江苏省苏州市2019届高三5月高考信息卷数学试题 含解析

合集下载

江苏省苏州市2019-2020学年高考五诊数学试题含解析

江苏省苏州市2019-2020学年高考五诊数学试题含解析

江苏省苏州市2019-2020学年高考五诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,P 是上底面1111D C B A 上的动点.给出以下四个结论中,正确的个数是( )①与点D P 形成一条曲线,则该曲线的长度是2π;②若//DP 面1ACB ,则DP 与面11ACC A 所成角的正切值取值范围是⎣;③若DP =,则DP 在该四棱柱六个面上的正投影长度之和的最大值为A .0 B .1C .2D .3【答案】C 【解析】 【分析】①与点D P 形成以1D 的14圆弧MN ,利用弧长公式,可得结论;②当P 在1A (或1)C 时,DP 与面11ACC A 所成角1DA O ∠(或1)DC O ∠当P 在1O 时,DP 与面11ACC A 所成角1DO O ∠最大,可得正切值取值范围是;③设(P x ,y ,1),则2213x y ++=,即222x y +=,可得DP 在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【详解】 如图:①错误, 因为1D P ===,与点D 的点P 形成以1D 为圆心,的14圆弧MN ,长度为1242⋅=π; ②正确,因为面11//A DC 面1ACB ,所以点P 必须在面对角线11A C 上运动,当P 在1A (或1C )时,DP与面11ACC A 所成角1DA O ∠(或1DC O ∠最小(O 为下底面面对角线的交点),当P 在1O 时,DP 与面11ACC A 所成角1DO O ∠最大,所以正切值取值范围是3⎣;③正确,设(),,1P x y ,则2213x y ++=,即222x y +=,DP 在前后、左右、上下面上的正投影长分别为21y +,21x +,22x y +,所以六个面上的正投影长度之()2222112112222622y x y x ⎛⎫+++++++≤+= ⎪ ⎪⎝⎭,当且仅当P 在1O 时取等号.故选:C .【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题.2.已知函数()(0xf x m m m =->,且1)m ≠的图象经过第一、二、四象限,则|2)|a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】C 【解析】 【分析】根据题意,得01m <<,(1)0f =,则()f x 为减函数,从而得出函数|()|f x 的单调性,可比较a 和b ,而|(0)|1c f m ==-,比较()()0,2f f ,即可比较,,a b c . 【详解】因为()(0xf x m m m =->,且1)m ≠的图象经过第一、二、四象限,所以01m <<,(1)0f =,所以函数()f x 为减函数,函数|()|f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增, 又因为313824122422<=<=<,所以a b <,又|(0)|1c f m ==-,2|(2)|f m m =-,则|2|(2)||(0)|10f f m -=-<, 即|(2)||(0)|f f <, 所以a b c <<. 故选:C. 【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.3.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,点()11,P x y ,()11,Q x y --在椭圆C 上,其中1>0x ,10y >,若22PQ OF =,11QF PF ≥,则椭圆C 的离心率的取值范围为( ) A.⎡⎢⎣⎭ B.(2⎤⎦C.1⎤⎥⎝⎦D.(1⎤⎦【答案】C 【解析】 【分析】根据22PQ OF =可得四边形12PFQF 为矩形, 设1PF n =,2PF m =,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析=+m n t n m的取值范围,进而求得()222422c a c <≤-再求离心率的范围即可. 【详解】设1PF n =,2PF m =,由1>0x ,10y >,知m n <,因为()11,P x y ,()11,Q x y --在椭圆C 上,222PQ OP OF ==, 所以四边形12PFQF 为矩形,12=QFPF ;由113QF PF ≥,1m n≤<,由椭圆的定义可得2m n a +=,2224m n c +=①, 平方相减可得()222mn a c=-②,由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m ,令3m v n ⎫=∈⎪⎪⎣⎭,所以1t v v ⎛=+∈ ⎝⎦,即()2224232c a c <≤-,所以()222223a c c a c -<≤-,所以()22211e e e -<≤-,所以2142e <≤-解得12e <≤. 故选:C 【点睛】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题. 4.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( )A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭【答案】B 【解析】 【分析】求出导函数()f x ',确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围. 【详解】21ln ()2()xf x x e x-'=--,当(0,)x e ∈时,()0f x '>,()f x 单调递增,当(,)x e ∈+∞时,()0f x '<,()f x 单调递减,∴在(0,)+∞上()f x 只有一个极大值也是最大值21()f e e a e=+-,显然0x →时,()f x →-∞,x →+∞时,()f x →-∞,因此要使函数有两个零点,则21()0f e e a e =+->,∴21a e e<+. 故选:B . 【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.5.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( )A .2-B .2C .12-D .12【答案】C 【解析】 【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,, ∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.6.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A .72种B .144种C .288种D .360种【答案】B 【解析】 【分析】利用分步计数原理结合排列求解即可 【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有2412A =种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有2412A =种排法,所以不同的排表方法共有1212144⨯=种. 选B . 【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题 7.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( ) A .1,2m n ==- B .1,2m n =-= C .1,2m n == D .1,2m n =-=-【答案】A 【解析】 【分析】由题可得出P 的坐标为(2,1),再利用点对称的性质,即可求出m 和n . 【详解】 根据题意,201x y -=⎧⎨=⎩,所以点P 的坐标为(2,1),又1()1mx m x n mn y m x n x n +++-===+++ 1mn x n-+, 所以1,2m n ==-. 故选:A. 【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题. 8.执行程序框图,则输出的数值为( )A .12B .29C .70D .169【答案】C 【解析】 【分析】由题知:该程序框图是利用循环结构计算并输出变量b 的值,计算程序框图的运行结果即可得到答案. 【详解】0a =,1b =,1n =,022b =+=,5n <,满足条件,2012a -==,2n =,145b =+=,5n <,满足条件, 5122a -==,3n =,21012b =+=,5n <,满足条件,12252a -==,4n =,52429b =+=,5n <,满足条件,295122a -==,5n =,125870b =+=,5n =,不满足条件,输出70b =. 故选:C 【点睛】本题主要考查程序框图中的循环结构,属于简单题.9.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的取值范围是( )A .[]5,3-B .[]2,3C .[)2,+∞D .(],3-∞【答案】C 【解析】 【分析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中z 的取值范围. 【详解】由题知x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,可行域如下图所示,可知目标函数在点()2,0A 处取得最小值, 故目标函数的最小值为2z x y =+=, 故z x y =+的取值范围是[)2,+∞. 故选:D. 【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题. 10.已知函数()x af x x e-=+,()()ln 24a xg x x e-=+-,其中e 为自然对数的底数,若存在实数0x ,使()()003f x g x -=成立,则实数a 的值为( )A .ln21--B .1ln2-+C .ln 2-D .ln 2【答案】A 【解析】令f (x )﹣g (x )=x+e x ﹣a ﹣1n (x+1)+4e a ﹣x , 令y=x ﹣ln (x+1),y′=1﹣12x +=12x x ++, 故y=x ﹣ln (x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数, 故当x=﹣1时,y 有最小值﹣1﹣0=﹣1,而e x ﹣a +4e a ﹣x ≥4,(当且仅当e x ﹣a =4e a ﹣x ,即x=a+ln1时,等号成立); 故f (x )﹣g (x )≥3(当且仅当等号同时成立时,等号成立); 故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A .11.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .32【答案】A 【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是2113244323⨯⨯⨯=,选A.12.已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( ) A .4 B .8C .9D .27【答案】D 【解析】 【分析】设正四面体的棱长为1,取BC 的中点为D ,连接AD ,作正四面体的高为PM ,首先求出正四面体的体积,再利用等体法求出内切球的半径,在Rt AMN ∆中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解. 【详解】设正四面体的棱长为1,取BC 的中点为D ,连接AD , 作正四面体的高为PM ,则2,233AD AM AD ===,PM ∴==,1312P ABC V -∴==, 设内切球的半径为r ,内切球的球心为O ,则1443P ABC O ABC V V --==⨯,解得:12r =; 设外接球的半径为R ,外接球的球心为N , 则MN PM R =-或R PM -,AN R =, 在Rt AMN ∆中,由勾股定理得:222AM MN AN +=,2213R R ⎫∴+=⎪⎪⎝⎭,解得4R =, 3Rr∴=, 3327V R v r∴== 故选:D 【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏州市部分学校2025届新高三暑期调研考试暨高考模拟考试数学试题

江苏省苏州市部分学校2025届新高三暑期调研考试暨高考模拟考试数学试题

江苏省苏州市部分学校2025届新高三暑期调研考试暨高考模拟考试数学试题一、单选题1.20240128︒所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限2.过原点的圆的圆心为()sin3,cos3-,则原点处与圆相切的直线的倾斜角为( ) A .3B .π3-C .3π62- D .6π2- 3.已知函数()f x 的图像如图所示,则()f x 可能为( )A .()42cos cos xf x x x =+B .()4cos x xe ef x x x-+=+C .()()62423cos x x f x x x-=-+D .()62622cos x x f x x x-=-+4.已知正四棱锥S ABCD -的8条棱长均相等,O 为顶点S 在底面的射影,则( )A .侧棱SA 与底面ABCD 所成角的大小为π3B .设M ,N 为正方形ABCD 边上的两点,则二面角S MN O --的值大于π4C .侧面SAB 与底面ABCD 所成角的大小为π4D .设P 为正方形ABCD 上的点,则直线SP 与底面所成角的最大值为π45.命题0:p x 为3310x x --=的根,命题:q 若02cos x θ=,则1cos32θ=,则命题p 为命题q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在实际生活中,我们会用铁片焊接到钢管上以保证管道正常使用.更极端地,我们可以用有限个铁片焊接到钢管上绕整个钢管侧面一周,其类似下面的数学概念.称3X ⊂R 为紧致的,如果对任意满足i i IX A ∈⊂⋃的开集族()3i A i I ⊂∈R ,都存在有限的J I ⊂,使得j j JX A ∈⊂⋃.称一个集合3A ⊂R 为开集,如果对其中任意一个点P ,都存在一个0δ>,使得以P 为球心,δ为半径的球的内部包含于A .则以下集合中,紧致的集合的个数为( )①(){},,,,x y z x y z ∈R ,②(){}222,,,,,1x y z x y z x y z ∈++<R ,③(){},,0,,1x y z x y z ≤<.A .0个B .1个C .2个D .3个7.奇函数()f x 于R 上连续,满足当0x ≠时,()()()()()()()272f x f x f x f x f x ''''+=,且()1632f =,若对任意使得直线()210x a y +-+=,220bx y +-=垂直的正数,a b ,都有:()()33118f x a b ≤+,则x 的最大可能值为( )A B C .439441⎛⎫+ ⎝⎭D .439441⎛⎫- ⎝⎭8.考虑从1到2024的所有正整数.我们作一个20242024⨯的数表T ,使得若i 为j 的倍数,则在(),i j 位置填入1,否则填为0,则据数表中的数之和最接近的数为( )(已知ln 20247.613≈)A .13000B .14000C .15000D .16000二、多选题9.1843年,Hamilton 在爱尔兰发现四元数.当时他正研究扩展复数到更高的维次(复数可视为平面上的点).他不能做到三维空间的例子,但四维则造出四元数.根据哈密顿记述,他于10月16日跟妻子在都柏林的皇家运河上散步时突然想到的方程解.之后哈密顿立刻将此方程刻在Broughant Bridge .对四元数i j k u a b c d =+++,,,,a b c d ∈R 的单位,,i j k ,其运算满足:222i j k 1===-,ij k =,jk i =,ki j =,ji k =-,kj i =-,ik j =-;记i j k u a b c d =---,()2222N u uu a b c d ==+++,u =11u u-=,记所有四元数构成的集合为V ,则以下说法中正确的有( )A .集合{}1,i,j,k 的元素按乘法得到一个八元集合B .若非零元,u v V ∈,则有:11u vu v --=C .若,u v V ∈,则有:()()()N uv N u N v =D .若非零元u V ∈,则有:12u u u -=三、单选题 10.考虑函数()1cos f x x=,记函数()()[]()m f mx g x f mx =,其中[]x 为x 的整数部分,定义(),,N m n y 为()m g x 在[)1,n n -上满足()1m g x y -=的根的个数,则以下说法正确的有( )A .()m g x 的值域为(),-∞+∞B .()511,,06i N i ==∑C .()m g x 为周期函数当且仅当πm为有理数 D .()e,,30N n ≠对0,1,...,99n =成立四、多选题11.在现实的经济生活中,投资者在面对不确定性时往往表现出风险厌恶的特征.当投资者的财富发生变化时,其用于投资风险资产的绝对量和相对量都将会发生变化.假设一名风险厌恶的投资者的效用函数()U W (W X ∈,X 为一连续区间)是可导且其导函数也可导的.若函数()()()()U W A W U W ''=-'在X 上单调递减,则称该投资者是递减绝对风险厌恶的;若函数()()()()W U W R W U W ''=-'在X 上单调递减,则称该投资者是递减相对风险厌恶的.则以下哪些效用函数对应的投资者是递减绝对风险厌恶的,但不是递减相对风险厌恶的?( )A .()()()280,4U W W W W =-∈B .()()()()2log 10,3U W W W =+∈C .()())0,2U W W ∈D .()()()232480,1U W W W W W =--∈五、填空题12.已知某工厂有三条流水线用于生产某产品,三条流水线的产量之比为2:1:2,根据抽样,有:则流水线2的均值为,流水线3的标准差为.13.数列{}n a 满足21n n n a pa qa ++=+,其中*,p q ∈N ,00a =,11a =.当1p =,2q =时,该数列的通项公式为,若该数列满足对任意的正整数,m n ,都有:()()gcd ,gcd ,m n m n a a a =,当2024p q +=时,符合条件的正整数对(),p q 的个数为.其中()gcd ,m n 为,m n 的最大公因数.14.已知抛物线()21:20C y px p =>的焦点为F ,满足若过点()1,1P -的直线交1C 于,U V ,则有UF VF UPVP=.在1C 上有三点构成等边三角形,其中心的轨迹记为2C ,则2C 的轨迹方程为,试给出一圆Γ,使得对2C 上任意一点T ,过点T 作Γ的两条切线分别交2C 于不同于T 的点,A B ,则AB 必为Γ的切线:.六、解答题15.双曲线()22122:1,0x y C a b a b -=>,12,F F 为两焦点,12,A A 为1C 的顶点,D 为1C 上不同于12,A A 的一点.(1)证明:12F DF ∠,12DF F ∠的角平分线的交点的轨迹为一对平行直线的一部分,并求出这对平行线的方程;(2)若平面上仅有1C 的曲线,没有坐标轴和坐标原点,请给出确定1C 的两个焦点的位置的方法并给出作长为,a b 的线段的方法.(叙述即可)16.在高中课本中,我们研究导数是在实数上研究的.实际上,求导(微分)是一个局部性质.那么我们能不能在某些范围内推广导数这一种局部性质.我们在高中课本中讲到:若()f x 在0x 附近连续,且若()()000limx xf x f x x x →--存在,则()()()0000lim x xf x f x f x x x →-'=-为0x 点处的导数.我们能不能将概念推广到复数域上呢?显然,我们是可以做到的.此时考虑函数()f z ,若()f z 在0z 附近连续(实际上可以考虑一个非常非常小的圆),且若()()000lim zzf z f z z z →--存在,则()()()0000lim z zf z f z f z z z →-'=-为0z 点处的导数.(1)按此定义,验证导数的除法公式()()()()()()()()2f z f z g z f z g z g z g z '⎛⎫''-=⎪ ⎪⎝⎭在复函数求导下仍然成立.(2)更一般地,若在某个区域D 上()f z 均可导,我们称()f z 为D 上解析的函数.考虑复函数()1z az cazτ-=-,其中a 为一个模长小于1的复数,c 为一个模长为1的复数.证明: ①该复函数将{}:1z z =∈<D C 上的点映为D 上的点,且将{}:1z z ∂=∈=D C 上的点映为∂D 上的点.②()z τ为D 上的解析函数.(3)已知:(ⅰ)若函数()f z 为D 上的解析函数,且值域在D 中,满足()()000f f '==,则有:()02f ''≤.(ⅱ)若函数()f z ,()g z 分别为D ,()(){}f D f z z D =∈上的解析函数,则()()g f z 为D 上的解析函数.此时若()f z 为D 上的解析函数,且值域在D 中,满足11022f f ⎛⎫⎛⎫'== ⎪ ⎪⎝⎭⎝⎭,证明:13229f ⎛⎫''≤ ⎪⎝⎭.17.将全体定义在R 上的函数的集合记为()F R .对k ∈R ,(),a b F ∈R ,定义()F R 上的函数之间的加法和数乘运算:()()()()a b x a x b x +=+,()()()ka x k a x =⋅.已知():I F →R R为一个满足线性关系的映射,即()()()I a b I a I b +=+,()()I ka k I a =⋅,这里k ∈R ,(),a b F ∈R ,且满足对任意整数n ,有()cos 0I nx =,数列2sin sin 54cos n x nx a I x ⎛⎫= ⎪-⎝⎭,cos 54cos n nx b I x ⎛⎫= ⎪-⎝⎭,其中1n ≥.(1)求{}n a ,{}n b 的递推公式;(不需要提供初值,递推公式可以由n a ,n b 组成)(2)若{}n a满足1sin b =1π0,2b ⎛⎫∈ ⎪⎝⎭,且{}n a 为单调递减的正项数列:①求{}n a ,{}n b 的通项公式;②记tan n n n c a b =,记n S 为n c 的前n 项和,证明:4n n n c S 为定值,并求出该定值.18.在ABC V 中,:AB AC =ABC V 的外接圆圆心为O ,内切圆I e 的圆心为I ,垂心为H ,V 为OH 的中点,A 在BC 上的投影为D ,以DV 为半径作V ⊙. (1)证明:V ⊙,I e 相切;(2)记V ⊙,I e 的切点为F ,直线AF 交BC 于点E ,G 为线段BC 上一点,满足3BE BG CE CG ⋅=⋅,证明:直线OI 和AG 的交点在BOC V 的外接圆上.19.设S 为空间直角坐标系E 中的一个非空闭凸集,即S ≠∅,且若,x y S ∈,则对任意[]0,1k ∈有()1kx k y S +-∈,且对任意的E y S ∈ð,都存在0ε>,使得{}E x E y x S ε∈-<⊆ð,这里a 为线段a 的长度.称T ⊂R 的下确界或最大下界为inf T ,定义为小于等于在T 中的所有数的最大实数,如果不存在这样的实数,则记为-∞.已知若D 为闭集,则E D ð为开集.(1)设点()0,1,0w ,(){}3,,00S x y xy =≤≤≤,证明:S 为非空闭凸集,并求inf x Sw x ∈-. (2)证明:对任意E y S ∈ð,存在唯一的一个x S ∈,使得inf x Sy x y x ∈-=-; (3)证明:对任意E y S ∈ð,存在非零向量p 以及实数0c >,使得对任意x S ∈,都有:p y p x c ⋅≥⋅+.。

2024年江苏省苏州市中考数学试题 (含答案)

2024年江苏省苏州市中考数学试题 (含答案)

2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上...........1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3- B.1 C.2 D.3【答案】B【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误.故选:A .3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯【答案】C【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b -< C.a b > D.1a b+>【答案】D【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B 6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO的值为()A.12 B.14 C.33 D.13【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,证明AOC OBD △∽△,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D,∴11122ACO S =⨯-= ,1422BDO S =⨯= ,90ACO ODB ∠=∠=︒,∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,∴2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭ ,即2122OA OB ⎛⎫= ⎪⎝⎭,∴12OA OB =(负值舍去),故选:A .8.如图,矩形ABCD中,AB =1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.B.2C.2D.1【答案】D【解析】【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.【详解】解:连接AC ,BD 交于点O ,取OA 中点H ,连接GH,如图所示:∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB CD ,∴在Rt ABC △中,2AC ==,∴112OA OC AC ===,∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即max 1AG AO ==.故选:D .【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G 的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置.........上..9.计算:32x x ⋅=___________.【答案】5x 【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -=______.【答案】4【解析】【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】38【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A ),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为38,故答案为:38.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.【答案】62︒##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接OC ,利用等腰三角形的性质,三角形内角和定理求出BOC ∠的度数,然后利用圆周角定理求解即可.【详解】解:连接OC ,∵OB OC =,28OBC ∠=︒,∴28OCB OBC ∠=∠=︒,∴281041OC OC O B B BC ∠=∠=︒∠=︒-,∴1622A BOC =∠=︒∠,故答案为:62︒.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】33y x =【解析】【分析】根据题意可求得1l 与坐标轴的交点A 和点B ,可得45OAB OBA ∠=∠=︒,结合旋转得到60OAC ∠=︒,则30OCA ∠=︒,求得tan OC OC OCA =⨯∠,即有点C ,利用待定系数法即可求得直线2l 的解析式.【详解】解:依题意画出旋转前的函数图象1l 和旋转后的函数图象2l ,如图所示∶设1l 与y 轴的交点为点B ,令0x =,得1y =-;令0y =,即1x =,∴()1,0A ,()0,1B -,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒∵直线1l 绕点A 逆时针旋转15︒,得到直线2l ,∴60OAC ∠=︒,30OCA ∠=︒,∴tan OC OC OCA =⨯∠==,则点(0,C ,设直线2l 的解析式为y kx b =+,则0k b b =+⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩那么,直线2l的解析式为y =,故答案为:y =-【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)【答案】8π【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C 作CE AB ⊥,根据正多边形的性质得出AOB 为等边三角形,再由内心的性质确定30CAO CAE CBE ∠∠∠===︒,得出120ACB ∠=︒,利用余弦得出2cos30AE AC ==︒,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C 作CE AB ⊥,∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA OB ∠=︒=,∴AOB 为等边三角形,∵圆心C 恰好是ABO 的内心,∴30CAO CAE CBE ∠∠∠===︒,∴120ACB ∠=︒,∵23AB =∴3AE BE ==,∴2cos30AE AC ==︒,∴ AB 的长为:1202π4π1803⨯⨯=,∴花窗的周长为:4π68π3⨯=,故答案为:8π.15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则m n的值为______.【答案】35-##0.6-【解析】【分析】本题考查了待定系数法求二次函数解析式,把A 、B 、D 的坐标代入()20y ax bx c a =++≠,求出a 、b 、c ,然后把C 的坐标代入可得出m 、n 的关系,即可求解.【详解】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠,得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩,解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴22833y mx x m =-+,把()2,C n 代入22833y mx mx m =-+,得2282233n m m m =⨯-⨯+,∴53n m =-,∴5533m m m n ==--,故答案为:35-.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.【答案】103##133【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设AD x =,AE =,根据折叠性质得DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M ,证明AHE ACB ∽得到EH AH AE BC AC AB==,进而得到EH x =,2AH x =,证明Rt EHD 是等腰直角三角形得到45HDE HED ∠=∠=︒,可得90FDM ∠=︒,证明()AAS FDM EHM ≌得到12DM MH x ==,则3102CM AC AD DM x =--=-,根据三角形的面积公式结合已知可得()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,然后解一元二次方程求解x 值即可.【详解】解:∵AE =,∴设AD x =,AE =,∵ADE V 沿DE 翻折,得到FDE V ,∴DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠,∴AHE ACB ∽,∴EH AH AEBC AC AB ==,∵5CB =,10CA =,AB ===∴510EH AH ==∴EH x =,2AH x ==,则DH AH AD x EH =-==,∴Rt EHD 是等腰直角三角形,∴45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒,∴1354590FDM ∠=︒-︒=︒,在FDM 和EHM 中,90FDM EHM DMF HME DF EH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS FDM EHM ≌,∴12DM MH x ==,3102CM AC AD DM x =--=-,∴111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ ,111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ,∵CEF △的面积是BEC 面积的2倍,∴()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+=,解得1103x =,210x =(舍去),即103AD =,故答案为:103.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上..........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()042-+-.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.【答案】2x x +,13【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式()()()21122222x x x x x x x x -+-⎛⎫=+÷ ⎪--+-⎝⎭()()()2221·221x x x x x x +--=--x 2x+=.当3x =-时,原式32133-+==-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.【答案】(1)见解析(2)BC =【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用SSS 证明ABD ACD △≌△即可;(2)利用全等三角形的性质可求出60BDA CDA ∠=∠=︒,利用三线合一性质得出DA BC ⊥,BE CE =,在Rt BDE △中,利用正弦定义求出BE ,即可求解.【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,.ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒,60BDA CDA ∴∠=∠=︒.又BD CD = ,DA BC ∴⊥,BE CE =.2BD =,sin 22BE BD BDA ∴=⋅∠=⨯=,2BC BE ∴==21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)16【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为14,故答案为:14;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,∴P (抽取的书签价好1张为“春”,张为“秋”)16=.22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.【小问1详解】÷=,解:总人数为915%60----=,D组人数为6061891215补图如下:【小问2详解】解:123607260︒⨯=︒,故答案为:72;【小问3详解】解:1880024060⨯=(人).答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).【答案】(1)CD =(2)CD =【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C 作CE AD ⊥,垂足为E ,判断四边形ABCE 为矩形,可求出CE ,DE ,然后在在Rt CED 中,根据勾股定理求出CD 即可;(2)过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .判断四边形ABFG 为矩形,得出90AGD =︒△.在Rt AGD 中,利用正切定义求出34DG AG =.利用勾股定理求出54AD AG =,由50AD =,可求出40BF AG ==,10FG AB ==,20CF =,40DF =.在Rt CFD 中,根据勾股定理求出CD 即可.【小问1详解】解:如图,过点C 作CE AD ⊥,垂足为E ,由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.10AB = ,20BC =,20AE ∴=,10CE =.50AD = ,30ED ∴=.∴在Rt CED 中,2222103010CD CE ED =+=+=.即可伸缩支撑杆CD 的长度为10cm ;【小问2详解】解:过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,3tan 4DGAG α==,34DG AG ∴=.2254AD AG DG AG ∴=+=,50AD = ,40AG ∴=,30DG =.40BF AG ∴==,10FG AB ==,20CF ∴=,40DF =.∴在Rt CFD 中,CD ===即可伸缩支撑杆CD 的长度为.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)2m =,8k =(2)PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM QP =,设点P 的坐标为8,t t ⎛⎫ ⎪⎝⎭,()26t <<,则可求出()162PMN S t t =⋅-⋅ ,然后利用二次函数的性质求解即可.【小问1详解】解:()2,0A - ,()6,0C ,8AC ∴=.又AC BC = ,8BC ∴=.90ACB ∠=︒ ,∴点()6,8B .设直线AB 的函数表达式为y ax b =+,将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩,解得12a b =⎧⎨=⎩,∴直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入ky x =,得8k =.【小问2详解】解:延长NP 交y 轴于点Q ,交AB 于点L .AC BC = ,90BCA ∠=︒,45BAC ∴∠=︒.PN x ∥轴,45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥ ,45MPL BLP ∴∠=∠=︒,45QMP QPM ∴∠=∠=︒,QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-.MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+ .∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭.25.如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.【答案】(1)4BC =(2)O 的半径为477【解析】【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证BAC BCD ∽,得到BC BA BD BC=,即可解答;(2)过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,通过解直角三角形得到1DE =,AE =由BAC BCD ∽得到AC AB CD BC ==.设CD x =,则AC =,1CE x =-,在Rt ACE 中,根据勾股定理构造方程,求得2CD =,AC =,由AFC ADC ∠=∠得到sin sin AFC ADC ∠=∠,根据正弦的定义即可求解.【小问1详解】解:BAC BCD ∠=∠ ,B B ∠=∠,BAC BCD ∴ ∽.BCBABD BC ∴=,即2BC AB BD=⋅AB =,D 为AB 中点,12BD AD AB ∴===,∴216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,cos 4DE CDA AD ∠==.又AD = ,1DE =∴.∴在Rt AED △中,AE ==BAC BCD △∽△,ACABCD BC ∴==.设CD x =,则AC =,1CE CD DE x =-=-.∵在Rt ACE 中,222AC CE AE =+,)()2221x ∴=-+,即2280x x +-=,解得12x =,24x =-(舍去).2CD ∴=,AC =∵ AC AC=,AFC ADC ∴∠=∠.CF 为⊙O 的直径,90CAF ∴∠=︒.sin sin 4AC AE AFC CDA CF AD ∴∠==∠==.7CF ∴=,即⊙O 的半径为477.26.某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A 站B 站C 站发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.【答案】(1)90,60(2)①56;②75t =或125【解析】【分析】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.(1)直接根据表中数据解答即可;(2)①分别求出D 1001次列车、G 1002次列车从A 站到C 站的时间,然后根据路程等于速度乘以时间求解即可;②先求出2v ,A 与B 站之间的路程,G 1002次列车经过B 站时,对应t 的值,从而得出当90110t ≤≤时,D 1001次列车在B 站停车.G 1002次列车经过B 站时,D 1001次列车正在B 站停车,然后分2590t ≤<,90100t ≤≤,100110t <≤,110150t <≤讨论,根据题意列出关于t 的方程求解即可.【小问1详解】解:D 1001次列车从A 站到B 站行驶了90分钟,从B 站到C 站行驶了60分钟,故答案为:90,60;【小问2详解】解:①根据题意得:D 1001次列车从A 站到C 站共需9060150+=分钟,G 1002次列车从A 站到C 站共需356030125++=分钟,∴12150125v v =,∴1256v v =,故答案为:56;②14v = (千米/分钟),1256v v =,2 4.8v ∴=(千米/分钟).490360⨯=Q ,∴A 与B 站之间的路程为360.360 4.875÷= ,∴当100t =时,G 1002次列车经过B 站.由题意可如,当90110t ≤≤时,D 1001次列车在B 站停车.∴G 1002次列车经过B 站时,D 1001次列车正在B 站停车.ⅰ.当2590t ≤<时,12d d >,1212d d d d ∴-=-,()4 4.82560t t ∴--=,75t =(分钟);ⅱ.当90100t ≤≤时,12d d ≥,1212d d d d ∴-=-,()360 4.82560t ∴--=,87.5t =(分钟),不合题意,舍去;ⅲ.当100110t <≤时,12d d <,1221d d d d ∴-=-,()4.82536060t ∴--=,112.5t =(分钟),不合题意,舍去;ⅳ.当110150t <≤时,12d d <,1221d d d d ∴-=-,()()4.825360411060t t ∴--+-=⎡⎤⎣⎦,125t =(分钟).综上所述,当75t =或125时,1260d d -=.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.【答案】(1)2=23y x x --(2)点P 的坐标为)1,4+(3)25515424y x x =-++【解析】【分析】(1)运用待定系数法求函数解析式即可;(2)可求2C 对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1x =.作直线1x =,交直线l 于点H .(如答图①)由二次函数的对称性得,QH PH =,PM NQ =,由PQ MP QN =+,得到PH PM =,设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +,()()222P y t t =-+-,()()2222M y t t =+-,故有()()()()2222222t t t t -+-=+-,解得1t =,2t =,故点P 的坐标为)1,4+;(3)连接DE ,交x 轴于点G ,过点F 作FIED ⊥于点I ,过点F 作FJ x ⊥轴于点J ,(如答图②),则四边形IGJF 为矩形,设2C 对应的函数表达式为()()()130y a x x a =+-<,可求()1,4D -,()1,4E a -,则4DG =,2AG =,4EG a =-,而21tan 42AG ADG DG ∠===,则1tan tan 2FJ FAB ADG AJ ∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+,22m FJ +=,即21,2m F m +⎛⎫+ ⎪⎝⎭,可得1tan tan 2FI FEI ADG EI ∠=∠==,故2EI m =,则2242m m a ++=-,则258m a +=-①,由点F 在2C 上,得到()()211132m a m m ++++-=,化简得()122a m -=②,由①,②可得()251282m m +--=,解得85m =,因此54a =-,故2C 的函数表达式为25515424y x x =-++.【小问1详解】解:(1)将()1,0A -,()3,0B 代入2y x bx c =++,得,10930b c b c -+=⎧⎨++=⎩,解得:23b c =-⎧⎨=-⎩1C ∴对应的函数表达式为:223y x x =--;【小问2详解】解:设2C 对应的函数表达式为()()()130y a x x a =+-<,将点()0,6C 代入得:36a -=,解得:2a =-.2C ∴对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1312x -+==.又 图象1C 的对称轴也为直线1x =,作直线1x =,交直线l 于点H (如答图①)由二次函数的对称性得,QH PH =,NH MH=∴PM NQ =.又PQ MP QN =+ ,而PQ HP QH=+PH PM ∴=.设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +.将1x t =+代入()()213y x x =-+-,得()()222P y t t =-+-,将21x t =+代入()()13y x x =+-,得()()2222M y t t =+-.P M y y = ,()()()()2222222t t t t ∴-+-=+-,即2612t =,解得1t =,2t =(舍去).∴点P 的坐标为)1,4+;【小问3详解】解:连接DE ,交x 轴于点G ,过点F 作FI ED ⊥于点I ,过点F 作FJ x ⊥轴于点J .(如答图②)FI ED ⊥ ,FJ x ⊥轴,ED x ⊥轴,∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为()()()130y a x x a =+-<,点D ,E 分别为二次函数图象1C ,2C 的顶点,将1x =分别代入223y x x =--,()()()130y a x x a =+-<得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,4EG a =-.∴在Rt AGD 中,21tan 42AGADG DG ∠===.AF AD ⊥ ,90FAB DAB ∴∠+∠=︒.又90DAG ADG ∠+∠=︒ ,ADG FAB ∴∠=∠.1tan tan 2FJFAB ADG AJ ∴∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+.22m FJ +∴=,21,2m F m +⎛⎫∴+ ⎪⎝⎭.EF AD ∥,FEI ADG ∴∠=∠.1tan tan 2FI FEI ADG EI ∴∠=∠==,2EI m ∴=.又EG EI IG =+ ,2242m m a +∴+=-,258m a +∴=-① 点F 在2C 上,()()211132m a m m +∴+++-=,即()()2222m a m m ++-=.20m +≠ ,()122a m ∴-=②由①,②可得()251282m m +--=.解得10m =(舍去),285m =,54a ∴=-.2C ∴的函数表达式为()()255515134424y x x x x =-+-=-++.【点睛】本题考查了二次函数的图像与性质,待定系数法求函数解析式,二次函数的对称性,矩形的判定与性质,解直角三角形的相关运算,熟练掌握知识点,正确添加辅助线是解决本题的关键.。

(江苏专版)高考数学 母题题源系列 专题03 算法初步(含解析)-人教版高三全册数学试题

(江苏专版)高考数学 母题题源系列 专题03 算法初步(含解析)-人教版高三全册数学试题

专题03算法初步【母题来源一】【2019年高考某某卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行流程图和完善流程图的思路: (1)要明确流程图的顺序结构、条件结构和循环结构; (2)要识别、运行流程图,理解框图所解决的实际问题; (3)按照题目的要求完成解答并验证.【母题来源二】【2018年高考某某卷】一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为______________.【答案】8【解析】由伪代码可得3,2;5,4;7,8I S I S I S ======, 因为76>,所以结束循环,输出8.S =【母题来源三】【2017年高考某某卷】如图是一个算法流程图,若输入x 的值为116,则输出y 的值是______________.【答案】2-【解析】由题意得212log 216y =+=-,故答案为2-. 【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项.【命题意图】(1)了解算法的含义,了解算法的思想.(2)理解流程图的三种基本逻辑结构:顺序、条件分支、循环.(3)理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.【命题规律】高考中对流程图的考查,主要是顺序结构、条件结构、循环结构,其中循环结构为重点,考查程序运行后的结果,或考查控制循环的条件,流程图常与函数、数列、不等式等知识点结合考查.高考中对算法语句的考查,主要是以伪代码的形式重点考查条件语句和循环语句.结合某某近几年的高考,此部分的考查基本集中在两个方面:一是流程图表示的算法;二是伪代码表示的算法.【方法总结】三种基本逻辑结构的常见问题及解题策略:(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.(3)循环结构①已知流程图,求输出的结果.可按流程图的流程依次执行,最后得出结果.②完善流程图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析流程图功能问题,可将程序执行几次,即可根据结果作出判断.1.【某某省某某市2018-2019学年高三考前模拟检测数学试题】某算法流程图如图所示,该程序运行后,x ,则实数a的值为_______.若输出的63【答案】7【解析】执行第一次循环时,有1n =,21x a =+; 执行第二次循环时,有2n =,43x a =+; 执行第三次循环时,有3n =,87x a =+, 此时有4n =,输出87x a =+. 所以8763a +=,故7a =. 故填7.【名师点睛】对于流程图的问题,我们可以从简单的情形逐步计算,计算时关注各变量的变化情况,并结合判断条件决定输出何种计算结果.对于本题,按流程图逐个计算后可得关于a 的方程,解出a 即可. 2.【某某省某某市2019届高三模拟练习卷(四模)数学试题】执行如图所示的伪代码,则输出的S 的值为_______.【答案】17【解析】模拟执行程序代码,可得S =3.第1步:i =2,S =S +i =5; 第2步:i =3,S =S +i =8; 第3步:i =4,S =S +i =12; 第4步:i =5,S =S +i =17. 此时,退出循环,输出S 的值为17. 故答案为17.【名师点睛】本题主要考查了循环结构的程序代码,正确依次写出每次循环得到的i ,S 的值是解题的关键,属于基础题.求解时,模拟执行程序代码,依次写出每次循环得到的i ,S 的值,即可得解输出的S 的值.3.【某某省某某市2019届高三适应性考试数学试题】一个算法的流程图如图所示,则输出的a 的值为_______.【答案】9【解析】初始值1,0n a ==,第一步:033,1124a n =+==+=<,继续执行循环; 第二步:336,2134a n =+==+=<,继续执行循环; 第三步:639,314a n =+==+=,结束循环,输出9a =. 故答案为9.【名师点睛】本题主要考查程序框图,分析框图的作用,逐步执行,即可得出结果.4.【某某省某某金陵中学、海安高级中学、某某外国语学校2019届高三第四次模拟考试数学试题】如图是一个算法流程图,则输出的b 的值为_______.【答案】8【解析】第1步:a>10不成立,a=a+b=2,b=a-b=1;第2步:a>10不成立,a=a+b=3,b=a-b=2;第3步:a>10不成立,a=a+b=5,b=a-b=3;第4步:a>10不成立,a=a+b=8,b=a-b=5;第5步:a>10不成立,a=a+b=13,b=a-b=8;第6步:a>10成立,退出循环,输出b=8.故答案为8.【名师点睛】本题考查循环结构的程序框图,对循环体每次循环需要进行分析并找出内在规律,属于基础题.对于本题,根据程序框图,写出每次运行结果,利用循环结构计算并输出b的值.5.【某某省七市(某某、某某、某某、某某、某某、宿迁、某某)2019届高三第三次调研考试数学试题】如图是一个算法流程图.若输出y的值为4,则输入x的值为_______.【答案】−1【解析】当1x ≤时,由流程图得:3y x =-, 令34y x =-=,解得:1x =-,满足题意. 当1x >时,由流程图得:3y x =+, 令34y x =+=,解得:1x =,不满足题意. 故输入x 的值为1-.【名师点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.求解时,对x 的X 围分类,利用流程图列方程即可得解.6.【某某省苏锡常镇四市2019届高三教学情况调查(二)数学试题】根据如图所示的伪代码,最后输出的i 的值为_______.【答案】8【解析】根据如图所示的伪代码得:1T =,2i =,6T <成立,212T =⨯=,224i =+=; 6T <成立,224T =⨯=,426i =+=;6T <成立,428T =⨯=,628i =+=, 6T <不成立,结束循环,输出8i =.故答案为8.【名师点睛】本题主要考查了循环结构语句及其执行流程,属于基础题.按程序图依次执行即可得解. 7.【某某省某某市2019届高三下学期4月阶段测试数学试题】执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是_______.【答案】8【解析】输出13y =,若6y x =,则1326x =>,不合题意; 若5y x =+,则1358x =-=,满足题意. 本题正确结果为8.【名师点睛】本题考查算法中的If 语言,属于基础题.根据伪代码逆向运算求得结果.8.【某某省某某中学2019届高三3月月考数学试题】执行如图所示的伪代码,最后输出的a 的值为_______.【答案】4【解析】模拟执行程序代码,可得i =1,a =2,满足条件i 2≤,执行循环体,a =1⨯2,i =2; 满足条件i 2≤,执行循环体,a =1⨯22⨯,i =3, 不满足条件i 2≤,退出循环,输出a 的值为4. 故答案为4.【名师点睛】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i ,a 的值是解题的关键,当i =3时,不满足条件退出循环,输出a 的值即可,属于基础题.9.【某某省某某市(苏北三市(某某、某某、某某))2019届高三年级第一次质量检测数学试题】运行如图所示的伪代码,则输出的结果S 为_______.【答案】21【解析】第1步:3,9I S ==; 第2步:5,13I S ==; 第3步:7,17I S ==;第4步:9,21I S ==,退出循环,输出21S =. 故答案为21.【名师点睛】本题考查的知识点是程序框图和语句,当循环的次数不多或有规律时,常采用模拟循环的方法解答.求解时,由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.10.【某某省某某市2019届高三下学期阶段测试数学试题】根据如图所示的伪代码,可知输出的结果为_______.【答案】205【解析】阅读伪代码可知,I 的值每次增加2,23S I =+, 跳出循环时I 的值为101I =,输出的S 值为21013205S =⨯+=. 故答案为205.11.【某某省某某市2019届高三5月高考信息卷数学试题】执行如图所示的程序框图,输出的k 的值为_______.【答案】7【解析】程序执行中的数据变化如下:1,3,k S ==133,123S k =⨯==+=, 继续运行,339,325S k =⨯==+=;继续运行,9545,527S k =⨯==+=,S >10,此时退出循环,输出k =7, 故答案为7.12.【某某省高三某某中学、宜兴中学、梁丰2019届高三第二学期联合调研测试数学试题】中国南宋时期的数学家秦九韶提出了一种多项式简化算法,如图是实现该算法的程序框图,若输入的2n =,1x =,依次输入的a 为1,2,3,运行程序,输出的s 的值为_______.【答案】6【解析】第一次输入1a =,得1s =,1k =,判断否;第二次输入2a =,得3s =,2k =,判断否;第三次输入3a =,得6s =,3k =,判断是,退出循环,输出6s =,故答案为6.【名师点睛】本题考查了循环结构流程图,要注意每次循环后得到的字母取值,属于基础题.求解时,先代入第一次输入的a ,计算出对应的,s k ,判断为否,再代入第二次输入的a ,计算出对应的,s k ,判断仍为否,再代入第三次输入的a ,计算出对应的,s k ,判断为是,得到输出值.13.【某某省某某市、某某市2019届高三第二次模拟考试数学试题】下图是某算法的伪代码,输出的结果S的值为_______.【答案】16【解析】运行结果依次为:i =1,S =1,1<6,i =3,S =4;3<6,i =5,S =9;5<6,i =7,S =16,7>6,输出S =16.故答案为16.【名师点睛】本题主要考查算法,意在考查学生对该知识的理解能力和掌握水平.直接按照算法的伪代码运行即得结果.14.【某某省某某市基地学校2019届高三3月联考数学试题】运行如图所示的流程图,若输入的63a b ==,,则输出的x 的值为_______.【答案】0【解析】由6a =,3b =得:3x =,循环后:4b =,5a =;由4b =,5a =得:1x =,循环后:2b =,4a =;由2b =,4a =得:2x =,循环后:3b =,3a =;由3b =,3a =得:0x =,输出结果:0x =,本题正确结果为0.【名师点睛】本题考查程序框图中的条件结构和循环结构,属于基础题.求解时,按照程序框图依次运算,不满足判断框中条件时输出结果即可.15.【某某省某某、某某、某某、苏北四市七市2019届高三第一次(2月)模拟数学试题】如图是一个算法流程图,则输出的b 的值为_______.【答案】7【解析】初始值:a =0,b =1.第1次循环:a =1,b =3,满足a <15;第2次循环:a =5,b =5,满足a <15;第3次循环:a =21,b =7,不满足a <15,退出循环,输出b =7.故答案为7.【名师点睛】本题考查的知识点是算法流程图,由于循环的次数不多,故可采用模拟程序运行的方法进行.。

2019年高考真题和模拟题分项汇编数学(理):专题08 数列(含解析)

2019年高考真题和模拟题分项汇编数学(理):专题08 数列(含解析)

专题08 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=,511711,12162a =>>+,【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.5.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 6.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.7.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.8.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (I )证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (II )求{a n }和{b n }的通项公式. 【答案】(I )见解析;(2)1122n n a n =+-,1122nn b n =-+. 【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.9.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(Ⅰ) 1,3,5,6(答案不唯一);(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)1,3,5,6.(答案不唯一) (Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤. 所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.10.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nn ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.11.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.12.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(I )求数列{},{}n n a b 的通项公式;(II)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(I )()21n a n =-,()1n b n n =+;(II )证明见解析. 【解析】(I )设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(II)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.13.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132C .-66D .- 32【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.【名师点睛】本题主要考查了等差数列的性质,等差中项,数列的求和公式,属于中档题.14.【四川省百校2019年高三模拟冲刺卷数学试题】定义在 +∞)上的函数 )满足:当 时, ) ;当 时, ) ).记函数 )的极大值点从小到大依次记为 并记相应的极大值为 则 + + + 的值为 A . + B . + C . + D . +【答案】A【解析】由题意当 时,22()2(1)1f x x x x =-=--+ 极大值点为1,极大值为1,当 时,()()32f x f x =-.则极大值点形成首项为1公差为2 的等差数列,极大值形成首项为1公比为3 的等比数列,故 . ,故 ) ,设S= + + + + + + + , 3S= + + + ,两式相减得-2S=1+2( + + + )- + )∴S= + , 故选:A.【名师点睛】本题考查数列与函数综合,错位相减求和,确定 及 的通项公式是关键,考查计算能力,是中档题. 15.【福建省2019届高三毕业班质量检查测试数学试题】数列 中, ,且112(2)n n n n na a n a a --+=+≥-,则数列)前2019项和为A .B .C .D .【答案】B【解析】:∵ ++ ( ),∴()22112n n n n a a a a n ----=﹣, 整理得: ) ) ,∴ ) ) + )+ + ,又 , ∴ ) ) , 可得:)).则数列)前2019项和为:++ +. 故选:B .【名师点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.16.【内蒙古2019届高三高考一模试卷数学试题】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“哀”得100,60,36,21.6个单位,递减的比例为40%,今共有粮(0)m m >石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m 的值分别为 A .20% 369B .80% 369C .40% 360D .60% 365【答案】A【解析】设“衰分比”为a ,甲衰分得b 石,由题意得23(1)80(1)(1)16480164b a b a b a b m ⎧-=⎪-+-=⎨⎪++=⎩,解得125b =,20%a =,369m =. 故选A .【名师点睛】本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.17.【山东省德州市2019届高三第二次练习数学试题】设数列{}n a 的前n 项和为n S ,已知1212a a ==,,且2123n n n a S S ++=-+,记22122log log n n n b a a -=+,则数列(){}21nn b -⋅的前10项和为______.【答案】200【解析】∵1212a a ==,,且2123n n n a S S ++=-+, ∴32332a =-+=, ∵2123n n n a S S ++=-+,∴2n ≥时,1123n n n a S S +-=-+, 两式相减可得,()()21112n n n n n n S a a S S S ++-+-=---,(2n ≥) 即2n ≥时,2112n n n n a a a a +++-=-即22n n a a +=, ∵312a a =,∴数列{}n a 的奇数项和偶数项分别成等比数列,公比均为2,∴12222n nn a -=⨯=,1121122n n n a ---=⨯=,∴22122log log 121n n n b a a n n n -=+=-+=-, 则数列()()()221211nnn b n -⋅-=-,则(){}21nn b -⋅的前10项和为()()()22222231751917S =-+-++-()2412202836=⨯++++200=.故答案为200.【名师点睛】本题考查数列的递推公式在数列的通项公式求解中的应用,考查等比数列的通项公式及数列的求和方法的应用,属于中档题.18.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1【解析】因为11,()(1)n n a a n n n *+=+∈+N所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-, 各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1.【名师点睛】本题主要考查利用递推关系求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:(1)项的序号较小时,逐步递推求出即可;(2)项的序数较大时,考虑证明数列是等差、等比数列,或者是周期数列;(3)将递推关系变形,利用累加法、累乘法以及构造新数列法求解.19.【2019北京市通州区三模数学试题】设{}n a 是等比数列,且245a a a =,427a =,则{}n a 的通项公式为_______.【答案】13-=n n a ,n *∈N .【解析】设等比数列{}n a 的公比为q , 因为245a a a =,427a =, 所以223542427a a a a q q q ====,解得3q =,所以41327127a a q ===, 因此,13-=n n a ,n *∈N . 故答案为13-=n n a ,n *∈N .【名师点睛】本题主要考查等比数列基本量的计算,熟记等比数列的通项公式即可,属于常考题型.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=. (I )求数列{}n a 与{}n b 的通项公式;(II )求数列{}n n a b +的前n 项和.【答案】(I )21,3nn n a n b =+=;(II )()331(2)2n n n -++.【解析】(I )由11a b =,42a b =,则4212341223()()12S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =. 所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3nn b =;(II )(21)3n n n a b n +=++, 所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++2(3521)(333)nn =++++++++(321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++. 【名师点睛】本题主要考查等差数列与等比数列,熟记通项公式、前n 项和公式即可,属于常考题型.21.【山东省烟台市2019届高三3月诊断性测试数学试题】已知等差数列{}n a 的公差是1,且1a ,3a ,9a 成等比数列.(I )求数列{}n a 的通项公式; (II )求数列{}2n na a 的前n 项和n T . 【答案】(I )n a n =;(II )222n nnT +=-. 【解析】(I )因为{}n a 是公差为1的等差数列,且1a ,3a ,9a 成等比数列,所以2319a a a =,即2111(2)(8)a a a +=+,解得11a =.所以1(1)n a a n d n =+-=.(II )12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,2311111112(1)22222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得1231111111222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以111111112211222212n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=-⨯=-- ⎪⎝⎭-. 所以222n n nT +=-. 【名师点睛】本题考查了等差数列与等比数列的通项公式、错位相减法,考查了推理能力与计算能力,属于常考题型.22.【安徽省1号卷A10联盟2019年高考最后一卷数学试题】已知等差数列{}n a 满足636a a =+,且31a -是241,a a -的等比中项.(I )求数列{}n a 的通项公式; (II )设()11n n n b n a a *+=∈N ,数列{}n b 的前项和为n T ,求使1n T <成立的最大正整数n 的值 【答案】(I )21n a n =+.(II )8.【解析】(I )设等差数列{}n a 的公差为d ,6336a a d -==Q ,即2d =,3113a a ∴-=+,2111a a -=+,416a a =+, 31a -Q 是21a -,4a 的等比中项,()()232411a a a ∴-=-⋅,即()()()2111+3=16a a a ++,解得13a =. ∴数列{}n a 的通项公式为21n a n =+.(II )由(I )得()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭()1112323323nn n ⎛⎫=-= ⎪++⎝⎭,由()13237n n <+,得9n <.∴使得1n T <成立的最大正整数n 的值为8.【名师点睛】本题考查等差数列通项公式以及裂项相消法求和,考查基本分析求解能力,属中档题.23.【重庆一中2019届高三下学期5月月考数学试题】已知数列{}n a 满足:1n a ≠,()112n na n a *+=-∈N ,数列}{nb 中,11n n b a =-,且1b ,2b ,4b 成等比数列. (I )求证:数列}{n b 是等差数列;(II )若n S 是数列}{n b 的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(I )见解析;(II )21nn +. 【解析】(I )111111111121n n n n n nb b a a a a ++-=-=------1111n n n a a a =-=--, ∴数列}{n b 是公差为1的等差数列;(II )由题意可得2214b b b =,即()()211113b b b +=+,所以11b =,所以1n b =,∴(1)2n n n S +=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 11111212231n T n n ⎛⎫=⨯-+-+⋯+- ⎪+⎝⎭122111nn n ⎛⎫=⨯-=⎪++⎝⎭. 【名师点睛】本题主要考查等差数列性质的证明,考查等差数列的前n 项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

江苏省苏州市2019-2020学年高考数学五月模拟试卷含解析

江苏省苏州市2019-2020学年高考数学五月模拟试卷含解析

江苏省苏州市2019-2020学年高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( ) A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e【答案】B 【解析】 【分析】根据分段函数,分当0x <,0x >,将问题转化为()f x k x=的零点问题,用数形结合的方法研究. 【详解】 当0x <时,()21f x k xx==,令()()2312g ,'0x g x x x ==->,()g x 在()0x ∈-∞,是增函数,0k >时,()f x k x=有一个零点, 当0x >时,()2ln f x xk xx==,令()()23ln 12ln h ,x x x h x x x -'==当x ∈时,'()0h x >,∴()h x在上单调递增,当)x ∈+∞时,'()0h x <,∴()h x在)+∞上单调递减,所以当x =()h x 取得最大值12e, 因为()()F x f x kx =-在R 上有3个零点, 所以当0x >时,()f x k x=有2个零点, 如图所示:所以实数k 的取值范围为1(0,)2e综上可得实数k 的取值范围为1(0,)2e, 故选:B 【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题. 2.若2m >2n >1,则( ) A .11m n> B .πm ﹣n >1 C .ln (m ﹣n )>0 D .1122log m log n >【答案】B 【解析】 【分析】根据指数函数的单调性,结合特殊值进行辨析. 【详解】若2m >2n >1=20,∴m >n >0,∴πm ﹣n >π0=1,故B 正确; 而当m 12=,n 14=时,检验可得,A 、C 、D 都不正确, 故选:B . 【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.3.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( ) A .1a B .3aC .8aD .10a【答案】A【解析】 【分析】将已知条件转化为1,a d 的形式,由此确定数列为0的项. 【详解】由于等差数列{}n a 中5732a a =,所以()()113426a d a d +=+,化简得10a=,所以1a 为0.故选:A 【点睛】本小题主要考查等差数列的基本量计算,属于基础题.4.若()12nx -的二项展开式中2x 的系数是40,则正整数n 的值为( ) A .4 B .5 C .6 D .7【答案】B 【解析】 【分析】先化简()12n x -的二项展开式中第1r +项()112rrn r r n T C x -+=⋅⋅-,然后直接求解即可【详解】()12nx -的二项展开式中第1r +项()112r r n r r n T C x -+=⋅⋅-.令2r =,则()2232n T C x =⋅-,∴2440n C =,∴4n =-(舍)或5n =. 【点睛】本题考查二项展开式问题,属于基础题5.已知(1)2i ai bi -=+(i 为虚数单位,,a b ∈R ),则ab 等于( ) A .2 B .-2 C .12D .12-【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解. 【详解】(1)2i ai bi -=+Q ,2a i bi ∴+=+,得2a =,1b =.2ab ∴=.故选:A . 【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.6.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( ) A .322- B.233-C .23-D .22-【答案】A 【解析】 【分析】求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,211(1)4mmx x-=+++, 求出等式左边式子的范围,将等式右边代入,从而求解. 【详解】解:由题意可得,焦点F (1,0),准线方程为x =−1, 过点P 作PM 垂直于准线,M 为垂足,由抛物线的定义可得|PF|=|PM|=x +1, 记∠KPF 的平分线与x 轴交于(m,0),(1m 1)H -<<根据角平分线定理可得||||||=||||||PF PM FH PK PK KH =, 211(1)4mmx x-=+++, 当0x =时,0m =,当0x ≠2124(1)4112x xx x⎫=⎪⎪++⎣⎭+++,21103221mm m-≤<⇒<≤-+综上:0322m ≤≤-. 故选:A . 【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题. 7.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,,充分性;当,取,验证成立,故不必要.故选:. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.8.定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()2019f =() A .-1 B .0C .1D .2【答案】C 【解析】 【分析】推导出()()()()220194035441log 2f f f f =⨯+==-=,由此能求出()2019f 的值. 【详解】∵定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩,∴()()()()22019403544211log f f f f =⨯+=-===,故选C . 【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.9.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3π B .4π C .2π D .23π 【答案】A 【解析】 【分析】由已知6AB BC ==,设2ABC θ∠=.可得 5.196sin 0.8667θ==.于是可得θ,进而得出结论. 【详解】解:依题意6AB BC ==,设2ABC θ∠=. 则 5.1963sin 0.8667θ==. 3πθ∴=,223πθ=. 设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α. 则2αθπ+=,3πα∴=.故选:A . 【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.10.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( )A .3πB .4πC .8πD .13π【答案】A 【解析】 【分析】由题意画出图形,求出三棱锥S-ABC 的外接球的半径,再求出外接球球心到D 的距离,利用勾股定理求得过点D 的平面截球O 所得截面圆的最小半径,则答案可求. 【详解】如图,设三角形ABC 外接圆的圆心为G ,则外接圆半径AG=233233⨯=,设三棱锥S-ABC 的外接球的球心为O ,则外接球的半径R=()222324+=取SA 中点E ,由SA=4,AD=3SD ,得DE=1, 所以OD=()2223113+=.则过点D 的平面截球O 所得截面圆的最小半径为()224133-=所以过点D 的平面截球O 所得截面的最小面积为()233ππ⋅=故选:A 【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题. 11.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .【答案】A 【解析】 【分析】 【详解】因为(0)1f =,所以排除C 、D .当x 从负方向趋近于0时,0cos cos x x x x <+<-,可得0()1<<f x .故选A .12.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .20【答案】C 【解析】 【分析】根据复数的乘法运算以及纯虚数的概念,可得结果. 【详解】()()()32326z i a i a a i =-+=++-∵()()()32z i a i a R =-+∈为纯虚数, ∴320a +=且60a -≠ 得23a =-,此时203z i =故选:C. 【点睛】本题考查复数的概念与运算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。

专题02 函数的概念与基本初等函数(原卷版)

专题02 函数的概念与基本初等函数(原卷版)

专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+15.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.508.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x) C.y=ln(1+x)D.y=ln(2+x)10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.109314.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A .[﹣2,2]B .C .D .16.【2018年新课标1文科13】已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a = . 17.【2018年新课标3文科16】已知函数f (x )=ln (x )+1,f (a )=4,则f (﹣a )= .18.【2018年天津文科14】已知a ∈R ,函数f (x ).若对任意x ∈[﹣3,+∞),f (x )≤|x |恒成立,则a 的取值范围是 .19.【2017年新课标2文科14】已知函数f (x )是定义在R 上的奇函数,当x ∈(﹣∞,0)时,f (x )=2x 3+x 2,则f (2)= .20.【2017年新课标3文科16】设函数f (x ),则满足f (x )+f (x )>1的x 的取值范围是 .21.【2017年北京文科11】已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是 .1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .4C .2±D .4±2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln3c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-18.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞-B .()1,0-C .()0,4D .()()0,11,49.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏州市2024高三冲刺(高考数学)统编版(五四制)考试(提分卷)完整试卷

江苏省苏州市2024高三冲刺(高考数学)统编版(五四制)考试(提分卷)完整试卷

江苏省苏州市2024高三冲刺(高考数学)统编版(五四制)考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在正三棱台中,,,,则正三棱台的外接球体积为()A.B.C.D.第(2)题生物学家在研究植物的生长过程中,发现某种树苗的生长规律为:树苗在第1年长出一条新枝,新枝一年后成长为老枝,老枝以后每年都长出一条新枝,每条树枝都按照这个规律生长,则第10年的树枝条数为()A.56B.55C.54D.34第(3)题在下列判断两个平面与平行的四个命题中,真命题的个数是()(1),都垂直于平面,那么.(2),都平行于平面,那么.(3),都垂直于直线,那么.(4)如果,是两条异面直线,且,,,,那么.A.B.C.D.第(4)题已知抛物线的焦点为F,直线l交抛物线T于A,B两点,M为线段的中点,过点M作抛物线T的准线的垂线,垂足为N,若,则的最大值为()A.1B.C.D.第(5)题下列各组函数是同一个函数的是()A .与B.与C .与D.与第(6)题在平面直角坐标系中,抛物线:的焦点为,是抛物线上的点,若的外接圆与抛物线的准线相切,且该圆面积为,则()A.B.C.D.第(7)题如图,函数的部分图象,若点是中点,则点的纵坐标为()A.B.C.D.第(8)题已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法中错误的为()A.已知,且与的夹角为锐角,则实数的取值范围是B.向量,不能作为平面内所有向量的一组基底C.非零向量,,满足且与同向,则D.非零向量和,满足,则与的夹角为第(2)题下列命题中是真命题的是()A .“”是“的最小正周期为”的必要不充分条件B.已知平面向量,的夹角为,,,则C.为了得到函数的图象,只需把函数的图象向左平行移动个单位长度D.函数是定义在上的偶函数且在上为减函数,,则不等式的解集为第(3)题已知为实数,且,则下列不等式正确的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在无穷等比数列中,,,则___________.第(2)题已知函数是定义在上的奇函数,当时,,若,,则实数的取值范围为__________.第(3)题正四面体的所有棱长均为12,球是其外接球,分别是与的重心,则球截直线所得的弦长为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,其中.(1)当时,求的极值;(2)若,求的值.第(2)题已知函数.(1)若有唯一零点,求的取值范围;(2)若恒成立,求的取值范围.第(3)题已知函数.(1)讨论函数的单调区间情况;(2)若函数有且只有两个零点,证明:.第(4)题某校为了调查网课期间学生在家锻炼身体的情况,随机抽查了150名学生,并统计出他们在家的锻炼时长,得到频率分布直方图如图所示.(1)求a的值,并估计锻炼时长的平均数(同组数据用该组区间的中点值代替);(2)从锻炼时长分布在,,,的学生中按分层抽样的方法抽出7名学生,再从这7名学生中随机抽出3人,记3人中锻炼时长超过40分钟的学生人数为X,求X的分布列和数学期望.第(5)题已知数列中,,.求,,﹔猜想的表达式并给出证明;记,证明:.。

江苏省苏州市三校2020届高三下学期5月联考数学试题 Word版含解析

江苏省苏州市三校2020届高三下学期5月联考数学试题 Word版含解析
4.运行如图所示的伪代码,其结果为.
【答案】17
【解析】
试题分析:第一次循环,I=1,S=1+1=2;第二次循环,I=3,S=2+3=5;第三次循环,I=5,S=5+5=10;第四次循环,I=7,S=10+7=17,结束循环输出S=17
考点:循环结构流程图
5.如图是一次摄影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,则该作品的平均分为___________.
(2)∵ , 是 的中点,∴ .又∵在直三棱柱 中,底面 ⊥侧面 ,交线为 , 平面 ,∴ 平面 .∵ 平面 ,∴ .∵ ,∴ .而 ,∴ ,从而 ,∴ ,∴ .又∵ , 平面 , 平面 ,∴ 平面 .
17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:
方案① 多边形为直角三角形 ( ),如图1所示,其中 ;
(1)求证:BC1∥平面A1CD;
(2)若点P在线段BB1上,且BP= BB1,求证:AP⊥平面A1CD.
【答案】详见解析
【解析】
【分析】
(1)连接 ,与 交于点 ,连结 ,可以证明 ,根据线面平行的判定可以可证明 平面 .(2)中易证 ,只要证明 就可以证明 平面 ,它可以由 得到.
【详解】(1)连接 ,与 交于点 ,连结 ,∵四边形 是矩形,∴ 是 的中点.在 中, 分别是 的中点,∴ ,又∵ 平面 , 平面 ,∴ 平面 .
【答案】
【解析】
【分析】
由茎叶图知,最高分为94,最低分为86,去掉这两个数后,剩下的5个数利用平均数的计算公式计算即可.
【详解】由茎叶图知,最高分为94,最低分为86,由题意,剩下5个数分别为 ,

江苏省苏州市五校联考2024届高三数学试题5月最后一卷试题

江苏省苏州市五校联考2024届高三数学试题5月最后一卷试题

江苏省苏州市五校联考2024届高三数学试题5月最后一卷试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,则()()2332i i +-=( ) A .125i +B .66i -C .5iD .132.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( ) A .,06π⎛⎫-⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭3.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-4.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .35.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要6.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .37.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2C 3D 58.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A 5-1B 3-1C 31+D 51+ 9.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C 5D 7 10.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件11.设复数121,1z i z i =+=-,则1211z z +=( ) A .1B .1-C .iD .i -12.已知A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A 类产品或者检测出3件B 类产品时,检测结束,则第一次检测出B 类产品,第二次检测出A 类产品的概率为( ) A .1 B .3 C .2 D .3二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏州市南麻中学高三数学理测试题含解析

江苏省苏州市南麻中学高三数学理测试题含解析

江苏省苏州市南麻中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 复数(是虚数单位)在复平面上对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B复数,其在复平面上对应的点为,该点位于第二象限.故选.2. 数列是首项的等比数列,且,,成等差数列,则其公比为()A.B. C.或 D.参考答案:C略3. (5分)设集合M={ x∈Z|﹣4<x<2 },N={x|x2<4},则M∩N等于()A.(﹣1,1) B.(﹣1,2) C. {﹣1,0,1} D. {﹣1,1,2}参考答案:C【考点】:交集及其运算.【专题】:集合.【分析】:根据集合的基本运算进行求解.解:M={ x∈Z|﹣4<x<2 }={﹣3,﹣2,﹣1,0,1},N={x|x2<4}={x|﹣2<x<2},则M∩N={﹣1,0,1},故选:C【点评】:本题主要考查集合的基本运算,比较基础.4. 设i为虚数单位,复数 z1=3﹣ai,z2=1+2i,若是纯虚数,则实数a的值为( )A.﹣B.C.﹣6 D.6参考答案:B考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,然后由实部等于0且虚部不等于0求得a 的值.解答:解:∵z1=3﹣ai,z2=1+2i,由=是纯虚数,得,解得:a=.故选:B.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5. 在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的,且样本容量为160,则中间一组的频数为( ) A.32 B. 0.2 C. 40 D. 0.25参考答案:A略6. 已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3 B.﹣3 C.0 D.4﹣1参考答案:A【考点】函数的值.【分析】由已知利用函数性质推导出asin1﹣btan1=1,由此能求出f(1)的值.【解答】解:∵函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,∴f(﹣1)=asin(﹣1)﹣btan(﹣1)+4×=﹣asin1+btan1+2=1,∴asin1﹣btan1=1,∴f(1)=asin1﹣bsin1+4×=1+2=3.故选:A.7. 已知正方形的边长为4,点位边的中点,沿折叠成一个三棱锥(使重合于点),则三棱锥的外接球表面积为A. B. C.D.参考答案:A略8. 在复平面内,复数+(1+i)2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限参考答案:答案:B9. 已知函数f(x)=x3﹣bx2﹣4,x∈R,则下列命题正确的是()A.当b>0时,?x0<0,使得f(x0)=0B.当b<0时,?x<0,都有f(x)<0C.f(x)有三个零点的充要条件是b<﹣3D.f(x)在区间(0.+∞)上有最小值的充要条件是b<0参考答案:C【考点】利用导数研究函数的单调性.【分析】令f(x)=0,得到矛盾,判断A错误,令b=﹣6,x=﹣1,求出f(﹣1)>0,得到矛盾,判断B错误;求出函数的导数,通过讨论b的符号结合函数的单调性判断C正确,D错误.【解答】解:对于A:令f(x)=0,得:x3﹣bx2﹣4=0,∴x2(x﹣b)=4,∴x2=①,若b>0,x0<0,则x0﹣b<0,方程①无解,故选项A错误;对于B:若b<0,?x<0,不妨令b=﹣6,x=﹣1,则f(﹣1)=﹣1﹣(﹣6)×1﹣4=1>0,故选项B错误;对于C:f′(x)=3x2﹣2bx=x(3x﹣2b),b>0时,令f′(x)>0,解得:x>或x<0,∴f(x)在(﹣∞,0)递增,在(0,)递减,在(,+∞)递增,∴x=0是极大值点,此时f(0)=﹣4,函数f(x)只有1个零点,故b>0不合题意,b<0时:令f′(x)>0,解得:x<或x>0,∴f(x)在(﹣∞,)递增,在(,0)递减,在(0,+∞)递增,∴x=是极大值点,若f(x)有三个零点,只需f()>0,解得:b<﹣3,故选项C正确;对于D:由选项C得:若b<0,则f(x)在(0,+∞)递增,而函数f(x)无最小值,故D错误,故选:C.10. 若复数z满足z+zi=3+2i,则在复平面内z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D【考点】复数的代数表示法及其几何意义.【专题】计算题;转化思想;数学模型法;数系的扩充和复数.【分析】由z+zi=3+2i,得,然后利用复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.【解答】解:由z+zi=3+2i,得=,则复数z在复平面内对应的点的坐标为:(,),位于第四象限.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 若x,y满足不等式则z=x﹣y的取值范围是.参考答案:[﹣2,2]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2).联立,解得B(2,4).化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为2.当直线y=x﹣z过B时,直线在y轴上的截距最大,z有最小值为﹣2.故答案为:[﹣2,2].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12. 设(x﹣2)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6的值为.参考答案:6413. 函数,则的解集为 .参考答案:14. 若集合A={x|ax2+ax+1=0}中只有一个元素,则满足条件的实数a构成的集合为.参考答案:{4}【考点】15:集合的表示法.【分析】由已知得,由此能求出满足条件的实数a构成的集合.【解答】解:∵集合A={x|ax2+ax+1=0}中只有一个元素,∴,解得a=4.∴满足条件的实数a构成的集合为{4}.故答案为:{4}.【点评】本题考查集合的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.15. 若是偶函数,则a=____________.参考答案:16. 已知函数的图像关于直线对称,且为函数的一个零点,则的最小值为.参考答案:217. 对于正整数n,设x n是关于x的方程nx3+2x﹣n=0的实数根,记a n=[(n+1)x n](n≥2),其中[x]表示不超过实数x的最大整数,则(a2+a3+…+a2015)= .参考答案:2017【考点】8E:数列的求和.【分析】根据条件构造f(x)=nx3+2x﹣n,求函数的导数,判断函数的导数,求出方程根的取值范围进行求解即可.【解答】解:设f(x)=nx3+2x﹣n,则f′(x)=3nx2+2,当n是正整数时,f′(x)>0,则f(x)为增函数,∵当n≥2时,f()=n×()3+2×()﹣n=?(﹣n2+n+1)<0,且f(1)=2>0,∴当n≥2时,方程nx3+2x﹣n=0有唯一的实数根x n且x n∈(,1),∴n<(n+1)x n<n+1,a n=[(n+1)x n]=n,因此(a2+a3+a4+…+a2015)=(2+3+4+…+2015)==2017,故答案为:2017.三、解答题:本大题共5小题,共72分。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

精品解析:【市级联考】江苏省苏州市2019届高三下学期阶段测试 数学试题(解析版)

精品解析:【市级联考】江苏省苏州市2019届高三下学期阶段测试 数学试题(解析版)

江苏省苏州市2019届高三下学期阶段测试(解析版)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.设集合A = {1,m },B = {2,3},若A∩B ={3},则m =_____.【答案】3【解析】【分析】由A,B,以及两集合的交集,确定出m的值即可.【详解】因为A∩B ={3},所以m =3故答案为:3【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数满足(其中i为虚数单位),则的值为______.【答案】【解析】【分析】把已知等式变形,再利用复数代数形式的除法运算化简复数z,然后由复数模的公式计算得答案.【详解】,故答案为:【点睛】本题考查了复数代数形式的除法运算,考查了复数模的求法,准确计算是关键,是基础题.3.将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是___.【答案】【解析】【分析】先求出基本事件总数6×6=36,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率.【详解】基本事件总数6×6=36,点数之和是6包括共5种情况,则所求概率是.故答案为:【点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.4.一支田径队有男运动员人,女运动员人,现按性别用分层抽样的方法,从中抽取位运动员进行健康检查,则男运动员应抽取____人.【答案】8【解析】试题分析:男女运动员人数的比是,所以要抽取14人,需要抽取男运动员人.考点:本小题主要考查分层抽样.点评:应用分层抽样抽取样本时,关键是找出各层的比例,按比例抽取即可.5.根据如图所示的伪代码,可知输出的结果为__________.【答案】【解析】阅读伪代码可知,I的值每次增加2,,跳出循环时I的值为,输出的S值为.6.命题“存在,使”为假命题,则实数a的取值范围是_________.【答案】【解析】试题分析:命题:“存在x∈R,使x2+ax﹣4a<0”为假命题,即对任意的实数x,恒有x2+ax﹣4a≥0成立,则,解得,.考点:恒成立问题求参数范围.7.已知函数的图象如图所示,则该函数的解析式是_____.【答案】【解析】【分析】根据所给的图象,得到三角函数的振幅,根据函数的图象过点的坐标,代入解析式求出φ,ω,得到函数的解析式【详解】根据图象可以看出A=2,图像过(0,1)∴2sinφ=1,故φ∵函数的图象过点(,0)所以=2k,k∈Z,故, k∈Z当k=-1,∴函数的解析式是.故答案为【点睛】本题考查三角函数的解析式,三角函数基本性质,熟记五点作图法是解题关键,是中档题.8.若函数为定义在上的奇函数,当时,,则不等式的解集为____.【答案】【解析】分析:由奇函数的性质,求出函数的解析式,对时的解析式求出,并判断函数的单调性和极值,再由奇函数的图象特征画出函数的图象,根据图象和特殊的函数值求出不等式的解集.详解:因为函数是定义在上的奇函数,所以当时,,不满足不等式,设,则,因为时,,所以,因为函数是奇函数,所以,所以,当时,,令,解得,当时,;当时,,所以函数在上递减,在上递增,所以当时取得极小值,,再由函数是奇函数,画出函数的图象如图所示,因为当时,当时取得极小值,,所以不等式的解集在无解,在上有解,因为,所以不等式的解集为.点睛:本题考查函数的基本性质的综合应用,其中解答中涉及到函数的奇偶性,函数的单调性的综合应用,着重考查了数形结合思想方法,分析问题和解答问题的能力,试题有一定的难度,属于难题.9.四棱锥P-ABCD中,⊥底面,底面是矩形,,,,点E为棱CD上一点,则三棱锥E-PAB的体积为______.【答案】【解析】【分析】由PA⊥平面ABCD可得V E﹣PAB=V P﹣ABE,求解即可【详解】∵底面ABCD是矩形,E在CD上,∴S△ABE3.∵PA⊥底面ABCD,∴V E﹣PAB=V P﹣ABE.故答案为:.【点睛】本题考查了棱锥的体积计算,线面位置关系,熟记等体积转化,准确计算是关键,属于基础题.10.若函数在其定义域上恰有两个零点,则正实数a的值为_____.【答案】【解析】【分析】当x≤0时,f(x)=x+2x,单调递增,由f(﹣1)f(0)<0,可得f(x)在(﹣1,0)有且只有一个零点;x>0时,f(x)=ax﹣lnx有且只有一个零点,即有a有且只有一个实根.令g(x),求出导数,求得单调区间,极值,即可得到a的值.【详解】当x≤0时,f(x)=x+2x,单调递增,f(﹣1)=﹣1+2﹣1<0,f(0)=1>0,由零点存在定理,可得f(x)在(﹣1,0)有且只有一个零点;则由题意可得x>0时,f(x)=ax﹣lnx有且只有一个零点,即有a有且只有一个实根.令g(x),g′(x),当x>e时,g′(x)<0,g(x)递减;当0<x<e时,g′(x)>0,g(x)递增.即有x=e处取得极大值,也为最大值,且为,当x如图g(x)的图象,当直线y=a(a>0)与g(x)的图象只有一个交点时,则a.故答案为:.【点睛】本题考查函数的零点的判断,考查函数的零点存在定理和导数的运用,单调性和极值,数形结合思想,属于中档题.11.已知等差数列的各项均为正数,=1,且成等比数列.若,则=_____.【答案】15【解析】【分析】设等差数列公差为d,由题意知d>0,由成等比数列列式求得公差,再由等差数列的通项公式求得a p﹣a q.【详解】设等差数列公差为d,由题意知d>0,∵成等比数列,∴()2=,∴(1+2d)(1+10d),即44d2﹣36d﹣45=0,解得d或d(舍去),∵p﹣q=10,则a p﹣a q=(p﹣q)d=10.故答案为:15.【点睛】本题考查等差数列的通项公式,考查了等比数列的性质,熟记数列性质,准确计算是关键,是基础题.12.在平面直角坐标系中,已知圆C:,点A是轴上的一个动点,AP,AQ分别切圆C 于P,Q两点,则线段PQ长的取值范围为_____.【答案】【解析】试题分析:由题意得:,又,所以,因此线段PQ长的取值范围为考点:直线与圆位置关系13.若均为正实数,且,则的最小值为_____.【答案】【解析】x,y,z均为正实数,且x2+y2+z2=1,可得1−z2=x2+y2⩾2xy,当且仅当x=y取得等号,则,当且仅当时等号成立,取得最小值.14.设集合其中均为整数},则集合_____..【答案】M={0,1,3,4}.【解析】【分析】根据2x+2y=2t,进行提取2x,得到x,y的关系,根据整数关系进行推理即可得到结论.【详解】由得,则,且指数均为整数,因此右边一定为偶数,则左边即,且即.为整数,则为2的约数,则,.故M={0,1,3,4}. 故答案为:M={0,1,3,4}.【点睛】本题主要考查元素和集合的关系,结合集合元素是整数的关系进行推理是解决本题的关键.综合性较强,难度较大.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤.15.在中,、、分别是三内角A、B、C的对应的三边,已知.(1)求角A的大小:(2)若,判断的形状.【答案】解:(Ⅰ)在中,,又∴…………………………………………………………………4分(Ⅱ)∵,∴∴,,,∴,∵,∴∴为等边三角形。

江苏省苏州市2019届高三5月高考信息卷数学试题(解析版)

江苏省苏州市2019届高三5月高考信息卷数学试题(解析版)

苏州市2019届高考信息卷数学Ⅰ(试题)一、填空题:请把答案直接填写在答题卡相应位置上......... 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =____.【答案】{}|12x x << 【解析】 【分析】利用交集定义直接求解. 【详解】集合A {x |0x 2}=<<,{}B x x 1=,A B {x |1x 2}∴⋂=<<.故答案为:{x |1x 2}<<.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.设i 是虚数单位,复数i2ia z -=的模为1,则正数a 的值为_______.【解析】 【分析】先化简复数,再解方程21144a +=即得解.【详解】由题得i 1i 2i 22a az -==--, 因为复数z 的模为1,所以21144a +=,解之得正数a .【点睛】本题主要考查复数的除法和模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.【答案】48【解析】【分析】先求出频率分布直方图左边三组的频率和,再求全团共抽取的人数.【详解】由题得频率分布直方图左边三组的频率和为15(0.03750.0125)0.75-⨯+=所以全团抽取的人数为:212(0.75)6÷⨯=48.故答案为:48【点睛】本题主要考查频率分布直方图频率和频数的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.执行如图所示的程序框图,输出的k的值为_______.【答案】4【解析】试题分析:程序执行中的数据变化如下:133130,3,,,1,,,22244k a q a k a =====<= 313313312,,,3,,,4,,4488416164k a k a k =<==<==<成立,输出4k =考点:程序框图5.设x ∈[﹣1,1],y ∈[﹣2,2],记“以(x ,y)为坐标的点落在不等式221x y +≥所表示的平面区域内”为事件A ,则事件A 发生的概率为_______. 【答案】1﹣8π【解析】 【分析】利用几何概型的概率公式求事件A 发生的概率.【详解】由题得x ∈[﹣1,1],y ∈[﹣2,2],对应的区域是长方形, 其面积为24=8⨯.设事件A 发生的概率为P ,故P =88π-=1﹣8π.故答案为:1﹣8π【点睛】本题主要考查几何概型的概率的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.6.已知ABC ∆的边a ,b ,c 的对角分别为A ,B ,C ,若a b >且sin cos A Ca b=,则角A 的大小为_____. 【答案】2π【解析】 【分析】根据正弦定理化简边角关系可得cos sin C B =,从而可知0,2C π⎛⎫∈ ⎪⎝⎭,根据大边对大角的关系可知0,2B π⎛⎫∈ ⎪⎝⎭,从而可求得2B C π+=;根据三角形内角和可求得结果.【详解】由正弦定理得:sin cos 1sin sin A C A B ==,即cos sin C B = cos 0C ∴> 0,2C π⎛⎫∴∈ ⎪⎝⎭又a b > A B ∴> 0,2B π⎛⎫∴∈ ⎪⎝⎭由cos sin C B =得:sin sin 2C B π⎛⎫-=⎪⎝⎭2C B π∴-=,即2B C π+=()2A B C ππ∴=-+=本题正确结果:2π 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、根据三角函数值的符号确定角的范围、三角形内角和、三角形大边对大角的应用等.7.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a =_______. 【答案】8 【解析】 【分析】先求出3a 的值,再求5a 的值. 【详解】∵2434(1)a a a =- ∴2334(1)a a =-,则3a =2∴223512812a a a ===. 故答案为:8【点睛】本题主要考查等比中项的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是_______.【解析】 【分析】解方程[(0)]2f f =即得a 的值. 【详解】∵0(0)223f =+= ∴[(0)](3)log 2a f f f ==∵[(0)]2f f = ∴log 22a =, 因为0,a >所以解得a .故答案【点睛】本题主要考查分段函数求值,考查指数对数运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm 。

江苏省苏州市2024-2025学年高三上学期开学考试(期初阳光调研)数学试题

江苏省苏州市2024-2025学年高三上学期开学考试(期初阳光调研)数学试题

2025届高三年级期初阳光调研试卷数学2024.9注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 是虚数单位,则A. B. C. D.2.已知集合,,则A. B. C. D.3.将函数的图象先向左平移个单位,再将所得图象上所有点的纵坐标保持不变,横坐标变为原来的,得到函数的图象,则A. B.1D.-14.已知向量,,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.“绿水青山就是金山银山”的理念深入人心,人民群众的生态环境获得感、幸福感、安全感不断提升.某校高一年级举行环保知识竞赛,共500人参加,若参赛学生成绩的第60百分位数是80分,则关于竞赛成绩不小于80分的人数的说法正确的是A.至少为300人B.至少为200人C.至多为300人D.至多为200人6.已知正四棱锥的侧面积是底面积的2倍,则该正四棱锥侧棱和底面所成角的余弦值为B.2ii-=12i-12i--12i+12i-+{}26A x x =≤<{}240B x x x =-<A B = ()0,6()4,6[)2,4()[),02,-∞+∞ ()sin f x x =4π12()y g x =2g π⎛⎫= ⎪⎝⎭()1,1a =- ()22,b x x =- 2x =-a b ∥127.已知函数(e 为自然对数的底数),的零点分别为,,则的最大值为A.eB.C.1D.8.在平面直角坐标系xOy 中,A ,B 为双曲线右支上两点,若,则AB 中点横坐标的最小值为A.D.二、选择题:本题共3小题,每小题6分,共18分。

2019届江苏省淮安市高三5月信息卷(最后一模)考试数学试卷【含答案及解析】

2019届江苏省淮安市高三5月信息卷(最后一模)考试数学试卷【含答案及解析】

2019届江苏省淮安市高三5月信息卷(最后一模)考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 已知集合,若,则________ .2. 设复数z满足,(为虚数单位),则复数的实部为_________ .3. 函数的定义域为_________ .4. 某商场在五一黄金周的促销活动中,对 5月1日 9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为___________ 万元.5. 右图是一个算法流程图,则输出的值是_________ .6. 从中随机取出两个不同的数,则其和为奇数的概率为______________ .7. 已知圆锥的母线长为,高为,则此圆锥的底面积和侧面积之比为_________ .8. 已知函数,若曲线在点处的切线过原点,则实数的值为________ .9. 已知双曲线的右焦点到其一条渐近线距离为3,则实数的值是.10. 已知函数(),且(),则_________ .11. 设满足约束条件则目标函数的取值范围为________ .12. 已知等差数列的首项为,公差为,其前项和为.若存在,使得,则实数的最小值为________ .13. 在区间上存在,使得不等式成立,则实数的取值范围是________ .14. 如图,在等腰梯形中,,,,点,分别为,的中点.如果对于常数,在的四条边上,有且只有个不同的点使得成立,那么实数的取值范围为_________ .二、解答题15. 已知 .(1)若,求角的值;(2)求的最小值.16. 在三棱锥P-ABC中,D为AB的中点.(1)若与BC平行的平面PDE交AC于点E,求证:点为的中点;(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.17. 某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.18. 已知椭圆:()的离心率为,椭圆与轴交于两点,且.(1)求椭圆的方程;(2)设点是椭圆上的一个动点,且点在轴的右侧,直线与直线交于两点,若以为直径的圆与轴交于,求点横坐标的取值范围及的最大值.19. 已知数列,其前项和为.(1)若是公差为的等差数列,且也是公差为的等差数列,求数列的通项公式;(2)若数列对任意,且,都有,求证:数列是等差数列.20. 已知函数,直线为曲线的切线.为自然对数的底数.(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.21. [ 选修:几何证明选讲 ]如图,已知为的切线,为切点,直线交于点,过点作的垂线交于点,垂足为 .证明: .22. [ 选修:矩阵与变换 ]若圆在矩阵对应的变换下变成椭圆,求矩阵的逆矩阵 .23. [ 选修:坐标系与参数方程 ]已知曲线的极坐标方程是,直线的参数方程是(为参数).设直线与轴的交点是,是曲线上一动点,求的最大值.24. [ 选修:不等式选讲 ]实数满足,求证: .25. 如图,在直三棱柱中,已知,,,. 是线段的中点 .(1)求直线与平面所成角的正弦值;(2)求二面角的大小的余弦值.三、填空题26. 已知非空集合满足.若存在非负整数,使得当时,均有,则称集合具有性质.设具有性质的集合的个数为.(1)求的值;(2)求的表达式.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

江苏省苏州市八校联盟2023届高三下学期5月适应性检测(三模)数学试题

江苏省苏州市八校联盟2023届高三下学期5月适应性检测(三模)数学试题

2023届高三年级苏州八校三模适应性检测数学2023.5注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,阴影部分所表示的集合为A .()U AB ðB .()U B A ðC .()U A B ðD .()U B A ð2.为得到函数πcos()3y x =+的图象,只需将函数sin y x =的图象A .向左平移π6个长度单位B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.设函数2()2f x ax ax =-0a <)的定义域为D ,对于任意,m n D ∈,若所有点(,())P m f n 构成一个正方形区域,则实数a 的值为A .1-B .2-C .3-D .4-4.5G 技术的数学原理之一便是著名的香农公式:2log (1)SC W N=+,它表示在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.当信噪比SN比较大时,公式中真数里面的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至12000,则C 大约增加了(参考数据:lg 20.3010,lg30.4771,lg50.6990===)A .25%B .30%C .36%D .45%5.已知O 为坐标原点,点(1,0)A ,点P 在曲线21y x =+上,则向量OA −−→在向量OP −−→方向上的投影向量的长度的最大值为A 55B .12C 33D .22(第1题图)6.二项式n的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为A .3B .5C .6D .77.记方程①:210x ax ++=,方程②:220x bx ++=,方程③:240x cx ++=,其中a b c ,,是正实数.若a b c ,,成等比数列,则“方程③无实根”的一个充分条件是A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根8.若圆锥1SO ,2SO 的顶点和底面圆周都在半径为4的同一个球的球面上,两个圆锥的母线长分别为4,,则这两个圆锥重合部分的体积为A .8π3B .8πC .56π3D .56163π3+二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2019届高考信息卷数学Ⅰ(试题)一、填空题:请把答案直接填写在答题卡相应位置上......... 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =____.【答案】{}|12x x << 【解析】 【分析】利用交集定义直接求解. 【详解】集合A {x |0x 2}=<<,{}B x x 1=,A B {x |1x 2}∴⋂=<<.故答案为:{x |1x 2}<<.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.设i 是虚数单位,复数i2ia z -=的模为1,则正数a 的值为_______.【解析】 【分析】先化简复数,再解方程21144a +=即得解.【详解】由题得i 1i 2i 22a az -==--, 因为复数z 的模为1,所以21144a +=,解之得正数a【点睛】本题主要考查复数的除法和模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.【答案】48【解析】【分析】先求出频率分布直方图左边三组的频率和,再求全团共抽取的人数.【详解】由题得频率分布直方图左边三组的频率和为15(0.03750.0125)0.75-⨯+=所以全团抽取的人数为:212(0.75)6÷⨯=48.故答案为:48【点睛】本题主要考查频率分布直方图频率和频数的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.执行如图所示的程序框图,输出的k的值为_______.【答案】4 【解析】试题分析:程序执行中的数据变化如下:133130,3,,,1,,,22244k a q a k a =====<= 313313312,,,3,,,4,,4488416164k a k a k =<==<==<成立,输出4k =考点:程序框图5.设x ∈[﹣1,1],y ∈[﹣2,2],记“以(x ,y)为坐标的点落在不等式221x y +≥所表示的平面区域内”为事件A ,则事件A 发生的概率为_______. 【答案】1﹣8π 【解析】 【分析】利用几何概型的概率公式求事件A 发生的概率.【详解】由题得x ∈[﹣1,1],y ∈[﹣2,2],对应的区域是长方形, 其面积为24=8⨯.设事件A 发生的概率为P ,故P =88π-=1﹣8π.故答案为:1﹣8π【点睛】本题主要考查几何概型的概率的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.6.已知ABC ∆的边a ,b ,c 的对角分别为A ,B ,C ,若a b >且sin cos A Ca b=,则角A 的大小为_____. 【答案】2π【解析】 【分析】根据正弦定理化简边角关系可得cos sin C B =,从而可知0,2C π⎛⎫∈ ⎪⎝⎭,根据大边对大角的关系可知0,2B π⎛⎫∈ ⎪⎝⎭,从而可求得2B C π+=;根据三角形内角和可求得结果.【详解】由正弦定理得:sin cos 1sin sin A C A B ==,即cos sin C B = cos 0C ∴> 0,2C π⎛⎫∴∈ ⎪⎝⎭又a b > A B ∴> 0,2B π⎛⎫∴∈ ⎪⎝⎭由cos sin C B =得:sin sin 2C B π⎛⎫-=⎪⎝⎭2C B π∴-=,即2B C π+=()2A B C ππ∴=-+=本题正确结果:2π 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、根据三角函数值的符号确定角的范围、三角形内角和、三角形大边对大角的应用等.7.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a =_______. 【答案】8 【解析】 【分析】先求出3a 的值,再求5a 的值. 【详解】∵2434(1)a a a =- ∴2334(1)a a =-,则3a =2∴223512812a a a ===. 故答案为:8【点睛】本题主要考查等比中项的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是_______.【解析】 【分析】解方程[(0)]2f f =即得a 的值. 【详解】∵0(0)223f =+= ∴[(0)](3)log 2a f f f == ∵[(0)]2f f = ∴log 22a =, 因为0,a > 所以解得a故答案【点睛】本题主要考查分段函数求值,考查指数对数运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm 。

【答案】4 【解析】试题分析:设球半径为r ,则由3=V V V +球水柱可得32243863r r r r πππ⨯+⨯=⨯,解得4r =.考点:1.组合几何体的面积、体积.【思路点睛】本题考查几何体的体积,考查学生空间想象能力,解答时,首先设出球的半径,然后再利用三个球的体积和水的体积之和,等于柱体的体积,求解即可.10.在平面直角坐标系xOy 中,已知点A ,F 分别为椭圆C :22221(0)x y a b a b+=>>的右顶点、右焦点,过坐标原点O 的直线交椭圆C 于P ,Q 两点,线段AP 的中点为M ,若Q ,F ,M 三点共线,则椭圆C 的离心率为______. 【答案】13【解析】 【分析】根据P ,Q 关于原点对称假设(),Q m n ,(),P m n --,利用中点坐标公式可求得,22a m n M -⎛⎫- ⎪⎝⎭,利用三点共线可得//FQ FM ,利用向量共线可构造等式,从而求得离心率. 【详解】由题意知:P ,Q 关于原点对称,可设(),Q m n ,(),P m n -- 又(),0A a ,(),0F c ,则,22a m n M -⎛⎫-⎪⎝⎭(),FQ m c n ∴=-,,22a mn FM c -⎛⎫=--⎪⎝⎭ Q Q ,F ,M 三点共线 //FQ FM ∴()22n a m m c n c -⎛⎫∴--=- ⎪⎝⎭,整理可得:13c a = 即椭圆C 的离心率:13e = 本题正确结果:13【点睛】本题考查椭圆离心率的求解,关键是能够构造出关于,a c 的齐次方程,本题构造方程的关键是能够将三点共线转化为向量共线的关系,从而利用向量共线定理可求得结果.11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______. 【答案】(3π,+∞) 【解析】 【分析】不妨设120x x <<,则2121x x x x -=-,再根据函数的图像分析可得解. 【详解】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 【点睛】本题主要考查三角函数的图像和性质,意在考查学生对该知识的理解掌握水平和分析推理能力.12.已知圆C :22(1)(4)10x y -+-=上存在两点A ,B ,P 为直线x =5上的一个动点,且满足AP⊥BP,则点P 的纵坐标取值范围是_______. 【答案】[2,6] 【解析】 【分析】由题分析可得∠CPA 最大为45°,即sin∠CPA≥2,解不等式CA CP≥2即得解.【详解】要使AP⊥BP,即∠APB 的最大值要大于或等于90°, 显然当PA 切圆C 于点A ,PB 切圆C 于点B 时,∠APB 最大, 此时∠CPA 最大为45°,则sin∠CPA≥2, 即CA CP≥2, 设点P(5,0y )≥2, 解得2≤0y ≤6. 故答案为:[2,6]【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.13.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.【答案】5﹣【解析】 【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-,再求PM 的最小值得解.【详解】设圆心为O,AB 中点为D, 由题得22sin2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PMPC PA AC ⎧+=⎨-=⎩,两方程平方相减得2221944PC PA PM AC PM ⋅=-=-, 要使PC PA ⋅取最小值,就是PM 最小, 当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,2DM ∴==所以PM 有最小值为2,代入求得PC PA ⋅的最小值为5﹣故答案为:5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知实数a ,b ,c 满足2121a c b c e a b e +--+++≤(e 为自然对数的底数),则22a b +的最小值是_______. 【答案】15【解析】 【分析】设()(1)xu x e x =-+,求出函数的单调区间得到1x e x ≥+,再由题求出2121a c b c e a b e +--+=++,1,2c a c b +=-=,再利用二次函数的图像和性质求22a b +的最小值. 【详解】设()(1)xu x e x =-+,则()1xu x e '=-, 所以函数u(x)的增区间为(0,+∞),减区间为(-∞,0), 所以()(0)0u x u ≥=,即1x e x ≥+;可知21121121a c b c e a c b a e c b +--++++--+=++≥,当且仅当210a c b c +=--=时取等; 因为2121a c b c e a b e +--+++≤所以2121a c b c e a b e +--+=++,210a c b c +=--=. 所以1,2c a c b +=-=, 解得22222(1)51144245c c a b c c ++=+=++≥,当且仅当15c =时,取等号.故答案为:15【点睛】本题主要考查利用导数研究函数的单调性和最值,考查二次函数最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、解答题:请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤。

相关文档
最新文档