高中数学第二章平面向量22平面向量的线性运算第3课时课堂探究学案新人教A版必修4
人教A版高中数学必修4第二章 平面向量2.2 平面向量的线性运算教案
数学学科必修4模块第二单元教学设计方案
第五学时~第六学时
2.2平面向量的线性运算
(一)学习目标
11.掌握平面向量的正交分解及其坐标表示;
12.会用坐标表示平面向量的加、减与数乘运算.
13.会用坐标表示平面向量共线的条件,进而解决一些相关问题.
14.了解平面向量的基本定理及其意义.
22.通过探究学生体会正交分解定理的形成过程,培养学生观察,类比联想
等发现规律的一般方法,培养学生提出问题,分析问题和解决问题的能力.
23.使学生逐步养成独立思考与互助学习的素养,激发学生的学习兴趣和钻
研精神.
(二)重点难点
1.重点是让学生掌握平面向量正交分解下的坐标表示及其应用
2.难点是平面向量的基本定理及其意义.。
高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修
一级达标重点名校中学课件
2.本例(1)中,若点F为边AB的中点,设a=D→E,b=D→F,用a,b表示D→B. [解] 由题意ab==A12→A→BB--12AA→→DD,, 解得 AA→→BD==4323aa--2343bb,, 所以D→B=A→B-A→D=23a+23b.
一级达标重点名校中学课件
A,B,D三点共线.
(2)先用共线向量定理引入参数λ得
→ AP
=λ
→ AB
,再用向量减法的几何意义向
O→P=xO→A+yO→B变形,最后对比求x+y.
一级达标重点名校中学课件
(1)A,B,D
[(1)∵
→ AB
=e1+2e2,
B→D=
B→C+
→ CD
=-5e1+6e2+7e1-2e2=
2(e1+2e2)=2A→B.
A [对于①,b=-a,有a∥b; 对于②,b=-2a,有a∥b; 对于③,a=4b,有a∥b; 对于④,a与b不共线.]
一级达标重点名校中学课件
4.若|a|=5,b与a方向相反,且|b|=7,则a=________b. 【导学号:84352202】
-57 [由题意知a=-57b.]
一级达标重点名校中学课件
一级达标重点名校中学课件
2.点C是线段AB靠近点B的三等分点,下列正确的是( )
A.A→B=3B→C
B.A→C=2B→C
C.A→C=12B→C
D.A→C=2C→B
D [由题意可知:A→B=-3B→C;A→C=-2B→C=2C→B.故只有D正确.]
一级达标重点名校中学课件
3.如图2-2-27,在平行四边形ABCD中,对角线AC 与BD交于点O,A→B+A→D=λA→O,则λFra bibliotek________.
高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4
=(2,1).
(2)设点A(x,y),则x= | OA | cos 60=4 3cos 60=2 3,
y= OA sin 60=4 3sin 60=6, 即 A 2 3,6 , 所以
OA= 2 3,6 .
【方法技巧】平面向量坐标运算的技巧 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进 行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的 坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
(x1+x2,y1+y2); ①a+b= _______________ (x1-x2,y1-y2) ; ②a-b= _____________ (λx1,λy1) ③λa= ____________.
(2)重要结论:已知向量 y2),则 的起点A(x1,y1),终点B(x2,
(x2-x1,y2-y1) = _____________.
=(x-5,2-y+2)=(4,6),解得x=9,
2.已知四边形ABCD为平行四边形,O为对角线AC,BD的交点, =(3,7), =(-2,1).求 的坐标.
【解析】因为 DB AB -AD =(-2,1)-(3,7)=(-5,-6),
1 5 所以 OB DB (- ,-3). 2 2
(2)定义坐标:对于平面内的一个向量a,由平面向量基本定理 (x_______ ,y) xi+yj 则有序数对 知,有且只有一对实数x,y,使得a=_____. 叫做向量a的坐标. (3)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
3.平面向量的坐标运算
高中数学 第二章 平面向量 第二节 平面向量的线性运算(第三课时)示范教案 新人教A版必修4
第二章第二节 平面向量的线性运算第三课时整体设计 教学分析 向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a 是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路 1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a +a +a =3a ,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.思路 2.一物体做匀速直线运动,一秒钟的位移对应的向量为a ,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a 吗?怎样用图形表示?由此展开新课.推进新课新知探究提出问题①已知非零向量a ,试一试作出a +a +a 和-a +-a +-a .②你能对你的探究结果作出解释,并说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图1可发现,OC →=OA →+AB →+BC →=a +a +a .类似数的乘法,可把a+a +a 记作3a ,即OC →=3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a|=3|a |.同样,由图1可知,图1PN→=PQ→+QM→+MN→=(-a)+(-a)+(-a),即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律1λμa=λμa;2λ+μa=λa+μa;3λa+b=λa+λb.(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a 与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b 同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生作进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .解:(1)原式=(-3×4)a =-12a ;(2)原式=3a +3b -2a +2b -a =5b ;(3)原式=2a +3b -c -3a +2b -c =-a +5b -2c .点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图2,已知任意两个非零向量a 、b ,试作OA =a +b ,OB =a +2b ,OC =a +3b .你能判断A 、B 、C 三点之间的位置关系吗?为什么?图2活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A ,B ,C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:如图3,分别作向量OA →、OB →、OC →,过点A 、C 作直线AC .观察发现,不论向量a 、b怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.图3事实上,因为AB →=OB →-OA →=a +2b -(a +b )=b ,而AC →=OC →-OA →=a +3b -(a +b )=2b ,于是AC →=2AB →.所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3如图4,ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?图4活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.解:在ABCD 中,∵AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b ,又∵平行四边形的两条对角线互相平分, ∴MA →=-12AC →=-12(a +b )=-12a -12b , MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b , MD →=-MB →=-12DB →=-12a +12b . 点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证:EF →=12(AB →+DC →). 活动:教师引导学生探究,能否构造三角形,使EF 作为三角形中位线,借助于三角形中位线定理解决,或创造相同起点,以建立向量间关系.鼓励学生多角度观察思考问题.证法一:过点C 在平面内作CG →=AB →, 则四边形ABGC 是平行四边形,故F 为AG 中点.(如图5)图5∴EF 是△ADG 的中位线.∴EF 綊12DG . ∴EF →=12DG →. 而DG →=DC →+CG →=DC →+AB →,∴EF →=12(AB →+DC →). 证法二:如图6,连接EB 、EC ,则有EB →=EA →+AB →,EC →=ED →+DC →,图6 又∵E 是AD 的中点,∴EA →+ED →=0,即有EB →+EC →=AB →+DC →.以EB →与EC →为邻边作▱EBGC ,则由F 是BC 的中点,可得F 也是EG 的中点.∴EF →=12EG →=12(EB →+EC →)=12(AB →+DC →). 点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习,做到准确熟练运用.例2已知OA →和OB →是不共线向量,AP →=tAB →(t ∈R ),试用OA →、OB →表示OP →.活动:教师引导学生思考,由AP →=tAB →(t ∈R )知A 、B 、P 三点共线,而OP →=OA →+AP →,然后以AB →表示AP →,进而建立OA →,OB →的联系.本题可让学生自己解决,教师适时点拨.解:OP →=OA →+AP →=OA →+t ·AB →=OA →+t ·(OB →-OA →)=(1-t )·OA →+t ·OB →.点评:灵活运用向量共线的条件.若令1-t =m ,t =n ,则OP →=m ·OA →+n ·OB →,m +n =本节练习解答:1.图略.2.AC →=57AB →,BC →=-27AB →. 点评:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是BC →与AB →反向.3.(1)b =2a ;(2)b =-74a ;(3)b =-12a ;(4)b =89a . 4.(1)共线;(2)共线.5.(1)3a -2b ;(2)-1112a +13b ;(3)2y a . 6.图略.课堂小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2 A 组题11、12.设计感想1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a =0),它的几何意义是把向量a 沿a 的方向或a 的反方向放大或缩小,当λ>0时,λa 与a 方向相同,当λ<0时,λa 与a 方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的重要地位,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.备课资料一、向量的数乘运算律的证明设a 、b 为任意向量,λ、μ为任意实数,则有(1)λ(μa )=(λμ)a ; ①(2)(λ+μ)a =λa +μa ; ②(3)λ(a +b )=λa +λb . ③证明:(1)如果λ=0或μ=0或a =0,则①式显然成立.如果λ≠0,μ≠0,且a ≠0,则根据向量数乘的定义,有|λ(μa )|=|λ||μa |=|λ||μ||a |,|(λμ)a |=|λμ||a |=|λ||μ||a |.所以|λ(μa )|=|(λμ)a |.如果λ、μ同号,则①式两边向量的方向都与a 同向;如果λ、μ异号,则①式两边向量的方向都与a 反向.因此,向量λ(μa )与(λμ)a 有相等的模和相同的方向,所以这两个向量相等.(2)如果λ=0或μ=0或a =0,则②显然成立.如果λ≠0,μ≠0且a ≠0,可分如下两种情况:当λ、μ同号时,则λa 和μa 同向,所以|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a |,|λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |,即有|(λ+μ)a |=|λa +μa |.由λ、μ同号,知②式两边向量的方向或都与a 同向,或都与a 反向,即②式两边向量的方向相同.综上所述,②式成立.如果λ、μ异号,当λ>μ时,②式两边向量的方向都与λa 的方向相同;当λ<μ时,②式两边向量的方向都与μa 的方向相同.还可证|(λ+μ)a |=|λa +μa |.因此②式也成立.(3)当a =0,b =0中至少有一个成立,或λ=0,λ=1时,③式显然成立.当a ≠0,b ≠0且λ≠0,λ≠1时,可分如下两种情况:当λ>0且λ≠1时如图7,在平面内任取一点O 作OA →=a ,AB →=b ,OA 1→=λa ,A 1B 1→=λb ,则OB →=a +b ,OB 1→=λa +λb .图7由作法知AB →∥A 1B 1→,有∠OAB =∠OA 1B 1,|A 1B 1→|=λ|AB →|.所以|OA 1→||OA →|=|A 1B 1→||AB →|=λ. 所以△AOB ∽△A 1OB 1.所以|OB 1→||OB →|=λ,∠AOB =∠A 1OB 1. 因此O 、B 、B 1在同一条直线上,|OB 1→|=|λOB →|,OB 1→与λOB →的方向也相同.所以λ(a +b )=λa +λb .当λ<0时,由图8可类似证明λ(a +b )=λa +λb .图8所以③式也成立.二、备用习题1.13[12(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b答案:B2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( )A .1B .-1C .±1D .0答案:C3.若向量方程2x -3(x -2a )=0,则向量x 等于( )A.65a B .-6a C .6a D .-65a 答案:C4.在△ABC 中,AE →=15AB →,EF ∥BC ,EF 交AC 于F ,设AB →=a ,AC →=b ,则BF →用a 、b 表示的形式是BF →=________.答案:-a +15b 5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC平面上的任意一点,若OA →+OB →+OC →=13e 1-12e 2,则OM →+ON →+OP →=________. 答案:13e 1-12e 2.6.已知△ABC 的重心为G ,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,求证:OG →=13(a +b +c ). 答案:证明:连接AG 并延长,设AG 交BC 于M .∵AB →=b -a ,AC →=c -a ,BC →=c -b ,∴AM →=AB →+12BC →=(b -a )+12(c -b )=12(c +b -2a ). ∴AG →=23AM →=13(c +b -2a ). ∴OG →=OA →+AG →=a +13(c +b -2a )=13(a +b +c ). 7.对判断向量a =-2e 与b =2e 是否共线?有如下解法:解:∵a =-2e ,b =2e ,∴b =-a.∴a 与b 共线.请根据本节所学的共线知识给以评析.如果解法有误,请给出正确解法.答案:评析:乍看上述解答,真是简单明快.然而,仔细研究题目已知,却发现其解答存在问题,这是因为原题已知中对向量e 并无任何限制,那么就应允许e =0,而当e =0时,显然,a =0,b =0,此时,a 不符合定理中的条件,且使b =λa 成立的λ值也不唯一(如λ=-1,λ=1,λ=2等均可使b =λa 成立),故不能应用定理来判断它们是否共线.可见,对e =0的情况应用别的办法判断才妥.综上分析,此题应解答如下:解:(1)当e =0时,则a =-2e =0.由于“零向量与任一向量平行”且“平行向量也是共线向量”,所以此时a 与b 共线.(2)当e ≠0时,则a =-2e ≠0,b =2e ≠0,∴b =-a 〔这时满足定理中的a ≠0,及有且只有一个实数λ(λ=-1),使得b =λa 成立〕.∴a 与b 共线.综合(1)(2),可知a 与b 共线.。
高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义习题课件新人教A版必修4
思考题 2 已知 λ∈R,则下列命题正确的是( )
A.|λ a|=λ|a| C.|λ a|=|λ|·|a|
B.|λ a|=|λ|·a D.|λ a|>0
【答案】 C
题型二 向量共线定理的应用 例 3 设两个非零向量 a 与 b 不共线: (1)若A→B=a+b,B→C=2a+8b,C→D=3(a-b),求证:A、B、 D 三点共线; (2)试确定实数 k,使 ka+b 与 a+kb 共线.
要点 2 向量数乘的运算律 设 a,b 为任意向量,λ 、μ 为任意实数,则有 (1)λ(μa)=(λμ)a; (2)(λ+μ)a=λa+μa; (3)λ(a+b)=λa+λb. 要点 3 共线向量定理 向量 b 与非零向量 a 共线,当且仅当有唯一一个实数 λ,使 得 b=λa.
1.向量与实数可以求积,能求加、减运算吗? 答:不能,如 λ+a,λ-a 无意义.
-λ,y=λ,即 x+y=1. 【答案】 1
例 5 如图所示,D 是△ABC 的边 AB 上的中点,则向量C→D =( )
A.B→C-12B→A B.-B→C+12B→A C.-B→C-12B→A D.B→C-12B→A
【解析】 解法一 ∵D 是 AB 的中点,∴B→D=12B→A, ∴C→D=C→B+B→D=-B→C+12B→A. 解法二 由C→D=12(C→B+C→A)=12[C→B+(C→B+B→A)]=C→B+12 B→A=-B→C+12B→A. 【答案】 B
【解析】 (1)真命题,∵ 2>0,∴ 2a 与 a 同向. 又| 2a|= 2|a|,∴ 2a 的模是 a 的模的 2倍; (2)真命题.∵-3<0, ∴-3a 与 a 方向相反且|-3a|=3|a|. 又∵6>0,∴6a 与 a 方向相同且|6a|=6|a|. ∴-3a 与 6a 方向相反且模是 6a 的模的12;
高中数学 第二章 平面向量 2.2.3 向量数乘运算及其几何意义导学案 新人教A版必修4-新人教A版
2.2.3 向量数乘运算及其几何意义班级:__________姓名:__________设计人:__________日期:__________ ♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语一个人追求的目标越高,他的才力就发展得越快,对社会就越有益。
——高尔基学习目标1.掌握向量数乘运算的概念.2.能应用向量数乘运算的运算律化简数乘运算.3.掌握向量的共线定理及应用.学习重点平面向量数乘运算法则的应用.学习难点平面向量数乘运算法则的应用自主学习1.向量的数乘运算的概念(1)定义:实数λ与向量a的积是一个______.(2)运算律:①=②=③=特别地,( )= ( ),=. 2.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使_________.预习评价1.在四边形ABCD中,若,则此四边形是A.平行四边形B.菱形C.梯形D.矩形2.设,是两个不共线的向量,若向量m=-+ k(k∈R)与向量n= -2 共线,则A.k=0B.k=1C.k=2D.3.若向量,a满足2 -3( -2a)=0,则向量=________.4.向量a与b不共线,向量c=3a-b,d=6a-2b,则向量c与的关系_______.(共线,不共线)5. =___________.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.向量数乘的概念及运算根据向量数乘的概念,思考下面的问题:(1)向量数乘得到的依然是向量,那么它的方向由谁确定?(2)实数与向量数乘所得向量与原向量是否为共线向量?2.所得向量λa的几何意义是什么?3.向量的大小与方向如何?4.共线向量定理根据共线向量定理,探究下面的问题:(1)若向量a与向量b(b≠0)共线,则a=λb,如何确定λ的值?(2)定理中为何要限制a≠0?5.若向量a,b不共线,且λa=μb,则λ,μ的值如何?为什么?教师点拨1.对向量数乘的三点说明(1)向量的数乘是一个实数与一个向量相乘,其结果是一个向量,方向与λ的正负有关.(2)当λ=0时,λa=0.(3)向量的数乘运算要遵循向量的数乘运算律.2.共线向量定理的两个作用(1)证明线段平行,但要注意向量共线时,两向量所在的线段可能平行,也可能共线.(2)证明点共线,当两向量共线,且有公共点时,则表示向量的线段必在同一条直线上,从而向量的起点、终点必共线.交流展示——向量的数乘运算及理解已知向量a,b满足:|a|=3,|b|=5,且a=λb,则实数λ=A. B. C. D.变式训练设a是非零向量,λ是非零实数,则下列结论中正确的是 ( )A.a与λa的方向相同B.a与-λa的方向相反C.a与λ2a的方向相同D.|λa|=λ|a|交流展示——共线向量定理及其应用已知向量,,,则A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线变式训练在中,点是的中点,点在上,且,求证:,,三点共线.交流展示——向量线性运算的应用下列各式计算正确的个数是 ( )①(-7)·6a=-42a;②a-2b+2(a+b)=3a;③a+b-(a+b)=0.A.0个B.1个C.2个D.3个变式训练=A.2a−bB.2b−aC.b−aD.a−b学习小结1.向量的数乘运算方法(1)向量的数乘运算类似于代数的多项式的运算,其解题方法为“合并同类项”“提取公因式”,“同类项”“公因式”指的是向量,实数与向量数乘,实数可看作是向量的系数.(2)向量的求解可以通过列方程来求,将所求向量作为未知量,通过解方程的方法求解. 2.由共线向量定理求向量系数的步骤(1)把向量等式通过向量线性运算,转化为与另一个式子相同的形式.(2)由两等式相同知对应系数相同,列方程可求向量的系数.3.用共线向量定理证明三点共线的三个步骤(1)定向量:由三点可确定多个不同的向量.(2)证共线:证明两个向量共线.(3)得结论:说明三点共线.当堂检测1.化简下列各式:(1)-+--;(2)2(a+2b)+3(3a+2b)-4(a-b).2.已知向量a,b不共线,若向量a+λb与b+λa的方向相反,则实数λ的值为. 3.已知关于的方程有,则=A. B. C. D.无解4.在平行四边形ABCD中,,,,则________(用e1,e2表示).5.已知非零向量e1,e2,a,b满足a=2e1-e2,b=k e1+e2.(1)若e1与e2不共线,a与b共线,求实数k的值.(2)是否存在实数k,使得a与b不共线,e1与e2共线?若存在,求出k的值,否则说明理由知识拓展已知两个向量e1,e2不共线.如果a=e1+2e2,b=2e1-4e2,c=4e1-7e2,是否存在非零实数λ,μ,使得向量d=λa+μb与c共线?2.2.3 向量数乘运算及其几何意义详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】1.(1)向量λa,|λ||a|,相同相反0(2)①(λμ)a②λa+μa③λa+λbλa-aλa-λb2.b=λa【预习评价】1.C2.D3.6a4.共线5.2b-a♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)实数λ与向量a数乘,得到向量λa,其方向由λ的正负及向量a的方向共同确定(2)所得向量与原向量是共线向量.2.是把向量a沿a的方向放大(λ>1)或缩小(0<λ<1)到原来的λ倍或沿a的相反方向放大(λ<-1)或缩小(-1<λ<0)到原来的|λ|倍.3.向量的大小为1,方向与a的方向相同,所以该向量也是向量a方向上的单位向量.4.(1)当a,b同向时,λ=,当a,b反向时,λ=-.(2)共线向量定理中,若不限制a≠0,则当a=b=0时,λ的值不唯一,定理不成立.并且当b≠0,a=0时,λ的值不存在.5.:λ=μ=0.假设λ≠0,由于向量a,b不共线,则a≠0,b≠0,且a=b,从而a,b共线,与向量a,b不共线矛盾,可知λ=μ=0.【交流展示——向量的数乘运算及理解】C【变式训练】C【解析】只有当λ>0时,a与λa的方向相同,a与-λa的方向相反,且|λa|=λ|a|.因为λ2>0,所以a与λ2a的方向相同.【交流展示——共线向量定理及其应用】B【解析】本题主要考查平面向量的共线的定理与向量的应用,由于与有公共点B,因此A、B、D三点共线,故答案为B.【变式训练】证明:.因为,,所以.由于,可知,即.又因为、有公共点,所以、、三点共线.【解析】本题考查向量的运算法则、向量共线的充要条件、利用向量共线解决三点共线.【交流展示——向量线性运算的应用】C【解析】根据数乘向量的运算律可验证①②正确;③错误,因为向量的和、差及数乘运算的结果仍为一个向量,而不是实数.【变式训练】B【当堂检测】1.(1)原式=(-)-(+)=-0=.(2)原式=2a+4b+9a+6b-4a+4b=(2+9-4)a+(4+6+4)b=7a+14b.2.-1【解析】本题主要考查向量的相关知识,解题的关键是根据a+λb与b+λa的方向相反得到恒等式,进而得到关于λ的方程,从而得出λ的值.由a+λb与b+λa的方向相反得,a+λb=-k(b+λa),k>0,则λ=-k,-kλ=1,即λ2=1,又k>0,所以λ=-1,此时a+λb与b+λa的方向相反.3.B【解析】本题主要考查向量的线性运算.向量的线性运算同多项式的合并化简类似,具体解法如下:由已知得,则.4.5.(1)由,得,而与不共线,所以2,21k k λλ=⎧⇒=-⎨=-⎩. (2)不存在.若与共线,则, 有因为为非零向量,所以2λ≠且k λ≠-, 所以,即,这时与共线,所以不存在实数k 满足题意. 【知识拓展】显然c≠0,否则4e 1-7e 2=0,即e 1=e 2,与e 1,e 2不共线矛盾.又d=λa+μb=(λ+2μ)e 1+(2λ-4μ)e 2(λμ≠0),假设向量d=λa+μb 与c 共线,则存在一个实数γ,使得d=γc,即( λ+2μ)e 1+(2λ-4μ)e 2=4γe 1-7γe 2,从而,消去γ,得15λ=2μ(μ≠0).所以存在非零实数λ,μ,只要它们满足15λ=2μ(μ≠0),就能使得向量d 与c 共线.。
【2020】最新高中数学第二章平面向量2-2平面向量的线性运算2-2-1向量加法运算及其几何意义学案新人教A版必
提醒:(1)当两个向量不共线时,向量加法的三角形法则和平行四边形法则是统一的;(2)三角形法则作出的图形是平行四边形法则作出的图形的一半.
(2)用三角形法则或平行四边形法则画图.
(1)① ② ③ [(1)如题图,由已知得四边形DFCB为平行四边形,由向量加法的运算法则可知:
① + = + = .
② + = + = .
③ + + = + + = .
(2)①首先作向量 =a,然后作向量 =b,则向量 =a+b.如图所示.
②法一(三角形法则):如图所示,首先在平面内任取一点O,作向量 =a,再作向量 =b,则得向量 =a+b,然后作向量 =c,则向量 =(a+b)+c=a+b+c即为所求.
[自 主 预 习·探 新 知]
1.向量加法的定义
定义:求两个向量和的运算,叫做向量的加法.
对于零向量与任一向量a,规定0 =a+0=a.
2.向量求和的法则
三角
形法则
已知非零向量a,b,在平面内任取一点A,作 =a, =b,则向量A 叫做a与b的和,记作a+b,即a+b= + =
平行
四边
形法则
已知两个不共线向量a,b,作 =a, =b,以 , 为邻边作▱ABCD,则对角线上的向量A =a+b.
3.向量加法的运算律
(1)交换律:a+b=b+a.
(2)结合律:(a+b)+c=a+(b+c).
[基础自测]
1.思考辨析
(1)a+(b+c)=(a+b)+c.( )
(2) + =0.( )
(3)求任意两个非零向量的和都可以用平行四边形法则.( )
高中数学 第二章 平面向量 2.2 平面向量的线性运算(第
2.2 平面向量的线性运算(第2课时)课堂探究探究一向量的减法运算1.2.向量加减法化简的两种形式:(1)首尾相接且相加;(2)起点相同且相减.做题时,注意观察是否有这两种形式的向量出现.同时注意向量加法、减法法则的逆向运用.【典型例题1】化简下列各式:(1) AB-AC+BD-CD;(2)( AB+CD)+(BC+DE)-(EF-EA).解:(1) AB-AC+BD-CD=CB+BD-CD=CD-CD=0.(2)( AB+CD)+(BC+DE)-(EF-EA)=(AB+BC)+(CD+DE)-(EF-EA)=AC+CE-AF=AE-AF=FE.探究二用已知向量表示未知向量1.解决此类问题应搞清楚图形中的相等向量、相反向量、平行向量以及构成三角形三向量之间的关系,确定已知向量与被表示向量的转化渠道.2.通过表示向量的有向线段的字母符号运算来解决问题时,运算过程中,将“-”改为“+”,只需把表示向量的两个字母的顺序颠倒一下即可,如“-AB”改为“+BA”.3.在减法的逆运算中,一定要注意“共起点”“指向被减向量终点”这两个方面.【典型例题2】如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且AB=a,AC=b,AE=c,试用a,b,c表示向量BD,BE,CE.思路分析:寻找图形中已知向量与所表示向量的关系,再灵活运用三角形法则或平行四边形法则表示即可.解:∵四边形ACDE 为平行四边形,∴CD →=AE =c ,BC =AC -AB =b -a .∴BD =BC +CD =b -a +c , BE =AE -AB =c -a , CE =AE -AC =c -b .探究三向量减法的综合运用向量a +b ,a -b 的几何意义在证明、运算中具有重要的应用.对于平行四边形、菱形、矩形、正方形对角线具有的性质要熟悉并会应用.基本思路是:先对向量条件化简.转化,再找(作)图形(三角形或平行四边形),确定图形的形状,利用图形的几何性质求解.【典型例题3】 已知O 为四边形ABCD 所在平面外的一点,且向量OA ,OB ,OC ,OD 满足OA +OC =OB +OD ,则四边形ABCD 的形状为________.解析:∵OA +OC =OB +OD ,∴OA -OD =OB -OC ,∴DA =CB .∴|DA |=|CB |,且DA ∥CB ,∴四边形ABCD 是平行四边形.答案:平行四边形。
高中数学 第二章 平面向量 2.2 平面向量的线性运算导学案(无答案)新人教A版必修4
2.2.1向量加法运算及其几何意义学习目标1.通过实例,掌握向量加法运算,并理解其几何意义。
2.通过将向量运算与熟悉的数的运算进行类比,掌握向量加法运算的交换律和结合律,并会用它们进行向量计算, 体会数形结合、类比的数学思想。
学习任务 阅读课本74~76页,回答下列问题.1.什么是向量加法?向量加法的三角形法则是什么?(作图说明)练习1. 课本84页1题 练习2. 课本91页2题 2.向量加法的平行四边形法则是什么?(作图说明)练习3. 课本84页 2题★ 总结:向量加法的三角形法则和平行四边形法则的要点是什么?3.完成课本82页的思考与探究,并归纳| a +b |与| a |,| b |的关系.(1)当a 与b共线同向时,b a 与________同向,且||b a _______||||b a ;当a 与b共线反向时,若||||b a ,b a 与________同向,且||b a _______||||b a ; 若||||b a ,b a 与________同向,且||b a _______||||b a; (2)当a 与b不共线时,||b a _______||||b a .练习4.下列各式正确的是 ( )A .若a ,b 同向,则有| a | + | b | = | a +b |B .a + b 与| a | + | b |表示的意义相同C .若a ,b 不共线,则有| a + b | > | a | + | b |D . | a | < | a + b | 恒成立练习5.已知4||,6|| AC AB ,则||BC 的取值范围为 4.完成课本82页的探究,并归纳向量的加法有那些性质?练习6. 课本84页 3,4题 课本91页4(1)(2)(3) 5.在平行四边形ABCD 中,BA DC BC 等于( ) A 、BD B 、DB C 、BC D 、CB6.若a 表示向东走,8km ,b 表示向北走km 8,则b a = km,b a 的方向是2.2.2向量减法运算及其几何意义学习目标1.通过实例,掌握向量减法运算,并理解其几何意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 平面向量的线性运算(第3课时)
课堂探究
探究一向量数乘的运算
向量的数乘运算类似于代数的多项式的运算,其解题方法为“合并同类项”“提取公因式”,“同类项”“公因式”指的是向量,实数与向量数乘,实数可看成是向量的系数.【典型例题1】计算:
(1)4(a+b)-3(a-b)-8a;
(2)(5a-4b+c)-2(3a-2b+c);
(3) 2
3
11
4367
34
⎡⎤
(-)+-(-)
⎢⎥⎣⎦
a b b a b.
思路分析:运用向量数乘的运算律求解.
解:(1)原式=4a+4b-3a+3b-8a=-7a+7b.
(2)原式=5a-4b+c-6a+4b-2c=-a-c.
(3)原式=2
3
137 43
324
⎛⎫-+-+
⎪⎝⎭
a b b a b
=2
3
511
212
⎛⎫
-
⎪⎝⎭
a b
=5
3
a-
11
18
b.
【典型例题2】设向量a=3i+2j,b=2i-j,求
1
3
⎛⎫
-
⎪
⎝⎭
a b-
2
3
⎛⎫
-
⎪
⎝⎭
a b+(2b-a).
解:原式=1
3
a-b-a+
2
3
b+2b-a
=
1
11
3
⎛⎫
--
⎪
⎝⎭
a+
2
12
3
⎛⎫
++
⎪
⎝⎭
b
=-5
3
a+
5
3
b=-
5
3
(3i+2j)+
5
3
(2i-j)
=
10
5
3
⎛⎫
-+
⎪
⎝⎭
i+
105
33
⎛⎫
--
⎪
⎝⎭
j
=-5
3
i-5j.
探究二共线向量定理及其应用
共线向量定理是判断两个向量是否共线的依据,即对于非零向量a,b,a∥b是否成立,关键是能否确定唯一的实数λ,使b=λa.而对于三点共线问题可转化为两个向量共线问
题,再依据定理进行解决:
要证A,B,C三点共线,只需证AB=λAC (λ∈R)或AB=λBC (λ∈R).
【典型例题3】已知向量e1和e2不共线.
(1)若AB=e1+e2,BC=2e1+8e2,CD=3(e1-e2),求证:A,B,D三点共线;
(2)欲使k e1+e2和e1+k e2共线,试确定实数k的值.
思路分析:对于(1),欲证明A,B,D三点共线,只需证明存在实数λ,使BD=λAB 即可.对于(2),若k e1+e2与e1+k e2共线,则一定存在实数λ,使k e1+e2=λ(e1+k e2).解:(1)∵AB=e1+e2,BD=BC+CD=2e1+8e2+3e1-3e2=5(e1+e2)=5AB,∴AB,BD共线,且有公共点B,
∴A,B,D三点共线.
(2)∵k e1+e2与e1+k e2共线,
∴存在实数λ使k e1+e2=λ(e1+k e2),
则(k-λ)e1=(λk-1)e2.由于e1与e2不共线,
只能有
10 k
k
λ
λ
⎧
⎨
⎩
-=,
-=,
则k=±1.
探究三数乘向量运算的综合应用
1.用已知向量表示未知向量是用向量解题的基本功,解题时,应注意解题的方向,尽量把未知向量往已知向量的方向进行转化.要善于利用三角形法则、平行四边形法则,以及向量线性运算的运算律.如果题目中含有平面几何的相关问题时,我们可以利用平面几何的性质进行化简.另外,直接表示较困难时,应考虑方程思想的应用.
2.注意以下结论的运用:
(1)以AB,AD为邻边作▱ABCD,且AB=a,AD=b,则对角线所对应的向量AC=a +b,DB=a-b.
(2)在△ABC中,若D为BC的中点,则AD=1
2
(AB+AC).
(3)在△ABC中,若G为△ABC的重心,则GA+GB+GC=0.
【典型例题4】已知P是△ABC所在平面内的一点,若CB=λPA+PB,其中λ∈R,则点P一定在( )
A.△ABC的内部B.AC边所在直线上
C.AB边所在直线上D.BC边所在直线上
思路分析:∵CB=λPA+PB,∴CB-PB=λPA,
∴CB +BP =λPA ,
∴CP =λPA ,∴CP 与PA 共线.
∴C ,P ,A 三点共线,故选B.
答案:B
【典型例题5】 已知在▱ABCD 中,M ,N 分别是DC ,BC 的中点.若AM =e 1,AN =e 2,试用e 1,e 2表示DB ,AO .
解:∵M ,N 分别是DC ,BC 的中点,
∴MN //12
BD . ∵MN =AN -AM =e 2-e 1,
∴DB =2MN =2e 2-2e 1.
又∵AO 是△AMN 的中线,
∴AO =12 (AN +AM )=12e 2+12
e 1. 探究四易错辨析
易错点:向量的起点、终点弄不清楚,导致向量表示错误
【典型例题6】 已知E ,F 分别为四边形ABCD 的边CD ,BC 的中点,设AD =a ,BA =b ,则EF =( ) A. 12
(a +b ) B .-12(a +b ) C .-12(a -b ) D. 12
(a -b ) 错解:如图,连接BD ,则EF =12DB =12 (AD -AB )=12
(a +b ).
故选A.
错因分析:向量DB →用向量的差表示时,DB →的终点应该为被减向量的终点.
正解:EF=1
2
DB=
1
2
(AB-AD)=
1
2
(-BA-AD)=
1
2
(-b-a)=-
1
2
(a+
b),故选B.
答案:B
点评在向量的线性运算中,向量的差、向量的方向都是易错点,在运算中要高度重视.另外,几何图形的性质还要会准确应用.。