Ⅱ)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即11110x ⎧+=⎪⎨=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n x yz =,32DF ⎛=⎝⎭, 则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即22220302x x z ⎧=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-,因此有121212cos ,65n n n n n n ⋅==-⋅ (注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F --.(Ⅲ)设((),PMPC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(Ⅱ)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得13PM ⎛=- ⎝⎭, 所以73PM =. 【点睛】本题考查了立体几何中的线面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 25.(1)证明见解析;(2)23;(3)23.【分析】建立空间直角坐标系A xyz -,设正方体的棱长为2(1)求出平面1AD E 的法向量和1BC ,由11BC n ⊥可得答案;(2)直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,利用AB n d n⋅=可得答案;(3)求出平面ABCD 的一个法向量设平面1AD E 与平面ABCD 夹角为θ,111cos cos n n n n n n θ⋅=⋅=可得答案.【详解】如图建立空间直角坐标系A xyz -,设正方体的棱长为2则(0,0,0)A ,(0,2,0)B ,1(2,0,2)D ,1(2,2,2)C , (0,2,1)E , (1)设平面1AD E 的法向量为1111(,,)n x y z =,100n AD n AE ⎧⋅=⎨⋅=⎩22020x z y z +=⎧∴⎨+=⎩,令1x =,则1,z =-1,2y =111,,12n ⎛⎫∴=- ⎪⎝⎭,1(2,0,2)BC =, 111(2,0,2)1,,12202C n B ⎛⎫⋅=⋅-=-= ⎪⎝⎭,∴11BC n ⊥,1C B ⊄面1AD E 1//BC ∴平面1AD E .(2)1//BC 平面1AD E ,直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,(0,2,0)AB =,111,,12n ⎛⎫=- ⎪⎝⎭,11AB n d n ⋅==10120(1)21114⨯+⨯+⨯-++=23, ∴直线1BC 到平面1AD E 的距离为23.(3)平面ABCD 的一个法向量为(0,0,2)n =,设平面1AD E 与平面ABCD 夹角为θ,11 1,,1 2n⎛⎫=-⎪⎝⎭,111cos cosn nn nn nθ⋅=⋅==10102(1)212114⨯+⨯+⨯-++=23,所以平面1AD E与平面ABCD夹角的余弦值23.【点睛】方法点睛:本题考查空间中线面平行关系、线面距离、面面角的求法,关键点是建立空间直角坐标系,利用向量法解决问题,考查学生的空间想象力和运算能力.26.(1)311055;(2)存在,115B P =.【分析】(1)以点1B为坐标在原点建立空间直角坐标系,利用向量法可求得结果;(2)假设存在点P,设(,0,0)Pλ,且[]0,2λ∈,利用平面PBC的法向量与平面ABC 的法向量垂直列式可解得结果.【详解】(1)以点1B为坐标在原点建立空间直角坐标系,如图:则1(0,0,0)B,1(2,0,0)A,(2,2,0)A,(0,2,0)B ,(1,1,3)C ,(1)(2,0,0)AB=-,(1,1,3)AC=--,设平面ABC 的一个法向量(,,)n x y z=则n ABn AC⎧⋅=⎨⋅=⎩,即2030xx y z-=⎧⎨--+=⎩,令1z=得(0,3,1)n=,设1AC与平面ABC所成角为θ,1(1,1,3)AC=-,110333sin11055119091AC nAC nθ⋅++∴===++⨯++⋅(2)假设存在点P,设(,0,0)Pλ,且[]0,2λ∈,(,2,0)PBλ∴=-,(1,1,3)BC=-,设平面PBC的法向量(,,)m x y z=,则m PBm BC⎧⋅=⎨⋅=⎩,即2030x yx y zλ-+=⎧⎨-+=⎩,令1x=得11,,263mλλ⎛⎫=-⎪⎝⎭,平面PBC⊥平面ABC,m n∴⊥,即31263m nλλ=⋅=+-,得[]10,25λ=∈,∴存在这样的点1,0,05P⎛⎫⎪⎝⎭使得平面PBC⊥平面ABC,且115B P=.【点睛】关键点点睛:将平面与平面垂直问题转化为两个平面的法向量垂直求解是本题的解题关键.。
高中数学选修2-1《空间向量与立体几何》测试题
高二数学空间向量测试题第Ⅰ卷一选择题 ( 每道题的四个选择答案中有且只有一个答案是正确的)1、在下列命题中:①若向量 a、b 共线,则 a、b 所在的直线平行;②若向量 a、b 所在的直线是异面直线,则a、b 一定不共面;③若 a、 b、 c 三向量两两共面,则 a、 b、c 三向量一定也共面;④已知三向量 a、 b、 c,则空间任意一个向量p 总可以唯一表示为p=x a+y b+z c.其中正确命题的个数为()A .0 B. 1 C. 2 D. 32、空间四边形 ABCD 中, AB a , BC b, AD c, 则CD ( )A.a b c B. a b c C. a b c D . a b c3、已知平行四边形ABCD 中, A( 4,1, 3) 、B ( 2,- 5, 1) 、 C( 3, 7,- 5) ,则顶点 D 的坐标为 ( )7,4, 1) B.( 2, 3, 1) C.( - 3, 1,5) D .( 5, 13,- 3) A.(24、a= (- 1,- 5,- 2),b=( x,2, x 2 ),若a b ,则x=( )A. 0 B.14C.- 6 D.±6 35、设a=( m , 1,2 ),b= ( 3, 4, n ),若 a // b ,则m,n的值分别为( )3, 8 B.3 3D .3A.,— 8 C.,8 ,- 84 4 4 46、已知向量a (0, 2, 1),b (- 1, 1,- 2) ,则a 与 b 的夹角为( )A. 0°B.45°C.90° D .180°7、若斜线段 AB 是它在平面内的射影长的2倍,则 AB与所成的角为 ( )A. 60°B.45°C.30° D .120°8、已知a=( 2,- 1, 3),b=(- 1, 4,- 2),c=( 7, 5,λ),若a、b、c三向量共面,则实数λ等于()A.62B. 6 3C. 6 4D. 657 7 7 79、在正三角形ABC 中, AD⊥ BC 于 D,沿 AD 折成二面角B- AD -C 后,BC1AB ,这时2 二面角 B- AD- C 的大小为 ( )A. 60°B. 45°C. 90°D. 120°10、矩形 ABCD 中, AB = 1, BC 2 ,PA⊥平面 ABCD ,PA= 1,则 PC 与平面 ABCD 所成的角是( )A. 30°B. 45°C. 60°D. 90°11、设 A、 B、 C、D 是空间不共面的四点,且满足AB AC 0, AB AD 0, AC AD 0则△ BCD 是()A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、PA、 PB、 PC 是从 P 点引出的三条射线,每两条的夹角为60°,则直线 PC 与平面 APB 所成角的余弦值为 ( )1 6C.3 3A.B.3D.2 3 2第Ⅱ卷二、填空题13、已知向量 a =(4,-2,-4), b =(6,-3,2),则 a 在 b 方向上的投影是______.14、已知 AB(1,0 ,2 ), AC( 2,1,1) ,则平面ABC 的一个法向量为____________.15、∠ BOC 在平面内,OA是平面的一条斜线,若∠AOB =∠ AOC = 60°, OA= OB= OC= a, BC= 2 a,则 OA 与平面所成的角是______.- 1 -16、下列命题中: ( 1) a b 0 则 a =0或 b =0;( 2) (a b ) c a2 2(b c ); (3 )| p | | q |( p q) 2;( 4) 若a与 (a b ) c (a c) b 均不为0,则它们必垂直.其中真命题的序号是______.三、解答题17、如图,在平行六面体ABCD- A1B1 C1D 1中, AB a , AD b, AA1c,2 AM MC ,A1 N 2 ND ,试用基底{ a , b , c}表示MN .18、如图,底面ABCD 为矩形,侧棱PA⊥底面 ABCD ,AB 3 ,BC=1,PA=2,求直线AC 与 PB 所成角的余弦值.19、一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°,求这条线段与这个二面角的棱所成的角。
高中数学第三章空间向量与立体几何单元综合测试(含解析)新人教A版选修2-1
单元综合测试三(第三章)时间:90分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.与向量a=(1,-3,2)平行的一个向量的坐标可以是( C )A.错误!B.(-1,-3,2)C。
错误!D.(错误!,-3,-2错误!)解析:a=(1,-3,2)=-2错误!。
2.如图所示,在平行六面体ABCD。
A1B1C1D1中,已知错误!=a,错误!=b,错误!=c,则用向量a,b,c表示向量错误!为( D )A.a+b+cB.a-b+cC.a+b-cD.-a+b+c解析:错误!=错误!+错误!+错误!=-a+b+c.3.已知a=(2,-1,3),b=(-4,2,x),c=(1,-x,2),若(a+b)⊥c,则x 等于( B )A.4 B.-4C。
错误!D.-6解析:a+b=(-2,1,3+x),∵(a+b)⊥c,∴(a+b)·c=0,∴-2-x+2(3+x)=0,得x=-4。
4.若a=(1,λ,2),b=(2,-1,2),且a,b的夹角的余弦值为错误!,则λ等于( C )A.2 B.-2C.-2或错误!D.2或-错误!解析:a·b=2-λ+4=6-λ=错误!×3×错误!.解得λ=-2或错误!.5.已知空间四边形ABCD每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC 的中点,则a2是下列哪个选项的计算结果( C )A.2错误!·错误!B.2错误!·错误!C.2错误!·错误!D.2错误!·错误!解析:2错误!·错误!=-a2,A错;2错误!·错误!=-a2,B错;2错误!·错误!=-错误!a2,D错;只有C对.6.若A(x,5-x,2x-1),B(1,x+2,2-x),当|错误!|取最小值时,x的值等于( C )A.19 B.-错误!C。
错误! D。
错误!解析:错误!=(1-x,2x-3,-3x+3),则|错误!|=错误!=错误!=错误!,故当x=错误!时,|错误!|取最小值,故选C.7.已知ABCD,ABEF是边长为1的正方形,FA⊥平面ABCD,则异面直线AC与EF所成的角为( B )A.30°B.45°C.60°D.90°解析:∵错误!=错误!+错误!,四边形ABCD,ABEF均为正方形,∴错误!·错误!=(错误!+错误!)·错误!=-错误!·错误!+错误!2=1。
高中数学人教A版选修2-1空间向量与立体几何章末综合测评-含答案解析版
人教A 版选修2-1空间向量与立体几何章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D.()2,-3,-222.在正方体ABCD A 1B 1C 1D 1中,A 1E →=14A 1C 1→,AE →=xAA 1→+y (AB →+AD →),则( )A .x =1,y =12B .x =1,y =13C .x =12,y =1D .x =1,y =143.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)4.在平行六面体ABCD A 1B 1C 1D 1中,若AC 1→=aAB →+2bAD →+3cA 1A →,则abc 的值等于( )A.16B.56C.76 D .-165.在棱长为1的正方体ABCD A 1B 1C 1D 1中,下列结论不正确的是( )A.AB →=-C 1D 1→B.AB →²BC →=0C.AA 1→²B 1D 1→=0D.AC 1→²A 1C →=06.已知向量a ,b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c ²a =0,且c ²b =0”是l ⊥α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .58.若向量a =(x ,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x =( ) A .3 B .-3 C .-11D .3或-119.如图1,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成的角的正弦值为( )图1A.63B.255C.155D.10510.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.1311.已知正方体ABCD A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD→+mAB →-nAA 1→,则m ,n 的值分别为( ) A.12,-12 B .-12,-12C .-12,12D.12,1212.在矩形ABCD 中,AB =3,AD =4,PA ⊥平面ABCD ,PA =435,那么二面角A BD P 的大小为( )A .30°B .45°C .60°D .75°二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.若a =(2x ,1,3),b =(1,-2y ,9),且a 与b 为共线向量,则x =________,y =________.14.△ABC 的三个顶点坐标分别为A (0,0,2),B ⎝⎛⎭⎪⎪⎫-32,12, 2,C (-1,0, 2),则角A 的大小为________.15.在空间直角坐标系Oxyz 中,已知A (1,-2,3),B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为________.16.如图2,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A ,B ,C ,D 的距离都等于2.图2给出以下结论:①SA →+SB →+SC →+SD →=0;②SA →+SB →-SC →-SD →=0;③SA →-SB →+SC →-SD →=0;④SA →²SB →=SC →²SD →;⑤SA →²SC →=0,其中正确结论的序号是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.如图3,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .图3(1)证明:平面PQC ⊥平面DCQ ; (2)证明:PC ∥平面BAQ .【证明】 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →²DQ →=0,PQ →²DC →=0,即PQ ⊥DQ ,PQ ⊥DC 且DQ ∩DC =D . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)根据题意,DA→=(1,0,0),AB →=(0,0,1),AQ →=(0,1,0),故有DA →²AB →=0,DA →²AQ →=0,所以DA →为平面BAQ 的一个法向量.又因为PC →=(0,-2,1),且DA →²PC →=0,即DA ⊥PC ,且PC ⊄平面BAQ ,故有PC ∥平面BAQ .18. (本题满分12分)如图4,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.图4【解】 因为BA 1→=BA →+AA 1→ =BA →+BB 1→,AC →=BC →-BA →, 且BA →²BC →=BB 1→²BA → =BB1→²BC →=0, 所以BA 1→²AC →=(BA →+BB 1→)²(BC →-BA →) =BA →²BC →-BA →2+BB 1→²BC →-BB 1→²BA → =-1.又|AC →|=2,|BA 1→|=1+2=3, 所以cos 〈BA 1→,AC →〉=BA 1→²AC →|BA 1→||AC →|=-16=-66,则异面直线BA 1与AC 所成角的余弦值为66.19. (本小题满分12分)如图5,AB 是圆的直径,PA 垂直圆所在的平面,C是圆上的点.图5(1)求证:平面PBC⊥平面PAC;(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.【解】(1)证明:由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC.所以平面PBC⊥平面PAC.(2)过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB,CA,CM为x轴,y轴,z轴建立空间直角坐标系.在Rt△ABC中,因为AB=2,AC=1,所以BC= 3.又因为PA=1,所以A(0,1,0),B(3,0,0),P(0,1,1).故CB→=(3,0,0),CP→=(0,1,1).设平面BCP的法向量为n1=(x1,y1,z1),则⎩⎨⎧CB →²n 1=0,CP →²n 1=0,所以⎩⎪⎨⎪⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为AP→=(0,0,1),AB →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧AP →²n 2=0,AB →²n 2=0,所以⎩⎪⎨⎪⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1, 3,0). 于是cos 〈n 1,n 2〉=322=64.由图知二面角C PB A 为锐角,故二面角C PB A 的余弦值为64.20. (本小题满分12分)如图6,在四棱锥P ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC =2AB =2AD =4BE ,平面PAB ⊥平面ABCD .图6(1)求证:平面PED ⊥平面PAC;(2)若直线PE 与平面PAC 所成的角的正弦值为55,求二面角A PCD 的余弦值.【解】 (1)∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,AB ⊥PA , ∴PA ⊥平面ABCD ,又∵AB ⊥AD ,故可建立空间直角坐标系Oxyz 如图所示, 不妨设BC =4,AP =λ(λ>0),则有D (0,2,0),E (2,1,0),C (2,4,0),P (0,0,λ), ∴AC →=(2,4,0),AP →=(0,0,λ),DE →=(2,-1,0), ∴DE →²AC →=4-4+0=0,DE →²AP →=0,∴DE ⊥AC ,DE ⊥AP 且AC ∩AP =A , ∴DE ⊥平面PAC . 又DE ⊂平面PED , ∴平面PED ⊥平面PAC .(2)由(1)知,平面PAC 的一个法向量是DE →=(2,-1,0),PE →=(2,1,-λ),设直线PE 与平面PAC 所成的角为θ,∴sin θ=|cos 〈PE →,DE →〉|=⎪⎪⎪⎪⎪⎪⎪⎪4-155+λ2=55,解得λ=±2. ∵λ>0,∴λ=2,即P (0,0,2),设平面PCD 的一个法向量为n =(x ,y ,z ),DC→=(2,2,0),DP →=(0,-2,2),由n ⊥DC →,n ⊥DP →,∴⎩⎪⎨⎪⎧2x +2y =0,-2y +2z =0,不妨令x =1,则n =(1,-1,-1). ∴cos 〈n ,DE →〉=2+13 5=155,显然二面角A PC D 的平面角是锐角, ∴二面角A PC D 的余弦值为155.21. (本小题满分12分)如图7,四棱锥P ABCD 的底面ABCD 为一直角梯形,其中BA ⊥AD ,CD ⊥AD ,CD =AD =2AB ,PA ⊥底面ABCD ,E 是PC 的中点.图7(1)求证:BE ∥平面PAD ; (2)若BE ⊥平面PCD ,①求异面直线PD 与BC 所成角的余弦值; ②求二面角E BD C 的余弦值.【解】 设AB =a ,PA =b ,建立如图的空间直角坐标系,则A (0,0,0),B (a ,0,0),P (0,0,b ),C (2a ,2a ,0),D (0,2a ,0),E ⎝⎛⎭⎪⎫a ,a ,b 2.(1)BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a ,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,因为BE ⊄平面PAD ,所以BE ∥平面PAD . (2)因为BE ⊥平面PCD ,所以BE ⊥PC , 即BE →²PC →=0,PC →=(2a ,2a ,-b ), 所以BE →²PC →=2a 2-b 22=0,则b =2a .①PD →=(0,2a ,-2a ),BC →=(a ,2a ,0),cos 〈PD →,BC →〉=4a 222a ²5a=105,所以异面直线PD 与BC 所成角的余弦值为105.②在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a ,0),BC →=(a ,2a ,0),所以平面BDE 的一个法向量为n 1=(2,1,-1);平面BDC 的一个法向量为n 2=(0,0,1);cos 〈n 1,n 2〉=-16,所以二面角E BD C 的余弦值为66. 22.(本小题满分12分)如图8,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).图8(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【解】 以D 为原点,射线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE→=(1,1,0).(1)当λ=1时,FP →=(-1,0,1), 因为BC1→=(-2,0,2). 所以BC1→=2FP →,可知BC 1∥FP , 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ . (2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),由⎩⎨⎧FE →²n =0,FP →²n =0,得⎩⎪⎨⎪⎧x +y =0,-x +λz =0,于是可取n =(λ,-λ,1),同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1), 若存在λ,使得平面EFPQ 与平面PQMN 所在的二面角为直二面角, 则m ²n =(λ-2,2-λ,1)²(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0, 解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.人教A 版选修2-1空间向量与立体几何章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D.()2,-3,-22【解析】 a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.【答案】 C2.在正方体ABCD A 1B 1C 1D 1中,A 1E →=14A 1C 1→,AE →=xAA 1→+y (AB →+AD →),则( )A .x =1,y =12B .x =1,y =13C .x =12,y =1D .x =1,y =14【解析】 AE →=AA 1→+A 1E →=AA 1→+14A 1C 1→ =AA 1→+14AC →=AA 1→+14(AB →+AD →), ∴x =1,y =14.应选D.【答案】 D3.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)【解析】 a =CA →=(-1,0,-2),b =CB →=(-4,9,0), ∴a +b =(-5,9,-2). 【答案】 B5.在平行六面体ABCD A 1B 1C 1D 1中,若AC 1→=aAB →+2bAD →+3cA 1A →,则abc 的值等于( )A.16B.56C.76D .-16【解析】 ∵AC 1→=AB →+AD →-AA 1→=aAB →+2bAD →+3cA 1A →,∴a =1,b =12,c =-13.∴abc =-16. 【答案】 D5.在棱长为1的正方体ABCD A 1B 1C 1D 1中,下列结论不正确的是( )A.AB →=-C 1D 1→B.AB →²BC →=0C.AA 1→²B 1D 1→=0D.AC 1→²A 1C →=0【解析】 如图,AB →∥C 1D 1→,AB →⊥BC →,AA 1→⊥B 1D 1,故A ,B ,C 选项均正确.【答案】 D6.已知向量a ,b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c ²a =0,且c ²b =0”是l ⊥α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若l ⊥α,则l 垂直于α内的所有直线,从而有c ²a =0,c ²b =0.反之,由于a ,b 是否共线没有确定,若共线,则结论不成立;若不共线,则结论成立.【答案】 B7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC边上的中线长为( )A.2 B.3C.4 D.5【解析】设BC的中点为D,则D(2,1,4),∴AD→=(-1,-2,2),∴|AD→|=(-1)2+(-2)2+22=3,即BC边上的中线长为3.【答案】 B8.若向量a=(x,4,5),b=(1,-2,2),且a与b的夹角的余弦值为26,则x=( )A.3 B.-3C.-11 D.3或-11【解析】因为a²b=(x,4,5)²(1,-2,2)=x-8+10=x+2,且a与b的夹角的余弦值为26,所以26=x+2x2+42+52³1+4+4,解得x=3或-11(舍去),故选A.【答案】 A9.如图1,在长方体ABCDA1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为( )图1A.63B.255C.155D.105【解析】 以D 点为坐标原点,以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1→=(-2,0,1),AC →=(-2,2,0),且AC →为平面BB 1D 1D 的一个法向量.∴cos 〈BC 1→,AC →〉=BC1→²AC →|BC 1→||AC →|=45²8=105.∴sin 〈BC →1,AC →〉=|cos 〈BC →1,AC →〉|=105,∴BC 1与平面BB 1D 1D 所成的角的正弦值为105. 【答案】 D10.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.13【解析】 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC→=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪n ²DC →|n ||DC →|=23.【答案】 A11.已知正方体ABCD A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD→+mAB →-nAA 1→,则m ,n 的值分别为( ) A.12,-12 B .-12,-12C .-12,12D.12,12【解析】 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A.【答案】 A12.在矩形ABCD 中,AB =3,AD =4,PA ⊥平面ABCD ,PA =435,那么二面角A BD P 的大小为( )A .30°B .45°C .60°D .75°【解析】 如图所示,建立空间直角坐标系,则PB →=⎝⎛⎭⎪⎫3,0,-453,BD →=(-3,4,0).设n =(x ,y ,z )为平面PBD 的一个法向量,则⎩⎨⎧n ²PB →=0,n ²BD →=0,得⎩⎪⎨⎪⎧(x ,y ,z )²⎝ ⎛⎭⎪⎫3,0,-453=0,(x ,y ,z )²(-3,4,0)=0. 即⎩⎪⎨⎪⎧3x -453z =0,-3x +4y =0.令x =1,则n =⎝⎛⎭⎪⎫1,34,543.又n 1=⎝⎛⎭⎪⎫0,0,453为平面ABCD 的一个法向量,∴cos 〈n 1,n 〉=n 1²n |n 1||n |=32.∴所求二面角为30°.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.若a =(2x ,1,3),b =(1,-2y ,9),且a 与b 为共线向量,则x =________,y =________.【解析】 由题意得2x 1=1-2y =39,∴x =16,y =-32.【答案】 16 -3214.△ABC 的三个顶点坐标分别为A (0,0,2),B ⎝⎛⎭⎪⎪⎫-32,12, 2,C (-1,0, 2),则角A 的大小为________.【解析】 AB →=⎝ ⎛⎭⎪⎪⎫-32,12,0,AC →=(-1,0,0),则cos A =AB →²AC →|AB →||AC →|=321³1=32,故角A 的大小为30°. 【答案】 30°15.在空间直角坐标系Oxyz 中,已知A (1,-2,3),B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为________.【解析】 设点C 的坐标为(x ,0,z ),则AC→=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB →共线,所以x -11=23=z -3-4,解得⎩⎪⎨⎪⎧x =53,z =13,所以点C 的坐标为⎝ ⎛⎭⎪⎫53,0,13.【答案】 ⎝ ⎛⎭⎪⎫53,0,1316.如图2,在四棱锥S ABCD 中,底面ABCD是边长为1的正方形,S 到A ,B ,C ,D 的距离都等于2.图2给出以下结论:①SA→+SB→+SC→+SD→=0;②SA→+SB→-SC→-SD→=0;③SA→-SB→+SC→-SD→=0;④SA→²SB→=SC→²SD→;⑤SA→²SC→=0,其中正确结论的序号是________.【解析】容易推出:SA→-SB→+SC→-SD→=BA→+DC→=0,所以③正确;又因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA→²SB→=2³2cos∠ASB,SC→²SD→=2³2cos∠CSD,而∠ASB=∠CSD,于是SA→²SB→=SC→²SD→,因此④正确;其余三个都不正确,故正确结论的序号是③④.【答案】③④- 21 -。
(典型题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)
一、选择题1.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .12.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .(0,63D .()63,+∞3.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π 4.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±5.在长方体1111ABCD A BC D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5 C .5 D .2 6.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .2B .3C .5D .67.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+8.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A 7B .75C .72D .749.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33310.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A 45B .2C .22D .312.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个二、填空题13.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____. 14.已知直线l 的倾斜角为θ,则直线l 的一个方向向量为_______________. 15.如图,平行六面体ABCD A B C D ''''-中,1,2,AB AD AA BAD BAA ===∠=∠''60DAA =='∠,则AC '的长为__________16.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.19.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且22PA PD AD ===,设E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求直线EF 与平面PBD 所成角的正弦值.22.如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且5,4===.AB BC AC⊥.(1)证明:AD CF(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.23.如图所示,在梯形ABCD中,AB∥CD,∠BCD=120°,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.-中,PD⊥平面ABCD,四边形ABCD是等腰梯形24.如图,在四棱锥P ABCD====分别是,AB DC BC CD AD AB M N//,2,4,,AB AD的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积.25.如图,在三棱柱111ABC A B C -中,已知ABC 是直角三角形,侧面11ABB A 是矩形,AB =BC =1,BB 1=2,13BC =.(1)证明:BC 1⊥AC .(2)E 是棱CC 1的中点,求直线B 1C 与平面ABE 所成角的正弦值.26.如图,在四棱锥 P -ABCD 中,△PAB 为正三角形,四边形ABCD 为矩形,且平面PAB ⊥平面ABCD ,AB =2,PC =4(1)求证:平面PAB ⊥平面PAD(2)在线段PA 上是否存在一点N ,使得二面角A -BD -N 313N 的位置;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误;对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.2.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C. 【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.3.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得22331cos ,23101021a b z z ⨯===++⋅+++, 化简得22z =,解得2z =± C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.5.C解析:C 【详解】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D 为坐标原点,DA,DC,DD 1为x,y,z轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),D A B D ,所以11(1,0,3),(1,1AD DB =-=,因为111111cos ,52AD DB AD DB AD DB ⋅===⨯,所以异面直线1AD 与1DB 所成角的余C. 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.6.A解析:A 【解析】解:由题意可知:()1,1,b a t tt -=---- , 则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.7.B解析:B 【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤(2,,23MP a b ∴=--,(),4,0MC a b =--•0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-=M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B 【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题8.C解析:C 【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长. 【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,03M (0,0,3P (x ,y ,0). 于是有AM =(0,13MP =(x ,y ,3 由于AM ⊥MP ,所以(0,13•(x ,y ,30, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2371()4-=.故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题9.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】 设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 10.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.D解析:D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-, 由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选:D.【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.12.B解析:B【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论;②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假.【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面,则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立,即()a b xb x y c ya +=+++,所以1,1,0x y x y ==+=,显然无解,假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1,因此不正确.其中正确的命题有一个.故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C =解析:2【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO BO AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AO =2131()2-=, BO =22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯=+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |=22371044BO AO +=+=, 故答案为:102. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.(cos sin )【分析】分类讨论:当倾斜角为时可以得出直线的一个方向向量;当倾斜角不等于时先求出直线的斜率然后再写出直线的一个方向向量最后综合即可得出答案【详解】当时直线与垂直则可得直线的一个方解析:(cos θ,sin θ)【分析】分类讨论:当倾斜角θ为90︒时,可以得出直线的一个方向向量;当倾斜角θ不等于90︒时,先求出直线的斜率,然后再写出直线的一个方向向量,最后综合即可得出答案.【详解】当90θ︒=时,直线l 与x 垂直,则可得直线l 的一个方向向量为()0,1;当90θ︒≠时,则可得直线l 的斜率为tan k θ=,则可得直线l 的一个方向向量为()1,tan θ或()cos ,sin θθ;令θ90︒=,则有()()cos ,sin 0,1θθ=,综上可得:直线l 的倾斜角为θ时,直线l 的一个方向向量为()cos ,sin θθ.故答案为:()cos ,sin θθ.【点睛】本题考查了直线方向向量的求解,注意做题时一定要考虑到直线的倾斜角可能为90︒,属于一般难度的题.15.【解析】所以 解析:11 【解析】22222||222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅'''⋅'+' 222000112211cos60221cos60212cos6011=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=所以11AC =' 16.【解析】如图建系设则可得且故又因为故又故又因为且故故答案为 解析:22【解析】如图建系,设()()0,,,,0,B b m C c n ,则()()222210,,,0,11cos 600b m c n b m c n m n ⎧+=+=⎪=⋅⎨⎪<≤⎩,可得12mn =且0m n <≤,故22m ≤,又因为221c n +=,故1n <,又12mn =, 故12m >,又因为212tan 1,22b m m ϕ==-<≤且,故 2tan ϕ,故答案为22. 17.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。
人教A版高中数学高二选修2-1单元目标检测 第三章 空间向量与立体几何
数学人教A 选修2-1第三章 空间向量与立体几何单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1.已知点A (-4,8,6),则点A 关于y 轴对称的点的坐标为( ). A .(-4,-8,6) B .(-4,-8,-6) C .(-6,-8,4) D .(4,8,-6)2.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( ). A .-1 B .0 C .1 D .-23.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( ), A .2 B .-2 C .-2或255 D .2或255- 4.已知a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为( ).A B C .4 D .8 5.如图,在四面体ABCD 中,已知AB =b ,AD =a ,AC =c ,12BE EC =,则DE 等于( ).A .2133-++a b c B .2133++a b c C .2133-+a b c D .2133-+a b c 6.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,则二面角A -PB -C 的平面角的正切值为( ).A B C D 7.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动(O 为原点),则当QA QB ⋅取最小值时,点Q 的坐标为( ).A .444,,333⎛⎫⎪⎝⎭ B .848,,333⎛⎫ ⎪⎝⎭C .884,,333⎛⎫ ⎪⎝⎭D .448,,333⎛⎫ ⎪⎝⎭8.正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是BB 1,CD 的中点,则点F 到平面A 1D 1E 的距离为( ).A .310a B .10a C .10a D .710a 二、填空题(每小题6分,共18分)9.若向量a =(4,2,-4),b =(1,-3,2),则2a ·(a +2b )=________.10.如图,在矩形ABCD 中,AB =3,BC =1,EF ∥BC 且AE =2EB ,G 为BC 的中点,K 为△AFD 的外心,沿EF 将矩形折成120°的二面角A -EF -B ,此时KG 的长为__________.11.已知直线AB ,CD 是异面直线,AC ⊥AB ,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为________.三、解答题(共3小题,共34分)12.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ⊥b ?(O 为原点)13.(10分)如图,在四棱锥P -ABCD 中,底面是边长为BAD =120°,且PA ⊥平面ABCD ,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.14.(14分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D;(2)求二面角A-A1D-B的平面角的余弦值;参考答案1答案:D2答案:D 解析:a +λb =(λ,1+λ,-1). 由(a +λb )⊥a ,知(a +λb )·a =0, 所以1+λ+1=0,解得λ=-2. 3答案:C解析:由公式cos 〈a ,b 〉=||||⋅a ba b ,知89==λ=-2或255.4答案:A 解析:|a |=3,|b |=3,而a·b =4=|a||b|cos ,a b ,∴cos ,a b =49,故sin ,a b=于是以a ,b 为邻边的平行四边形的面积为 S =|a||b|sin ,a b=33⨯= 5答案:A 解析:DE =DA +AB +BE =DA +AB +13(AC -AB )=2133-++a b c .6答案:A 解析:设PA =AB =2,建立空间直角坐标系,平面PAB 的一个法向量是m =(1,0, 0),平面PBC 的一个法向量是n=⎫⎪⎪⎝⎭. 则cos 〈m ,n〉=·3||||||||3===m nm n m n . ∴正切值tan 〈m ,n.7答案:D 解析:由题意可知OQ =λOP ,故可设Q (λ,λ,2λ),∴QA ·QB =6λ2-16λ+10=242633λ⎛⎫-- ⎪⎝⎭,∴43λ=时,QA ·QB 取最小值,此时Q 的坐标为448,,333⎛⎫⎪⎝⎭. 8答案:C 解析:建立如图所示的坐标系,则A 1(a,0,a ),D 1(0,0,a ),A (a,0,0),B (a ,a,0),B 1(a ,a ,a ),E ,,2a a a ⎛⎫ ⎪⎝⎭,F 0,,02a ⎛⎫⎪⎝⎭.设平面A 1D 1E 的法向量为n =(x ,y ,z ),则11·0A D =n ,11·0A E =n ,即(x ,y ,z )·(-a,0,0)=0,(x ,y ,z )·0,,2a a ⎛⎫- ⎪⎝⎭=0, ∴-ax =0,02aay z -=. ∴x =0,2z y =. ∴n =0,,2z z ⎛⎫ ⎪⎝⎭. ∴10,||||2FD d ⎛ ⋅⎝==n n . 9答案:32解析:2a·(a +2b )=2|a|2+4a·b =2×36+4×(-10)=32. 10解析:如图,过K 作KM ⊥EF ,M 为垂足,则向量MK 与FC 的夹角为120°.KG =KM +MF +FC +CG ,2KG =2KM +2MF +2FC +2CG +2KM ·MF +2FC ·CG +2KM ·FC +2KM ·CG . ∴2KG =1+14+1+14+0+0+2×1×1×cos 60°+0+0+2×12×12×cos 180°=2+12+1-12=3. ∴3KG =.答案:60° 解析:设AB 与CD 所成的角为θ, 则cos θ=cos ,AB CD =AB CD AB CD⋅.由于AB ·CD =(AC +CD +DB )·CD =AC ·CD +2CD +DB ·CD =0+12+0=1,∴cos θ=11212AB CD AB CD⋅==⨯. 由于0°<θ≤90°,∴θ=60°,故异面直线AB 与CD 所成角的大小为60°.12答案:解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b|=答案:解:OE =OA +AE =OA +t AB =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ).若OE ⊥b ,则OE ·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得95t =,因此存在点E ,使得OE ⊥b ,此时E 点坐标为6142,,555⎛⎫--⎪⎝⎭. 13答案:证明:连结BD ,因为M ,N 分别是PB ,PD 的中点, 所以MN 是△PBD 的中位线.所以MN ∥BD . 又因为MN ⊄平面ABCD ,BD ⊂平面ABCD , 所以MN ∥平面ABCD .答案:解法一:连结AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB=BD=6. 又因为PA ⊥平面ABCD ,所以PA ⊥AC .在直角△PAC中,AC =PA =AQ ⊥PC ,得QC =2,PQ =4,由此知各点坐标如下:A(,0,0),B (0,-3,0),C,0,0),D (0,3,0),P(0,,M 3,22⎛-- ⎝,N 3,22⎛- ⎝,Q 33⎛ ⎝⎭. 设m =(x ,y ,z )为平面AMN 的法向量. 由AM=32-⎝,AN=32-⎝,知30,230.2x y x y -+=+=取z =-1,得m =(0,-1). 设n =(x ,y ,z )为平面QMN 的法向量.由QM=32⎛- ⎝⎭,QN=32⎛- ⎝⎭知30,62330.2x y z x y ⎧--+=⎪⎪⎨⎪++=⎪⎩ 取z =5,得n =(0,5). 于是cos 〈m ,n〉=·||||33=m n m n . 所以二面角A -MN -Q的平面角的余弦值为33.解法二:在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BDAB . 又因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AC ,PA ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN . 取线段MN 的中点E ,连结AE ,EQ , 则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =PA =,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =2.在直角△PAC 中,AQ ⊥PC ,得AQ =QC =2,PQ =4,在△PBC 中,cos ∠BPC =222526PB PC BC PB PC +-=⋅,得MQ =在等腰△MQN 中,MQ =NQ MN =3,得QE ==.在△AEQ 中,2AE =,2QE =,AQ =cos ∠AEQ =222233AE QE AQ AE QE +-=⋅.所以二面角A -MN -Q . 14答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).设C 1D =x ,∵AC ∥PC 1, ∴111C P C D xAC CD x==-. 由此可得D (0,1,x ),P 0,1,01x x ⎛⎫+⎪-⎝⎭, ∴1A B =(1,0,1),1A D =(0,1,x ),1B P =1,1,01x x ⎛⎫-+⎪-⎝⎭. 设平面BA 1D 的一个法向量为n 1=(a ,b , c ),则11110,0.A B a c A D b cx ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令c =-1,则n 1=(1,x ,-1). ∵PB 1∥平面BA 1D ,高中数学-打印版精心校对 ∴n 1·1B P =1×(-1)+x ·11x x ⎛⎫+ ⎪-⎝⎭+(-1)×0=0. 由此可得12x =,故CD =C 1D . 答案:解:由(1)知,平面BA 1D 的一个法向量n 1=11,,12⎛⎫- ⎪⎝⎭.又n 2=(1,0,0)为平面AA 1D 的一个法向量, ∴cos 〈n 1,n 2〉=1212123||||312⋅==⨯n n n n . 故二面角A -A 1D -B 的平面角的余弦值为23. (3)求点C 到平面B 1DP 的距离. 答案:解:∵1PB =(1,-2,0),PD =10,1,2⎛⎫- ⎪⎝⎭, 设平面B 1DP 的一个法向量n 3=(a 1,b 1,c 1), 则311113120,0.2PB a b c PD b ⎧⋅=-=⎪⎨⋅=-+=⎪⎩n n 令c 1=1,可得n 3=11,,12⎛⎫ ⎪⎝⎭. 又10,0,2DC ⎛⎫= ⎪⎝⎭, ∴点C 到平面B 1DP 的距离33||1||3DC d ⋅==n n .。
高二数学选修2-1空间向量与立体几何单元测试卷
高二数学选修2-1空间向量与立体几何课标要求一、空间向量及其运算课标要求1.理解空间向量的概念,了解空间向量的基本定理及其意义,理解空间向量的正交分解及其坐标表示。
2.掌握空间向量的线性运算及其坐标表示。
3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
二、空间向量及其运算课标要求的具体化和深广度分析1.经历向量及其运算由平面向量向空间向量推广的过程,理解空间向量的概念。
2.掌握空间向量的加法、减法运算。
3.掌握空间向量的数乘运算。
4.理解共线向量定理及其推论。
5.理解共面向量定理及其推论。
6.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积的概念、性质和计算方法及运算规律。
7.掌握两个向量的数量积的主要用途,会用它解决立体几何中的一些简单的问题。
8.了解空间向量基本定理,并能用基本定理解决一些几何问题。
9.理解基底、基向量及向量的线性组合的概念。
10.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标。
11.理解空间向量坐标的概念,会确定一些简单几何体的顶点坐标。
12.掌握空间向量的坐标运算规律,会判断两个向量的共线或垂直。
13.掌握空间向量的模、夹角公式和两点间距离公式,并能运用这些知识解决一些相关问题。
三、立体几何中的向量方法课标要求1.理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系。
3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理、直线与平面垂直的判定定理)和一些简单命题。
4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用。
四、立体几何中的向量方法具体化和深广度分析1.理解直线的方向向量和平面的法向量。
2.能用向量语言表述线线、线面、面面平行于垂直关系。
3.能利用平面法向量证明两个平面垂直。
4.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系。
(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)(1)
一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 2.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .()0,63D .()63,+∞ 3.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( )A .-4B .1C .10D .114.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .22C .32D .125.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD >D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21=S S 且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠9.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .7 B .7 C .7 D .7 10.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333 C .5510(,,)333 D .448(,,)33311.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( )A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =-- 12.在长方体1111ABCD A BC D -中,若13AC =,则111()AB AC AD AC ++⋅=( ) A .0 B .3 C .3D .6 二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ;②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045.15.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC ,则二面角B ﹣AD ﹣C 的余弦值为_____.17.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).18.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.19.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为 .20.已知棱长为1的正方体1111ABCD A BC D -中,E ,F 分别是11B C 和11C D 的中点,点1A 到平面DBEF 的距离为________________.三、解答题21.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ;(2)求二面角11B AC C --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值. 23.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.24.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.25.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 26.如图,在ABC 中,90B ∠=︒,2AB =,1BC =,D ,E 两点分别是边AB ,AC 的中点,现将ABC 沿DE 折成直面角A DE B --.(1)求证:平面ADC ⊥平面ABE ;(2)求直线AD 与平面ABE 所成角的正切值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO . OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AO OB ∴==. 在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题. 3.D解析:D【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x =故选D【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。
高二数学选修21第3章空间向量与立体几何单元测试题(含答案)
高二数学选修2-1第3章空间向量与立体几何单元测试题(含答案)空间向量是解立体几何的一种常用方法,以下是第3章空间向量与立体几何单元测试题,希望对大家有帮助。
一、填空题1.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)①AB=AC+BC②AB=-AC-BC③AC与BC同向;④AC与CB同向.3.在正方体ABCD-A1B1C1D中,向量表达式DD1-AB+BC化简后的结果是________.4.在平行六面体ABCD-A1B1C1D中,用向量AB,AD,AA1来表示向量AC1的表达式为___________________________________________________ _____________________.5.四面体ABCD中,设M是CD的中点,则AB+12(BD+BC)化简的结果是________.6.平行六面体ABCDA1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,下列结论中正确的有________.(写出所有正确的序号)① +GH+PQ② -GH-PQ③ +GH-PQ④ -GH+PQ=0.7.如图所示,a,b是两个空间向量,则AC与AC是________向量,AB与BA是________向量.8.在正方体ABCD-A1B1C1D中,化简向量表达式AB+CD+BC+DA 的结果为________.二、解答题9.如图所示,已知空间四边形ABCD,连结AC,BD,E,F,G 分别是BC,CD,DB的中点,请化简(1)AB+BC+CD,(2)AB+GD+EC,并标出化简结果的向量.10.设A是△BCD所在平面外的一点,G是△BCD的重心.求证:AG=13(AB+AC+AD).能力提升11.在平行四边形ABCD中,AC与BD交于点O,E是线段OD 的中点,AE的延长线与CD交于点F.若AC=a,BD=b,则AF=______________________.12.证明:平行六面体的对角线交于一点,并且在交点处互相平分.解析①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.2.④解析由|AB|=|AC|+|BC|=|AC|+|CB|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC与CB同向.3.BD1解析如图所示,∵DD1=AA1,DD1-AB=AA1-AB=BA1,BA1+BC=BD1,DD1-AB+BC=BD1.4.AC1=AB+AD+AA1解析因为AB+AD=AC,AC+AA1=AC1,所以AC1=AB+AD+AA1.5.AM解析如图所示,因为12(BD+BC)=BM,所以AB+12(BD+BC)=AB+BM=AM.6.①解析观察平行六面体ABCDA1B1C1D1可知,向量EF,GH,PQ 平移后可以首尾相连,于是EF+GH+PQ=0.7.相等相反8.0解析在任何图形中,首尾相接的若干个向量和为零向量.9.解 (1)AB+BC+CD=AC+CD=AD.(2)∵E,F,G分别为BC,CD,DB的中点.BE=EC,EF=GD.AB+GD+EC=AB+BE+EF=AF.故所求向量AD,AF,如图所示.10.证明连结BG,延长后交CD于E,由G为△BCD的重心,知BG=23BE.∵E为CD的中点,BE=12BC+12BD.AG=AB+BG=AB+23BE=AB+13(BC+BD)=AB+13[(AC-AB)+(AD-AB)]=13(AB+AC+AD).11.23a+13b解析 AF=AC+CF=a+23CD=a+13(b-a)=23a+13b.12.证明如图所示,平行六面体ABCDABCD,设点O是AC的中点,则AO=12AC=12(AB+AD+AA).设P、M、N分别是BD、CA、DB的中点.则AP=AB+BP=AB+12BD=AB+12(BA+BC+BB)=AB+12(-AB+AD+AA)=12(AB+AD+AA).同理可证:AM=12(AB+AD+AA)AN=12(AB+AD+AA).由此可知O,P,M,N四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.第3章空间向量与立体几何单元测试题的全部内容就是这些,查字典数学网预祝大家新学期可以取得更好的成绩。
高中数学选修2-1第三章《空间向量与立体几何》单元质量测评(含答案)
高中数学选修2-1第三章《空间向量与立体几何》单元质量测评(含答案)一、选择题:本大题共12小题,每小题5分,共60分.1.若平面α外直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( )A .a =(1,0,1),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)2.已知A (1,2,-1),B 为A 关于平面xOy 的对称点,C 为B 关于y 轴的对称点,则BC →=( )A .(-2,0,-2)B .(2,0,2)C .(-1,0,-1)D .(0,-2,-2) 3.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-B.9C.9-D.6494.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( )A.2 B.2- C.2-或255D.2或255-5.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2) 6.已知a =(1,2,-y ),b =(x,1,2),且(a +2b )∥(2a -b ),则( )A .x =13,y =1B .x =12,y =-4C .x =2,y =-14 D .x =1,y =-17.已知向量i ,j ,k 是一组单位正交向量,m =8j +3k ,n =-i +5j -4k ,则m ·n =( )A .7B .-20C .28D .118.已知a =(-1,-5,-2),b =(x,2,x +2),若a ⊥b ,则x 的值为( )A .0B .-143C .-6D .±69.如图,在四面体ABCD 中,已知AB →=b ,AD →=a ,AC →=c ,BE →=12EC →,则DE →=( )A .-a +23b +13cB .a +23b +13cC .a -23b +13c D.23a -b +13c10.如图所示,直三棱柱ABC —A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线PQ 与AM 所成的角为( )A.π6B.π4C.π3D.π211.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( )A .627B .637C .647D .65712. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( )A .2B .3C .4D .5 二、填空题:本大题共4小题,每小题5分,共20分.13.在棱长为a 的正方体1111ABCD A B C D 中,向量1BA 与向量AC 所成的角为 . 14.在长方体ABCD —A 1B 1C 1D 1中,若E 为矩形ABCD 的中心,设A 1E →=A 1A →+xA 1B 1→+yA 1D 1→,则x =________,y =________.15.已知a =(3,1,5),b =(1,2,-3),向量c 与z 轴垂直,且满足a ·c =9,b ·c =-4,则c =________.16.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则A 1到平面MBD 的距离为________. 三、解答题:17.(本小题满分10分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.18.(本小题10分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.化简12AA 1→+BC →+23AB →,并在图上标出结果;19.(本小题满分10分)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3. 证明:AC ⊥B 1D ;20.(本小题满分10分) 已知正方体ABCD -A 1B 1C 1D 1,求证:AD 1∥平面BDC 1. 参考答案 一.选择题二.填空题13. 120° 14. 12 12 15. (225,-215,0) 16.66a三、解答题:17. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0),b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010, ∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4),∴(k -1,k,2)·(k +2,k ,-4)=(k -1)·(k +2)+k 2-8=0,即2k 2+k -10=0,∴k =-52或k =2.18. 解 如图所示,取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连接EF ,则 12AA 1→+BC →+23AB → =EA 1→+A 1D 1→+D 1F →=EF →.19. 解 由题意易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0.解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →,即AC ⊥B 1D .20.证明 以D 为坐标原点,建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为1,则有D (0,0,0),A (1,0,0),D 1(0,0,1),A 1(1,0,1),C (0,1,0),B (1,1,0),C 1(0,1,1),AD 1→=(-1,0,1),设n =(x ,y ,z )为平面BDC 1的法向量, 则n ⊥DB →,n ⊥DC 1→,所以⎩⎪⎨⎪⎧x ,y ,z ,1,=0,x ,y ,z,1,=0,即⎩⎪⎨⎪⎧x +y =0,y +z =0,令x =1,则n =(1,-1,1),n ·AD 1→=(1,-1,1)·(-1,0,1)=0,故n ⊥AD 1→, 又AD 1⊄平面BDC 1, 所以AD 1∥平面BDC 1.。
高中数学人教A版选修2-1第三章空间向量与立体几何单元综合测试
©ID舍丸阳新篠标资*餌WX. jtyjy. com第三章空间向量与立体几何单元综合测试时间:120分钟i : 150 分第I卷(选择题,共60分)一、选择题(每小题5分,共60分)1.直三棱柱ABC-AiBiCi,若Cl=a, C^=b9 C?i=c,贝!|石=()A. a+b—cB. a—b+cC. —a+b+cD. —a+b—c解析:结合图形f+At+ C J&=- c - a + b= - a + b・C.故选D・答案:D2・已知a = (—5,6,1), 〃=(6,5,0),则a 与久 )A・垂直 B.不垂直也不平行C・平行且同向D・平行且反向答案:A3.己知a=(2f—1,3), 〃=(—4,2, x), c=(l, —x,2),若(a+ 仍丄c,则工等于()A. 4B. —4C.|D. - 6©ID舍丸阳新篠标资*餌wx. jtyjy.com解析:a + b = ( - 2,1,3 + x),由(a + b)丄c.:.(a + b)・c = O..\ ・ 2 ・兀+ 2(3 + x) = 0 r得x 二-4.答案:B4.若a=(l9 2, 2), b=(2,一1,2),且a, 〃的夹角的余弦值为爲则;.等于()A. 2B. -2© - 2或鑫D. 2或—专解析:“力=2・2 +4 = 6・2 = •解得2=・2或右.答案:C5・已知空间四边形ABCD每条边和对角线长都等于a,点E、F、G分别是AB.AD.DC的中点,则/是下列哪个选项的计算结果()A. B. 2Ab-D^C. 2F& AtD. 2EP C^解析:2Bt-C\ =・ 0 . A 错;2Ab-D^ = - a2t B错;2窈筋= ・如2小错;只有C对.答案:C6・若A(x,5-x,2x-l), B(l, x+2,2 —兀),当U&I取最小值时,x 的值等于()8A. 19 B・一〒肿“19©ID舍丸阳新篠标资*餌wx. jtyjy.C7 °14com解析:= (1 - x f2x - 3 ,- 3x + 3),贝{] | A S I =^14X2-32X+19^y(l - x)2+ (2x - 3)2 + ( - 3x + 3)2A J14(X-|)2+|•故当工二号时.心I取最小值,故选C.答案:C7.已知ABCD, ABEF是边长为1的正方形,朋丄平面ABCD, 则异面直线AC与EF所成的角为()A. 30°B. 45°C. 60°D. 90°解析:如图1 r由于EF IIAB且ZBAC = 45° ,所以异面直线AC 与EF所成的角为45。
高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1
空间向量与立体几何一选择题:1. 下列说法中正确的是(B )A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC +=.2. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( D )A. 00a b =B. 00a b =或00a b =-C. 01a =D. ∣0a ∣=∣0b ∣3. 在四边形ABCD 中,若AC AB AD =+,则四边形是( D ) A. 矩形 B. 菱形 C. 正方形 D. 平行四边形4. 下列说法正确的是( D ) A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量 5.以下四个命题中正确的是( C )A.空间的任何一个向量都可用其他三个向量表示B.若{→a ,→b ,→c }为空间向量的一组基底,则{→a +→b ,→b +→c ,→c -→a }构成空间向量的另一组基底C.△ABC 为直角三角形的充要条件为→AB ·→AC =0D.任何三个不共线的向量都可构成空间向量的一组基底6. 在平行六面体ABCD -A 1B 1C 1D 1中,与向量→A 1B 1模相等的向量有(C ) A .7个 B .3个C .5个D .6个7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→. A .①③ B .②④ C .③④D .①②③④8. 对于向量a 、b 、c 和实数λ,下列命题中的真命题是( B ) A 若a ·b =0,则a =0或b =0 B 若λa =0,则λ=0或a =0 C 若a 2=b 2,则a =b 或a =-b D 若a ·b =a ·c ,则b =c9.P 为正六边形ABCDEF 外一点,O 为ABCDEF 的中心则→PA +→PB +→PC +→PD +→PE +→PF 等于( C ) A.→PO B.3→PO C.6→PO D.→0 10. 下列说法正确的是( A )A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a b λ=11. 将边长为1的正方形ABCD 沿角线BD 折成直二面角,若点P 满足→BP =12→BA -12→BC +→BD ,则|→BP|的值为( D )A.32B.2C.10-24D.9412.已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( A )A. 11-22a b c -+;B. 11-22a b c +;C. 1122a b c -+;D. 1122a b c --+.13. 下列等式中,使M,A,B,C 四点共面的个数是( B )①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++=.A. 1B. 2C. 3D. 414. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( A ). A .0 B.1 C. 2 D. 3 15. 下列命题中:①若0a b •=,则a ,b 中至少一个为0 ②若a 0≠且a b a c •=•,则b c = ③()()a b c a b c ••=••④22(32)(32)94a b a b a b +•-=-正确有个数为( B )A. 0个B. 1个C. 2个D. 3个 16. 已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e -垂直的是( C ) A. 12e e + B. 12e e - C. 1e D. 2e17.若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b 的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不不要条件18已知()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( C )A. D. 19.若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( A )A. 4x <-B. 40x -<<C. 04x <<D. 4x >20.已知 ()()1,2,,,1,2a y b x =-=, 且(2)//(2)a b a b +-,则( B )A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-21. 已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( D ) A .a ∥e 1 B .a ∥e 2 C .a 与e 1,e 2共面D .以上三种情况均有可能22正方体ABCD -A ′B ′C ′D ′中,向量AB ′→与BC ′→的夹角是( C )A .30° B .45° C .60°D .90°23设A ,B ,C ,D 是空间不共面的四点,且满足A B →·A C →=0,A C →·A D →=0,A B →·A D →=0,则△BCD 是( B )A .钝角三角形B .锐角三角形C .直角三角形D .不确定24.平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,则AC 1的长为 ( D )A.13B.43C.33D.2325. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ=( D ) A. 627 B. 637 C. 647 D. 65726 若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的( A ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 27.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( B )A .2B .3C .4D .528 已知a +b +c =0,|a |=2,|b |=3,|c |=a 与b 之间的夹角,a b <>为( C )A .30°B .45°C .60°D .以上都不对29 .已知()()1,1,0,1,0,2,a b ==-且ka b +与2a b -互相垂直,则k 的值是(D )A. .1B. 15C. 35D. 7530.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( C )A .19B .78-C .78D .141931.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是(D )A .21 B .22 C .-21D .032.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( C ) (A).131(,,)243(B)123(,,)234(C)448(,,)333(D)447(,,)333二填空题:33.已知ABCD ,顶点A(1,0,0),B(0,1,0),C(0,0,2)则顶点D 的坐标为_____.(1,-1,2) 34.Rt ABC 中,,∠BAC=90°, A(2,1,1),B(1,1,2), C(x,0,1)则x=______2 35已知A(3,5,-7),B(-2,4,3),则AB 在坐标平面yoz 上的射影的长度为_____101 36已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c|等于________. 3 37已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →, 则2x +3y +4z =____138.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________. 139.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,且满足M N →=xAB →+yAD →+zAP →则实数x ,y ,z 的值分别为________.-1,0,1240.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________→0.41.已知|a|=32,|b|=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.11642.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。
【状元之路】高中数学 空间向量与立体几何单元综合测试 新人教A版选修2-1(1)
单元测评(三) 空间向量与立体几何(时刻:90分钟 总分值:120分 2021.4)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每题5分,共50分.1.以下四组向量中,相互平行的组数为( )①a =(2,2,1),b =(3,-2,-2);②a =(8,4,-6),b =(4,2,-3);③a =(0,-1,1),b =(0,3,-3);④a =(-3,2,0),b =(4,-3,3)A .1组B .2组C .3组D .4组解析:∵②中a =2b ,∴a ∥b ;③中a =-13b , ∴a ∥b ;而①④中的向量不平行.答案:B2.在以下命题中,不正确的个数为( )①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,那么存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,假设OP →=2OA →-2OB →-OC →,那么P ,A ,B ,C 四点共面;④假设{a ,b ,c }为空间的一组基底,那么{a +b ,b +c ,c +a }组成空间的另一组基底;⑤|(a ·b )·c |=|a |·|b |·|c |.A .2个B .3个C .4个D .5个解析:①|a |-|b |=|a +b |⇒a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不必然成立,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的概念知正确;⑤由向量的数量积的性质知,不正确.答案:C3.如图,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,那么以下各组向量中,数量积不必然为零的是( )A.PC →与BD →B.DA →与PB →C.PD →与AB →D.PA →与CD →解析:成立如下图的空间直角坐标系.设矩形ABCD 的长、宽别离为a ,b ,PA 长为c ,那么A (0,0,0),B (b,0,0),D (0,a,0),C (b ,a,0),P (0,0,c ).则PC →=(b ,a ,-c ),BD →=(-b ,a,0),DA →=(0,-a ,0),PB →=(b,0,-c ),PD →=(0,a ,-c ),AB →=(b,0,0),PA →=(0,0,-c ),CD →=(-b,0,0).∴PC →·BD →=-b 2+a 2不必然为0.DA →·PB →=0,PD →·AB →=0,PA →·CD →=0.答案:A4.已知向量e 1、e 2、e 3是两两垂直的单位向量,且a =3e 1+2e 2-e 3,b =e 1+2e 3,那么(6a )·⎝ ⎛⎭⎪⎫12b 等于( ) A .15B .3C .-3D .5解析:(6a )·⎝ ⎛⎭⎪⎫12b =3a·b =3(3e 1+2e 2-e 3)·(e 1+2e 3)=9|e 1|2-6|e 3|2=3. 答案:B5.如图,AB =AC =BD =1,AB ⊂面α,AC ⊥面α,BD ⊥AB ,BD 与面α成30°角,那么C 、D 间的距离为( )A .1B .2 C. 2 D.3 解析:|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=1+1+1+0+0+2×1×1×cos120°=2.∴|CD →|=2.答案:C6.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1)在直线OA 上有一点H 知足BH ⊥OA ,那么点H 的坐标为( )A .(-2,2,0)B .(2,-2,0)C.⎝ ⎛⎭⎪⎫-12,12,0 D.⎝ ⎛⎭⎪⎫12,-12,0 解析:由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),那么BH →=(-λ,λ-1,-1).又BH ⊥OA ,∴BH →·OA →=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,∴H ⎝ ⎛⎭⎪⎫-12,12,0. 答案:C7.已知a =(cos α,1,sin α),b =(sin α,1,cos α),那么向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°解析:(a +b )·(a -b )=a 2-b 2=(cos 2α+sin 2α+1)-(sin 2α+1+cos 2α)=0,∴(a +b )⊥(a -b ). 答案:A8.已知E 、F 别离是棱长为1的正方体ABCD A 1B 1C 1D 1的棱BC 、CC 1的中点,那么截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A.23B.23C.53D.233解析:以D 为坐标原点,以DA 、DC 、DD 1别离为x 轴、y 轴、z 轴成立空间直角坐标系,如图.那么A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),l 因此AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0. 设平面AEFD 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AD 1→=0,n·AE →=0,⇒⎩⎪⎨⎪⎧ -x +z =0,-x 2+y =0.∴x =2y =z .取y =1,那么n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∵cos 〈n ,u 〉=23,∴sin 〈n ,u 〉=53. 答案:C9.在三棱锥P ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,那么二面角A PB C 的平面角的正切值为( )A. 6B.3C.66D.62解析:设PA =AB =2,成立如下图的空间直角坐标系.则B (0,2,0),C (3,1,0),P (0,0,2),∴BP →=(0,-2,2),BC →=(3,-1,0).设n =(x ,y ,z )是平面PBC 的一个法向量.则⎩⎪⎨⎪⎧ BP →·n =0,BC →·n =0,即⎩⎪⎨⎪⎧ -2y +2z =0,3x -y =0.令y =1,那么x =33,z =1. 即n =⎝ ⎛⎭⎪⎪⎫33,1,1. 易知m =(1,0,0)是平面PAB 的一个法向量.那么cos 〈m ,n 〉=m·n |m ||n |=331×213=77.∴正切值tan 〈m ,n 〉=6.答案:A 10.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,那么当QA →·QB →取得最小值时,点Q 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,34,13 B.⎝ ⎛⎭⎪⎫12,32,34 C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),那么QA →=(1-x,2-x,3-2x ),QB →=(2-x,1-x,2-2x ).∴QA →·QB →=6x 2-16x +10,∴x =43时,QA →·QB →最小, 这时Q ⎝ ⎛⎭⎪⎫43,43,83. 答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每题5分,共20分.11.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,那么x 的取值范围是__________. 解析:因为a 与b 的夹角为钝角,于是-1<cos 〈a ,b 〉<0,因此a·b <0,且a 与b 的夹角不为π,即cos 〈a ,b 〉≠-1.解得x ∈⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞. 答案:⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞ 12.如下图,已知正四面体A BCD 中,AE =14AB ,CF =14CD ,那么直线DE 和BF 所成的角的余弦值为__________.解析:ED →=EA →+AD →=14BA →+AD →, BF →=BC →+CF →=BC →+14CD →, cos 〈ED →,BF →〉=ED →·BF→|ED →|·|BF →|=⎝ ⎛⎭⎪⎪⎫14BA →+AD →·⎝ ⎛⎭⎪⎪⎫BC →+14CD →⎝ ⎛⎭⎪⎪⎫14BA →+AD →2·⎝ ⎛⎭⎪⎪⎫BC →+14CD →2 =413. 答案:41313.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,那么(x ,y ,z )=__________.解析:由题意知⎩⎪⎨⎪⎧-x +2y -12=0,x -4-4z =0,-1-2y +3z =0,解得x =-64,y =-26,z =-17.答案:(-64,-26,-17) 14.已知空间四边形OABC ,如下图,其对角线为OB 、AC ,M 、N 别离为OA 、BC 的中点,点G 在线段MN 上,且MG →=3GN →,现用基向量OA →、OB →、OC →表示向量OG →,并设OG →=x ·OA →+y ·OB →+z ·OC →,那么x 、y 、z 的和为__________.解析:OG →=OM →+MG →=12OA →+34MN →=12OA →+34⎝ ⎛⎭⎪⎪⎫-12OA →+OC →+12CB →=12OA →-38OA →+34OC →+38OB →-38OC →=18OA →+38OB →+38OC →, ∴x =18,y =38,z =38. ∴x +y +z =78. 答案:78三、解答题:本大题共4小题,总分值50分.15.(12分)已知a =(1,2,-2).(1)求与a 共线的单位向量b ;(2)假设a 与单位向量c =(0,m ,n )垂直,求m 、n 的值.解:(1)设b =(λ,2λ,-2λ),而b 为单位向量,∴|b |=1,即λ2+4λ2+4λ2=9λ2=1.∴λ=±13.(4分) ∴b =⎝ ⎛⎭⎪⎫13,23,-23或b =⎝ ⎛⎭⎪⎫-13,-23,23.(6分) (2)由题意,知⎩⎪⎨⎪⎧ a·c =0,|c |=1,⇒⎩⎪⎨⎪⎧ 1×0+2m -2n =0,m 2+n 2+02=1,解得⎩⎪⎨⎪⎧ m =22,n =22,或⎩⎪⎨⎪⎧ m =-22,n =-22.(12分)16.(12分)如下(左)图,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 别离为AC 、AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如下(右)图.(1)求证:A 1C ⊥平面BCDE ;(2)假设M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小.解:(1)∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC .∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC .∴DE ⊥A 1C .又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(4分)(2)如下图,以C 为坐标原点,成立空间直角坐标系C -xyz ,那么A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),那么n ·A 1B →=0,n ·BE →=0.又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎪⎨⎪⎧ 3x -23z =0,-x +2y =0.令y =1,那么x =2,z =3,∴n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=|n ·CM→|n |·|CM →||=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4.(12分) 17.(12分)如图,已知正方形ABCD 和矩形ACEF 所在的平面相互垂直,AB =2,AF =1,M 是线段EF的中点.(1)求证:AM ∥平面BDE ;(2)试在线段AC 上确信一点P ,使得PF 与CD 所成的角是60°.解:(1)证明:如图,成立空间直角坐标系.设AC ∩BD =N ,连接NE ,则N ⎝ ⎛⎭⎪⎪⎫22,22,0,E (0,0,1), ∴NE →=⎝ ⎛⎭⎪⎪⎫-22,-22,1. 又A (2,2,0),M ⎝ ⎛⎭⎪⎪⎫22,22,1, ∴AM →=⎝ ⎛⎭⎪⎪⎫-22,-22,1. ∴NE →=AM →,且NE 与AM 不共线.∴NE ∥AM .又NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE .(6分)(2)设P (t ,t,0)(0≤t ≤2), 则PF →=(2-t ,2-t,1),CD →=(2,0,0). 又∵PF →与CD →所成的角为60°.|2-t ·2|2-t2+2-t 2+1·2=12, 解之得t =22,或t =322(舍去).故点P 为AC 的中点.(12分)18.(14分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ;(2)求二面角B PA C 的余弦值.解: (1)证明:如图所示,以O 为坐标原点,OB ,OC ,OP 所在直线别离为x 轴,y 轴,z 轴成立空间直角坐标系,那么O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,那么由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.(4分) ∴z 1=0,x 1=y 1. 取y 1=1,得n 1=(1,1,0). 设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,那么由n 2·PA →=0,n 2·PC →=0, 得⎩⎪⎨⎪⎧ -x 2-2z 2=0,y 2-2z 2=0.∴x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1). ∵n 1·n 2=(1,1,0)·(-2,2,1)=0, ∴n 1⊥n 2.从而平面POD ⊥平面PAC .(8分)(2)∵y 轴⊥平面PAB . ∴平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ,那么cos θ=n 2·n 3|n 2|·|n 3|=25=105. 由图可知,二面角B PA C 的平面角与θ相等,∴二面角B PA C 的余弦值为105.(14分)。
高中新课程数学(新课标人教A版)选修2-1《空间向量与立体几何》模块检测
模块检测(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :若x 2+y 2=0(x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是 ( ).A .1B .2C .3D .4 解析 命题p 为真,命题q 为假,故p ∨q 真,綈q 真.答案 B2.“α=π6+2k π(k ∈Z )”是“cos 2α=12”的 ( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 当α=π6+2k π(k ∈Z )时,cos 2α=cos(4k π+π3)=cos π3=12. 反之当cos 2α=12时,有2α=2k π+π3(k ∈Z )⇒α=k π+π6(k ∈Z ),或2α=2k π-π3(k ∈Z )⇒α=k π-π6(k ∈Z ),故应选A. 答案 A3.若直线l 的方向向量为b ,平面α的法向量为n ,则可能使l ∥α的是 ( ).A .b =(1,0,0),n =(-2,0,0)B .b =(1,3,5),n =(1,0,1)C .b =(0,2,1),n =(-1,0,-1)D .b =(1,-1,3),n =(0,3,1)解析 若l ∥α,则b·n =0.将各选项代入,知D 正确.答案 D4.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是 ( ).A .90°B .60°C .30°D .0°解析 ∵|a|=|b|=2,∴(a +b )·(a -b )=a 2-b 2=0.故向量a +b 与a -b 的夹角是90°. 答案 A5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于 ( ).A .10B .8C .6D .4解析 由抛物线的定义得|AB |=x 1+x 2+p =6+2=8.答案 B6.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 ( ). A.63 B.255 C.155 D.105解析 建立如图所示坐标系,得D (0,0,0),B (2,2,0),C 1(0,2,1),B 1(2,2,1),D 1(0,0,1),则DB →=(2,2,0),DD 1→=(0,0,1),BC 1→=(-2,0,1).设平面BD 1的法向量n =(x ,y ,z ).∴⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DD 1→=z =0,∴取n =(1,-1,0).设BC 1与平面BD 1所成的角为θ,则sin θ=cos 〈n ,BC 1→〉=|BC 1→·n ||BC 1→||n |=25·2=105. 答案 D7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为 ( ).A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析 y 2=ax 的焦点坐标为(a 4,0),过焦点且斜率为2的直线方程为y =2(x -a 4),令x = 0得y =-a 2.∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8. 答案 B8.三棱锥A —BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于 ( ).A .-2B .2C .-2 3D .2 3解析 AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 90°-2×2×cos 60°=-2.答案 A9.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于 ( ). A. 3 B .2 C. 5 D. 6解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,因为y =x 2+1与渐近线相切,故x 2+1±b ax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a =4,∴c 2a 2=5,∴e = 5. 答案 C10.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是 ( ).A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形解析 双曲线的离心率e 12=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 12e 22=1,即a 2+b 2a 2 ×m 2-b 2m 2=1,化简,得a 2+b 2=m 2. 答案 C二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)11.已知命题p :∀x ∈R (x ≠0),x +1x≥2,则綈p :________.解析 首先将量词符号改变,再将x +1x ≥2改为x +1x<2. 答案 ∃x ∈R (x ≠0),x +1x<2 12.与双曲线x 2-y 24=1有共同的渐近线,且过点(2,2)的双曲线的标准方程是______________.解析 依题意设双曲线的方程x 2-y 24=λ(λ≠0),将点(2,2)代入求得λ=3,所以所求双 曲线的标准方程为x 23-y 212=1. 答案 x 23-y 212=1 13.给出下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________(把你认为正确的结论的序号都填上).解析 对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确; 对于②,当b =a =0时,有l 1⊥l 2,故②不正确;易知③正确.所以正确结论的序号为①③. 答案 ①③14.在平面直角坐标系xOy 中,椭圆C :x 225+y 29=1的左、右焦点分别是F 1、F 2,P 为椭圆C 上的一点,且PF 1⊥PF 2,则△PF 1F 2的面积为______.解析 ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,由椭圆方程知a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=4c 2=64|PF 1|+|PF 2|=2a =10, 解得|PF 1||PF 2|=18.∴△PF 1F 2的面积为12|PF 1|·|PF 2|=12×18=9. 答案 9三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明,证明过程或演算步骤)15.(10分)已知命题p :方程x 22m +y 29-m =1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m=1的离心率e ∈(62,2),若命题p 、q 中有且只有一个为真命题,求实数m 的取值范围. 解 若p 真,则有9-m >2m >0,即0<m <3.若q 真,则有m >0,且e 2=1+b 2a 2=1+m 5∈(32,2), 即52<m <5. 若p 、q 中有且只有一个为真命题,则p 、q 一真一假.①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52; ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5, 即3≤m <5.故所求范围为:0<m ≤52或3≤m <5. 16.(10分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP→=0,求动点P (x ,y )的轨迹方程.解 设P (x ,y ),则MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2MN →·NP →=4(x -2),代入|MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0,即(x +2)2+y 2=2-x ,化简整理,得y 2=-8x ,故动点P (x ,y )的轨迹方程为y 2= -8x .17.(10分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A 、B 两点.(1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y , 得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3. (2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2. ∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0,即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a 3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围.故a =±1.18.(12分)如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC=FE =12AD . (1)求异面直线BF 与DE 所成的角的大小;(2)证明平面AMD ⊥平面CDE ;(2)求二面角A -CD -E 的余弦值.解 如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12). (1)BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12. 所以异面直线BF 与DE 所成的角的大小为60°.(2)证明 由AM →=(12,1,12),CE →=(-1,0,1), AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0. 于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0.令x =1,可得u =(1,1,1). 又由题设,平面ACD 的一个法向量为v =(0,0,1).所以,cos 〈u ,v 〉=u ·v |u||v |=0+0+13×1=33. 因为二面角A -CD -E 为锐角,所以其余弦值为33. 19.(12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M (355,455),F (5,0),且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解 (1)设圆C 的圆心坐标为(x ,y ),半径为r .圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2,圆(x -5)2+y 2=4的圆心为F (5,0),半径为2.由题意得⎩⎪⎨⎪⎧|CF 1|=r +2,|CF |=r -2或⎩⎪⎨⎪⎧|CF 1|=r -2,|CF |=r +2,∴||CF 1|-|CF ||=4.∵|F 1F |=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F (5,0)为焦点的双曲线,其方程为x 24-y 2=1. (2)由图知,||MP |-|FP ||≤|MF |,∴当M ,P ,F 三点共线,且点P 在MF 延长线上时,|MP |-|FP |取得最大值|MF |, 且|MF |=(355-5)2+(455-0)2=2. 直线MF 的方程为y =-2x +25,与双曲线方程联立得⎩⎪⎨⎪⎧y =-2x +25,x 24-y 2=1,整理得15x 2-325x +84=0. 解得x 1=14515(舍去),x 2=655. 此时y =-255. ∴当||MP |-|FP ||取得最大值2时,点P 的坐标为友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高二数学(人教A版)选修2-1综合能力检测:第三章空间向量与立体几何
高中数学学习材料金戈铁骑整理制作第三章综合能力检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( )A .2B .-2C .-2或255 D .2或-255[答案] C[解析] cos 〈a ,b 〉=a ·b |a ||b |=2-λ+4λ2+5×9=89,所以λ=-2或255.2.若a 、b 、c 是非零空间向量,则下列命题中的真命题是( ) A .(a·b )c =(b·c )aB .若a·b =-|a |·|b |,则a ∥bC .若a·c =b·c ,则a ∥bD .若a·a =b·b ,则a =b [答案] B[解析] (a ·b )c 是与c 共线的向量,(b ·c )a 是与a 共线的向量,a 与c 不一定共线,故A 假;若a ·b =-|a |·|b |,则a 与b 方向相反, ∴a ∥b ,故B 真;若a ·c =b ·c ,则(a -b )·c =0,即(a -b )⊥c ,不能得出a ∥b ,故C 假;若a ·a =b ·b ,则|a |=|b |,方向不确定, 故得不出a =b ,∴D 假.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2[答案] A[解析] ∵a ∥b ,∴存在实数k ,使b =k a ,即(6,2μ-1,2λ)=(kλ+k,0,2k ),∴⎩⎪⎨⎪⎧kλ+k =6,2μ-1=0,2λ=2k ,∴⎩⎨⎧μ=12,λ=2,k =2,或⎩⎨⎧μ=12,λ=-3,k =-3.故选A.4.同时垂直于a =(2,2,1),b =(4,5,3)的单位向量是( ) A.⎝ ⎛⎭⎪⎫13,-23,23 B.⎝ ⎛⎭⎪⎫-13,23,-23C.⎝⎛⎭⎪⎫13,-13,23D.⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23 [答案] D[解析] 设所求向量为c =(x ,y ,z ), 则⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0,x 2+y 2+z 2=1,检验知选D.[点评] 检验时,先检验A(或B),若A 不满足,则排除A 、D ;再检验B ,若A 满足,则排除B ,C ,只要看D 是否成立.5.已知矩形ABCD ,P A ⊥平面ABCD ,则以下等式中可能不成立的是( )A.DA →·PB →=0B.PC →·BD →=0 C.PD →·AB →=0 D.P A →·CD →=0[答案] B [解析] ①⎭⎪⎬⎪⎫DA ⊥AB DA ⊥P A ⇒DA ⊥平面P AB ⇒DA ⊥PB ⇒DA →·PB →=0;②同①知AB →·PD →=0;③P A ⊥平面ABCD ⇒P A ⊥CD ⇒P A →·CD →=0; ④若BD →·PC →=0,则BD ⊥PC ,又BD ⊥P A ,∴BD ⊥平面P AC ,故BD ⊥AC , 但在矩形ABCD 中不一定有BD ⊥AC ,故选B.6.已知ABCD 是四面体,O 是△BCD 内一点,则AO →=13(AB →+AC→+AD →)是O 为△BCD 重心的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件[答案] C[解析] 设E 为CD 中点,AO →=13(AB →+AC →+AD →)=13AB →+13(BC →-BA →+BD →-BA →) =13AB →+13(BC →+BD →)-23BA →=AB →+23BE →,∴BO →=23BE →.即O 为△BCD 的重心.反之也成立.7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)[答案] B[解析] 设平面AEF 的法向量n =(x ,y ,z ),正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0),E (1,1,12),F (12,0,1).故AE →=(0,1,12),AF →=(-12,0,1).由⎩⎨⎧AE →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y +12z =0,-12x +z =0,所以⎩⎨⎧y =-12z ,x =2z .当z =-2时,n =(-4,1,-2),故选B.8.a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( ) A.55 B.555 C.355 D.115 [答案] C[解析] b -a =(1+t,2t -1,0), ∵|b -a |2=(1+t )2+(2t -1)2=5t 2-2t +2=5⎝ ⎛⎭⎪⎫t -152+95≥95,∴|b -a |min =355. 9.如图ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( )A .BD ∥平面CB 1D 1B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60° [答案] D[解析] 正方体中,BD ∥B 1D 1,且BD ⊄面CB 1D 1,知BD ∥平面CB 1D 1,A 正确;AC 1在面ABCD 内的射影为AC ,又AC ⊥BD ,由三垂线定理知AC 1⊥BD .故B 正确;同理可得AC 1⊥B 1D 1,AC 1⊥CD 1,且B 1D 1∩CD 1=D 1,∴AC 1⊥平面CB 1D 1,故C 正确;由AD ∥BC 知,∠B 1CB 为AD 与CB 1所成的角,应为45°,故D 错误.10.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则AC →与AB →的夹角为( )A .30°B .45°C .60°D .90° [答案] C[解析] AB →=(0,3,3),AC →=(-1,1,0).设〈AB →,AC →〉=θ,则cos θ=AB →·AC →|AB →|·|AC →|=332·2=12,∴θ=60°. 11.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF →=AD →+xAB →+yAA ′→,则x -y 等于( )A .0B .1 C.12 D .-12[答案] A[解析] 如图所示,AF →=AD →+DF →, ∴DF →=xAB →+yAA ′→, ∴12DC ′→=xAB →+yAA ′→, ∵12AB ′→=12AB →+12AA ′→ AB ′→=DC ′→, ∴x =y =12,x -y =0.12.已知在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确[答案] B[解析] 以点D 为原点,直线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如下图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),∴A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ).则⎩⎨⎧n ·A 1E →=0,n ·D 1E →=0,⇒⎩⎪⎨⎪⎧y -z =0,x +y -z =0. 令z =1,得y =1,x =0.所以n =(0,1,1),cos 〈n ,EA →〉=n ·EA→|n ||EA →|=-22·2=-1.所以〈n ,EA →〉=180°.所以直线AE 与平面A 1ED 1所成的角的大小为90°.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.|a |=|b |=|c |=1,a +b +c =0,则a ·c +b·c +a·b =________. [答案] -32[解析] 设a ·c +b ·c +a ·b =x , 则2x =(a +b )·c +(b +c )·a +(c +a )·b =-|c |2-|a |2-|b |2=-3,∴x =-32.14.给出命题:①在▱ABCD 中,AB →+AD →=AC →;②在△ABC 中,若AB →·AC →>0,则△ABC 是锐角三角形;③在梯形ABCD 中,E 、F 分别是两腰BC 、DA 的中点,则FE →=12(AB →+DC →);④在空间四边形ABCD 中,E 、F 分别是边BC 、DA 的中点,则FE →=12(AB →+DC →).以上命题中,正确命题的序号是____.[答案] ①③④[解析] 本题考查向量的有关运算.①满足向量运算的平行四边形法则,①正确;AB →·AC →=|AB →|·|AC →|·cos A >0⇒∠A <90°,但∠B 、∠C 无法确定,△ABC 是否是锐角三角形无法确定,②错误;③符合梯形中位线,正确;④如图:DC →=DA →+AC →;DC →+AB →=DA →+AB →+AC →=DA →+2AE →=2(F A →+AE →)=2FE →,则FE →=12(AB →+DC →).15.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成角的余弦值是________.[答案]105[解析] 如图,建立空间直角坐标系,则A (4,0,0),C (0,4,0),D 1(0,0,4),E (0,4,2),AC →=(-4,4,0),D 1E →=(0,4,-2).cos 〈AC →,D 1E →〉=1632×20=105.∴异面直线D 1E 与AC 所成角的余弦值为105.16.若△ABC 中,∠ACB =90°,∠BAC =60°,AB =8,PC ⊥平面ABC ,PC =4,M 是AB 上一点,则PM 的最小值为________.[答案] 27[解析] 由条件知PC 、AC 、BC 两两垂直,设CA →=a ,CB →=b ,CP →=c ,则a ·b =b ·c =c ·a =0,∵∠BAC =60°,AB =8,∴|a |=CA =8cos60°=4,|b |=CB =8sin60°=4 3.|c |=PC =4,设AM →=xAB →=x (b -a ),则PM →=PC →+CA →+AM →=-c +a +x (b -a )=(1-x )a +x b -c , |PM →|2=(1-x )2|a |2+x 2|b |2+|c |2+2(1-x )x a ·b -2x b ·c -2(1-x )a ·c =16(1-x )2+48x 2+16=32(2x 2-x +1)=64⎝⎛⎭⎪⎫x -142+28,∴当x =14时,|PM →|2取最小值28,∴|PM →|min =27.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)如图,正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,用DA →,DC →,DD ′→表示向量BD ′→,AE →.[解析] (1)BD ′→=DD ′→-DB →=-DA →-DC →+DD ′→. (2)AE →=AA ′→+A ′E →=DD ′→+12A ′C ′→ =DD ′→+12AC →=DD ′→+12(DC →-DA →) =-12DA →+12DC →+DD ′→.18.(本小题满分12分)如图所示,已知空间四边形ABCD ,P 、Q 分别是△ABC 和△BCD 的重心.求证:PQ ∥平面ACD .[证明] ∵P 、Q 分别是△ABC 和△BCD 的重心. ∴PQ →=EQ →-EP →=13ED →-13EA → =13(ED →-EA →)=13AD →. ∴PQ →∥AD →,即PQ ∥AD ,又PQ ⊄平面ACD ,AD ⊂平面ACD ,∴PQ ∥平面ACD .19.(本小题满分12分)在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1; (3)求AC 1与CB 1所成角的余弦值.[解析] ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直.如图所示,以C 为坐标原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0). (1)∵AC →=(-3,0,0),BC 1→=(0,-4,4). ∴AC →·BC 1→=0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2). ∵DE →=(-32,0,2),AC 1→=(-3,0,4). ∴DE →=12AC 1→,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(3)∵AC 1→=(-3,0,4),CB 1→=(0,4,4), ∴cos 〈AC 1→·CB 1→〉=AC 1→·CB 1→|AC 1→|·|CB 1→|=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.20.(本小题满分12分)长方体ABCD -A 1B 1C 1D 1中,AB =4,AD=6,AA 1=4,M 是A 1C 1的中点,P 在线段BC 上,且CP =2,Q 是DD 1的中点,求:(1)M 到直线PQ 的距离; (2)M 到平面AB 1P 的距离.[解析] 如图,建立空间直角坐标系B -xyz ,则A (4,0,0),M (2,3,4),P (0,4,0),Q (4,6,2).(1)∵QM →=(-2,-3,2),QP →=(-4,-2,-2), ∴QM →在QP →上的射影为QM →·QP →|QP →|=(-2)×(-4)+(-3)×(-2)+2×(-2)(-4)2+(-2)2+(-2)2=566,故M 到PQ 的距离为|QM →|2-⎝ ⎛⎭⎪⎫5662=17-256=4626.(2)设n =(x ,y ,z )是平面AB 1P 的法向量,则n ⊥AB 1→,n ⊥AP →, ∵AB 1→=(-4,0,4),AP →=(-4,4,0),∴⎩⎪⎨⎪⎧-4x +4z =0,-4x +4y =0. 因此可取n =(1,1,1),由于MA →=(2,-3,-4), 那么点M 到平面AB 1P 的距离为 d =|MA →·n ||n |=|2×1+(-3)×1+(-4)×1|3=533,故M 到平面AB 1P 的距离为533.[点评] 求点P 到直线l 的距离时,在直线l 上任取一点Q ,则QP →在l 上射影的长度为m =|QP →|·|cos 〈QP →,n 〉|(n 为直线l 的一个方向向量),即m =|QP →·n ||n |,于是P 到l 的距离d =|QP ―→|2-m 2.21.(本小题满分12分)如图,已知正三棱柱ABC -A ′B ′C ′的侧棱长为2,底面边长为1,M 是BC 的中点,在直线CC ′上是否存在一点N ,使得MN ⊥AB ′?若存在,请指出它的位置;若不存在,请说明理由.[解析] 假设在直线CC ′上存在一点N ,使得MN ⊥AB ′,设CN →=xCC ′→.∵MN →=MC →+CN →=12BC →+xCC ′→, AB ′→=AB →+BB ′→=AB →+CC ′→,∴MN →·AB ′→=⎝ ⎛⎭⎪⎪⎫12BC →+xCC ′→·(AB →+CC ′→)=0,即12BC →·AB →+12BC →·CC ′→+xCC ′→·AB →+xCC ′→2=0, 12|BC →||AB →|cos 〈BC →,AB →〉+4x =0. ∴-14+4x =0,∴x =116. 即在直线CC ′上存在一点N , 当|CN →|=18时,MN ⊥AB ′.22.(本小题满分14分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.(1)证明:直线EE1∥平面FCC1;(2)求二面角B-FC1-C的余弦值.[解析](1)证法一:取A1B1的中点F1,连接FF1,C1F1,由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此平面FCC1,即为平面C1CFF1,连接A1D,F1C,由于A1F1綊D1C1綊CD,所以四边形A1DCF1为平行四边形,因此A1D∥F1C.又EE1∥A1D,得EE1∥F1C,而EE1⊄平面FCC1,F1C⊂平面FCC1,故EE1∥平面FCC1.证法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.(2)解法一:取FC的中点H,由于FC=BC=FB,所以BH⊥FC.又BH⊥CC1,所以BH⊥平面FCC1.过H作HG⊥C1F于G,连接BG.由于HG⊥C1F,BH⊥平面FCC1,所以C1F⊥BHG,因此BG⊥C1F,所以∠BGH为所求二面角的平面角,在Rt△BHG中,BH=3,又FH=1,且△FCC1为等腰直角三角形,所以HG=22,BG=3+12=142,因此cos ∠BGH =GH BG =22142=77,即所求二面角的余弦值为77.解法二:过D 作DR ⊥CD 交于AB 于R ,以D 为坐标原点建立如图所示的空间直角坐标系.则F (3,1,0),B (3,3,0),C (0,2,0),C 1(0,2,2), 所以FB →=(0,2,0),BC 1→=(-3,-1,2),DB →=(3,3,0). 由FB =CB =CD =DF ,所以DB ⊥FC . 又CC 1⊥平面ABCD ,所以DB →为平面FCC 1的一个法向量. 设平面BFC 1的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ⊥FB →,n ⊥BC 1→,∴⎩⎪⎨⎪⎧(x ,y ,z )·(0,2,0)=0,(x ,y ,z )·(-3,-1,2)=0,即⎩⎪⎨⎪⎧2y =0,-3x -y +2z =0. 取x =1得⎩⎨⎧ y =0,z =32,因此n =⎝⎛⎭⎪⎫1,0,32, 所以cos 〈DB →,n 〉=DB →·n |DB →|×|n |=33+9×1+34=17=77. 故所求二面角的余弦值为77.。
高中数学人教A版选修2-1单元测评(三) 空间向量与立体几何.docx
高中数学学习材料马鸣风萧萧*整理制作单元测评(三) 空间向量与立体几何(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.以下四组向量中,互相平行的组数为( )①a =(2,2,1),b =(3,-2,-2);②a =(8,4,-6),b =(4,2,-3);③a =(0,-1,1),b =(0,3,-3);④a =(-3,2,0),b =(4,-3,3)A .1组B .2组C .3组D .4组解析:∵②中a =2b ,∴a ∥b ;③中a =-13b , ∴a ∥b ;而①④中的向量不平行. 答案:B2.在以下命题中,不正确的个数为( )①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基底,则{a +b ,b +c ,c +a }构成空间的另一组基底;⑤|(a ·b )·c |=|a |·|b |·|c |.A .2个B .3个C .4个D .5个解析:①|a |-|b |=|a +b |⇒a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C3.如图,已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不一定为零的是( )A.PC →与BD →B.DA →与PB →C.PD →与AB →D.P A →与CD →解析:建立如图所示的空间直角坐标系.设矩形ABCD 的长、宽分别为a ,b ,P A 长为c ,则A (0,0,0),B (b,0,0),D (0,a,0),C (b ,a,0),P (0,0,c ).则PC →=(b ,a ,-c ),BD →=(-b ,a,0),DA →=(0,-a ,0),PB →=(b,0,-c ),PD →=(0,a ,-c ),AB →=(b,0,0),P A →=(0,0,-c ),CD →=(-b,0,0).∴PC →·BD →=-b 2+a 2不一定为0. DA →·PB →=0,PD →·AB →=0,P A →·CD →=0. 答案:A4.已知向量e 1、e 2、e 3是两两垂直的单位向量,且a =3e 1+2e 2-e 3,b=e 1+2e 3,则(6a )·⎝⎛⎭⎪⎫12b 等于( ) A .15 B .3 C .-3D .5解析:(6a )·⎝ ⎛⎭⎪⎫12b =3a·b =3(3e 1+2e 2-e 3)·(e 1+2e 3)=9|e 1|2-6|e 3|2=3. 答案:B5.如图,AB =AC =BD =1,AB ⊂面α,AC ⊥面α,BD ⊥AB ,BD 与面α成30°角,则C 、D 间的距离为( )A .1B .2C. 2D. 3解析:|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=1+1+1+0+0+2×1×1×cos120°=2.∴|CD →|= 2.答案:C6.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1)在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0) C.⎝ ⎛⎭⎪⎫-12,12,0 D.⎝ ⎛⎭⎪⎫12,-12,0 解析:由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH →=(-λ,λ-1,-1).又BH ⊥OA ,∴BH →·OA →=0, 即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,∴H ⎝ ⎛⎭⎪⎫-12,12,0. 答案:C7.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°解析:(a +b )·(a -b )=a 2-b 2=(cos 2α+sin 2α+1)-(sin 2α+1+cos 2α)=0,∴(a +b )⊥(a -b ).答案:A8.已知E 、F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A.23B.23C.53D.233解析:以D 为坐标原点,以DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),l 所以AD 1→=(-1,0,1),AE →=⎝⎛⎭⎪⎫-12,1,0.设平面AEFD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD 1→=0,n·AE →=0,⇒⎩⎨⎧-x +z =0,-x2+y =0.∴x =2y =z .取y =1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∵cos 〈n ,u 〉=23,∴sin 〈n ,u 〉=53.答案:C9.在三棱锥P -ABC 中,△ABC 为等边三角形,P A ⊥平面ABC ,且P A =AB ,则二面角A -PB -C 的平面角的正切值为( )A. 6B. 3C.66D.62解析:设P A =AB =2,建立如图所示的空间直角坐标系. 则B (0,2,0),C (3,1,0),P (0,0,2), ∴BP →=(0,-2,2), BC →=(3,-1,0).设n =(x ,y ,z )是平面PBC 的一个法向量. 则⎩⎪⎨⎪⎧BP →·n =0,BC →·n =0,即⎩⎪⎨⎪⎧-2y +2z =0,3x -y =0.令y =1,则x =33 ,z =1.即n =⎝ ⎛⎭⎪⎫33,1,1. 易知m =(1,0,0)是平面P AB 的一个法向量.则cos 〈m ,n 〉=m·n|m ||n |=331×213=77. ∴正切值tan 〈m ,n 〉= 6. 答案:A10.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎪⎫12,34,13 B.⎝⎛⎭⎪⎫12,32,34 C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则QA →=(1-x,2-x,3-2x ), QB →=(2-x,1-x,2-2x ). ∴QA →·QB →=6x 2-16x +10, ∴x =43时,QA →·QB →最小,这时Q ⎝ ⎛⎭⎪⎫43,43,83.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是__________.解析:因为a 与b 的夹角为钝角,于是-1<cos 〈a ,b 〉<0,因此a·b<0,且a 与b 的夹角不为π,即cos 〈a ,b 〉≠-1.解得x ∈⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞.答案:⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞12.如图所示,已知正四面体A -BCD 中,AE =14AB ,CF =14CD ,则直线DE 和BF 所成的角的余弦值为__________.解析:ED →=EA →+AD →=14BA →+AD →, BF →=BC →+CF →=BC →+14CD →, cos 〈ED →,BF →〉=ED →·BF →|ED →|·|BF →|=⎝ ⎛⎭⎪⎪⎫14BA →+AD →·⎝ ⎛⎭⎪⎪⎫BC →+14CD →⎝ ⎛⎭⎪⎪⎫14BA →+AD →2·⎝⎛⎭⎪⎪⎫BC →+14CD →2=413.答案:41313.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=__________.解析:由题意知⎩⎪⎨⎪⎧-x +2y -12=0,x -4-4z =0,-1-2y +3z =0,解得x =-64,y =-26,z =-17. 答案:(-64,-26,-17)14.已知空间四边形OABC ,如图所示,其对角线为OB 、AC ,M 、N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=3GN →,现用基向量OA →、OB →、OC →表示向量OG →,并设OG →=x ·OA →+y ·OB →+z ·OC →,则x 、y 、z 的和为__________.解析:OG →=OM →+MG →=12OA →+34MN →=12OA →+34⎝ ⎛⎭⎪⎪⎫-12OA →+OC →+12CB →=12OA →-38OA →+34OC →+38OB →-38OC →=18OA →+38OB →+38OC →,∴x =18,y =38,z =38.∴x +y +z =78. 答案:78三、解答题:本大题共4小题,满分50分. 15.(12分)已知a =(1,2,-2). (1)求与a 共线的单位向量b ;(2)若a 与单位向量c =(0,m ,n )垂直,求m 、n 的值. 解:(1)设b =(λ,2λ,-2λ),而b 为单位向量, ∴|b |=1,即λ2+4λ2+4λ2=9λ2=1. ∴λ=±13.(4分)∴b =⎝ ⎛⎭⎪⎫13,23,-23或b =⎝ ⎛⎭⎪⎫-13,-23,23.(6分) (2)由题意,知⎩⎪⎨⎪⎧ a·c =0,|c |=1,⇒⎩⎪⎨⎪⎧1×0+2m -2n =0,m 2+n 2+02=1,解得⎩⎨⎧m =22,n =22,或⎩⎨⎧m =-22,n =-22.(12分)16.(12分)如下(左)图,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别为AC 、AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如下(右)图.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小.解:(1)∵AC⊥BC,DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD,∴DE⊥平面A1DC.∴DE⊥A1C.又∵A1C⊥CD,∴A1C⊥平面BCDE.(4分)(2)如图所示,以C为坐标原点,建立空间直角坐标系C-xyz,则A1(0,0,23),D(0,2,0),M(0,1,3),B(3,0,0),E(2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23), BE →=(-1,2,0),∴⎩⎪⎨⎪⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. ∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=|n ·CM →|n |·|CM →||=48×4=22.∴CM 与平面A 1BE 所成角的大小为π4.(12分)17.(12分)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.(1)求证:AM ∥平面BDE ;(2)试在线段AC 上确定一点P ,使得PF 与CD 所成的角是60°.解:(1)证明:如图,建立空间直角坐标系. 设AC ∩BD =N ,连接NE ,则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1),∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1.又A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1,∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴NE →=AM →,且NE 与AM 不共线. ∴NE ∥AM .又NE ⊂平面BDE ,AM ⊄平面BDE , ∴AM ∥平面BDE .(6分) (2)设P (t ,t,0)(0≤t ≤2),则PF →=(2-t ,2-t,1),CD →=(2,0,0). 又∵PF →与CD →所成的角为60°.|(2-t )·2|(2-t )2+(2-t )2+1·2=12, 解之得t =22,或t =322(舍去). 故点P 为AC 的中点.(12分)18.(14分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面P AC ; (2)求二面角B -P A -C 的余弦值.解: (1)证明:如图所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎨⎧-12x 1+12y 1=0,2z 1=0.(4分)∴z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面P AC 的一个法向量,则由n 2·P A →=0,n 2·PC →=0,得⎩⎪⎨⎪⎧-x 2-2z 2=0,y 2-2z 2=0.∴x 2=-2z 2,y 2=2z 2, 取z 2=1,得n 2=(-2,2,1). ∵n 1·n 2=(1,1,0)·(-2,2,1)=0, ∴n 1⊥n 2.从而平面POD ⊥平面P AC .(8分) (2)∵y 轴⊥平面P AB .∴平面P AB 的一个法向量为n 3=(0,1,0).由(1)知,平面P AC 的一个法向量为n 2=(-2,2,1).设向量n 2和n 3的夹角为θ, 则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -P A -C 的平面角与θ相等,∴二面角B -P A -C 的余弦值为105.(14分)。
高中数学人教A版选修2-1学业测评: 空间向量
学业分层测评(一) (建议用时:45分钟)[学业达标]一、选择题1.对于空间中任意三个向量a ,b ,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面向量【解析】 由共面向量定理易得答案A. 【答案】 A2.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA →=-AB →=-a-2b ,∴BD→=-2BA →,∴BD→与BA →共线, 又它们经过同一点B , ∴A ,B ,D 三点共线. 【答案】 A3.A ,B ,C 不共线,对空间任意一点O ,若OP→=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( )A .不共面B .共面C .不一定共面D .无法判断【解析】 ∵34+18+18=1, ∴点P ,A ,B ,C 四点共面. 【答案】 B4.在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→的结果为( )图3-1-11A.BD 1→=AB →-AD →+AA 1→B.BD 1→=AD →+AA 1→-AB →C.BD 1→=AB →+AD →-AA 1→D.BD 1→=AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD →.故选B. 【答案】 B5.如图3-1-12,在平行六面体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )图3-1-12A.EF→+GH →+PQ →=0 B.EF→-GH →-PQ →=0 C.EF→+GH →-PQ →=0 D.EF →-GH →+PQ →=0【解析】 由题图观察,EF →、GH →、PQ →平移后可以首尾相接,故有EF →+GH →+PQ →=0.【答案】 A 二、填空题6.已知两非零向量e 1,e 2,且e 1与e 2不共线,若a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则下列三个结论有可能正确的是________.(填序号)①a 与e 1共线;②a 与e 2共线;③a 与e 1,e 2共面.【解析】 当λ=0时,a =μe 2,故a 与e 2共线,同理当μ=0时,a 与e 1共线,由a =λe 1+μe 2知,a 与e 1,e 2共面.【答案】 ①②③7.已知O 为空间任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA→=2xBO →+3yCO →+4zDO →,则2x +3y +4z 的值为________.【解析】 由题意知A ,B ,C ,D 共面的充要条件是对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此2x +3y +4z =-1.【答案】 -18.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.【解析】 由已知可得:BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,∵A ,B ,D 三点共线,∴AB→与BD →共线,即存在λ∈R 使得AB →=λBD →. ∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2, ∵e 1,e 2不共线, ∴⎩⎨⎧λ=2,k =-4λ,解得k =-8. 【答案】 -8 三、解答题9.已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点.求下列各式中x ,y 的值.(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO→+yPQ →+PD →.【解】 如图所示,(1)∵OQ→=PQ →-PO → =PQ →-12(P A →+PC→) =PQ →-12P A →-12PC →, ∴x =y =-12. (2)∵P A →+PC →=2PO →, ∴P A →=2PO →-PC →. 又∵PC→+PD →=2PQ →, ∴PC→=2PQ →-PD →. 从而有P A →=2PO →-(2PQ →-PD →) =2PO→-2PQ →+PD →. ∴x =2,y =-2.10.如图3-1-13,四边形ABCD 、四边形ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点,判断CE→与MN →是否共线.图3-1-13【解】 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD 、四边形ABEF 都是平行四边形, ∴MN→=MA →+AF →+FN →=12CA →+AF →+12FB →. 又∵MN→=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →. ∴CE→=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE→=2MN →,∴CE →∥MN →,即CE →与MN →共线. [能力提升]1.若P ,A ,B ,C 为空间四点,且有P A →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若α+β=1,则P A →-PB →=β(PC →-PB →),即BA →=βBC →,显然A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-P A →=λ(PC →-PB →),整理得P A →=(1+λ)PB→-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C. 【答案】 C2.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→,那么M 必( )A .在平面BAD 1内B .在平面BA 1D 内C .在平面BA 1D 1内D .在平面AB 1C 1内【解析】 由于PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→=PB 1→+BA →+6BA 1→-4A 1D 1→=PB 1→+B 1A 1→+6BA 1→-4A 1D 1→=P A 1→+6(P A 1→-PB →)-4(PD 1→-P A 1→)=11P A 1→-6PB →-4PD 1→,于是M ,B ,A 1,D 1四点共面,故选C. 【答案】 C3.已知两非零向量e 1,e 2,且e 1与e 2不共线,若a =λe 1+μ e 2(λ,μ∈R ,且λ2+μ2≠0),则下列三个结论有可能正确的是________.①a 与e 1共线;②a 与e 2共线;③a 与e 1,e 2共面.【解析】 当λ=0时,a =μ e 2,故a 与e 2共线,同理当μ=0时,a 与e 1共线,由a =λe 1+μ e 2,知a 与e 1,e 2共面.【答案】 ①②③4.如图3-1-14所示,M ,N 分别是空间四边形ABCD 的棱AB ,CD 的中点.试判断向量MN→与向量AD →,BC →是否共面.图3-1-14【解】 由题图可得:MN →=MA →+AD →+DN →,① ∵MN→=MB →+BC →+CN →,②又MA→=-MB →,DN →=-CN →, 所以①+②得: 2MN→=AD →+BC →, 即MN→=12AD →+12BC →,故向量MN →与向量AD →,BC →共面. 学业分层测评(二) (建议用时:45分钟)[学业达标]一、选择题1.设a ,b ,c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )A .①②B .②③C .③④D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中,|a |2·b =|b |2·a 不一定成立,④运算正确.【答案】 D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60°D .以上都不对【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14.【答案】 D3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( )A.PC →与BD →B.DA →与PB →C.PD→与AB → D.P A →与CD→ 【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD →=0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA→·PB →=0,排除B ,同理PD →·AB →=0,排除C.【答案】 A4.如图3-1-25,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )图3-1-25A .2BA→·AC → B .2AD→·DB →C .2FG →·AC →D .2EF →·CB →【解析】 2BA→·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2,故D 错;2FG→·AC →=AC →2=a 2,故只有C 正确. 【答案】 C5.在正方体ABCD -A 1B 1C 1D 1中,有下列命题: ①(AA 1→+AD →+AB →)2=3AB →2; ②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°. 其中正确命题的个数是( ) A .1个 B .2个 C .3个D .0个【解析】 由题意知①②都正确,③不正确,AD 1→与A 1B →的夹角为120°. 【答案】 B 二、填空题6.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61, ∴|2a -3b |=61. 【答案】617.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.【解析】 由题意知⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1.即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |得λ2+2λ-2<0.∴-1-3<λ<-1+ 3. 【答案】 (-1-3,-1+3)8.如图3-1-26,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3-1-26【解析】 不妨设棱长为2,则AB →1=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=(BB 1→-BA →)·⎝ ⎛⎭⎪⎫BC →+12BB 1→22×5 =0-2+2-022×5=0,故填90°.【答案】 90° 三、解答题9.如图3-1-27,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面BDG .图3-1-27【证明】 设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c . 则a ·b =0,a ·c =0,b ·c =0. 而A 1O →=A 1A →+AO → =A 1A →+12(AB →+AD →)=c +12(a +b ), BD→=AD →-AB →=b -a , OG→=OC →+CG → =12(AB →+AD →)+12CC 1→ =12(a +b )+12c .∴A 1O →·BD →=⎝ ⎛⎭⎪⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2) =12(|b |2-|a |2)=0. ∴A 1O →⊥BD →. ∴A 1O ⊥BD . 同理可证A 1O →⊥OG →. ∴A 1O ⊥OG .又OG ∩BD =O 且A 1O ⊄平面BDG , ∴A 1O ⊥平面BDG .10.已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点,试计算:(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=AD →·(EA 1→+A 1D 1→)=AD →·⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+AD →=b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+BB 1→) =⎝ ⎛⎭⎪⎫AA 1→-AB →+12AD →·(AB →+AA 1→) =⎝ ⎛⎭⎪⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.(3)EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB → =⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a =-12|a |2+14|b |2=2.[能力提升]1.已知边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( ) A .-1 B .0 C .1D .2【解析】 AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C. 【答案】 C2.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°【解析】 由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD→=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,得〈AB→,CD →〉=60°.【答案】 B3.已知正三棱柱ABC -DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CNCF =________.【解析】 设CN CF =m ,由于AE→=AB →+BE →,MN →=12BC →+mAD →,又AE→·MN →=0, 得12×1×1×⎝ ⎛⎭⎪⎫-12+4m =0,解得m =116.【答案】 1164.如图3-1-28,平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.图3-1-28【解】 ∵AC 1→=AB →+AD →+AA 1→,∴|AC 1→|=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→).∵AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,∴〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA 1→〉=60°, ∴|AC 1→| =1+4+9+2(1×3×cos 60°+2×3×cos 60°) =23.学业分层测评(三) (建议用时:45分钟)[学业达标]一、选择题1.点A (-1,2,1)在x 轴上的投影点和在xOy 平面上的投影点的坐标分别为( )A .(-1,0,1),(-1,2,0)B .(-1,0,0),(-1,2,0)C .(-1,0,0),(-1,0,0)D .(-1,2,0),(-1,2,0)【解析】 点A 在x 轴上的投影点的横坐标不变,纵、竖坐标都为0,在xOy 平面上的投影点横、纵坐标不变,竖坐标为0,故应选B.【答案】 B2.在空间直角坐标系Oxyz 中,下列说法正确的是( ) A .向量AB→的坐标与点B 的坐标相同 B .向量AB→的坐标与点A 的坐标相同C .向量AB→与向量OB →的坐标相同D .向量AB→与向量OB →-OA →的坐标相同【解析】 因为A 点不一定为坐标原点,所以A ,B ,C 都不对;由于AB →=OB→-OA →,故D 正确. 【答案】 D3.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A.12a +12b +c B.12a -12b +cC .-12a -12b +cD .-12a +12b +c 【解析】 由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →)=-12a +12b +c ,故选D. 【答案】 D4.正方体ABCD -A ′B ′C ′D ′中,O 1,O 2,O 3分别是AC ,AB ′,AD ′的中点,以{AO →1,AO →2,AO →3}为基底,AC ′→=xAO →1+yAO 2→+zAO →3,则x ,y ,z 的值是( ) A .x =y =z =1 B .x =y =z =12 C .x =y =z =22D .x =y =z =2【解析】 AC ′→=AA ′→+AD →+AB →=12(AB →+AD →)+12(AA ′→+AD →)+12(AA ′→+AB→) =12AC →+12AD ′→+12AB ′→=AO 1→+AO 3→+AO 2→, 由空间向量的基本定理,得x =y =z =1. 【答案】 A4.已知空间四点A (4,1,3),B (2,3,1),C (3,7,-5),D (x ,-1,3)共面,则x 的值为( )A .4B .1C .10D .11【解析】 AB →=(-2,2,-2),AC →=(-1,6,-8),AD →=(x -4,-2,0), ∵A ,B ,C ,D 共面, ∴AB→,AC →,AD →共面, ∴存在实数λ,μ,使AD→=λAB →+μAC →,即(x -4,-2,0)=(-2λ-μ,2λ+6μ,-2λ-8μ),∴⎩⎨⎧x -4=-2λ-μ,-2=2λ+6μ,0=-2λ-8μ,得⎩⎨⎧λ=-4,μ=1,x =11.【答案】 D 二、填空题6.设{i ,j ,k }是空间向量的单位正交基底,a =3i +2j -k ,b =-2i +4j +2k ,则向量a 与b 的位置关系是________.【解析】 ∵a ·b =-6i 2+8j 2-2k 2=-6+8-2=0. ∴a ⊥b . 【答案】 a ⊥b7.如图3-1-32, 在平行六面体ABCD A 1B 1C 1D 1中,M 为AC 和BD 的交点,若AB →=a ,AD →=b ,AA 1→=c ,则B 1M →=________.图3-1-32【解析】 B 1M →=AM →-AB 1→=12(AB →+AD →)-(AB →+AA 1→)=-12AB →+12AD →-AA 1→=-12a +12b -c . 【答案】 -12a +12b -c8.已知点A 在基底{a ,b ,c }下的坐标为(2,1,3),其中a =4i +2j ,b =2j +3k ,c =3k -j ,则点A 在基底{i ,j ,k }下的坐标为________.【解析】 由题意知点A 对应的向量为2a +b +3c =2(4i +2j )+(2j +3k )+3(3k -j )=8i +3j +12k ,∴点A 在基底{i ,j ,k }下的坐标为(8,3,12). 【答案】 (8,3,12) 三、解答题9.已知{e 1,e 2,e 3}为空间一基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,能否以OA →,OB →,OC →作为空间的一个基底?【解】 假设OA→,OB →,OC →共面,根据向量共面的充要条件有OA→=xOB →+yOC →,即e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3) =(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∴⎩⎨⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解. ∴OA→,OB →,OC →不共面. ∴{OA→,OB →,OC →}可作为空间的一个基底. 10.如图3-1-33,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND→=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.图3-1-33【解】 连接AN ,则MN→=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA→=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN→=AD →+DN →=AD →-ND →=AD →-13A 1D → =b -13(b -c ),MN →=MA →+AN →=-13(a +b )+b -13(b -c ) =13(-a +b +c ).[能力提升]1.已知空间四边形OABC ,其对角线为AC ,OB .M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG→等于( )A.16OA →+13OB →+12OC →B.14(OA →+OB →+OC →) C.13(OA →+OB →+OC →) D.16OB →+13OA →+13OC → 【解析】 如图,OG→=12(OM →+ON →) =12OM →+12×12(OB →+OC →) =14OA →+14OB →+14OC → =14(OA →+OB →+OC →). 【答案】 B2.若向量MA→,MB →,MC →的起点M 和终点A ,B ,C 互不重合无三点共线,则能使向量MA→,MB →,MC →成为空间一组基底的关系是( )A.OM→=13OA →+13OB →+13OC → B.MA→=MB →+MC →C.OM→=OA →+OB →+OC → D.MA→=2MB →-MC →【答案】 C3.在空间四边形ABCD 中,AB →=a -2c ,CD →=5a -5b +8c ,对角线AC ,BD 的中点分别是E ,F ,则EF→=________.【解析】 EF→=12(ED →+EB →)=14(AD →+CD →)+14(AB →+CB →)=14AB →+14BD →+14CD →+14AB →+14CD →+14DB →=12(AB →+CD →)=3a -52b +3c .【答案】 3a -52b +3c4.在直三棱柱ABO -A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图3-1-34所示的空间直角坐标系中,求DO →,A 1B →的坐标.图3-1-34【解】 ∵DO →=-OD →=-(OO 1→+O 1D →)=-[OO 1→+12(OA →+OB →)]=-OO 1→-12OA →-12OB →. 又|OO 1→|=|AA 1→|=4,|OA →|=4,|OB →|=2,∴DO→=(-2,-1,-4). ∵A 1B →=OB →-OA 1→=OB →-(OA →+AA 1→) =OB →-OA →-AA 1→. 又|OB →|=2,|OA →|=4,|AA 1→|=4, ∴A 1B →=(-4,2,-4).学业分层测评(四) (建议用时:45分钟)[学业达标]一、选择题1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2)D .(2,1,-3)【解析】 b =a -(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2).【答案】 A2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |的值为( )A.534B.532C.532D.132【解析】 ∵AB 的中点M ⎝ ⎛⎭⎪⎫2,32,3,∴CM →=⎝ ⎛⎭⎪⎫2,12,3,故|CM |=|CM→|=22+⎝ ⎛⎭⎪⎫122+32=532.【答案】 C3.已知向量a =(2,3),b =(k ,1),若a +2b 与a -b 平行,则k 的值是( ) A .-6 B .-23 C. 23D .14【解析】 由题意得a +2b =(2+2k ,5),且a -b =(2-k ,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =23.【答案】 C4.如图3-1-36,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心,则E ,F 两点间的距离为( )图3-1-36A .1 B.52 C.62D.32【解析】 以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F ⎝⎛⎭⎪⎫2,1,22,所以|EF |=(2-1)2+(1-1)2+⎝ ⎛⎭⎪⎫22-22=62,故选C.【答案】 C5.已知a =(1-t ,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( ) A.55 B.555 C.355D.115【解析】 b -a =(1+t ,2t -1,0), ∴|b -a |2=(1+t )2+(2t -1)2+02 =5t 2-2t +2=5⎝ ⎛⎭⎪⎫t -152+95.∴|b -a |2min=95. ∴|b -a |min =355. 【答案】 C 二、填空题6.已知点A (1,2,3),B (2,1,2),P (1,1,2),O (0,0,0),点Q 在直线OP 上运动,当QA→·QB →取得最小值时,点Q 的坐标为________.【解析】 设OQ→=λOP →=(λ,λ,2λ),故Q (λ,λ,2λ),故QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ).则QA →·QB →=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23,当QA →·QB →取最小值时,λ=43,此时Q 点的坐标为⎝ ⎛⎭⎪⎫43,43,83.【答案】 ⎝ ⎛⎭⎪⎫43,43,837.若AB →=(-4,6,-1),AC →=(4,3,-2),|a |=1,且a ⊥AB →,a ⊥AC →,则a =________.【解析】设a =(x ,y ,z ),由题意有⎩⎪⎨⎪⎧a ·AB →=0,a ·AC →=0,|a |=1,代入坐标可解得⎩⎪⎨⎪⎧x =313,y =413,z =1213或⎩⎪⎨⎪⎧x =-313,y =-413,z =-1213.【答案】 ⎝ ⎛⎭⎪⎫313,413,1213或⎝ ⎛⎭⎪⎫-313,-413,-12138.若A (m +1,n -1,3),B (2m ,n ,m -2n ),C (m +3,n -3,9)三点共线,则m +n =________.【解析】 因为AB→=(m -1,1,m -2n -3),AC →=(2,-2,6),由题意得AB →∥AC→,则m -12=1-2=m -2n -36,所以m =0,n =0,m +n =0. 【答案】 0 三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE→⊥b ?(O 为原点)【解】 (1)2a +b =(2,-6,4)+(-2,1,1) =(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE→⊥b ,则OE →·b =0, 所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95, 因此存在点E ,使得OE →⊥b ,E 点坐标为⎝ ⎛⎭⎪⎫-65,-145,25. 10.在正方体ABCD -A 1B 1C 1D 1中,M 是棱DD 1的中点,O 是正方形ABCD 的中心.求证:OA 1→⊥AM →.【证明】 建立空间直角坐标系,如图所示,设正方形的棱长为1个单位,则A (1,0,0),A 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,0,12,O ⎝ ⎛⎭⎪⎫12,12,0.∴OA 1→=⎝ ⎛⎭⎪⎫12,-12,1,AM →=⎝⎛⎭⎪⎫-1,0,12. ∵OA 1→·AM →=12×(-1)+⎝ ⎛⎭⎪⎫-12×0+1×12=0,∴OA 1→⊥AM →. [能力提升]1.已知向量a =(-2,x ,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3【解析】 ∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.【答案】 A2.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90°B .60°C .45°D .30°【解析】 a +b =(cos α+sin α,2,sin α+cos α),a -b =(cos α-sin α,0,sin α-cos α),∴(a +b )·(a -b )=0,∴(a +b )⊥(a -b ). 【答案】 A3.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.【解析】 因为a 与b 的夹角为钝角,所以a·b <0,所以3×(-1)+(-2)×(x -1)+(-3)×1<0,解得x >-2.若a 与b 的夹角为π,则x =53,所以x ∈⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞.【答案】 ⎝ ⎛⎭⎪⎫-2,53∪⎝ ⎛⎭⎪⎫53,+∞4.在正三棱柱ABC -A 1B 1C 1中,平面ABC 和平面A 1B 1C 1为正三角形,所有的棱长都是2,M 是BC 边的中点,则在棱CC 1上是否存在点N ,使得异面直线AB 1和MN 所夹的角等于45°?【解】 以A 点为原点,建立如图所示的空间直角坐标系Axyz .由题意知A (0,0,0),C (0,2,0),B (3,1,0),B 1(3,1,2),M ⎝ ⎛⎭⎪⎫32,32,0.又点N 在CC 1上,可设N (0,2,m )(0≤m ≤2), 则AB 1→=(3,1,2),MN →=⎝ ⎛⎭⎪⎫-32,12,m , 所以|AB 1→|=22,|MN →|=m 2+1,AB 1→·MN →=2m -1.如果异面直线AB 1和MN 所夹的角等于45°,那么向量AB 1→和MN →的夹角等于45°或135°.又cos 〈AB 1→,MN →〉=AB 1→·MN →|AB 1→||MN →|=2m -122×m 2+1. 所以2m -122×m 2+1=±22,解得m =-34,这与0≤m ≤2矛盾. 所以在CC 1上不存在点N ,使得异面直线AB 1和MN 所夹的角等于45°.学业分层测评(五) (建议用时:45分钟)[学业达标]一、选择题1.l 1的方向向量为v 1=(1,2,3),l 2的方向向量v 2=(λ,4,6),若l 1∥l 2,则λ=( )A .1B .2C .3D .4【解析】 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.【答案】 B2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内【解析】 ∵AB→=λCD →+μCE →,∴AB →,CD →,CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内.【答案】 D3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B.⎝ ⎛⎭⎪⎫1,3,32C.⎝ ⎛⎭⎪⎫1,-3,32 D.⎝ ⎛⎭⎪⎫-1,3,-32 【解析】 对于B ,AP→=⎝ ⎛⎭⎪⎫-1,4,-12, 则n ·AP →=(3,1,2)·⎝ ⎛⎭⎪⎫-1,4,-12=0, ∴n ⊥AP→,则点P ⎝ ⎛⎭⎪⎫1,3,32在平面α内. 【答案】 B4.已知直线l 的方向向量是a =(3,2,1),平面α的法向量是u =(-1,2,-1),则l 与α的位置关系是( )A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α【解析】 因为a ·u =-3+4-1=0,所以a ⊥u .所以l ∥α或l ⊂α. 【答案】 D5.若u =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)【解析】 同一个平面的法向量平行,故选D. 【答案】 D 二、填空题6.若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.【解析】 因为α⊥β,那么它们的法向量也互相垂直,则有-x -2-8=0,所以x =-10.【答案】 -107.若a =(2x ,1,3),b =(1,-2y ,9),且a 与b 为共线向量,则x =________,y =________.【解析】 由题意得2x 1=1-2y=39,∴x =16,y =-32.【答案】 16 -328.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x =________.【解析】 AB→=(-2,2,-2),AC →=(-1,6,-8),AP→=(x -4,-2,0),由题意知A ,B ,C ,P 四点共面, ∴AP→=λAB →+μAC →=(-2λ,2λ,-2λ)+(-μ,6μ,-8μ)=(-2λ-μ,2λ+6μ,-2λ-8μ).∴⎩⎨⎧2λ+6μ=-2,-2λ-8μ=0,∴⎩⎨⎧λ=-4,μ=1, 而x -4=-2λ-μ,∴x =11. 【答案】 11 三、解答题9.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图3-2-6所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:图3-2-6(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面; (2)AC →∥EG →;(3)OG→=kOC →. 【解】 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD→-OA →)+km (OB →-OA →)=kAD →+kmAB → =k (AD→+mAB →)=kAC →,∴AC →∥EG →.(3)由(2)知OG →=EG →-EO →=kAC →-kAO →=k (AC →-AO →)=kOC →. ∴OG→=kOC →. 10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE →是平面A 1D 1F 的法向量.【证明】 设正方体的棱长为1,建立如图所示的空间直角坐标系,则A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,D 1(0,0,1),F ⎝ ⎛⎭⎪⎫0,12,0,A 1(1,0,1),AE →=⎝ ⎛⎭⎪⎫0,1,12,D 1F →=⎝ ⎛⎭⎪⎫0,12,-1,A 1D 1→=(-1,0,0). ∵AE →·D 1F →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,12,-1 =12-12=0, 又AE →·A 1D 1→=0, ∴AE →⊥D 1F →,AE →⊥A 1D 1→. 又A 1D 1∩D 1F =D 1, ∴AE ⊥平面A 1D 1F , ∴AE →是平面A 1D 1F 的法向量.[能力提升]1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是( )A .(4,2,-2)B .(2,0,4)C .(2,-1,-5)D .(4,-2,2)【解析】 ∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),解得应选D.【答案】 D2.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能...是( ) A .(1,-4,2) B.⎝ ⎛⎭⎪⎫14,-1,12 C.⎝ ⎛⎭⎪⎫-14,1,-12 D .(0,-1,1)【解析】 因为PM→=(0,2,4),直线l 平行于向量a ,若n 是平面α的法向量,则必须满足⎩⎪⎨⎪⎧n·a =0,n ·PM →=0,把选项代入验证,只有选项D 不满足,故选D.【答案】 D3.若A ⎝ ⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),则x ∶y ∶z =________.【解析】 因为AB→=⎝ ⎛⎭⎪⎫1,-3,-74, AC→=⎝ ⎛⎭⎪⎫-2,-1,-74, 又因为a ·AB →=0,a ·AC →=0, 所以⎩⎪⎨⎪⎧x -3y -74z =0,-2x -y -74z =0,解得⎩⎪⎨⎪⎧x =23y ,z =-43y .所以x ∶y ∶z =23y ∶y ∶⎝ ⎛⎭⎪⎫-43y =2∶3∶(-4).【答案】 2∶3∶(-4)4.如图3-2-7,四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1.问:在棱PD 上是否存在一点E ,使得CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.图3-2-7【解】 分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系,如图,则P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则PE→=(0,y ,z -1), PD→=(0,2,-1), ∵PE→∥PD →,∴y (-1)-2(z -1)=0, ①∵AD→=(0,2,0)是平面P AB 的法向量, CE→=(-1,y -1,z ), ∴由CE ∥平面P AB, 可得CE→⊥AD →,∴(-1,y -1,z )·(0,2,0)=2(y -1)=0, ∴y =1,代入①式得z =12.∴E 是PD 的中点, 即存在点E 为PD 中点时,CE ∥平面P AB .学业分层测评(六) (建议用时:45分钟)[学业达标]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4 B.-4 C .5D .-5【解析】 ∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0. ∴k =-5. 【答案】 D2.在菱形ABCD 中,若P A →是平面ABCD 的法向量,则以下等式中可能不成立的是( )A.P A →⊥AB →B.P A →⊥CD →C.PC→⊥BD → D.PC→⊥AB → 【解析】 由题意知P A ⊥平面ABCD ,所以P A 与平面上的线AB ,CD 都垂直,A ,B 正确;又因为菱形的对角线互相垂直,可推得对角线BD ⊥平面P AC ,故PC ⊥BD ,C 选项正确.【答案】 D3.已知AB→=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4B.407,-157,4C.407,-2,4D .4,407,-15【解析】 ∵AB→⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP→⊥AB →,BP →⊥BC →,则⎩⎨⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.【答案】 B4.已知点A (1,0,0),B (0,1,0),C (0,0,1),点D 满足条件:DB ⊥AC ,DC ⊥AB ,AD =BC ,则点D 的坐标为( )A .(1,1,1)B .(-1,-1,-1)或⎝ ⎛⎭⎪⎫13,13,13C.⎝ ⎛⎭⎪⎫13,13,13 D .(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13【解析】 设D (x ,y ,z ),则BD→=(x ,y -1,z ),CD →=(x ,y ,z -1),AD →=(x -1,y ,z ),AC→=(-1,0,1),AB →=(-1,1,0),BC →=(0,-1,1).又DB ⊥AC ⇔-x +z =0 ①, DC ⊥AB ⇔-x +y =0 ②, AD =BC ⇔(x -1)2+y 2+z 2=2③,联立①②③得x =y =z =1或x =y =z =-13,所以点D 的坐标为(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13.故选D. 【答案】 D5.设A 是空间一定点,n 为空间内任一非零向量,满足条件AM →·n =0的点M 构成的图形是( )A .圆B .直线C .平面D .线段【解析】 M 构成的图形经过点A ,且是以n 为法向量的平面. 【答案】 C 二、填空题6.已知直线l 与平面α垂直,直线l 的一个方向向量u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =________.【解析】 由题意知u ⊥v ,∴u ·v =3+6+z =0,∴z =-9. 【答案】 -97.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.【解析】由题意,知⎩⎨⎧-x +2y -12=0,x -4-4z =0,-1-2y +3z =0.解得x =-64,y =-26,z =-17.【答案】 (-64,-26,-17)8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB→=(2,-1,-4),AD→=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP→是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 【解析】 ∵AB→·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB→与AD →不平行, ∴AP→是平面ABCD 的法向量,则③正确. 由于BD→=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD→与AP →不平行,故④错误. 【答案】 ①②③ 三、解答题9.如图3-2-15,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .图3-2-15【证明】 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M ⎝ ⎛⎭⎪⎫22,22,1.所以AM →=⎝ ⎛⎭⎪⎫-22,-22,1,DF →=(0, 2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量, 则n ⊥BD→,n ⊥DF →,所以⎩⎪⎨⎪⎧n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧x =y ,z =-2y ,取y =1,得x =1,z =- 2. 则n =(1,1,-2). 因为AM→=⎝ ⎛⎭⎪⎫-22,-22,1. 所以n =- 2 AM →,得n 与AM →共线.所以AM ⊥平面BDF .10.底面ABCD 是正方形,AS ⊥平面ABCD ,且AS =AB ,E 是SC 的中点.求证:平面BDE ⊥平面ABCD .【证明】 法一 设AB =BC =CD =DA =AS =1,建立如图所示的空间直角坐标系Axyz ,则B (1,0,0),D (0,1,0),A (0,0,0),S (0,0,1),E ⎝ ⎛⎭⎪⎫12,12,12.连接AC ,设AC 与BD 相交于点O ,连接OE ,则点O 的坐标为⎝ ⎛⎭⎪⎫12,12,0.因为AS→=(0,0,1),OE →=⎝ ⎛⎭⎪⎫0,0,12, 所以OE→=12AS →.所以OE ∥AS . 又因为AS ⊥平面ABCD , 所以OE ⊥平面ABCD . 又因为OE ⊂平面BDE , 所以平面BDE ⊥平面ABCD .法二 设平面BDE 的法向量为n 1=(x ,y ,z ), 因为BD→=(-1,1,0),BE →=⎝ ⎛⎭⎪⎫-12,12,12, 所以⎩⎪⎨⎪⎧n 1⊥BD →,n 1⊥BE →,即⎩⎨⎧n 1·BD →=-x +y =0,n 1·BE →=-12x +12y +12z =0,令x =1,可得平面BDE 的一个法向量为n 1=(1,1,0). 因为AS ⊥平面ABCD ,所以平面ABCD 的一个法向量为n 2=AS →=(0,0,1). 因为n 1·n 2=0,所以平面BDE ⊥平面ABCD .[能力提升]1.如图3-2-16,在正方体ABCD -A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是( )图3-2-16A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【解析】 设平面AEF 的一个法向量为n =(x ,y ,z ),正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,F ⎝ ⎛⎭⎪⎫12,0,1. 故AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫-12,0,1.所以⎩⎪⎨⎪⎧AE →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y +12z =0,-12x +z =0,所以⎩⎪⎨⎪⎧y =-12z ,x =2z . 当z =-2时,n =(-4,1,-2),故选B. 【答案】 B2.如图3-2-17,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点.若点Q 在线段B 1P 上,则下列结论正确的是( )图3-2-17A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BD B .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BD D .不存在DQ 与平面A 1BD 垂直【解析】 以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则由已知得A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1),D ⎝ ⎛⎭⎪⎫0,1,12,P (0,2,0),A 1B →=(1,0,1),A 1D →=⎝ ⎛⎭⎪⎫0,1,12,B 1P→=(-1,2,0),DB 1→=⎝ ⎛⎭⎪⎫1,-1,-12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1B →=x +z =0,n ·A 1D →=y +12z =0,取z =-2,则x =2,y =1,所以平面A 1BD 的一个法向量为n =(2,1,-2).假设DQ ⊥平面A 1BD ,且B 1Q →=λB 1P →=λ(-1,2,0)=(-λ,2λ,0),则DQ →=DB 1→+B 1Q →=⎝⎛⎭⎪⎫1-λ,-1+2λ,-12,因为DQ →也是平面A 1BD 的法向量,所以n =(2,1,-2)与DQ →=⎝⎛⎭⎪⎫1-λ,-1+2λ,-12共线,于是有1-λ2=-1+2λ1=-12-2=14成立,但此方程关于λ无解.故不存在DQ 与平面A 1BD 垂直,故选D.【答案】 D3.如图3-2-18,四棱锥P -ABCD 的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且PD =1,若E ,F 分别为PB ,AD 中点,则直线EF 与平面PBC 的位置关系________.图3-2-18【解析】 以D 为原点,DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则E ⎝ ⎛⎭⎪⎫12,12,12,F ⎝ ⎛⎭⎪⎫12,0,0,∴EF→=⎝ ⎛⎭⎪⎫0,-12,-12,平面PBC 的一个法向量n =(0,1,1),∵EF→=-12n ,∴EF→∥n , ∴EF ⊥平面PBC . 【答案】 垂直4.如图3-2-19,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠P AD =90°,侧面P AD ⊥底面ABCD .若P A =AB =BC =12AD .图3-2-19(1)求证:CD ⊥平面P AC ;(2)侧棱P A 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由. 【导学号:18490113】【解】 因为∠P AD =90°,所以P A ⊥AD .又因为侧面P AD ⊥底面ABCD ,且侧面P AD ∩底面ABCD =AD ,所以P A ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1).(1)AP→=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0), 可得AP→·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD . 又因为AP ∩AC =A ,所以CD ⊥平面P AC .(2)设侧棱P A 的中点是E ,则E ⎝ ⎛⎭⎪⎫0,0,12,BE →=⎝ ⎛⎭⎪⎫-1,0,12.设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD→=(-1,1,0),PD →=(0,2,-1),所以⎩⎨⎧-x +y =0,2y -z =0,取x =1,则y =1,z =2,所以平面PCD的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝ ⎛⎭⎪⎫-1,0,12=0,所以n ⊥BE →. 因为BE ⊄平面PCD ,所以BE ∥平面PCD . 综上所述,当E 为P A 的中点时,BE ∥平面PCD .学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )A .30°B .150°C .30°或150°D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为⎝⎛⎦⎥⎤0,π2.应选A.【答案】 A2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266 B .-52266C.52222D .-52222【解析】 AB→=(2,-2,-1),CD →=(-2,-3,-3),∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB ,CD 所成角的余弦值为52266. 【答案】 A3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解析】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD →=(0,1,0).取PD 中点为E ,则E ⎝ ⎛⎭⎪⎫0,12,12,∴AE →=⎝ ⎛⎭⎪⎫0,12,12,易知AD →是平面P AB 的法向量,AE →是平面PCD 的法向量,∴cos AD →,AE→=22,∴平面P AB 与平面PCD 的夹角为45°. 【答案】 B4.如图3-2-28,在空间直角坐标系Dxyz 中,四棱柱ABCD -A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E ,F 分别为C 1D 1,A 1B 的中点,则二面角B 1A 1B E 的余弦值为( )图3-2-28A .-33B .-32C. 33D. 32【解析】 设AD =1,则A 1(1,0,2),B (1,2,0),因为E ,F 分别为C 1D 1,A 1B 的中点,所以E (0,1,2),F (1,1,1),所以A 1E →=(-1,1,0),A 1B →=(0,2,-2),设m =(x ,y ,z )是平面A 1BE 的法向量,则⎩⎪⎨⎪⎧A 1E →·m =0,A 1B →·m =0,所以⎩⎨⎧-x +y =0,2y -2z =0,所以⎩⎨⎧y =x ,y =z ,取x =1,则y =z =1,所以平面A 1BE 的一个法向量为m =(1,1,1),又DA ⊥平面A 1B 1B ,所以DA →=(1,0,0)是平面A 1B 1B 的一个法向量,所以cos 〈m ,DA →〉=m ·DA →|m ||DA →|=13=33,又二面角B 1A 1B E 为锐二面角,所以二面角B 1A 1B E 的余弦值为33,故选C.【答案】 C5.如图3-2-29,空间正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是CD ,CC 1的。
高二数学选修2-1空间向量与立体几何单元测试题(2021年整理)
高二数学选修2-1空间向量与立体几何单元测试题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高二数学选修2-1空间向量与立体几何单元测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高二数学选修2-1空间向量与立体几何单元测试题(word版可编辑修改)的全部内容。
东升学校《空间向量与立体几何》单元测试题一、选择题(本大题8小题,每小题5分,共40分)1、若a ,b ,c 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( )A .a b b a +=+B .()a b a b λλλ+=+C .()()a b c a b c ++=++D .b a λ= 2、给出下列命题①已知a b ⊥,则()()a b c c b a b c ⋅++⋅-=⋅;②A 、B 、M 、N 为空间四点,若,,BA BM BN 不构成空间的一个基底,则A 、B 、M 、N 共面;③已知a b ⊥,则,a b 与任何向量不构成空间的一个基底;④已知{},,a b c 是空间的一个基底,则基向量,a b 可以与向量m a c =+构成空间另一个基底。
正确命题个数是( )A .1B .2C .3D .4 3、已知,a b 均为单位向量,它们的夹角为60,那么3a b +等于( )A .7B .10C .13D .4 4、1,2,,a b c a b ===+且c a ⊥,则向量a b 与的夹角为( )A .30B .60C .120D .1505、已知()()3,2,5,1,,1,a b x =-=-且2a b ⋅=,则x 的值是( )A .3B .4C .5D .6 6、若直线l 的方向向量为a ,平面α的法向量为n ,则能使//l α的是( )A .()()1,0,0,2,0,0a n ==-B .()()1,3,5,1,0,1a n ==C .()()0,2,1,1,0,1a n ==--D .()()1,1,3,0,3,1a n =-=7、在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标系折成120的二面角后,则线段AB 的长度为( )A .2B .211C .32D .428、正方体ABCD —A 1B 1C 1D 1的棱长为1,E 是A 1B 1中点,则E 到平面ABC 1D 1的距离是( )A .32 B .22 C .12D .33 二、填空题(本大题共6小题,每空5分,共30分)9、已知123F i j k =++,223F i j k =-+-,3345F i j k =-+,若123,,F F F 共同作用于一物体上,使物体从点M (1,—2,1)移动到N(3,1,2),则合力所作的功是 。
高中数学人教A版选修2-1 第三章空间向量与立体几何 测试题.docx
第三章空间向量与立体几何 测试题一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1. 在直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B =u u u r( ) A .a +b -c B .a -b + c C .-a + b + c D .-a + b -c2. 在正方体ABCD -A 1B 1C 1D 1中,AB uuu r 与1C B u u u u r的夹角为( )A .60°B .90°C .135°D .45° 3. 下列命题中真命题的个数是( ). ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若向量a ,b ,c 共面,则它们所在的直线共面; ③若a ∥b ,则存在唯一的实数λ,使a =λb .A.0B.1C.2D.3 4. 在正方体ABCD -A 1B 1C 1D 1中,M 为AD 的中点,O 为侧面AA 1B 1B 的中心,P 为棱CC 1上任意一点,则异面直线OP 与BM 所成的角等于( )A .90° B.60° C.45° D.30°5. 已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若βα⊥,则λ的值是( )A .6-B .6C .103-D .1036.若向量a =(1,λ,2),b =(2,-1,2),a ,b 的夹角的余弦值为89,则λ的值为( )A .2B .-2C .-2或255D .2或-2557. 已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标( ) A.(27,4,-1) B.(2,4,1) C.(-2,14,1) D.(5,13,-3)8. 直线l 的方向向量为a ,平面α的法向量为n ,则有可能使l α∥的是( )A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,1)D .a =(1,-1,3),n =(0,3,1) 9. 正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是1,AA BB 的中点,则1sin ,CM D N 〈〉u u u u r u u u u r的值为( )A.19B.459C.259D.2310. 已知正方体ABCD —EFGH 的棱长为1,若P 点在正方体的内部且满足AE AD AB AP 322143++=,则P 点到直线AB 的距离为( ) A .65 B .12181 C .630D .65 11..已知在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( ) A .60° B .90° C .45° D .以上都不对12. 如图1,在等腰梯形ABCD 中,M 、N 分别为AB ,CD 的中点,沿MN 将MNCB 折叠至MN C 1B 1,使它与MNDA 成直二面角,已知AB =2CD =4M N ,则下列等式不正确的是( )A .AN ·N C 1=0B .11C B ·AN =0 C .11C B ·1AC =0 D .11C B ·AM =0 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.)13. 已知a =(1,2,3),b =(2,x ,4),如果a ⊥b ,则x = . 14.已知向量)3,0,(),0,3,2(k b a =-=.若a 与b 的夹角为ο120,则实数=k .15. 在三棱锥A-BCD 中,若△BCD 是正三角形,E 为其中心,则AB +21BC -23DE -AD 化简的结果为 . 16. 若a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 1在a 上,向量b 1在b 上,a 1=(1,1,1),b 1=(-3,4,0),则α,β所成二面角中较小的一个的余弦值为 .17. 如图2,P —ABCD 是正四棱锥,ABCD -A 1B 1C 1D 1是正方体,其中2,6AB PA ==,图 1C 1B 1NM D CBA 图 2SC则1B 到平面P AD 的距离为 .18. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =2AB ,若E ,F 分别为线段A 1D 1,CC 1的中点,则直线EF 与平面ABB 1A 1所成角的余弦值为________.三、解答题(本大题共6小题,共60分.解答题应写出文字说明、证明过程或演算步骤.) 19.如图3,在三棱柱ABC —A 1B 1C 1中,N M ,分别是B A 1,11C B 上的点,且12BM A M =,112C N B N =.设AB =u u u r a ,AC =u u u r b ,1AA =u u u rc .⑴试用,,a b c 表示向量MN u u u u r;⑵若ο90=∠BAC ,1160BAA CAA ∠=∠=o,11AB AC AA ===,求MN 的长.20. 如图4,在四棱锥ABCD P -中,⊥PD 底面ABCD ,平面ABCD 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和左视图如图5所示.⑴证明:⊥BC 平面PBD ; ⑵证明:AM ∥平面PBC .21. 如图6,在四棱锥O-ABCD 中,OA ⊥底面ABCD ,且底面ABCD 是边长为2的正方形,且OA =2,M ,N 分别为OA ,BC 的中点.⑴求证:直线MN ∥平面OCD ; ⑵求点B 到平面DMN 的距离.22.如图7,在三棱锥ABC S -中,ABC ∆是边长为4的正三角形,平面⊥SAC 平面ABC ,图 6OBCDAM N 图3B 1C 1A 1NMCBA图22==SC SA ,M 为AB 的中点.(1)证明:SB AC ⊥;(2)求二面角A CM S --的余弦值; (3)求点B 到平面SCM 的距离.23.如图8所示,矩形ABCD 的边AB=a ,BC=2,PA ⊥平面ABCD ,PA=2,现有数据:①;②a=1;③;④a=2;⑤a=4.(1)当在BC 边上存在点Q ,使PQ ⊥QD 时,a 可能取所给数据中的哪些值,请说明理由; (2)在满足(1)的条件下,a 取所给数据中的最大值时,求直线PQ 与平面ADP 所成角的正切值;(3)记满足(1)的条件下的Q 点为Q n (n=1,2,3,…),若a 取所给数据的最小值时,这样的点Q n 有几个,试求二面角Q n ﹣PA ﹣Q n+1的大小.24. 在如图9所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.⑴求BC 与平面EAC 所成角的正弦值;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.参考答案一、选择题1. D2.B3. A 4 .A 5.C 6. C 7. D 8. D 9. B 10. A 11. B 12. C 提示:图 71. 1A B =u u u rA A 1+AB =-1CC -CA +CB =-a + b -c .2. 由于AB ⊥平面BCC 1B 1,所以AB ⊥C 1B ,从而AB uuu r 与1B C u u u r的夹角为90°.3. ①中当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面即可,故②错误;③当b 为零向量,a 为非零向量时,λ不存在.4. 以A 为坐标原点,AB ,AD ,AA 1分别为x ,y ,z 轴建立空间直角坐标系,且令AB =2,则B (2,0,0),O (1,0,1),M (0,1,0),P (2,2,z ),故OP =(1,2,z-1),BM =(-2,1,0),因为OP ·BM =0,故异面直线OP 与BM 所成的角等于90°,故选A.5. 因为βα⊥,所以8+3λ+2=0.解得λ=103-,选C. 6.根据题意,得2534-2λλ++=89,解得λ=-2或255,选C.7. 设D (x ,y ,z ),根据题意,得AB =DC ,即(-2,-6,-2)=(3-x ,7-y ,-5-z ),解得x =5,y =13,z =-3,故选D.8. 在D 中a =(1,-1,3),n =(0,3,1),因为a ·n =0,故选D.9. 以A 为坐标原点,以AB,AD,AA 1分别为x ,y ,z 轴建立空间坐标系,且令AB =2,则M (0,0,1),N (2,0,1),C (2,2,0),D 1(0,2,2),CM =(-2,-2,1),N D 1=(2,-2,-1),1cos ,CM D N 〈〉u u u u r u u u u r =331-44-⨯+=-91,故1sin ,CM D N 〈〉u u u u r u u u u r =459,选B.10. 如图1,过P 作PM ⊥面ABCD 于M ,过M 作MN ⊥AB 于N ,连结PN ,则PN 即为所求, 因为,322143AE AD AB AP ++=所以,32,21,43===PM MN AN 所以65)32()21(22=+=PN11. 以点D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图2,由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以1E A u u u r =(0,1,-1),1E D u u u u r=(1,1,-1),EA uu u r=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ),则11·A E 0,·D E 0n n ⎧=⎪⎨=⎪⎩u u u u r u u u u r ⇒0,0.y z x y z -=⎧⎨+-=⎩令z=1,得y=1,x=0, 所以n =(0,1,1),cos <n ,EA uu u r >=·EA 2|||EA |22n n -=⨯u u u r u u u r =-1.所以<n ,EA uu u r >=180°.所以直线AE 与平面A 1ED 1所成的角为90°.12. 易知C 1N ⊥平面AMND ,故A 正确;假设B 正确,即有11C B ⊥AN ,又由A 项可得AN ⊥平面B 1MNC 1,这与AM ⊥B 1MNC 1矛盾,则B 不正确;对于C ,图 1图 2连结MC 1,由B 1M =2C 1N =2MN 可得MC 1⊥B 1C 1.又易知11C B ⊥AM ,得B 1C 1⊥平面AMC 1,故11C B ⊥1AC ,C 也正确;由AM ⊥平面B 1MNC 1得AM ⊥B 1C 1,则D 也正确.二、填空题 13. 7 14. 39-15. 0 16.15317. 556 18. 63提示:13. 因为a ⊥b ,所以a ⊥b ,所以a ·b =0,即2+2x+12=0,解得x=-7. 14. 提示:由数量积公式可得22139cos120k k =⨯+︒,所以k=39-15. 延长DE 交边BC 于点F ,则AB +21BC =AF ,-23DE -AD =-AF ,故AB +21BC -23DE -AD =0. 16. 由题意知,cos θ=|co s <a 1,b 1>|=|||a ||b a |1111b ⋅=153.17.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系,平面P AD 的法向量是(,,)m x y z =u r ,因为(0,2,0),(1,1,2)AD AP ==u u u r u u u r,所以02,0=++=z y x y ,取1=z 得(2,0,1)m =-u r,因为1(2,0,2)B A =-u u u r ,所以1B 到平面PAD 的距离1655B A m d m⋅==u u u r u ru r. 18. 以A 为坐标原点,AB 、AD 、AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系如图3,设AB =1,则AD =AA 1=2,所以F (1,2,1),E (0,1,2),所以EF =(1,1,-1),平面ABB 1A 1的一个法向量n =(0,1,0),则cos 〈n ,EF 〉=||||EF n EF n ⋅=33,设EF 与平面ABB 1A 1所成角为θ,则sin θ=33,cos θ=63. 三、解答题19. 解:⑴1111MN MA A B B N =++u u u u r u u u u r u u u u r u u u u r 1111133BA AB B C =++u u u r u u u r u u u u r11111()()33333=-++-=++c a a b a a b c . ⑵2()222++=+++⋅+⋅+⋅222a b c a b c a b b c c a111110211211522=++++⨯⨯⨯+⨯⨯⨯=,图3||5++=a b c ,15||||33MN =++=u u u u r a b c .20. 证明:⑴因为⊥PD 平面ABCD ,DC DA ⊥,建立如图4的空间直角坐标系xyz D -. 在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=. 因为 2=BD , 所以1AB =,3AD =.由俯视图和左视图可得, )4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D ,所以 )0,3,3(-=BC ,)0,1,3(=DB .因为 0001333=⋅+⋅+⋅-=⋅DB BC ,所以BD BC ⊥. 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥,所以⊥BC 平面PBD .⑵设平面PBC 的法向量为=()x,y,z n ,则有 0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 因为 )0,3,3(-=BC ,)4,4,0(-=PC ,所以 440,330.y z x y -=⎧⎪⎨-+=⎪⎩ 取1=y ,得=n )1,1,3(因为)3,0,3(-=AM ,所以⋅AM =n 03101)3(3=⋅+⋅+-⋅因为⊄AM 平面PBC , 所以直线AM ∥平面PBC .21. 建立如图5的空间直角坐标系,则各点坐标为B (2,0,0),C (2,2,0),D (0,2,0),O (0,0,2),M (0,0,1),N (2,1,0),所以MN =(2,1,-1),DO =(0,-2,2),DC =(2,0,0),AB =(2,0,0),BN =(0,1,0).⑴证明:设平面OCD 的法向量n =(x ,y ,z ),由⎪⎩⎪⎨⎧=⋅=⋅,,00DC n DO n 得⎩⎨⎧==+-.02022x z y ,令y=1,得平面OCD 的法向量n =(0,1,1),所以MN ·n =2×0+1×1+(-1)×1=0. 所以MN ⊥n .图 5OB CDAM N yzx图4又MN ⊄ 平面OCD , 所以MN ∥平面OCD . ⑵设面DMN 的法向量为n′=(x /,y /,z /),由DM =(0,-2,1),DN =(2,-1,0),得⎪⎩⎪⎨⎧=⋅=⋅,,00DN n DM n 即⎪⎩⎪⎨⎧=-=+-.0202////y x z y ,令x /=1,得平面DMN 的法向量n′=(1,2,4).所以点B 到平面DMN 的距离d=||||//n n BN ⋅=212=21212. ..22.解析:(1)证明:取AC 的中点O ,连接OB OS , 因为SC SA =,BC BA =,所以SO AC ⊥且BO AC ⊥.因为平面⊥SAC 平面ABC ,平面⋂SAC 平面AC ABC =,所以⊥SO 平面ABC 所以BO SO ⊥.如右图所示,建立空间直角坐标系xyx O - 则)0,32,0(),2,0,0(),0,0,2(),0,0,2(B S C A - 所以)2,32,0(),0,0,4(-=-=BS AC 因为0)2,32,0()0,0,4(=-⋅-=⋅BS AC 所以SB AC ⊥(2)由(1)得)0,3,1(M ,所以)2,0,2(),0,3,3(==CS CM 设),,(z y x n =为平面SCM 的一个法向量,则⎪⎩⎪⎨⎧=+=⋅=+=⋅022033z x CS n y x CM n ,取1=z ,则3,1=-=y x 所以)1,3,1(-=n 又因为)2,0,0(=OS 为平面ABC 的一个法向量,所以55,cos =⋅=OSn OS n OS n 所以二面角A CM S --的余弦值为55. (3)由(1)(2)可得)0,32,2(=CB ,)1,3,1(-=n 为平面SCM 的一个法向量.所以点B 到平面SCM 的距离554=⋅=nCB n d .23.解:建立如图所示的空间直角坐标系,则各点坐标分别为:A (0,0,0,),B (a ,0,0),C (a ,2,0),D (0,2,0),P (0,0,2), 设Q (a ,x ,0).(0≤x ≤2) (1)∵,∴由PQ ⊥QD 得∵x ∈[0,2],a 2=x (2﹣x )∈(0,1] ∴在所给数据中,a 可取和a=1两个值.(2)由(1)知a=1,此时x=1,即Q 为BC 中点, ∴点Q 的坐标为(1,1,0),从而,又为平面ADP 的一个法向量,∴, ∴直线PQ 与平面ADP 所成角的正切值为.(3)由(1)知,此时,即满足条件的点Q 有两个,其坐标∵PA ⊥平面ABCD ,∴PA ⊥AQ 1,PA ⊥AQ 2, ∴∠Q 1AQ 2就是二面角Q 1﹣PA ﹣Q 2的平面角.由,得∠Q 1AQ 2=30°,∴二面角Q 1﹣PA ﹣Q 2的大小为30°.24. ⑴解:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥.又因为AC FB ⊥, 所以⊥AC 平面FBC .因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD .所以,,CA CF CB 两两互相垂直,如图6的空间直角坐标系xyz C -.在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以3131(0,0,0),(3,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --. 所以 )1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 310,2230.x y z x ⎧-+=⎪⎨⎪=⎩取1z =,得=n (0,2,1). 设BC 与平面EAC 所成的角为θ,则 ||25sin |cos ,|5||||CB CB CB ⋅=〈〉==u u u ru u u r u u u r θn n n , 所以 BC 与平面EAC 所成角的正弦值为552. (2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下:假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rm m 所以 0,310.22b a b tc =⎧⎪⎨-+=⎪⎩ 取 1=c ,得=m )1,0,32(t -. 要使平面EAC ⊥平面QBC ,只需0=⋅n m ,即 20021103t -⨯+⨯+⨯=,该方程无解.所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .图6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元综合测试三时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.直三棱柱ABC -A 1B 1C 1,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →=( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c解析:结合图形,得A 1B →=A 1A →+AC →+CB →=-c -a +b =-a +b -c ,故选D. 答案:D2.已知a =(-5,6,1),b =(6,5,0),则a 与b ( ) A .垂直 B .不垂直也不平行C .平行且同向 D .平行且反向 答案:A3.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x 等于( )A .4B .-4C.12D .-6解析:a +b =(-2,1,3+x ),由(a +b )⊥c , ∴(a +b )·c =0.∴-2-x +2(3+x )=0,得x =-4. 答案:B4.若a =(1,λ,2),b =(2,-1,2),且a ,b 的夹角的余弦值为89,则λ等于( )A .2B .-2C .-2或255 D .2或-255解析:a·b =2-λ+4=6-λ=5+λ2×3×89.解得λ=-2或255.答案:C5.已知空间四边形ABCD每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC的中点,则a2是下列哪个选项的计算结果( )A.2BC→·CA→ B.2AD→·DB→C.2FG→·AC→ D.2EF→·CB→解析:2BC→·CA→=-a2,A错;2AD→·DB→=-a2,B错;2EF→·CB→=-12a2,D错;只有C对.答案:C6.若A(x,5-x,2x-1),B(1,x+2,2-x),当|AB→|取最小值时,x的值等于( )A.19 B.-87C.87D.1914解析:AB→=(1-x,2x-3,-3x+3),则|AB→|= 1-x 2+ 2x-3 2+ -3x+3 2=14x2-32x+19=14 x-872+57,故当x=87时,|AB→|取最小值,故选C.答案:C7.已知ABCD,ABEF是边长为1的正方形,FA⊥平面ABCD,则异面直线AC 与EF所成的角为( )A.30° B.45°C.60° D.90°解析:如图1,由于EF∥AB且∠BAC=45°,所以异面直线AC与EF所成的角为45°,故选B.答案:B图1图28.如图2所示,正方体ABCD -A ′B ′C ′D ′中,M 是AB 的中点,则sin 〈DB ′→,CM →〉的值为( )A.12B.21015C.23D.1115解析:以DA ,DC ,DD ′所在的直线分别为x ,y ,z 轴建立直角坐标系O -xyz ,设正方体棱长为1,则D (0,0,0),B ′(1,1,1),C (0,1,0),M ⎝⎛⎭⎪⎫1,12,0,则DB ′→=(1,1,1),CM →=⎝ ⎛⎭⎪⎫1,-12,0,cos 〈DB ′→,CM →〉=1515,则sin 〈DB ′→,CM →〉=21015.答案:B图39.如图3,AB =AC =BD =1,AB ⊂面M ,AC ⊥面M ,BD ⊥AB ,BD 与面M 成30°角,则C 、D 间的距离为( )A .1B .2C.2D. 3解析:|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD→=1+1+1+0+0+2×1×1×cos120°=2.∴|CD →|= 2. 答案:C10.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a 、b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A 、B 、C ,若OP →=2OA →-2OB →-OC →,则P 、A 、B 、C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底;⑤|(a·b)·c|=|a|·|b|·|c|.A.2 B.3C.4 D.5解析:①错,应为充分不必要条件.②错,应强调b≠0.③错,∵2-2-1≠1.⑤错,由数量积的运算性质判别.答案:C11.在三棱锥P-ABC中,△ABC为等边三角形,PA⊥平面ABC,且PA=AB,则二面角A-PB-C的平面角的正切值为( )A. 6B.3C.66D.62解析:设PA=AB=2,建立空间直角坐标系,平面PAB的一个法向量是m=(1,0,0),平面PBC的一个法向量是n=(33,1,1).则cos〈m,n〉=m·n|m||n|=33|m||n|=331×213=77.∴正切值tan〈m,n〉=6.答案:A图412.(2011·辽宁高考)如图4,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是( )A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:∵四边形ABCD 是正方形,∴AC ⊥BD .又∵SD ⊥底面ABCD ,∴SD ⊥AC . 其中SD ∩BD =D ,∴AC ⊥面SDB ,从而AC ⊥SB .故A 正确;易知B 正确;设AC 与DB 交于O 点,连结SO .则SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO ,又OA =OC ,SA =SC ,∴∠ASO =∠CSO .故C 正确;由排除法可知选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知直线l 的方向向量为v =(1,-1,-2),平面α的法向量u =(-2,-1,1),则l 与α的夹角为________.解析:∵cos 〈v ,u 〉=|-2+1-2|6×6=12, ∴〈v ,u 〉=60°.∴l 与α的夹角为30°. 答案:30°14.如图5所示,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB →,AC →,AD →}为基底,则GE→=________.解析:GE →=GA →+AD →+DE →=-23AM →+AD →+14DB →=-23×12(AB →+AC →)+AD →+14(AB →-AD →)=-112AB →-13AC →+34AD →,故GE →=-112AB →-13AC →+34AD →. 答案:-112AB →-13AC →+34AD →图5 图615.如图6所示,在三棱锥P -ABC 中,PA =PB =PC =BC ,且∠BAC =90°,则PA 与底面ABC 所成的角为________.解析:由于PA =PB =PC ,故P 在底面ABC 上的射影为△ABC 外心,由于△ABC 为直角三角形,不妨设OB =OC ,所以OP ⊥面ABC ,∠PAO 为所求角,不妨设BC =1,则OA =12,cos ∠PAO =12,所以∠PAO =60°.答案:60°16.(2011·全国高考)已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________.图7解析:延长FE 、CB 相交于点G ,连结AG ,设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于H ,连结EH ,则∠EHB 为所求二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.答案:23三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a+b|;(2)在直线AB上,是否存在一点E,使得OE→⊥b?(O为原点)解:(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a+b|=02+ -5 2+52=5 2.(2)OE→=OA→+AE→=OA→+tAB→=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),若OE→⊥b,则OE→·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=95,因此存在点E,使得OE→⊥b,此时E点坐标为E(-65,-145,25).图818.(12分)如图8,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.图9证明:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,且C1C垂直底面.∴AC、BC、C1C两两垂直.如图9,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴,y 轴,z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0).(1)AC →=(-3,0,0),BC 1→=(0,-4,4),∴AC →·BC 1→=0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2), ∵DE →=(-32,0,2),AC 1→=(-3,0,4), ∴DE →=12AC 1→.∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.19.(12分)已知M 为长方体AC 1的棱BC 的中点,点P 在长方体AC 1的面CC 1D 1D 内,且PM ∥BB 1D 1D ,试探讨点P 的确切位置.图10解:以DA 、DC 、DD 1为x 、y 、z 轴,如图10建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c .根据题意可设A (a,0,0),B (a ,b,0),D 1(0,0,c ),P (0,y ,z ),则M (12a ,b,0).又PM ∥BB 1D 1D ,根据空间向量基本定理,必存在实数对(m ,n ),使得PM →=mDB →+nDD 1→,即(12a ,b -y ,-z )=(ma ,mb ,nc ),等价于⎩⎪⎨⎪⎧12a =ma b -y =mb -z =nc⇔⎩⎪⎨⎪⎧m =12,y =12b ,z =-nc ,n ∈R ,则点P (0,b2,-nc ).∴点P 在面DCC 1D 1的DC 的中垂线EF 上.20.(12分)在正棱锥P -ABC 中,三条侧棱两两互相垂直,G 是△PAB 的重心,E ,F 分别是BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.求证:(1)平面GEF ⊥平面PBC ; (2)EG ⊥PG ,EG ⊥BC.图11证明:(1)以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.令PA =PB =PC =3,则A (3,0,0),B (0,3,0),C (0,0,3), E (0,2,1), F (0,1,0),G (1,1,0),P (0,0,0).于是PA →=(3,0,0),FG →=(1,0,0).故PA→=3FG→.∴PA∥FG.又PA⊥平面PBC,∴FG⊥平面PBC.又FG⊂平面EFG,∴平面EFG⊥平面PBC.(2)∵EG→=(1,-1,-1),PG→=(1,1,0),BC→=(0,-3,3).∴EG→·PG→=1-1=0,EG→·BC→=3-3=0.∴EG⊥PG,EG⊥BC.图1221.(12分)(2011·天津高考)如图12,在三棱柱ABC-A1B1C1中,H是正方形AA1BB1的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.图13解:如图13所示,建立空间直角坐标系,点B为坐标原点.依题意得A(22,0,0),B (0,0,0),C (2,-22,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B1→|AC →|·|A 1B 1→|=43×22=23.所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5). 设平面AA 1C 1的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0.即⎩⎪⎨⎪⎧ -22x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2),同样地,设平面A 1B 1C 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎪⎨⎪⎧-22x -2y +5z =0,-22x =0.不妨令y =5,可得n =(0,5,2), 于是cos 〈m ,n 〉=m ·n |m |·|n |=27×7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357. (3)由N 为棱B 1C 1的中点,得N (22,322,52).设M (a ,b,0),则MN →=(22-a ,322-b ,52).由MN ⊥平面A 1B 1C 1,得⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0.即⎩⎪⎨⎪⎧22-a · -22 =0, 22-a · -2 + 322-b · -2 +52×5=0.解得⎩⎪⎨⎪⎧a =22,b =24.故M (22,24,0). 因此BM→=(22,24,0),所以线段BM 的长|BM →|=104.图1422.(12分)如图14,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,AE =EB =AF =23FD =4.沿直线EF 将△AEF 翻折成△A ′EF ,使平面A ′EF ⊥平面BEF .(1)求二面角A ′-FD -C 的余弦值;(2)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A ′重合,求线段FM 的长.解:法一:(1)取线段EF 的中点H ,连结A ′H . 因为A ′E =A ′F 及H 是EF 的中点, 所以A ′H ⊥EF .又因为平面A ′EF ⊥平面BEF ,及A ′H ⊂平面A ′EF , 所以A ′H ⊥平面BEF .如图15建立空间直角坐标系A -xyz ,图15则A ′(2,2,22),C (10,8,0),F (4,0,0),D (10,0,0), 故FA ′→=(-2,2,22),FD →=(6,0,0). 设n =(x ,y ,z )为平面A ′FD 的一个法向量, 所以⎩⎨⎧-2x +2y +22z =0,6x =0,取z =2,则n =(0,-2,2). 又平面BEF 的一个法向量m =(0,0,1). 故cos 〈n ,m 〉=n ·m |n ||m |=33.所以二面角的余弦值为33.(2)设FM =x ,则M (4+x,0,0),因为翻折后,C 与A ′重合,所以CM =A ′M , 故(6-x )2+82+02=(-2-x )2+22+(22)2,得x =214, 经检验,此时点N 在线段BC 上,所以FM =214. 法二:(1)取线段EF 的中点H ,AF 的中点G ,连结A ′G ,A ′H ,GH .图16因为A′E=A′F及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF,所以A′H⊥平面BEF,又AF⊂平面BEF,故A′H⊥AF,又因为G,H是AF,EF的中点,易知GH∥AB,所以GH⊥AF,于是AG⊥面A′GH,所以∠A′GH为二面角A′-DF-C的平面角,在Rt△A′GH中,A′H=22,GH=2,A′G=23,所以cos∠A′GH=33.故二面角A′-DF-C的余弦值为33.(2)设FM=x,因为翻折后,C与A′重合,所以CM=A′M,而CM2=DC2+DM2=82+(6-x)2,A′M2=A′H2+MH2=A′H2+MG2+GH2=(22)2+(x+2)2+22,得x=214,经检验,此时点N在线段BC上,所以FM=214.。