数学建模葡萄酒检验数据分析-2012年

合集下载

2012年全国大学生数学建模竞赛A题 附件1-葡萄酒品尝评分表

2012年全国大学生数学建模竞赛A题 附件1-葡萄酒品尝评分表
平衡/整 体评价
2 葡萄酒样品2
外观分析 澄清度 色调

6
7
7
7
6
7
7
19
16
16
16
10
9
9
8
3
4
4
4
8
8
8
8
5
4
5
4
7
6
7
7
14
12
12
12
4
5
5
5
6
6
7
7
7
6
6
7
16
16
16
22
9
9
9
10
4
4
3
4
8
8
6
8
5
5
4
5
7
7
6
6
14
12
12
12
5
5
4
5
7
6
7
7
6
6
7
7
19
16
16
7
14
12
12
14
5
4
5
5
6
6
6
6
6
6
6
6
16
16
16
19
9
9
9
10
4
4
4
4
8
8
6
8
4
4
5
4
6
7
6
6
12
12
12
12
4
5
5
4
6
6
7

数学建模葡萄酒检验数据分析-2012年

数学建模葡萄酒检验数据分析-2012年

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题葡萄酒的评价
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:
1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个表格)
附件3:葡萄和葡萄酒的芳香物质(含4个表格)。

2012数学建模a题第一组红葡萄酒就评分排序(已整理)

2012数学建模a题第一组红葡萄酒就评分排序(已整理)
酒员2 号 分数 4 8 4 6 12 4 6 5 16 9 品酒员2 号 分数 4 8 3 6 10 3 4 6 16 9 品酒员2 号 分数 4 6 3 6 10 4 6 6 16 9 品酒员2 号 分数 3 6 5 7 14 4 6
9 品酒员3 号 分数 4 10 5 6 14 3 4 5 13 8 品酒员3 号 分数 4 8 4 6 12 3 4 6 16 8 品酒员3 号 分数 4 6 4 6 12 5 7 7 16 9 品酒员3 号 分数 3 6 3 4 10 3 6
酒样品10 外观分析 澄清度 15 5 色调 10 纯正度 香气分析 6 浓度 8 30 质量 16 纯正度 6 口感分析 浓度 8 44 持久性 8 质量 22 平衡/整体评价 11
酒样品11 外观分析 澄清度 15 5 色调 10 纯正度 香气分析 6 浓度 8 30 质量 16 纯正度 6 口感分析 浓度 8 44 持久性 8 质量 22 平衡/整体评价 11
品酒员1 号 分数 外观分析 澄清度 1 15 5 色调 10 4 纯正度 2 香气分析 6 浓度 8 4 30 质量 16 8 酒样品12
纯正度 6 口感分析 浓度 8 44 持久性 8 质量 22 平衡/整体评价 11
2 4 4 16 9 品酒员1 号 分数 3 8 4 6 12 4 6 5 13 8 品酒员1 号 分数 3 8 4 4 10 4 6 6 16 9 品酒员1 号 分数 4 8 3 4 10 4 6 6 16 8
品酒员2 号 分数 2 6 5 6 14 3 4 5 13 8 品酒员2 号 分数 2 6 4 7 14 5 7 7 19 10 品酒员2 号 分数 4 8 4 7 14 5 7 7 19 10 品酒员2 号 分数 4 8 2 4 10 3 6 5 13

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012数学建模A 第一问数据分析

2012数学建模A 第一问数据分析

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题葡萄酒的评价
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:
1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个表格)
附件3:葡萄和葡萄酒的芳香物质(含4个表格)。

2012年数学建模A题——葡萄酒质量的评价

2012年数学建模A题——葡萄酒质量的评价

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A(隐去论文作者相关信息)日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒质量的评价摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

首先,采用双因子可重复方差分析方法,对红、白葡萄酒评分结果分别进行检验,利用Matlab软件得到样品酒各个分析结果,结合01-数据分析,发现对于红葡酒有70.3%的评价结果存在显著性差异,对于白葡萄酒只有53%的评价结果存在显著性差异。

通过比较可知,两组评酒员对红葡萄酒的评分结果更具有显著性差异,而对于白葡萄酒的评分,评价差异性较为不明显。

2012数学建模A题葡萄酒答案

2012数学建模A题葡萄酒答案

图一的两组红葡萄酒的平均值、和标准差第二组红葡萄酒标准差平均值标准差酒样品1 9.638465 酒样品1 68.1 9.048634 酒样品2 80.3 6.307843 酒样品2 74 4.027682 酒样品3 80.4 6.769211 酒样品3 74.6 5.541761 酒样品4 68.6 10.39444 酒样品4 71.2 6.425643 酒样品5 73.3 7.874713 酒样品5 72.1 3.695342 酒样品6 72.2 7.728734 酒样品6 66.3 4.595892 酒样品7 71.5 10.17895 酒样品7 65.3 7.91693 酒样品8 72.3 6.634087 酒样品8 66 8.069146 酒样品9 81.5 5.739725 酒样品9 78.2 5.072803 酒样品10 74.2 5.51362 酒样品10 68.8 6.014797 酒样品11 61.7 7.91693 酒样品11 61.6 6.168018 酒样品12 53.9 8.924996 酒样品12 68.3 5.012207 酒样品13 74.6 6.703233 酒样品13 68.8 3.910101 酒样品14 73 6 酒样品14 72.6 4.812022 酒样品15 58.7 9.250225 酒样品15 65.7 6.429965 酒样品16 74.9 4.254409 酒样品16 69.9 4.483302 酒样品17 79.3 9.381424 酒样品17 74.5 3.02765 酒样品18 59.9 6.871034 酒样品18 65.4 7.089899 酒样品19 69.4 6.25744 酒样品19 72.6 7.426679 酒样品20 78.6 5.103376 酒样品20 75.8 6.250333 酒样品21 77.1 10.77497 酒样品21 72.2 5.95912 酒样品22 77.2 7.11493 酒样品22 71.6 4.926121 酒样品23 85.6 5.699903 酒样品23 77.1 4.976612 酒样品24 78 8.653837 酒样品24 71.5 3.27448 酒样品25 69.2 8.038795 酒样品25 68.2 6.613118 酒样品26 73.8 5.593647 酒样品26 72 6.44636 酒样品27 73 7.055337 酒样品27 71.5 4.527693图二两组白葡萄酒的平均值、和标准差第一组白葡萄酒第二组白葡萄酒干白品种平均值标准差干白品种平均值标准差酒样品1 82 9.60324 酒样品1 77.9 5.087021 酒样品2 74.2 14.1798 酒样品2 75.8 7.00476 酒样品3 85.3 19.10817 酒样品3 75.6 11.93687 酒样品4 79.4 6.686637 酒样品4 76.9 6.488451 酒样品5 71 11.24475 酒样品5 26.1 5.126185 酒样品6 68.4 12.75583 酒样品6 75.5 4.766783 酒样品7 77.5 6.258328 酒样品7 74.2 1.212265 酒样品8 71.4 13.54991 酒样品8 72.3 5.578729 酒样品9 72.9 9.631545 酒样品9 80.4 10.30857 酒样品10 74.3 14.58348 酒样品10 79.8 8.390471酒样品11 72.3 13.30873 酒样品11 71.4 9.371351 酒样品12 63.3 10.76052 酒样品12 72.4 11.83404 酒样品13 65.9 13.06777 酒样品13 73.9 6.838616 酒样品14 72 10.68748 酒样品14 77.1 3.984693 酒样品15 72.4 11.4717 酒样品15 78.4 7.351493 酒样品16 74 13.34166 酒样品16 53.1 9.06826 酒样品17 78.8 12.00741 酒样品17 80.3 6.201254 酒样品18 73.1 12.51177 酒样品18 76.7 5.498485 酒样品19 72.2 6.811755 酒样品19 76.4 5.103376 酒样品20 77.8 8.024961 酒样品20 43.2 7.07421 酒样品21 76.4 13.14196 酒样品21 79.2 8.024961 酒样品22 71 11.77568 酒样品22 79.4 7.321202 酒样品23 75.9 6.607235 酒样品23 77.4 3.405877 酒样品24 73.3 10.54145 酒样品24 76.1 6.208417 酒样品25 77.1 5.820462 酒样品25 79.5 10.31988 酒样品26 81.3 8.53815 酒样品26 74.3 7.532168 酒样品27 64.8 12.01666 酒样品27 77 5.962848 酒样品28 81.3 8.969702 酒样品28 79.6 5.037636描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0有效的 N (列表状态)0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N变量处理摘要变量因变量自变量VAR00003 VAR00007 VAR00005 VAR00011 VAR00008 VAR00004 正值数27 27 27 27 27 27 零的个数0 0 0 0 0 0 负值数0 0 0 0 0 0 缺失值数用户自定义缺失0 0 0 0 0 0 系统缺失0 0 0 0 0 0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N个案总数27已排除的个案a0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001。

2012全国大学生数学建模竞赛A题 葡萄酒的评价

2012全国大学生数学建模竞赛A题  葡萄酒的评价

A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?对问题的分析与类比归纳:1、笔者认为,对于同一事物的评价 如果大家的意见越一致 那么评价的可信度就越高。

所以对于问题1的解题思路也就清晰明了了. 我们可以通过方差。

所谓方差即观测变量各个取值之间的差异程度。

它是用以衡量风险大小的指标。

这一概念来对每一组评酒员作出的评估作出风险分析。

显而易见的是若风险评估的值越高 这组评酒员的评价就存在问题了。

若风险评估值大小相当 这说明这两组评酒员是没有明显差异的。

2、题目中要求对葡萄作出评级。

看起来似乎没有思路 那么我们可以动一下我们的小脑筋。

既然对于评级我们没有参考标准 那么我们可以参考评酒员的评价。

即使用逆向思维 从评酒员的评分发出 那么大体上葡萄的分级基本上就能确定下来 根据确定先来的葡萄分级进行逆推 就可以得出结论。

3、对于这个问题 最直观也是最基本的思路就是看两者之间的趋势。

应用MATLAB软件,作出两者的趋势图。

通过对趋势图的直接观察 两者之间的大体关系即可确定 然后根据曲线拟合的方法可得出两者间的函数关系。

可以类比手机套餐问题解决归纳。

对于我们这些消费用户来说,手机的资费问题一直是我们所关注的热点问题。

2012数学建模A题---葡萄酒评价---国家奖

2012数学建模A题---葡萄酒评价---国家奖

葡萄酒的评价摘要本文主要运用统计分析方法,解决与所酿葡萄酒有关的问题。

对于问题一,,分别对白酒和红酒的两组数据进行差异性检验。

构建一个能反应葡萄酒本身质量的量,对两组数据分别进行相关性分析,得到第二组评酒员的结果更可信。

对于问题二,先做聚类分析,再做线性回归分析,得到白、红葡萄分为4级和3级。

对于问题三,利用问题二中聚类得到的7个主成分,把每种葡萄酒的理化指标与酿酒葡萄之间的7个主成分进行相关性分析,得到7个回归方程,即为酿酒葡萄与葡萄酒的理化指标之间的联系。

对于问题四,首先建立模型:12W=a *Y +b *Y 。

其中a,b 分别为酿酒葡萄和葡萄酒对葡萄酒质量的贡献率,1Y ,2Y 分别为两种因素的贡献值。

然后,通过确定芳香物质是否对葡萄酒的评分有影响来论证能否用葡萄和葡萄酒的理化指标评价葡萄酒的质量。

问题一中,本文运用excel 做两组数据的显著性差异检验,得到两组评酒员在评论白酒和红酒都存在显著性差异,且通过了F 检验。

接着本文通过确定各指标的权重,构建一个能反应各葡萄酒实际平分的量,把两组数据与之做相关性分析,发现第二组与之相关性更大,故第二组评酒员的结果更可信。

问题二中,本文通过SPSS 做理化指标的聚类分析,得到7个主成分;再做指标与评分的线性回归分析,得到白葡萄的分级结果为4级:一级:白酿酒葡萄14,22;二级:白酿酒葡萄4,5,9,19,23,25,26,28;三级:白酿酒葡萄24,27;四级:白酿酒葡萄1,2,3,6,7,8,10,11,12,13,15,16,17,18,20。

红葡萄酒为3级:一级:红酿酒葡萄2,9;二级:红酿酒葡萄3,4,10,22,24;三级:红酿酒葡萄1,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,23,25,26,27。

问题三中,本文运用excel 将葡萄酒的一级指标分别与7个主成分进行相关性分析然后对每种主要成分利用SPSS 进行线性回归分析得到以下7个回归方程:()()()()()r1134r21367r3137r4136r6137r71Y =-39.542+1.727+21.850+3.9463Y =4.044+0.026-0.156-0.005-0.1954Y =2.807+0.021-0.030-0.1895Y =2.700+0.024-0.169-0.0056Y =0.069+0.001-0.006-0.0077Y =70.028-0.188+x x x x x x x x x x x x x x x x x ()()2347r8123560.841+0.280-0.187+1.7048Y =58.545-0.021-1.028+1.666+27.045-0.0049x x x x x x x x x 即为每种酿酒葡萄与葡萄酒理化指标之间的联系。

2012年全国数学建模大赛 A题葡萄酒的评价

2012年全国数学建模大赛 A题葡萄酒的评价

葡萄酒的评价摘要本文就影响葡萄酒的质量的因素进行了探究。

在问题一中,评酒员间存在评价尺度、评价位置以及评价方向等方面的差异,导致不同评酒员对同一酒样的评价差异很大,于是我们需要探讨两组评酒员的可信度。

对此,我们建立了单元素方差模型对其进行了显著性差异的判断,最后我们得出结论:两组评酒员的评价结果有显著性差异,并且第二组评酒员评价的结果更加可信。

在问题二中,我们首先将大量的数据进行了样本住分析塞选,大大减少了计算量,就红、白葡萄酒前17组样本葡萄酒的分数进行训练,由后十组的理性指标进行检验,也可检验俩个的准确性。

最后我们认为可以给酿酒葡萄分为一、二、三、四四个等级。

在问题三中,因为要讨论酿酒葡萄与葡萄酒的理化指标之间的联系,我们就其两者的重要理化指标进行了探讨,应用了回归模型将其各项重要指标进行了多元拟合处理,最后得出了葡萄酒和酿酒葡萄中的重要指标的等式关系。

在问题四中,我们首先利用了回归原理求得葡萄酒质量与葡萄酒和酿酒葡萄的理化指标之间的等式关系,由等式和图像细致的分析了葡萄酒和酿酒葡萄理化指标对葡萄酒质量的影响。

在一定范围内,理化指标的与葡萄酒的质量呈正相关,达到一定的量后呈现负相关趋势。

关键词:显著性差异判别主成分分析 BP神经网络回归模型1.问题的重述现今社会,随着人们生活水平的提高,人们对葡萄酒的质量要求也越来越高。

在确定葡萄酒质量的时候,一般聘请一批资深的评酒员进行评比,根据不同的指标所得的分数从而求得总分,以此确定葡萄酒的质量。

其中酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本题给出了3份材料,材料1是某一年份一些葡萄酒的评价结果,材料2和材料3分别给出了该年份这些葡萄酒和酿酒葡萄的成分数据。

我们必须解决以下问题:问题一:分析材料1中两组评酒员的评价结果是否有明显的差异,并且求出哪组评酒员的评价结果更可信。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄的品质进行分级。

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价

2012高教社杯全国大学生数学建模竞赛葡萄酒的评价摘要本文以概率论与数理统计的相关知识为理论基础,综合运用正态分布和分级的原理,利用统计分析数据,研究了葡萄酒的评价指标体系,针对 葡萄酒的质量评价问题,建立合理的数学模型用以评价。

问题一:(1) 本问题的葡萄酒质量评价指标(即外观分析中的澄清度、色调,香气分析中的纯正度、浓度、质量,口感分析中的纯正度、浓度、持久度,平衡/整体分析),先对指标归类按顺序,统计并整理出相关的数据,再利用正态分布的思想,假设并验证质量评价指标为正态分布并进行差异性分析,对比找出附件1中两组评酒员的显著差异为:两组评酒员对红葡萄酒的评价结果有显著性差异的是外观分析中的色调、香气分析中的浓度,其他的无显著性差异;两组评酒员对白葡萄酒的评价结果有显著性差异的是口感分析中的纯正度、浓度,持久性、质量和平衡/整体评价,其他的无显著性差异。

(2)本问题要求分析附件1中哪组指标更可信,这就要在问题(1)基础上分析两组指标的可信性,建立可信性分析模型,利用matlab 软件编程计算得(程序见附件4): 1var =0.0735 ,2var =0.0398。

可见21var var ,因此第二组可信性高。

问题二:此问题我们的总体思路是这样的:先根据样品葡萄酒的得分高低对葡萄酒进行分级,并且假设葡萄酒得分越高,那么酿酒葡萄就越好,等级就越高,于是我们利用一些分类模型就可以得到相应酿酒葡萄的级别差。

根据这条思路,我们建立如下一些模型来讨论(见表6、7、8)。

为了充分利用文中的数据,我们把第一组第二组葡萄酒品尝得分合并,这样就得到了一个更大的样本,对结论会更有说服力。

为了能比较客观的对葡萄酒分划分合理的等级,我们需要一种能从总体上正确的反应葡萄酒的评分,这里我们利用已经单位化的综合了所有指标的葡萄酒品尝评分的所得分评价,它们的得分范围理论上包含在[0,1]区间上,实际计算红葡萄的单位化归一化后的评分。

2012年数学建模c题

2012年数学建模c题

2012年数学建模c题
2012年数学建模C题:葡萄酒的评价
葡萄酒评价是一个主观评价问题,需要评价者根据葡萄酒的外观、香气、口感等方面进行综合评价。

本题将通过数学建模的方法,对葡萄酒进行评价,并给出相应的建议。

题目要求:
1. 根据所给数据,对葡萄酒进行评价,并给出相应的建议;
2. 根据评价结果,分析影响葡萄酒品质的主要因素;
3. 根据分析结果,给出提高葡萄酒品质的建议。

数据:
1. 120款葡萄酒的评价数据,包括外观、香气、口感、回味等方面的评分;
2. 各个葡萄酒的产地、grape variety、price等方面的信息。

评价方法:
1. 对评价数据进行标准化处理,消除不同指标之间的量纲影响;
2. 利用主成分分析法对标准化后的数据进行降维处理,提取主要特征;
3. 根据主成分得分进行聚类分析,将葡萄酒分为若干个类别;
4. 对每个类别中的葡萄酒进行统计分析和可视化展示,找出不同类别葡萄酒的特点和优劣。

建议:
1. 对于不同类别的葡萄酒,根据其特点制定相应的营销策略;
2. 对于品质较差的葡萄酒,从生产工艺、原料选择等方面进行改进;
3. 对于品质较好的葡萄酒,进一步挖掘其品质潜力,提高产品附加值。

2012数学建模A葡萄酒的评价

2012数学建模A葡萄酒的评价

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白.在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道.抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料).必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺.严格遵守竞赛规则.以保证竞赛的公正、公平性。

如有违反竞赛规则的行为.我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会.可将我们的论文以任何形式进行公开展示(包括进行网上公示.在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2012 年 9 月 7 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要目前.葡萄酒备受大家的青睐.其质量也日益受到人们的关注。

葡萄酒的质量与酿酒葡萄的好坏有直接关系.葡萄酒和酿酒葡萄的理化指标会在一定程度上反应葡萄酒和酿酒葡萄的质量。

对于问题1.我们采用方差分析的方法建模解决。

基本思路是:对两组评酒员的评价结果进行单因素方差分析.然后再用F检验对得出的结果进行进一步验证.得出两组评酒员的评价结果无显著性差异.通过比较两组评酒员评价结果的方差值.得出第二组的结果更可信。

对于问题2.我们采用主成分分析方法.建立综合评价模型.对酿酒葡萄进行分级。

基本思路是运用因子分析的方法.以特征值大于1为标准.得出酿酒葡萄理化指标的8种主成分.在此基础上把综合因子作为一项排名指标.结合问题1得出的葡萄酒的质量.对酿酒葡萄进行排名.用两种排名的名次之和作为对酿酒葡萄分级的主要依据。

2012高教社杯全国大学生数学建模竞赛 葡萄酒的评价 全国奖

2012高教社杯全国大学生数学建模竞赛 葡萄酒的评价 全国奖
3
2

(14) (15)
En He
ቤተ መጻሕፍቲ ባይዱ:一组样酒分值的熵 :一组样酒分值的超熵
六、模型的建立与求解
6.1 问题(一)模型的建立与求解 信度分析是一种测度综合评价体系是否具有一定的稳定性和可靠性的有效分析工 具。量表编制的合理性和有效性将决定着评价结果的的可信性和可用性,信度分析正是 要对量表的有效性(信度)进行研究,量表的信度分析包括内在信度分析和外在信度分 析,内在信度分析重在考查一组评估项目是否测量的是同一个特征,这些项目之间是否 具有较高的内在一致性。内在信度高意味着一组评估项目的一致程度高,相应的评估项 目有意义,所得的评估结果可信,外在信度分析是指在不同时间对同批被评估对象实施 重复评估时,评估结果是否具有一致性。如果两次评估的结果相关性较强,则说明在被 评估对象没有故意隐瞒的前提下,评估项目的概念和内容是清晰的、不模糊的,没有二 义性的,因而所得的结果是可信的[1]。 6.1.1 信度分析的基本原理 信度分析主要用于对量表内在的信度进行研究。它首先对各个评估项目做基本统计 描述、计算各项目间的相关系数,对内在信度进行初步分析。然后采用信度分析系数对 内在信度或外在信度做进一步的研究。 信度系数主要包括克郎巴哈 (Cronbach) 系数、 折半(Split-half)信度系数等。 (1)克郎巴哈(Cronbach) 系数: 克郎巴哈(Cronbach) 系数用于测量表内部的一致性,其计算方法是: ①计算各评估项目的相关系数距阵,计算相关系数的均值; ②计算克郎巴哈 系数,其数学定义为:
2012 高教社杯全国大学生数学建模竞赛
编 号 专 用 页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析葡萄酒是一种古老而神奇的饮品,它不仅有着悠久的历史,还拥有丰富的文化内涵和独特的口感。

在现代,葡萄酒已成为一种高品质、高雅的饮品,备受人们的青睐。

然而,如何准确地评价葡萄酒的品质,成为了学界和业界的一个共同难题。

本文将通过对2012年全国大学生数学建模竞赛A题的分析,探讨葡萄酒评价的数学建模方法。

1. 引言葡萄酒的评价一直以来是一项主观且复杂的任务。

传统的酒评方法主要依赖专业人士的经验和口感,但这种方法存在诸多不足。

为了解决这一问题,数学建模技术应运而生。

2012年的葡萄酒评价竞赛就是一个典型的例子。

2. 问题陈述2012年全国大学生数学建模竞赛A题要求参赛者基于给定的葡萄酒数据,利用数学模型对葡萄酒的品质进行评价。

竞赛提供的数据包括葡萄酒的理化指标、人工评分以及其他相关因素等。

3. 数据处理与分析为了对葡萄酒的品质进行准确评估,我们首先对提供的数据进行处理与分析。

通过统计学方法,我们可以计算出葡萄酒的平均评分、标准差等统计指标,从而评估数据的分布情况和变异程度。

此外,通过数据可视化技术,如散点图、箱线图等,我们可以观察数据的分布情况和异常值等。

4. 评价模型的建立基于提供的数据和问题要求,我们需要构建一个评价模型,来准确衡量葡萄酒的品质。

在建立模型时,我们可以考虑多个因素,如理化指标、人工评分等,并通过数学方法将这些因素进行权重分配、综合计算,从而得到一个综合评价指标。

例如,可以利用线性加权模型、层次分析法等来实现这一目的。

5. 模型求解与结果分析在完成评价模型的建立后,我们可以利用相应的数学算法对模型进行求解,并得到葡萄酒的评价结果。

通过分析结果,我们可以进一步了解葡萄酒品质的特点与变化趋势,为生产和消费提供科学依据和决策支持。

6. 模型的优化与改进为了提高评价模型的准确性和可靠性,我们可以进一步对模型进行优化和改进。

例如,引入更多的因素和数据,采用更复杂的数学方法,对模型进行验证和调整等。

2012A数学建模——葡萄酒的评价

2012A数学建模——葡萄酒的评价
2
2
三、模型的建立与验证
对红葡萄酒有显著影响的葡萄指标示意表
酒指标 花色苷 单宁 总酚 酒总黄酮 白藜芦醇 DPPH半抑制体 积 花色苷 花色苷 花色苷 花色苷 葡萄总黄酮 苹果酸 DPPH自由基 DPPH自由基 DPPH自由基 相关显著指标 褐变度 总酚 总酚 总酚 DPPH自由基 单宁 单宁 单宁 总酚 葡萄总黄酮 葡萄总黄酮 葡萄总黄酮 果皮质量 单宁 黄酮醇 果梗比
三、模型的建立与验证
问题四 (1)模型建立:由理化指标评价葡萄酒质量——逐步多元回归模型 红葡萄酒和葡萄的理化指标对红葡萄酒质量影响的回归方程为:
y 0.03341x1 0.06279x2 0.01282x3 0.09751x4 0.88596
白葡萄酒和葡萄的理化指标对白葡萄酒质量影响的回归方程为:
汇报提纲
一、问题重述 1、问题背景
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品 评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求 和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡 萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在 一定程度上反映葡萄酒和葡萄的质量。
28
1.040086
1.01961
0.019687
全国大学生数学建模大赛
-0.00726
0.019272 -0.00647 -0.0042 0.016057
1.01134
0.994353 1.038779 0.970834 1.006113
0.99236
1.01967 1.0121 1.02841 0.97964
0.018767
-0.02546 0.025683 -0.05931 0.026312

2012数学建模葡萄酒数据整理

2012数学建模葡萄酒数据整理
样品二十 样品十七
乘以10 19.75617 16.93114 13.07883 10.51062 10.2538 8.9697 5.37421 5.37421 4.346928 4.090107 3.833286 2.806004 2.549183 2.549183 1.778721 -1.55995 -4.38498 -4.38498 -5.66908 -5.9259 -6.18272 -10.8055 -11.576 -12.3464 -13.1169 -13.3737 -22.8761
样品九
除以标准差 1.975616744 1.693114013 1.307883016 1.051062351 1.02538028Байду номын сангаас 0.896969952 0.537421021 0.537421021 0.434692755 0.409010688 0.383328622 0.280600356 0.25491829 0.25491829 0.17787209 -0.155994774 -0.438497506 -0.438497506 -0.566907838 -0.592589904 -0.618271971 -1.080549168 -1.157595367 -1.234641567 -1.311687766 -1.337369833 -2.287606293
样品二十六 样品二十二
样品二十三
样品十四
样品二十一
样品二十四
样品三
样品二
样品五
样品二十四 样品二十七 样品四 样品十六 样品十 样品十三 样品十二 样品二十五 样品一 样品六
样品八 样品十五 样品十八 样品七 样品十一
二组
一组

2012年数学建模葡萄酒

2012年数学建模葡萄酒

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):S12038所属学校(请填写完整的全名):河南科技大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要讨论分析了酿酒葡萄的理化指标、葡萄酒的理化指标和葡萄酒质量之间的相互关系,并比较了两组评酒员评价结果的差异。

本文运用多种数学模型,阐述了酿酒葡萄和葡萄酒的理化指标以及葡萄酒的质量之间的联系,具有一定的实际意义。

针对问题一:要比较两组评酒员的评价结果有无显著性差异,先做假设检验,对于某一特定酒类,取各组组员评价结果的平均值作为该酒类的最终得分,故用统计量t来做检验。

我们先用spss对两组数据做了正态分布检验,得到这些数据符合正态分布,再用excel来求得t值,与t分布表的相应值比较后,t的绝对值落在否定域内,所以两组评价结果存在显著性差异。

再通过对比两组样本数据的方差,得出方差较小的第二组的评价结果更可信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题葡萄酒的评价
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:
1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个表格)
附件3:葡萄和葡萄酒的芳香物质(含4个表格)。

相关文档
最新文档