2016 Sparse Word Embeddings Using Regularized Online Learning

合集下载

人工智能领域中英文专有名词汇总

人工智能领域中英文专有名词汇总

名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。

自然语言理解模型

自然语言理解模型

自然语言理解模型
自然语言理解模型是人工智能领域中一种重要的技术,它使得计算机可以理解和解析人类语言,从而进行更自然和流畅的人机交互。

以下是自然语言理解模型的一些主要类型:
1. 词袋模型(Bag-of-Words Model):这是最简单的自然语言理解模型,它将文本表示为词语的集合,忽略了词语之间的顺序和语法结构。

2. N-gram模型:基于词袋模型,考虑了相邻词语之间的关系,通过计算相邻词语的概率来预测下一个词语。

3. 词嵌入模型(Word Embedding Model):将词语映射到低维向量空间,通过计算词语之间的相似度来理解文本。

4. 循环神经网络(Recurrent Neural Network):RNN是一种可以处理序列数据的神经网络,它能够记忆前序数据,适合处理自然语言这种序列数据。

5. 长短期记忆网络(Long Short-Term Memory):LSTM是一种特殊的RNN,可以解决RNN在处理长序列时出现的梯度消失问题,更好地处理自然语言数据。

6. 变压器(Transformer):Transformer是一种全新的神经网络结构,通过自注意力机制和多头注意力机制来理解上下文信息,在自然语言处理任务中取得了很好的效果。

7. BERT(Bidirectional Encoder Representations from Transformers):BERT是一种基于Transformer的自然语言理解模型,通过对语言数据进行双向编码和理解,可以更好地捕捉上下文信息。

文献外部特征的检索语言

文献外部特征的检索语言

文献外部特征的检索语言外部特征的检索语言是指在文献检索中使用的特定术语或关键词,用于寻找与特定主题或研究领域相关的外部特征的文献。

这些外部特征可能涉及物体表面的形态、纹理、颜色、特定结构或其他性质,或者涉及人体的某些特定特征或行为。

以下是一些与外部特征相关的常用检索语言的示例:1. 表面形态特征:- 均匀性(uniformity)- 曲率(curvature)- 平滑度(smoothness)- 粗糙度(roughness)- 几何形状(geometric shape)- 表面形貌(surface topography)- 表面形态(surface morphology)2. 表面纹理特征:- 纹理特征(texture features)- 纹理描述(texture descriptors)- 纹理分析(texture analysis)- 纹理判别(texture discrimination)- 纹理识别(texture recognition)- 纹理提取(texture extraction)- 纹理模型(texture model)- 纹理分类(texture classification)3. 表面颜色特征:- 颜色特征(color features)- 颜色分布(color distribution)- 颜色模型(color model)- 颜色空间(color space)- 颜色直方图(color histogram)- 颜色特征提取(color feature extraction)- 颜色描述符(color descriptor)4. 特定结构特征:- 细胞结构(cellular structure)- 晶格结构(lattice structure)- 分子结构(molecular structure)- 生物组织结构(biological tissue structure)- 表表面结构(surface structure)- 微观结构(microstructure)5. 人体特征:- 人脸特征(facial features)- 身体形态(body shape)- 手部特征(hand features)- 骨骼结构(skeletal structure)- 步态分析(gait analysis)- 视觉注意(visual attention)- 姿势识别(pose recognition)- 表情识别(facial expression recognition)以上仅是外部特征检索语言的示例,实际应用中需要根据具体的研究领域和研究目的进行调整和进一步扩展。

gpt 中文润色指令

gpt 中文润色指令

gpt 中文润色指令1.引言1.1 概述随着人工智能技术的快速发展,GPT(Generative Pre-trained Transformer)作为一种自然语言处理的模型在近年来取得了很大的突破。

GPT模型在处理英文文本方面已经非常成熟,并且在多个任务上展现出了强大的能力。

然而,对于中文文本的处理,尤其是在润色方面,依然存在一些挑战。

GPT模型的优势在于其能够根据训练数据的模式和结构来生成与之类似的文本。

而在中文润色领域,我们希望通过GPT模型的运用,对文章进行细致的调整和改进,使得表达更加准确、通顺、流畅。

本文将详细介绍GPT模型的基本原理和中文润色指令的使用方法。

通过深入剖析GPT中文润色指令的功能和特点,我们可以更好地理解如何利用GPT模型来对中文文本进行优化。

同时,我们也将探讨GPT模型在中文润色领域的应用前景和潜力。

通过本文的阅读,读者将了解到GPT模型在中文润色方面的潜力以及如何使用中文润色指令来优化文本。

这对广大中文写作者和编辑人员来说是非常有价值的。

GPT中文润色指令的应用将大大提高中文文本的质量和可读性,使得文本更具有吸引力和逻辑性。

在接下来的章节中,我们将先介绍GPT模型的基本原理和其在英文文本处理上的应用。

然后,我们将重点介绍GPT模型在中文润色方面的挑战和解决方法。

最后,我们将对GPT中文润色指令的使用进行详细的解释和示范。

通过这样的组织结构,读者可以逐步了解到GPT中文润色指令的具体操作和效果。

虽然GPT中文润色指令在中文文本处理方面仍然面临一些困难和挑战,但是我们相信通过持续的研究和改进,GPT模型在中文润色领域的表现将会越来越出色。

我们期待着GPT中文润色指令在未来发展中的突破和创新,为中文写作和编辑工作带来更多的便利和效益。

【1.2 文章结构】本文将按照以下结构进行阐述:引言、正文和结论。

具体而言,引言部分将概述本文的主题,介绍GPT和中文润色指令的背景和意义,并明确本文的目的。

一种基于数据挖掘技术的洗钱可疑账户混合检测方法(IJITCS-V8-N5-4)

一种基于数据挖掘技术的洗钱可疑账户混合检测方法(IJITCS-V8-N5-4)

I.J. Information Technology and Computer Science, 2016, 5, 37-43Published Online May 2016 in MECS (/)DOI: 10.5815/ijitcs.2016.05.04A Hybrid Approach for Detecting SuspiciousAccounts in Money Laundering Using DataMining TechniquesCh. SureshDepartment Of Computer Science and Engineering, GITAM University Visakhapatnam, Andhra Pradesh, IndiaE-mail: sureshchalumuru@Dr. K. Thammi ReddyDepartment Of Computer Science and Engineering, GITAM University Visakhapatnam, Andhra Pradesh, India,E-mail: thammireddy@N. SwetaDepartment Of Computer Science and Engineering, GITAM University Visakhapatnam, Andhra Pradesh,India,E-mail: n.sweta179@Abstract—Money laundering is a criminal activity to disguise black money as white money. It is a process by which illegal funds and assets are converted into legitimate funds and assets. Money Laundering occurs in three stages: Placement, Layering, and Integration. It leads to various criminal activities like Political corruption, smuggling, financial frauds, etc. In India there is no successful Anti Money laundering techniques which are available. The Reserve Bank of India (RBI), has issued guidelines to identify the suspicious transactions and send it to Financial Intelligence Unit (FIU). FIU verifies if the transaction is actually suspicious or not. This process is time consuming and not suitable to identify the illegal transactions that occurs in the system. To overcome this problem we propose an efficient Anti Money Laundering technique which can able to identify the traversal path of the Laundered money using Hash based Association approach and successful in identifying agent and integrator in the layering stage of Money Laundering by Graph Theoretic Approach.Index Terms—Data mining, Anti Money Laundering, FIU, Hash Based Mining, and Traversal Path.I. I NTRODUCTIONMoney laundering is a process of converting unaccountable money in to accountable money. Day to day the technology is getting updated and in this fast changing technology many merits as well as demerits are associated. With the advent of E-Commerce the world has been so globalized and further the technology has made everything so user friendly that with a single click of a button, many transactions can be performed. Fraud Detection is mandatory since it affects not only to the financial institution but also to the entire nation. This criminal activity is appearing more and more sophisticated and perhaps this might be the major reason for the difficulty in fraud detection. This criminal activity leads to various adverse effects ranging from drug trafficking to financial terrorism. Traditional investigative techniques consume numerous man-hours. Data Mining is an area in which huge amounts of data are analyzed in different dimensions and angles and further categorized and then eventually summarized in to useful information. Data Mining is the process of finding correlation or patterns among dozens of fields in large databases. The governing bodies like Reserve Bank of India, Securities and Exchange Board of India have listed out various guidelines to the financial institutions. All the banks collect the list of transactions which is not in accordance with the Reserve Bank of India (RBI) and then submit it to Financial Investigation Unit (FIU) for further investigation. The FIU identifies the money laundering process from the statistical information obtained from various banks. This process is becoming more and more complicated since the count of suspicious transactions is increasing substantially and the rules imposed by RBI alone is not sufficient to monitor this criminal activity. The three stages of money laundering include Placement, Layering and Integration. The placement stage is the stage where in the actual criminal person disposes all the illegal cash to a broker. This broker or agent is responsible for distributing money. In the layering stage the cash is spread into multiple intermediaries that can include banks and other financial institution. The major issue lies in this layering stage of money laundering because here the transfer of money may be from one to one or one-to-many .The difficulty arises in tracing out all the chaining of transactions. In the integration stage all the cash is transferred to a beneficiary often called as Integrator. At this stage all the transactions are made legal. To trace out the dirty proceeds immediately this proposed framework aims atdeveloping an efficient tool for identifying the accounts, transactions and the amount involved in the layering stage of money laundering. The rest of the paper is organized as follows; the literature survey is presented in section-2 of the paper, section3 of the paper deals with the proposed method. Section 4 the experimental analysis and in section 5 the conclusion and Further Enhancement has been explained.II. L ITERATURE R EVIEWGordon has given the detailed analysis of money laundering. Emerging markets have loose regulations with respect to anti money laundering. Money launderers often set up trade companies and have it acquire highly marketable goods and resell it well below market prices. This gives an unfair advantage to the fraudulent companies because they are not concerned about profits as legitimate business is. This destroys competition in the free market. Also fraudulent companies can obtain much cheaper financing from illegal sources than legitimate businesses that needs financing from free markets. Governments are worried about two implications of money laundering one is, money laundering acts as mechanism to aid terrorist financing and second is, money laundering reduces government tax revenues in a wide variety of ways. The underlying concern is that anti-money laundering efforts, in nature, is a detective mechanism and it will never be able to detect all criminal acts (Killick& Parody, 2007).Anti money laundering detection theories like Know-your-customer, Customer due diligence, monitoring client activities etc were identified by financial industry regulators.R.cory Watkins et al. [6] has mentioned that from the time of layering stage criminals tries to pretend that laundered money looks like as funds from legal activities and that cannot be differentiated normally. Traditional investigative approaches use to uncover money laundering patterns can be broken down into one of three categories: Identification, detection avoidance and supervision.Nhien An Le Khac et al. [1][2][3] constructed a data mining based solutions for examining transactions to detect money laundering and suggested an investigating process based on different data mining techniques such as Decision tree, genetic algorithm and fuzzy clustering. By merging natural computing techniques and data mining techniques; knowledge based solution were proposed to detect money laundering. Different approaches were proposed for quick identification of customers for the purpose of application of Anti money laundering. In their paper implemented an approach where in they determined the important factors for investigating money laundering in the investment activities and then proposed an investigating process based on clustering and neural network to detect suspicious cases in the context of money laundering. In order to improve running time heuristics such as suspicious screening were applied. Yang Qifeng et al. [4] in their paper mentioned that online payment becomes a convenient way to launder money with development of e-commerce. They constructed an anti-money laundering system as a service function of union bank center. This system can monitor and analyze the transaction data dynamically, and provide auxiliary judgment and the decision support for anti-money launderingJong Soo Park et al. [8] in their paper examined the issue of mining association rules among items in a large database of sale transactions. The problem of discovering large item sets can be solved by construction of candidate set of item sets first and then identifying within this item set those item sets that need the large item set requirement. The generation of smaller candidate sets enables us to effectively trim the transaction database size at a much earlier stage of the iteration thereby reducing the computational cost.PankajRichhariya et al.[7] views on fraud detection is owing to levitate and rapid escalation of E-commerce, cases of financial fraud allied with it are also intensifying which results in trouncing of billions of dollars worldwide each year. They provided a comprehensive and review of different techniques like credit card fraud detection, online auction fraud, telecommunication fraud detection, and computer intrusion technique. The disadvantage with the intrusion detection system has poor portability because the system and its rule set must be specific to the environment being monitored.Jiawei Han et al. [5] in their book focused on improving the efficiency of apriori algorithm and then explained Hash based technique to reduce the size of candidate k –tem set, Ck, for k>1.Liu khan.et.al [9] proposed a model for identification of suspicious financial transactions using support vector machine. In support vector machine classification the random selection of parameters affects the results and he proposed a method to select appropriate parameters using cross validation. Srrekumar.et.al [10] has reviewed various data mining techniques that are used to detect money laundering which consists of huge amount of banking transactions data from day to day activities. He provided an insight into it.G.Krishna priya,Dr.M.Prabakaran[11] proposed a time variant approach using the behavioral patterns where the transaction logs are split are various timing windows and depend upon it they generated the behavioral patterns of the customer. By the proposed approach it not only identifies the suspicious accounts but also identifies the group accounts which are involved in money laundering Denys A. Flores, Olga Angelopoulos [14] projected an useful system for Anti Money Laundering which observe and checks the transactions depending on various techniques. The link analysis is the important technique which is used to make stronger the analyst belief. By combing the rule based approach and risk based approach the risk based approach can achieve the customer profile and transaction risky score. The authors used the clustering module to decrease the false positive alarms that may fatigue the Money laundering investigatorsIn India the scenario is: at individual level, based on the guidelines given by Reserve Bank of India, Banksdetermine few transactions which seem to be suspicious and send it to Financial Intelligence Unit (FIU). FIU verifies if the transaction is actually suspicious or not. This process is very time consuming and not suitable to tackle money obtained illegally. Hence it is very important to construct an efficient anti money laundering which goes very helpful for banks to report suspicious transactions. Hence this paper aims to improve the efficiency of the existing anti money laundering techniques. The suspicious accounts of the layering stage of the money laundering process are identified by generating frequent transactional datasets using Hash based Association mining. The generated frequent datasets will then be used in the graph theoretic approach to identify the traversal path of the suspicious transactions.III. P ROPOSED S YSTEMIdentifying Money Laundering is very difficult task due to vast number of transactions were involved. To overcome this problem we propose a method which makes use of Hash based association mining for generating frequent transactional datasets and a graph theoretic approach for identifying the traversal path of the suspicious transactions, using which all possible paths between agent and integrator are identified. This Graph Theoretic approach seems to be interesting, because they can detect complex dependencies between transactions. It is also possible to take into account properties and relations of entities involved in sending and receiving the transfers.The proposed system uses Hashing Technique to generate frequent accounts. A synthetic transactional database was used to experiment the proposed method The same scenario which is similar to the present banking system is considered each individual bank’s data that is stored in Databases say Data base1, Database 2...and so on are taken together and combined to form a single large database. Now the data of this large database has to be pre-processed in order to obtain data which is free from all null and missing or incorrect values. A hash based technique is applied on the transactional dataset to obtain a candidate set of reduced size. From this reduced size of candidate set we obtain Frequent-2 item set. This frequent-2 item sets further forms the edges and nodes of the graph. On applying the ‘Longest Path in a directed acyclic graph’ algorithm we obtain the path in which large amount has been transferred. On the basis of in-degree and out-degree of each node, we determine agent and integrator.Fig.1. Proposed System Model for detecting money laundering using Hash Based Association Mining.The proposed system is represented in two stepsStep1:Applying hash based technique to generate frequent 2 item set. This technique is used to reduce the candidate k-items, Ck, for k>1.The formula for hash function used here for creating Hash Table isℎ(x,y)=((order of x∗10)+order of y)mod 7(1) Step 2:Identifying suspicious transactions path using graph theoretic approach•Linking all the transactions sequentially and generating a graph by considering each account inthe frequent item set as a node.•For each link between the transaction, assign weights to reflect the multiplicity of theoccurrence and hence the strength of the path.•Finding the in-degree and out-degree of each nodeand determining agent and integrator.The Hashing Technique which is adopted but the same iterative level wise approach of apriori algorithm is followed. This means that K-item sets are used to explore (k+1) item sets.A. Hash Based Technique overAprioriAlgorithm:A hash based technique can be used to reduce the size of the candidate k-item sets, Ck, for k>1. This is because in this technique we apply a hash function to each of the item set of the transaction.Suppose for equation (1), we have an item set {A1, A4}, then x=1 and y=4.Hence h (1, 4) = ((1*10) +4) mod 7=14 mod 7=0.Now we place {A1, A4} in bucket address 0.Likewise we fill the hash table and record the bucket count. If any bucket is having count less than the minimum support count, then that whole bucket (i.e. its entire contents) is discarded)All the undeletedbucketcounts now form elements of candidate set.Thus now we have a candidate item set which is smaller in size and hence we need to scan the database less number of times to find the frequent item sets thereby improving the efficiency of apriori algorithm. Candidate 2-item set generation:All the contents of the undeleted hash table contents are copied and then the duplicate transactions are eliminated. Then we obtain candidate 2 item set.Transitivity relation: As at a time only 2 accounts are involved in a transaction, to find the chaining of accounts, we have used the mathematical transitivity relation, i.e., if A->B and B->C, then A->B->C.Frequent 3 item sets: From the transitivity relation we obtain 3 item sets. These item sets have the amount associated with it.Generating a sequential traversal path:From the frequent accounts, we can create the edges of the graph and also the weight of each edge is equal to the amount transferred between those two accounts.Longest path in a directed acyclic graph:There are many paths in the graph. Now to find the most suspicious path, we are applying this algorithm and getting the path with the total amount. The entire implementation can be understood by considering a small example of twenty two transactions.•Step 1: Generating frequent accounts using hashing: Consider a small transaction dataset of 22transactions. On this set of 22 transactions hashformula is applied equ (1) is applied.Here x= from_acc_id and y=to_acc_idNow all these 22 transactions are grouped in to different indexes in hash table. Now the bucket count is calculated for each bucket.Table 1. Generation of 2 item set using hash based approachNow all these 22 transactions are grouped in todifferent indexes in hash table. Now the bucket count iscalculated for each bucket.Table 2. Bucket table with bucket countsEnter the minimum bucket count (say 2).Then all the bucket whose total count is less than theminimum bucket will be deleted with all its contents.Here bucket 4 is deleted.Minimum Bucket Count=2Table 3. Bucket table for item sets and minimum support countNow the left over transactions in the buckets are takenand then their actual count in database is recorded.Table 4. The bucket count and actual count are recordedMinimum Support Count =2Now all the transactions which have occurred 2 or more no of times are taken in to Frequent -2 item sets. Thus the obtained frequent-2 Transactions are:Table 5.Frequent 2 accounts with their support count• Step 2: Finding the traversal pathVarious paths are identified by connecting all the frequent accounts as nodes.Fig.2. Identifying agent and integrator using graph theoretic approachIV. E XPERIMENTAL A NALYSISThe proposed system is accessed using a 17000. We have taken a synthetic transaction dataset from multiple banks over a period of 120 days. We consider here transaction datasets up to seventeen thousand sizes. For different dataset we select different tables and enterdifferent valuesof support/threshold count. We first apply hashing technique to generate frequent 2 item sets.Table 6. Experiments carried over different Data setsThis is the result obtained after applying Hashing Technique. We observe that when the no of transactions in the data set increases, the no of frequent account also increases. However if we increase the support count value to a large value then a few no of frequent transactions are obtained as in the last case of our experiment.A graph can be plotted as Size of dataset v/s No of frequent transactions.Fig.3. GraphofsizeofDatasetsv/s No of frequent transactionsThe Algorithm to find the longest path in a directed acyclic graph is applied on these frequent transactions in each of the above four cases. We get the following results.Table 7.Identifying the longest path by varying the size of datasets andsupport count Similarly we can find a path between any two frequent accounts using this algorithm.For Eg: we can find the path between 31 and 49 in 10000 dataset transaction giving minimum bucket count as 1400 and minimum support count as 4.31->96->86->36->49.V.C ONCLUSIONS &F UTURE W ORKThe proposed system improve the efficiency of the existing anti money laundering techniques by identifying the suspicious accounts in the layering stage of money laundering process by generating frequent transactional datasets using Hash based Association mining. The generated frequent datasets will then be used in the graph theoretic approach to identify the traversal path of the suspicious transactions. We were successful in finding the agent and integrator in the transaction path. In our solution, we have considered the frequent accounts as the parameter and have obtained a chaining of accounts. These accounts have the highest possibility of being suspicious as there are involved in huge amount of transactions frequently. The solution proposed here is highly advantageous over the existing anti-money laundering rules.Further enhancement: With the chaining of accounts, we can further develop a system which identifies the sure relation between these identified suspicious accounts using concepts like ontology. The relation between these accounts can give us additional information like whether the involved criminal people are belonging to same occupation or to the same location etc.The frequent accounts should not be the only criteria for finding out the suspicious transaction as there may be a case when the transaction does not occur frequently but even then they are illegal. To trace out such cases additional parameters have to be considered.A CKNOWLEDGMENTI acknowledge the management, principal and coordinator of TEQIP for providing the Research assistantship to carry out the above work under TEQIP phase-II, sub component 1.2 from M.H.R.D Government of India.R EFERENCES[1]NhienAn Le Khac, SammerMarkos, M. O'Neill, A.Brabazon and M-TaharKechadi. An investigation into Data Mining approaches for Anti Money Laundering. InInternational conference on Computer Engineering & Applications 2009.[2]Nhien An Le Khac, M.Teharkechadi. Application of Datamining for Anti-money Detection: A case study. IEEE International conference on Data mining workshops 2010.[3]Nhien An Le Khac, SammerMarkos,M.Teharkechadi,. Adata mining based solution for detecting suspiciousmoney laundering cases in an investment bank. IEEE Computer society 2010.[4]Yang Qifeng, Feng Bin, Song Ping. Study on Anti MoneyLaundering Service System of Online Payment based onUnion-Bank mode. IEEE Computer Society 2007.[5]J.Han and M. Kamber, Data Mining: Concepts andTechniques. Morgan Kaufmann publishers, 2nd Eds., Nov 2005.[6]R.Corywatkins, K.Michaelreynolds, Ron Demara.Tracking Dirty Proceeds: Exploring Data Mining Techniques as to Investigate Money Laundering. In police practice and research 2003.[7]PankajRichhariya,PrashantK.Singh,EnduDuneja. ASurvey on financial fraud detection methodologies. In International Journal of commerce business and management 2012.[8]J.S.Park, M.S.Chen, and P.S.Yu. An effective hash-basedalgorithm for mining association rules. In Proc. 1995 ACM-SIGMOD Int.Conf.Management of Data (SIGMOD’95), pages 175-186, San Jose, CA, May 1995.[9]Liu Keyan and Yu Tingting,”An improved Support vectorNetwork Model for Anti-Money Laundering, International conference on Management of e-commerce ande-Government.[10]SreekumarPulakkazhy and R.V.S.Balan,”Data Mining inBanking and its applications –A Review”, Journal of computer science 2013.G.[11]G.Krishna priya,Dr.M.Prabakaran”Money launderinganalysis based on Time variant Behavioral transaction patterns using Data mining”Journal of Theoretical and Applied Information Technology 2014.[12]Xingrong Luo,”Suspicious transaction detection for AntiMoney Laundering”, International Journal of Security and Its Applications 2014.[13]ch suresh,Prof.K.Thammi Reddy,”A Graph basedapproach to identify suspicious accounts in the layering stage of Money laundering”,Global Journal of computer science and Information Technology 2014.[14]Denys A.Flores, Olga Angelopoulou, Richard J. Self,”Design of a Monitor for Detecting Money Laundering and Terrorist Financing”, International Journal of Computer Networks and Applications 2014.[15]Anu and Dr. Rajan Vohra,”Identifying SuspiciousTransactions in Financial Intelligence Service”,International Journal of Computer Science & Management Studies July 2014.[16]Angela Samantha Maitland Irwin and Kim-KwangRaymond Choo,” Modelling of money laundering and terrorism financing typologies”,Journal of Money laundering control 2012.[17]Pamela Castellón González,,Juan D. Velásquez ,”Characterization and detection of taxpayers with false invoices using data mining techniques”,Expert Systems with Applications ,Elsevier 2013.[18]Rafal Drezeswski,Jan sepielak,Wojciech FilipKowsiki,”System supporting Money Laundering detection”, Elsevier 2012.[19]Quratulain Rajput, Nida Sadaf Khan, Asma Larik, SajjadHaider, “Ontology Based Expert-System for Suspicious Transactions Detection”, Canadian Center of Science and Education, Computer and Information Science; Vol. 7, No.1, 2014.[20]Mahesh Kharote, V. P. Kshirsagar, “Data Mining Modelfor Money Laundering Detection in Financial Domain”, International Journal of Computer Applications (0975 –8887), Volume 85 – No 16, 2014.[21]Harmeet Kaur Khanuja, Dattatraya S. Adane, “F orensicAnalysis for Monitoring Database Transactions”, Springer, Computer and Information Science Volume 467, pp 201-210, 2014.[22]Pradnya Kanhere, H. K. Khanuja,” A Survey on OutlierDetection in Financial Transactions,International Journal of computer Applications, December2014.Authors’ ProfilesCH.Suresh currently pursuing full timePh.D. in the area of "Data mining" in theDept. of CSE, GIT, GITAM University.His research includes Data warehousingand Mining, Database management system,operating system etc.Dr. K. Thammi Reddy, currently workingas the Director of Internal QualityAssurance Cell (IQAC) and Professor ofCSE. At Gandhi Institute of Technology(GITAM) University, Visakhapatnam. Heis having vast experience in teaching,Research, Curriculum Design andconsultancy. His research areas include Data warehousing and Mining, Distributed computing, etcSweta.N, currently a B.Tech graduatefrom GITAM University in 2015. Her areaof interest includes Problem Solving usingCoding, i.e., understanding the problemand finding a code which could run andgenerate the output as the solution.How to cite this paper: Ch.Suresh, K.Thammi Reddy, N. Sweta,"A Hybrid Approach for Detecting Suspicious Accounts in Money Laundering Using Data Mining Techniques", International Journal of Information Technology and Computer Science(IJITCS), Vol.8, No.5, pp.37-43, 2016. DOI: 10.5815/ijitcs.2016.05.04。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

Word2vec的工作原理及应用

Word2vec的工作原理及应用

Word2vec的工作原理及应用1. 介绍Word2vec是一种用于将文本转换为数值向量表示的技术。

它是通过训练神经网络模型来学习单词之间的语义关系,从而将单词转化为向量形式。

本文将介绍Word2vec的工作原理及其在自然语言处理领域的应用。

2. Word2vec的工作原理Word2vec通过两种主要的模型来进行单词向量表示:Skip-gram模型和CBOW模型。

2.1 Skip-gram模型Skip-gram模型的目标是通过给定一个中心单词来预测其周围的上下文单词。

具体步骤如下: 1. 首先,将文本中的每个单词表示为一个独热向量(one-hot vector)。

2. 然后,构建一个包含多个隐藏层的神经网络模型,并将中心单词的独热向量作为输入。

3. 通过训练模型,使得模型能够学习到每个单词和其周围上下文单词之间的关联关系。

4. 最终,从隐藏层中提取出的向量表示就是每个单词的Word2vec向量。

2.2 CBOW模型CBOW模型与Skip-gram模型相反,其目标是通过给定周围的上下文单词来预测中心单词。

具体步骤如下: 1. 与Skip-gram模型一样,将文本中的每个单词表示为一个独热向量。

2. 构建一个包含多个隐藏层的神经网络模型,并将上下文单词的独热向量作为输入。

3. 通过训练模型,使得模型能够学习到上下文单词与中心单词之间的关联关系。

4. 最终,从隐藏层中提取出的向量表示就是每个单词的Word2vec向量。

3. Word2vec的应用Word2vec在自然语言处理领域有着广泛的应用,以下是几个示例:3.1 单词相似度计算利用Word2vec,可以计算两个单词之间的相似度。

通过计算两个单词向量之间的余弦相似度,可以衡量它们在语义上的相似程度。

这对于词义消歧、语义搜索等任务非常有用。

3.2 文本分类Word2vec可以将文本转换为向量表示,从而用于文本分类任务。

通过将文本中的每个单词转换为Word2vec向量,然后将这些向量作为输入,可以训练一个分类模型来进行文本分类。

基于语言模型的中文文本自动摘要技术研究

基于语言模型的中文文本自动摘要技术研究

基于语言模型的中文文本自动摘要技术研究近年来,随着互联网信息的快速扩散,人们需要越来越多的时间来阅读海量的文本资料。

但是,在这些文本中提取最重要的信息非常耗费时间和精力。

因此,是时候研究一种自动化的方法,能够帮助人们在短时间内抽取出文本的“要点”,并摘要出关键词和核心语句。

这样就能够节省时间和精力,提高效率。

基于语言模型的中文文本自动摘要技术就是这样一种方法,可以自动抽取重要的信息。

这种方法从一组数据中学习语言模型,然后通过这个模型针对每个输入的段落或句子预测一个“信息量”评估。

在预测过程中,模型需要评估文本的重要性、关键信息、以及与应用场景的匹配程度。

自动摘要通常包括两种类型:抽象式自动摘要和提取式自动摘要。

抽象式自动摘要是基于一种句式的重组,生成一段新的文字来代替原始文本,目的是体现出文本的关键信息。

相反,提取式自动摘要是从原始文本中提取最具代表性的句子来总结文章的主题。

基于语言模型的中文文本自动摘要技术有很多应用,以新闻和科技文章为例。

由于新闻以及科技文章的时效性很强,因此需要进行快速合成和摘要,以达到快速阅读的目的。

同时,这些文章中往往有大量的无用的信息,通过自动摘要可以快速删除这些无用信息,提取核心信息。

中文自动摘要的主要挑战在于中文的语言特点。

中文有着不同于其他语言的词汇、表达方式和语法规则。

因此,传统的方法在中文中已经不再有效。

因此,现在有许多关于如何利用语言模型来解决中文自动摘要的论文研究。

随着人工智能技术的普及和发展,基于语言模型的中文文本自动摘要技术已经得到了越来越广泛的应用和推广。

通过这种技术,可以为人们提供更有效和高效的信息处理体验,提高人们的生产力。

总而言之,基于语言模型的中文文本自动摘要技术具有很大的应用前景。

虽然该技术仍然面对着许多挑战,但是通过不断研究和创新,我们相信这种技术将迎来更好的发展前景。

在未来,中文自动摘要技术将会成为信息社会发展和合理利用信息的方法之一。

参考文献(人工智能)

参考文献(人工智能)

参考文献(人工智能)曹晖目的:对参考文献整理(包括摘要、读书笔记等),方便以后的使用。

分类:粗分为论文(paper)、教程(tutorial)和文摘(digest)。

0介绍 (1)1系统与综述 (1)2神经网络 (2)3机器学习 (2)3.1联合训练的有效性和可用性分析 (2)3.2文本学习工作的引导 (2)3.3★采用机器学习技术来构造受限领域搜索引擎 (3)3.4联合训练来合并标识数据与未标识数据 (5)3.5在超文本学习中应用统计和关系方法 (5)3.6在关系领域发现测试集合规律性 (6)3.7网页挖掘的一阶学习 (6)3.8从多语种文本数据库中学习单语种语言模型 (6)3.9从因特网中学习以构造知识库 (7)3.10未标识数据在有指导学习中的角色 (8)3.11使用增强学习来有效爬行网页 (8)3.12★文本学习和相关智能A GENTS:综述 (9)3.13★新事件检测和跟踪的学习方法 (15)3.14★信息检索中的机器学习——神经网络,符号学习和遗传算法 (15)3.15用NLP来对用户特征进行机器学习 (15)4模式识别 (16)4.1JA VA中的模式处理 (16)0介绍1系统与综述2神经网络3机器学习3.1 联合训练的有效性和可用性分析标题:Analyzing the Effectiveness and Applicability of Co-training链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Analyzing the Effectiveness and Applicability of Co-training.ps作者:Kamal Nigam, Rayid Ghani备注:Kamal Nigam (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, knigam@)Rayid Ghani (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 rayid@)摘要:Recently there has been significant interest in supervised learning algorithms that combine labeled and unlabeled data for text learning tasks. The co-training setting [1] applies todatasets that have a natural separation of their features into two disjoint sets. We demonstrate that when learning from labeled and unlabeled data, algorithms explicitly leveraging a natural independent split of the features outperform algorithms that do not. When a natural split does not exist, co-training algorithms that manufacture a feature split may out-perform algorithms not using a split. These results help explain why co-training algorithms are both discriminativein nature and robust to the assumptions of their embedded classifiers.3.2 文本学习工作的引导标题:Bootstrapping for Text Learning Tasks链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Bootstrap for Text Learning Tasks.ps作者:Rosie Jones, Andrew McCallum, Kamal Nigam, Ellen Riloff备注:Rosie Jones (rosie@, 1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213)Andrew McCallum (mccallum@, 2 Just Research, 4616 Henry Street, Pittsburgh, PA 15213)Kamal Nigam (knigam@)Ellen Riloff (riloff@, Department of Computer Science, University of Utah, Salt Lake City, UT 84112)摘要:When applying text learning algorithms to complex tasks, it is tedious and expensive to hand-label the large amounts of training data necessary for good performance. This paper presents bootstrapping as an alternative approach to learning from large sets of labeled data. Instead of a large quantity of labeled data, this paper advocates using a small amount of seed information and alarge collection of easily-obtained unlabeled data. Bootstrapping initializes a learner with the seed information; it then iterates, applying the learner to calculate labels for the unlabeled data, and incorporating some of these labels into the training input for the learner. Two case studies of this approach are presented. Bootstrapping for information extraction provides 76% precision for a 250-word dictionary for extracting locations from web pages, when starting with just a few seed locations. Bootstrapping a text classifier from a few keywords per class and a class hierarchy provides accuracy of 66%, a level close to human agreement, when placing computer science research papers into a topic hierarchy. The success of these two examples argues for the strength of the general bootstrapping approach for text learning tasks.3.3 ★采用机器学习技术来构造受限领域搜索引擎标题:Building Domain-specific Search Engines with Machine Learning Techniques链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Building Domain-Specific Search Engines with Machine Learning Techniques.ps作者:Andrew McCallum, Kamal Nigam, Jason Rennie, Kristie Seymore备注:Andrew McCallum (mccallum@ , Just Research, 4616 Henry Street Pittsburgh, PA 15213)Kamal Nigam (knigam@ , School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213)Jason Rennie (jr6b@)Kristie Seymore (kseymore@)摘要:Domain-specific search engines are growing in popularity because they offer increased accuracy and extra functionality not possible with the general, Web-wide search engines. For example, allows complex queries by age-group, size, location and cost over summer camps. Unfortunately these domain-specific search engines are difficult and time-consuming to maintain. This paper proposes the use of machine learning techniques to greatly automate the creation and maintenance of domain-specific search engines. We describe new research in reinforcement learning, information extraction and text classification that enables efficient spidering, identifying informative text segments, and populating topic hierarchies. Using these techniques, we have built a demonstration system: a search engine forcomputer science research papers. It already contains over 50,000 papers and is publicly available at ....采用多项Naive Bayes 文本分类模型。

使用大语言模型进行文本分类

使用大语言模型进行文本分类

使用大语言模型进行文本分类:从预处理到部署的完整指南一、数据预处理在使用大语言模型进行文本分类之前,数据预处理是不可或缺的一步。

数据预处理主要包括以下步骤:数据清洗:去除无关信息、错误数据、重复数据等,确保数据质量。

文本分词:将文本分割成单独的词语或子词。

特征提取:从文本中提取出与分类任务相关的特征,如n-gram、TF-IDF等。

编码转换:将文本转换为模型可理解的数字格式。

二、模型选择与训练选择适合的模型对于文本分类任务至关重要。

以下是一些常见的大语言模型和训练方法:Transformer模型:使用自注意力机制处理序列数据,具有强大的表示能力。

BERT模型:基于Transformer的双向预训练语言模型,在多个NLP任务中表现出色。

GPT系列模型:基于Transformer的单向语言模型,适用于生成任务。

RoBERTa模型:BERT的改进版,通过更广泛的训练数据和训练策略获得更好的性能。

确定模型后,需要进行训练以获得分类能力。

训练过程中,可以通过调整超参数、使用不同的学习率策略等方法来优化模型性能。

三、特征提取在训练过程中,大语言模型可以自动学习文本特征。

此外,还可以使用额外的特征工程方法来增强模型的表示能力,例如使用word embeddings(如Word2Vec、GloVe等)或使用预训练的词向量作为输入。

四、分类器训练完成训练后,可以使用大语言模型作为特征提取器,将文本转换为固定维度的向量表示。

然后,可以使用分类器(如逻辑回归、支持向量机或神经网络)对这些向量进行分类。

训练分类器时,可以通过交叉验证等技术来评估其性能。

五、分类结果评估评估分类器的性能对于改进模型至关重要。

常用的评估指标包括准确率、精确率、召回率和F1分数等。

此外,还可以使用混淆矩阵、ROC曲线和AUC值等工具来全面了解分类器的性能。

六、优化与调整通过调整超参数、使用不同的优化器和学习率策略等方法来优化分类器的性能。

此外,还可以尝试使用集成学习等技术将多个分类器组合在一起,以提高整体性能。

基于时序自注意力机制的遥感数据时间序列分类

基于时序自注意力机制的遥感数据时间序列分类

基于时序自注意力机制的遥感数据时间序列分类下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于时序自注意力机制的遥感数据时间序列分类随着遥感数据的广泛应用,如何高效准确地处理遥感时间序列数据成为了研究的热点之一。

在R语言中实现文本挖掘的技巧和工具

在R语言中实现文本挖掘的技巧和工具

在R语言中实现文本挖掘的技巧和工具R语言的灵活性和强大的数据分析能力让它成为文本挖掘的一流工具。

文本挖掘是从大量文本数据中提取有价值的信息和知识的过程,它在商业、科学、政治和许多其他领域中扮演着重要的角色。

这篇文章将探讨R语言中实现文本挖掘的技巧和工具。

1. 文本预处理的技巧文本挖掘的第一步是将原始文本预处理为可以分析的格式。

以下是一些常用的技巧:1.1 文本清洗文本清洗是指去除文本中的无用信息和干扰因素,例如标点符号、停用词、数字、HTML标签等。

在R语言中,可以使用tm包和stringr包来进行文本清洗。

tm包提供了一整套文本处理工具,包括读取文本、过滤文本、转换文本格式等功能。

范例代码:library(tm)# 读取文本docs <- Corpus(DirSource("path/to/folder"))# 移除标点符号docs <- tm_map(docs, removePunctuation)# 移除数字docs <- tm_map(docs, removeNumbers)# 移除HTML标签docs <- tm_map(docs, removeHTMLTags)1.2 文本分词分词是将文本划分为一组单词或术语的过程。

在R语言中,可以使用tokenizers包和NLP包来进行文本分词。

tokenizers包提供了一系列不同的分词函数,包括基于正则表达式、空格和标点符号的分词。

范例代码:library(tokenizers)# 基于正则表达式分词tokens <- tokenize_regex("This is a sentence.")# 基于空格分词tokens <- tokenize_whitespace("This is a sentence.")# 基于标点符号分词tokens <- tokenize_character("This is a sentence.")1.3 文本标准化文本标准化是将文本中的单词转换为一致的格式,例如转换为小写字母、去除词干和词缀等。

线性区域数量与PLNN表达能力的相关性

线性区域数量与PLNN表达能力的相关性

收稿日期:2020-01-08基金项目:国家自然科学基金资助项目(61772124).作者简介:马海涛(1977-)ꎬ男ꎬ黑龙江伊春人ꎬ东北大学讲师ꎬ博士.第42卷第2期2021年2月东北大学学报(自然科学版)JournalofNortheasternUniversity(NaturalScience)Vol.42ꎬNo.2Feb.2021㊀doi:10.12068/j.issn.1005-3026.2021.02.008线性区域数量与PLNN表达能力的相关性马海涛ꎬ路家蕊ꎬ于文鑫ꎬ于长永(东北大学秦皇岛分校计算机技术学院ꎬ河北秦皇岛㊀066004)摘㊀㊀㊀要:使用分段线性激活函数的神经网络(PLNN)在机器学习中得到广泛应用.本文给出了一种PLNN模型表达能力的度量值 线性区域数量ꎬ并给出了线性区域的数学表示.分析了线性区域之间的关系并计算合并后的线性区域数量ꎬ同时给出一种基于Z曲线的线性区域数量的计算方法.针对一个任务实例进行分析ꎬ计算不同网络结构的线性区域数量及合并后的线性区域数量ꎬ分析了线性区域数量与不同网络结构的准确性的关联.结果表明ꎬ线性区域数量能够表现PLNN模型的表达能力ꎬ对于选择网络超参数及解释模型边界具有研究意义.关㊀键㊀词:机器学习ꎻ分段线性神经网络ꎻ表达能力ꎻ线性区域中图分类号:TP183㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1005-3026(2021)02-0201-07RelationshipBetweentheNumberofLinearRegionsandExpressivePowerofPiecewiseLinearNeuralNetworksMAHai ̄taoꎬLUJia ̄ruiꎬYUWen ̄xinꎬYUChang ̄yong(SchoolofComputerTechnologyꎬNortheasternUniversityatQinhuangdaoꎬQinhuangdao066004ꎬChina.Correspondingauthor:LUJia ̄ruiꎬE ̄mail:602037677@qq.com)Abstract:Theneuralnetworkwithpiecewiselinearactivationfunction(PLNN)isextensivelyappliedinmachinelearning.ThispapergivesameasureoftheexpressivepowerofPLNNmodelꎬi.e.ꎬthenumberoflinearregionsꎬwiththemathematicalrepresentationoflinearregionspresented.Therelationshipbetweenlinearregionsisanalyzedandthenumberofcombinedlinearregionsiscalculated.AmethodforcalculatingthenumberoflinearregionsbasedonZcurveisdeveloped.Acaseisgiventocalculatethenumberoflinearregionsofdifferentnetworkstructuresandthenumberoflinearregionsaftermergingꎬandthecorrelationbetweenthenumberoflinearregionsandtheaccuracyofdifferentnetworkstructuresisanalyzed.TheresultsshowthatthenumberoflinearregionscanreflecttheexpressivepowerofPLNNmodelꎬwhichhasgreatresearchsignificanceforselectingnetworkhyperparametersandexplainingmodelboundaries.Keywords:machinelearningꎻpiecewiselinearneuralnetworkꎻexpressivepowerꎻlinearregion㊀㊀神经网络ꎬ特别是深度模型ꎬ2006年以后在很多领域的应用中取得了十分好的效果ꎬ是目前研究最深入㊁应用最广泛的学习模型ꎬ其中分段线性神经网络(piecewiselinearneuralnetworkꎬPLNN)是一类十分重要的网络模型.PLNN使用分段线性的激活函数ꎬ其中较为典型的非饱和激活函数ꎬ如relu家族中的PReLUꎬRReLUꎬLeakyReLUs等ꎬ在图像分类㊁动作识别㊁抵御对抗性攻击等[1-2]任务模型中取得很好的效果.由于对网络模型的解释研究滞后于网络模型取得的应用进展ꎬ导致缺乏对模型行为的深入了解和解释ꎬ使得当网络模型不能取得良好效果时ꎬ无法对模型进行改进或优化.鉴于此ꎬ一些致力于模型解释的工作已经展开.最早在2014年Pascanu和Montúfa等[3-4]提出了PLNN的线性区域数概念ꎬ并使用其数量的上界衡量网络的性能ꎻ此后ꎬ更多的学者开始关注PLNN本身的基础性质.2016年ꎬEldan等[5]使用线性区域数比较了深㊁浅PLNN模型ꎻSerra等[6]在2018年使用SAT概率推理方法近似了混合整数线性公式的解数量ꎬ以此求解线性区域的概率下界.受上述工作启发ꎬRaghu等[7]使用轨迹长度作为PLNN表达能力的新度量值ꎻZhang等[8]首次建立了PLNN与热带几何之间的联系.此外ꎬ不少研究试图作出与模型无关的整体解释ꎬ如文献[9]提出的LIME模型和文献[10]提出的Mask方法ꎻ但其解释成果仍是局部的ꎬ未能证明其可靠性.2018年Chu等[11]提出了OPENBOX方法ꎬ将PLNN转换成一组数学上等价的线性分类器ꎬ从而能够精确一致地解释一个整体的网络模型.根据以上相关工作ꎬ已有结论表明ꎬPLNN神经网络等价于一组线性分类器.然而ꎬPLNN神经网络的线性区域数量的计算方法㊁该数量与模型的表达能力ꎬ以及模型的泛化准确定的关系仍不是十分明确ꎬ有待进一步的验证和分析.本文针对上述问题进行了3方面的工作:①给出计算PLNN激活模式的过程ꎬ并说明线性区域数在数学上等于激活模式数量ꎻ②提出线性区域可合并的概念ꎬ使输出层标签相等的实例集合所对应的线性区域合并ꎻ③对比了相同隐藏节点数㊁不同结构的线性区域数㊁合并区域数ꎬ以及对应的精确度.1㊀PLNN基础概念1 1㊀基本符号定义本文的研究对象为使用线性激活函数的神经网络.定义一个具有L层的网络模型NetꎬNet中网络层表示为liꎬiɪ{1ꎬ ꎬL}.其中l1为网络的输入层ꎬlL为网络的最终输出层.Net模型中li层具有的节点个数为Niꎬ隐藏层总节点个数为M=ðL-1i=2Niꎬiɪ{1ꎬ ꎬL}.Net中li层的第j个节点为nijꎬiɪ{1ꎬ ꎬL}ꎬjɪ{1ꎬ ꎬNi}.Net中自第2层开始的li层的偏置表示为Bi=[bi1ꎬ ꎬbiNi]Tꎬiɪ{2ꎬ ꎬL}ꎬ网络总偏置矩阵表示为B=[B2ꎬ ꎬBL]T.Net模型中前一层的神经元是通过全连接的形式与下一层相接ꎬ因此用wijk表示li层中的第j个节点与li-1层中的第k个节点相连的边权ꎬli-1层所有节点与li层第j个节点连接的权重矩阵表示为wij=[wij1ꎬ ꎬwijNi-1]Tꎬ同时第li-1层所有节点与第li层所有节点的权重矩阵用Ni-1ˑNi维的Wi表示ꎬiɪ{2ꎬ ꎬL}.对于li层中的节点ꎬiɪ{2ꎬ ꎬL-1}ꎬ每一个节点上的激活函数均使用ReLu函数ꎬ即r(x)=max{0ꎬx}.而输出层lLꎬ使用softmax函数作为激活函数.1 2㊀PLNN定义根据以上基础符号ꎬ定义Net网络的计算过程.当i=1时ꎬ网络的输入表示为z1=x=[x1ꎬ ꎬxN1]TꎬxɪRN1是N1维的网络原始输入向量.li层中的每个节点nij接收来自上一层节点的输入ꎬ经过权重计算处理表示为yijꎬyij经过激活函数后的输出表示为zijꎬ即zij=r(yij).因此对于li层的加权和向量可以表示为yi=[yi1ꎬ ꎬyiNi]Tꎬ而li层的输出向量也是li+1层的输入向量ꎬ可以表示为zi=[zi1ꎬ ꎬziNi]T.因此ꎬ对于iɪ{2ꎬ ꎬL-1}ꎬli层的输出表示为yi=Wizi-1+Biꎬ(1)zi=r(yi).(2)其中当i=L时ꎬ使用softmax函数处理来自前一层的加权和ꎬ输出概率分布作为预测结果.由于Net模型中除输出层以外使用的激活函数都是线性激活函数ReLuꎬ因此整个网络可以视为一个等价的线性仿射函数f:RN1ңRNL.2㊀线性区域计算方法2 1㊀线性区域的定义给定Netꎬ即给定权重与偏置矩阵.根据式(1)和式(2)ꎬ每当将一个实例x输入到Net计算后ꎬNet中所有隐藏层节点都会根据ReLu函数判断一个不等式:yij=wijzi-1+bijȡ0.(3)每一次判断式(3)是否大于或等于0ꎬ都意味着在几何层面上ꎬ输入空间被一分为二.在先前工作中ꎬ称被划分后的输入空间的区域边界由超平面给定ꎬ即每一个隐藏层节点nij上的计算都代表一个划分输入空间的超平面.最终整个输入空间被网络模型中的约束划分成连通的子集区域.因此ꎬ给定网络模型Net所代表的线性映射函数f:X⊆RN1ңY⊆RNLꎬ用R⊂RN1表示Net的线性区域.当实例x输入到网络ꎬ在隐藏层节点nij进行计算时ꎬ根据式(3)ꎬ若yij大于0则输出yij的202东北大学学报(自然科学版)㊀㊀㊀第42卷㊀㊀值ꎬ即属于nij上的计算所代表的超平面的一侧线性区域Rij1ꎻ若yij小于0则输出0ꎬ即属于超平面的另一侧的线性区域Rij0.而判断式(3)是否大于或等于0ꎬ在数学层面上意味着可以将Net网络中的每个节点的输出视作两种状态:0或1(原数据x).因此给定实例xꎬ节点nij的状态表示为sij=0/1ꎬjɪ{1ꎬ ꎬNi}ꎬ由以下公式定义:sij=0ꎬzij=0ꎻ1ꎬzij=yli. {(4)由此ꎬ对于li层ꎬ用Si={si1ꎬ ꎬsiNi}表示这一层的状态序列.最终ꎬ每一个实例x都会存在一个对应的状态序列S={S2ꎬ ꎬSL-1}ꎬ此状态序列也称为此实例x的激活模式.给定Netꎬ当Net的一个输入实例x的激活模式确定了ꎬ同时也确定了此x所在的输入空间所属的线性区域ꎬ即一种激活模式对应一个线性区域.多个实例x的激活模式若相同ꎬ那么它们应同属一个线性区域ꎻ因此可以计算输入集合X对应的激活模式种类数量ꎬ用这个数值作为衡量网络表达能力的度量值.当Net网络的隐藏层神经元总数为M时ꎬ理论上此网络不同的激活模式的数量应为2M个.但由于网络模型的表达性能一般很难达到理论上的最高点ꎬ其代表的函数计算复杂性一般也难以描述理论上所有的线性区域ꎬ以及实际中预测的输入实例数据集之间总是存在关联ꎬ因此通过计算输入实例集合所对应的不同激活模式数量总会远远小于2M个.2 2㊀线性区域的计算给定网络模型Netꎬ给定具有P个实例的输入实例集合Xꎬ通过不等式(3)可以确定地计算每一个输入实例xpɪX都对应着由M个不等式(3)组成的不等式组ꎻ用Ep来表示这个不等式组ꎬ同时用xp~Ep来表达对应关系ꎬ其中pɪ{1ꎬ ꎬP}ꎬ同时Ep也确定了xp的激活模式Sp.若有输入实例xpꎬxqɪX对应的Ep与Eq中的不等式完全相等ꎬ则写作Ep=Eq(Sp=Sq)ꎬ这表示Ep与Eq代表了同一片线性区域R⊂RN1ꎬ并且xp与xq也同属于这一片线性区域.由以上定义可以总结为在这个线性子集区域R上的所有输入实例xꎬ都对应着由这一组不等式E所规定的分类规则ꎬ最终整个网络模型Net所代表的线性函数f:XңY可以由以下公式表达:F(X)=W1X1+B1ꎬX1~E1ꎻW2X2+B2ꎬX2~E2ꎻ⋮WkXk+BkꎬXk~Ek.ìîíïïïïï(5)式中:Xi代表属于输入空间X的一部分输入子集ꎻWi与Bi代表当Xi中所有元素都对应着的同一种不等式组Eiꎬ它们决定了原始权重矩阵与偏置矩阵中哪些位置上的矩阵元素应该被保留ꎬ其中iɪ{1ꎬ ꎬk}.如上述内容所示ꎬWi与Bi是根据输入实例在网络中每一个隐藏层节点上的计算所决定的.假设Net网络模型固定ꎬ实例x进入网络的l1层ꎬ以全连接的形式输入到l2层ꎬ根据式(1)和式(2)可得y2=W2x+B2ꎬ(6)z2=r(y2).(7)同时还可以根据式(4)得到l2对应的状态序列S2ꎬ将S2拓展为N2ˑN2的对角矩阵S2w与N2ˑ1的矩阵S2b:S2w=s210 00s22 0⋮⋮⋮00 s2N2éëêêêêêêùûúúúúúúꎻ(8)S2b=s21s22⋮s2N2éëêêêêêêùûúúúúúú.(9)在l3层中ꎬ这一层的权重W3不再与上一层的所有权重连乘ꎬ而是根据式(7)的输出ꎬ仅与非零输入的权重相乘:y3=W3(S2wW2x+S2bB2)+B3.(10)然后根据式(2)可以得到z3ꎬ在接下来的网络层上不断循环上述的计算过程ꎬ把对Wi与Bi的Siw与Sib处理总结为对li层上权重㊁偏置矩阵的Si处理ꎬ最终针对某一个输入实例xꎬ对于lɪ{2ꎬ ꎬL-1}ꎬli层的输出改写为yi=Wizi-1+Biꎬ(11)zi=Siyi.(12)在lL-1层上的输出可以表示为zi=ᵑL-2i=2SiWix+ðL-2i=2ᵑL-2q=iSq+1Wq+1SiBi=Cwx+Cb.(13)式中:Cw是实例x的系数矩阵ꎻCb是x的常数项矩阵.此系数与常数项正是构造出不同不等式组ꎬ302第2期㊀㊀㊀马海涛等:线性区域数量与PLNN表达能力的相关性㊀㊀㊀㊀从而划分输入空间区域的根本所在.2 3㊀线性区域的合并本文提出了线性区域合并的概念ꎬ即将输出层的分类标签加入划分线性区域的标准.例如本文实验是对数据集进行二分类ꎬ分类标签分别是1类与0类.给定网络模型Netꎬ共具有M个隐藏层节点.对于同属相同分类标签的两个激活模式集Si={si1ꎬ ꎬsiM}ꎬSj={sj1ꎬ ꎬsjM}ꎬ若它们M-1个同位置的状态码都相同ꎬ并且仅有一个同位置的状态码相加为1ꎬ即sik+sjk=1ꎬ则将第k位状态位合并为Qk.最终ꎬSi与Sj合并为slv1new={s1ꎬ ꎬQkꎬꎬsM}.将仅合并过一个状态位的激活序列Slv1称为level 1的激活序列ꎻ依此类推ꎬ合并了两个状态位的激活序列Slv2称为level 2的激活序列.最终将原始激活模式集通过合并操作ꎬ压缩为具有level激活序列的合并激活模式集.下面给出实验数据示范合并过程:图1a为未经合并的4个原始激活序列ꎬ经过第一轮合并操作后ꎬ转变为2个各具有1位Q状态的level 1激活序列ꎬ如图1b所示ꎻ再经过第二轮合并操作后ꎬ转变为1个具有2位Q状态的level 2激活序列ꎬ如图1c所示.将原始线性区域数量通过合并操作压缩得更少ꎬ可以在一定程度上使合并线性区域的决策边界更一般地表现出此决策的特征ꎬ对于合并区域作用价值的研究将在未来展开.图1㊀数据合并过程Fig 1㊀Datamergingprocess(a) 原始激活序列ꎻ(b) level 1激活序列ꎻ(c) level 2激活序列.3㊀实㊀㊀验3 1㊀实验准备本文的实验平台使用8GB内存的i7处理器ꎬ实验算法皆采用python语言编写.为了取得能够尽可能遍历空间窗口的点集ꎬ实验采用的数据集为Z-order空间填充曲线上的点ꎬ如图2所示.应用此点集作为网络模型Net的输入ꎬ能够使不等式尽可能划分出更多的线性区域ꎬ同时能在一定程度上得到此网络模型的最大表达能力及其能够达到的最高计算复杂性.实验中采用的网络模型结构分为三种ꎬ输入层l1与输出层lL保持不变ꎬ分别都具有2个节点.中间层共22个节点ꎬ构建了三种层分布:具有2层中间层的网络模型A㊁具有3层中间层的网络模型Bꎬ以及仅具有一层中间层的网络模型C.这三种网络模型中的隐藏层节点均采用ReLu函数作为激活函数ꎬ输出层的激活函数则采用Softmax函数.图2㊀Z-order空间填充曲线Fig 2㊀Z ̄orderspacefillingcurve㊀㊀对三种网络模型AꎬBꎬC的中间层上分布的节点数量按一定规律进行调整.模型A根据层节点的分布又细分为9个模型ꎬ同理模型B细分为27个模型ꎻ而模型C因为仅有一层中间层ꎬ22个隐藏层节点均在这一层中.402东北大学学报(自然科学版)㊀㊀㊀第42卷㊀㊀对AꎬBꎬC类共37个模型进行训练ꎬ如图3所示.用来训练的数据集是在一定空间内的一组二分类点集ꎬ网络模型的功能即是对输入的数据点集进行二分类.最终所有37个模型的分类精度均达到97%以上.图3㊀训练数据 二分类点集Fig 3㊀Trainingdata twoclassificationpointset㊀㊀开始实验时ꎬ网络输入的数据集采用46个Z-order空间填充曲线ꎬ点集中共有47=16384个二维点.使用AꎬBꎬC类共37个模型对Z点集进行二分类ꎬ同时计算这些模型得到的不同激活模型数量.3 2㊀线性区域数量图4所示为A类模型第1和第2隐藏层不同节点分布的子类模型所能够得到的线性区域数量ꎬ即激活模式数量.图4㊀A类模型的表达能力Fig 4㊀ExpressivepowerofA ̄typemodel㊀㊀从图中可以看出ꎬ隐藏层第1层的节点数量越少ꎬ网络模型得到的线性区域数越少.当两个隐藏层之间的节点分布较为均匀ꎬ如11ʒ11和13ʒ19ꎬ网络的表达能力达到最大值ꎻ而后随着第2层节点数量的减少ꎬ网路模型能够划分的线性区域数又逐渐回落.这在一定程度上表示具有过少节点的中间层会降低网络的表达性能ꎬ这种现象称为隐藏节点过少的局限性.但对比具有同样过少节点的其他子模型ꎬ如3ʒ19对比19ʒ3ꎬ5ʒ17对比17ʒ5ꎬ在这两组中ꎬ后一种结构的子模型所划分的线性区域数均比前者多ꎬ这一定程度上表示靠近网络输入层的隐藏层节点数量会限制后续网络的表达能力ꎬ这个现象称为前期隐藏节点过少的制约性.B类模型27个子模型的表达能力如图5所示ꎬB1ꎬB2ꎬB3系列模型均表现出了隐藏节点过少的局限性.中间层节点均匀分布的网络模型如8ʒ8ʒ6ꎬ8ʒ6ʒ8ꎬ6ʒ8ʒ8等子模型所划分的线性区域数更多一些ꎬ并且对于三个不同系列ꎬ均可见第1层隐藏层节点数过少的子模型表达能力不如第2层隐藏层节点数过少的子模型ꎬ如2ʒ18ʒ2与2ʒ2ʒ18ꎬ2ʒ10ʒ10与10ʒ2ʒ10等.保持第1层节点数量相等ꎬ对比后两层节点数量翻转的模型ꎬ如3ʒ16ʒ3与3ʒ3ʒ16ꎬ9ʒ4ʒ9与9ʒ9ʒ4等ꎬ都表现出前期隐藏节点过少的制约性.图中从6ʒ8ʒ8分布的子模型开始ꎬ三个系列的模型有一个显著的反超趋势ꎬ这正是因为第1层的节点数量制约了后续网络的表达性能.图5㊀B类模型的表达能力Fig 5㊀ExpressivepowerofB ̄typemodel㊀㊀选取B2系列与A类模型㊁C类模型一起作对比ꎬ如图6所示:单隐藏层网络模型的表达能力远不及深层网络模型ꎻ而三层的网络模型在节点分布较均匀时ꎬ能够较多地超出二层模型所能划分的线性区域数ꎬ仅有当层节点数量过少时才会制约三层网络模型的表达能力ꎬ从而使得二层模502第2期㊀㊀㊀马海涛等:线性区域数量与PLNN表达能力的相关性型的表现更佳.图6㊀三类模型的表达能力Fig 6㊀Expressivepowerofthreetypesofmodels3 3㊀线性区域合并数量与精确度在合并线性区域的概念中ꎬ由于引入了输出层分类标签的划分标准ꎬ会存在激活序列相同但分类标签不同的情况ꎬ这些激活序列会被重复计数ꎬ因此原始线性区域数量会比3 2节中得到的区域数量更多ꎬ需要对增多的原始线性区域进行合并操作.选取A系列模型以及B1系列模型加入合并线性区域的操作ꎬ并且计算了模型的精确度ꎬ如图7所示.由于合并操作不影响模型的分类计算ꎬ因此合并前后模型的精确度是相同的.可以看到原始线性区域经过合并操作ꎬ极大地压缩了原始区域数量ꎬ这意味着计算出的同一标签下的线性区域ꎬ其决策边界可能存在更加一般化的决策特征ꎬ即合并后区域的决策特征.从精确度的变化曲线可以看出ꎬ精确度基本上是随线性区域数量的走势而变化的.这表明在一定程度上可以使用线性区域数量作为模型表达能力的度量单位.最后选取A类模型中层节点分布为11ʒ11的子模型ꎬ根据计算输入实例集合的激活模式ꎬ将输入空间被划分后的线性区域可视化ꎬ如图8所示.从图中大致可以看出这些线性区域的边界可以构成一个半径为1的圆ꎬ这正是网络模型对输入空间进行划分的结果.同时ꎬ单独绘制了图8中可合并的部分线性区域组ꎬ如图9所示.其中ꎬ一些线性区域可以与其他不同的线性区域合并成不同的组合ꎬ如图9b和图9c所示ꎬ中间最大的线性区域与其他不同的3个线性区域构成了不同的合并组.图7㊀不同模型的合并区域数及精确度Fig 7㊀Thenumberandaccuracyofmergingareasofdifferentmodels(a) A类模型ꎻ(b) B1类模型.图8㊀线性区域的可视化Fig 8㊀Visualizationoflinearregions602东北大学学报(自然科学版)㊀㊀㊀第42卷㊀㊀㊀图9㊀可合并的区域组Fig 9㊀Mergeableregiongroups(a) 图8中区域Ⅰꎻ(b) 图8中区域Ⅱꎻ(c) 图8中区域Ⅲ.4㊀结㊀㊀语本文探究了分段线性神经网络的表达能力ꎬ在原理上给出了线性区域的基础概念与相关的计算方式ꎬ同时提出了合并线性区域的概念.在实验上通过三类模型所构建的线性区域ꎬ一定程度上衡量了这些模型的表达能力.通过本文的方法原理ꎬ给出了一些如何使网络的表达能力较为优秀的途径.在未来的工作中ꎬ将继续探索合并线性区域的决策特征是否能为模型带来更好的泛化能力等深入网络模型的原理及其作用.参考文献:[1]㊀WangSHꎬPhillipsPꎬSuiYXꎬetal.ClassificationofAlzheimer sdiseasebasedoneight ̄layerconvolutionalneuralnetworkwithleakyrectifiedlinearunitandmaxpooling[J/OL].JournalofMedicalSystemsꎬ2018[2019-12-05].https://link.springer.com/article/10.1007/s10916-018-0932-7.DOI:10.1007/s10916-018-0932-7. [2]㊀CroceFꎬHeinM.Arandomizedgradient ̄freeattackonReLUnetworks[C/OL]//Proceedingsof40thGermanConferenceonPatternRecognition.Stuttgartꎬ2018(2018-11-28)[2019-12-06].https://arxiv.org/pdf/1811.11493.pdf.DOI:10.1007/978-3-030-12939-2_16. [3]㊀PascanuRꎬMontúfarGꎬBengioY.Onthenumberofresponseregionsofdeepfeedforwardnetworkswithpiece ̄wiselinearactivations[J/OL].(2014-02-14)[2020-01-04].https://arxiv.org/abs/1312.6098v4.DOI:10.1002/art.23474.[4]㊀MontúfarGꎬPascanuRꎬChoKꎬetal.Onthenumberoflinearregionsofdeepneuralnetworks[C]//Proceedingsofthe27thInternationalConferenceonNeuralInformationProcessingSystems.CambridgeꎬMA:MITPressꎬ2014:2924-2932.[5]㊀EldanRꎬShamirO.Thepowerofdepthforfeedforwardneuralnetworks[C/OL].(2015-12-12)[2019-12-05].https://arxiv.org/abs/1512.03965v1. [6]㊀SerraTꎬTjandraatmadjaCꎬRamalingamS.Boundingandcountinglinearregionsofdeepneuralnetworks[C/OL].(2017-11-06)[2019-12-08].https://www.researchgate.net/publication/320920537_Bounding_and_Counting_Linear_Regions_of_Deep_Neural_Networks. [7]㊀RaghuMꎬPooleBꎬKleinbergJꎬetal.Ontheexpressivepowerofdeepneuralnetworks[C]//Proceedingsofthe34thInternationalConferenceonMachineLearning.Sydneyꎬ2017:2847-2854.[8]㊀ZhangLWꎬNaitzatGꎬLimLH.Tropicalgeometryofdeepneuralnetworks[C]//Proceedingsofthe35thInternationalConferenceonMachineLearning.Stockholmꎬ2018:5824-5832.[9]㊀RibeiroMTꎬSinghSꎬGuestrinC. WhyshouldItrustyou? :explainingthepredictionsofanyclassifier[C]//Proceedingsofthe2016ConferenceoftheNorthAmericanChapteroftheAssociationforComputationalLinguistics:Demonstrations.SanDiegoꎬCAꎬ2016:97-101.[10]FongRꎬVedaldiA.Interpretableexplanationsofblackboxesbymeaningfulperturbation[C]//IEEEInternationalConferenceonComputerVision.Veniceꎬ2017:3429-3437. [11]ChuLYꎬHuXꎬHuJHꎬetal.Exactandconsistentinterpretationforpiecewiselinearneuralnetworks:aclosedformsolution[C]//Processesofthe24thACMSIGKDDInternationalReferenceonKnowledgeDiscovery&DataMining.Londonꎬ2018:1244-1253.702第2期㊀㊀㊀马海涛等:线性区域数量与PLNN表达能力的相关性㊀。

R语言文本挖掘与自然语言处理教程

R语言文本挖掘与自然语言处理教程

R语言文本挖掘与自然语言处理教程第一章:R语言简介与基础知识1.1 R语言的发展历程R语言是一种用于统计计算与绘图的开源编程语言,其起源于新西兰奥克兰大学的洛夫斯地质统计软件。

自1995年首次发布以来,R语言逐渐发展成为数据科学领域最受欢迎的编程语言之一。

1.2 R语言的环境搭建与基本操作介绍如何安装R语言及RStudio等开发环境,并演示R语言的基本操作,包括变量赋值、向量操作、数据框处理等。

1.3 R语言常用的文本处理包介绍概述R语言中用于文本处理的常用包,如tm、jTexts、stringr 等,并介绍这些包的基本功能和使用方法。

第二章:文本数据的预处理2.1 文本数据的收集与清洗指导如何从不同来源(本地文件、互联网、数据库等)获取文本数据,并介绍如何进行数据清洗,包括去除特殊字符、处理缺失值等。

2.2 分词与词性标注介绍常见的分词算法和R语言中的分词函数,如jiebaR、Rwordseg等,并讲解如何使用这些函数对文本进行分词和词性标注。

2.3 停用词处理与特征选择讲解如何筛选和去除常见停用词,并介绍R语言中常用的特征选择方法,如TF-IDF、CHI和信息增益等。

第三章:文本挖掘方法与应用3.1 文本分类与情感分析介绍常见的文本分类方法,如朴素贝叶斯分类器、支持向量机等,并演示如何使用这些方法对文本进行分类和情感分析。

3.2 文本聚类与主题模型讲解文本聚类与主题模型的原理和实现方法,如K-Means聚类、层次聚类、Latent Dirichlet Allocation等,并演示如何运用这些方法进行文本聚类和主题提取。

3.3 文本关系抽取与实体识别介绍文本关系抽取的方法,如基于规则的关系抽取、基于机器学习的关系抽取等,并讲解如何进行实体识别和关系抽取。

第四章:自然语言处理进阶应用4.1 机器翻译与语言模型概述机器翻译的基本原理和常见算法,如统计机器翻译、神经机器翻译等,并介绍语言模型的应用。

使用自然语言处理技术进行文本摘要的评估指标介绍

使用自然语言处理技术进行文本摘要的评估指标介绍

使用自然语言处理技术进行文本摘要的评估指标介绍自然语言处理(NLP)技术在近年来得到广泛应用,其中文本摘要是一个重要的研究领域。

文本摘要是将输入的文本内容精炼概括,提取出文本的核心信息,并以简明扼要的形式呈现给用户。

在评估文本摘要的质量时,需要使用一些量化的指标来衡量摘要的准确性和完整性。

本文将介绍几种常用的评估指标来评估自然语言处理技术生成的文本摘要。

1. Rouge指标Rouge 是一组评估文本摘要质量的指标,包括 Rouge-1、Rouge-2 和 Rouge-L。

Rouge-1 是指摘要和参考摘要之间共享的单个词的数目。

Rouge-2 是指摘要和参考摘要之间共享的连续两个词的数目。

Rouge-L 是指摘要和参考摘要之间的最长公共子序列的长度。

这些指标可以衡量摘要的覆盖程度、抽取信息质量和摘要的流畅性。

2. BLEU指标BLEU(Bilingual Evaluation Understudy)是一种常用的机器翻译评价指标,也可用于评估文本摘要的质量。

BLEU 分数基于摘要和参考摘要之间的 N-gram 重叠程度来计算。

N-gram 是指连续 N 个词的序列。

BLEU 指标通过计算摘要中存在于参考摘要中的 N-gram 的比例,来衡量摘要的准确性和流利性。

3. F1 ScoreF1 Score 是一种常见的评估指标,用于平衡查准率和查全率。

在文本摘要的评估中,查准率表示摘要中的正确信息占总信息的比例,而查全率表示摘要中包含的正确信息占参考摘要的比例。

F1 Score 可以综合评估摘要的准确性和完整性,其计算方法为 F1 = 2 * (precision * recall) / (precision + recall)。

4. 基于内容的评估指标除了使用 Rouge 和 BLEU 等指标以外,还可以使用一些基于内容的评估指标来对文本摘要进行评估。

例如,可以计算被摘要覆盖的实体、主题词、关键词等的比例,衡量摘要的信息提取能力。

指代消解 中文数据集

指代消解 中文数据集

指代消解中文数据集
1. MUC:该数据集包含了来自不同领域的文本,如新闻、小说、论文等。

它提供了代词及其所指对象的标注,可用于指代消解任务的研究。

2. ACE:这个数据集包含了各种类型的文本,包括新闻报道、博客文章、小说等。

它提供了丰富的实体和关系信息,可以用于指代消解和实体链接等任务。

3. Weibo-NLP:该数据集包含了大量的微博文本,其中包含了丰富的代词和指代对象。

它可以用于研究社交媒体场景下的指代消解问题。

4. COAE:这是一个中文开放域问答数据集,其中包含了一些指代消解的问题。

它可以用于训练和评估指代消解模型在问答场景中的性能。

5. LDC2016E106:该数据集包含了来自不同领域的中文文本,如新闻、小说、论文等。

它提供了代词及其所指对象的标注,可用于指代消解任务的研究。

这些数据集提供了丰富的中文文本和指代消解的标注,可以用于训练和评估指代消解模型。

你可以根据自己的需求选择适合的数据集进行研究和实验。

请注意,以上数据集的具体内容和规模可能会随着时间的推移而发生变化。

在使用任何数据集之前,建议你查阅相关的文献和官方网站,以获取最新和最准确的信息。

R语言数据分析与挖掘(谢佳标微课版) 习题及答案chapter08

R语言数据分析与挖掘(谢佳标微课版) 习题及答案chapter08

一、多选题1.常用聚类分析技术有(ABCDE)A.K-均值聚类(K-MeanS)B.K•中心点聚类(K-MedOidS)C.密度聚类(DenSit-basedSpatia1C1usteringofApp1icationwithNoise z DBSCAN)D.层次聚类(系谱聚类Hierarchica1C1ustering,HC)E.期望最大化聚类(EXPeCtationMaximization z EM)2.常用划分(分类)方法的聚类算法有(AB)A.K-均值聚类(K-MeanS)B.K•中心点聚类(K-MedoidS)C.密度聚类(DenSit-basedSpatia1C1usteringofApp1icationwithNoise z DBSCAN)D.聚类高维空间算法(OJOUE)3.层次聚类分析常用的函数有(ABC)A.hc1ust()B.cutree()C.rect.hc1ust()D.ctree()4. K.均值聚类方法效率高,结果易于理解,但也有(ABCD)缺点A.需要事先指定簇个数kB.只能对数值数据进行处理C.只能保证是局部最优,而不一定是全局最优D.对噪声和孤立点数据敏感二、上机题1.数据集(1A.Neighborhoodsisv)是美国普查局2000年的洛杉矶街区数据,一共有I1O个参考答案:>u<-w[,c(1,2,5,6,11,16)]>rownames(u)<-u[,1]>#标准化数据,聚类方法="comp1ete">hh<-hc1ust(dist(sca1e(u[z-1])1"comp1ete") >#画树状图(分成五类)>Iibraryffactoextra)>fviz-dend(hh,k=5,rect=TRUE)OuΛ∙rD∙oαogr∙fr。

基于神经网络的文本表示模型新方法

基于神经网络的文本表示模型新方法

基于神经网络的文本表示模型新方法曾谁飞;张笑燕;杜晓峰;陆天波【摘要】提出了一种改进的文本表示模型提取文本特征词向量方法.首先构建基于词典索引和所对应的词性索引的double word-embedding列表的word-embedding词向量,其次,利用在此基础上Bi-LSTM循环神经网络对生成后的词向量进一步进行特征提取,最后,通过mean-pooling层处理句子向量后且使用了softmax层进行文本分类.实验验证了Bi-LSTM和double word-embedding神经网络相结合的模型训练效果与提取情况.实验结果表明,该模型不但能较好地处理高质量的文本特征向量提取和表达序列,而且比LSTM、LSTM+context window 和Bi-LSTM 这3种神经网络有较明显的表达效果.%Method of text representation model was proposed to extract word-embedding from text feature.Firstly,the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created.Then,feature vectors was obtained further from these extracted word-embeddings by using Bi-LSTM recurrent neural network.Finally,the sentence vectors were processed by mean-pooling layer and text categorization was classified by softmax layer.The training effects and extraction performance of the combination model of Bi-LSTM and double word-embedding neural network were verified.The experimental results show that this model not only performs well in dealing with the high-quality text feature vector and the expression sequence,but also significantly outperforms other three kinds of neural networks,which includes LSTM,LSTM+context window and Bi-LSTM.【期刊名称】《通信学报》【年(卷),期】2017(038)004【总页数】13页(P86-98)【关键词】神经网络;词向量;Bi-LSTM;文本表示【作者】曾谁飞;张笑燕;杜晓峰;陆天波【作者单位】北京邮电大学软件学院,北京100876;北京邮电大学软件学院,北京100876;北京邮电大学计算机学院,北京100876;北京邮电大学软件学院,北京100876【正文语种】中文【中图分类】TP183伴随智能机器人的快速发展,自动问答系统已成为智能机器人最重要的核心技术之一,众多智能交互的业务都与自动问答系统紧密相关,如文本表示、文本分类和答案抽取等。

融合动态掩码注意力与多教师多特征知识蒸馏的文本分类

融合动态掩码注意力与多教师多特征知识蒸馏的文本分类

融合动态掩码注意力与多教师多特征知识蒸馏的文本分类
王润周;张新生;王明虎
【期刊名称】《中文信息学报》
【年(卷),期】2024(38)3
【摘要】知识蒸馏技术可以将大规模模型中的知识压缩到轻量化的模型中,在文本分类任务中实现更高效的推断。

现有的知识蒸馏方法较少同时考虑多种教师与多个特征层之间的信息融合。

此外,蒸馏过程采用全局填充,未能动态关注数据中的有效信息。

为此,该文提出一种融合动态掩码注意力机制与多教师多特征知识蒸馏的文
本分类模型,不仅引入多种教师模型(RoBERTa、Electra)的知识源,还兼顾不同教师模型在多个特征层的语义信息,并通过设置动态掩码模型注意力机制使得蒸馏过程
动态关注不等长数据,减少无用填充信息的干扰。

在4种公开数据集上的实验结果
表明,经过蒸馏后的学生模型(TinyBRET)在预测性能上均优于其他基准蒸馏策略,并在采用教师模型1/10的参数量、约1/2的平均运行时间的条件下,取得与两种教
师模型相当的分类结果,平均准确率仅下降4.18%和3.33%,平均F 1值仅下降2.30%和2.38%。

其注意力热度图也表明动态掩码注意力机制切实加强关注了数据尾部
与上下文信息。

【总页数】17页(P113-129)
【作者】王润周;张新生;王明虎
【作者单位】西安建筑科技大学管理学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.融合知识图谱与注意力机制的短文本分类模型
2.融合知识感知与双重注意力的短文本分类模型
3.结合注意力转移与特征融合算法的在线知识蒸馏
4.融合多教师模型的知识蒸馏文本分类
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sparse Word Embeddings Using`1Regularized Online Learning Fei Sun,Jiafeng Guo,Yanyan Lan,Jun Xu,and Xueqi ChengCAS Key Lab of Network Data Science and Technology Institute of Computing Technology,Chinese Academy of Sciences,Chinaofey.sunfei@,{guojiafeng,lanyanyan,junxu,cxq}@AbstractRecently,Word2Vec tool has attracted a lot of in-terest for its promising performances in a varietyof natural language processing(NLP)tasks.How-ever,a critical issue is that the dense word represen-tations learned in Word2Vec are lacking of inter-pretability.It is natural to ask if one could improvetheir interpretability while keeping their perfor-mances.Inspired by the success of sparse models inenhancing interpretability,we propose to introducesparse constraint into Word2Vec.Specifically,wetake the Continuous Bag of Words(CBOW)modelas an example in our study and add the`l regu-larizer into its learning objective.One challengeof optimization lies in that stochastic gradient de-scent(SGD)cannot directly produce sparse solu-tions with`1regularizer in online training.To solvethis problem,we employ the Regularized Dual Av-eraging(RDA)method,an online optimization al-gorithm for regularized stochastic learning.In thisway,the learning process is very efficient and ourmodel can scale up to very large corpus to derivesparse word representations.The proposed modelis evaluated on both expressive power and inter-pretability.The results show that,compared withthe original CBOW model,the proposed modelcan obtain state-of-the-art results with better inter-pretability using less than10%non-zero elements.1IntroductionWord embedding aims to encode semantic meanings of words into low-dimensional dense vectors.Recently,neural word embeddings have attracted a lot of interest for their promis-ing results in various natural language processing(NLP)tasks e.g.,language modeling[Bengio et al.,2003],named en-tity recognition[Collobert et al.,2011],and parsing[Socher et al.,2013].Among all the neural embedding approaches, CBOW and Skip Gram(SG)[Mikolov et al.,2013a],imple-mented in the Word2Vec tool,are two state-of-the-art meth-ods due to their simplicity,effectiveness and efficiency. However,for Word2Vec,a critical issue is that the dense representations they derived are lacking of interpretability. We do not know which dimension in word vectors represent the gender of“man”and“woman”,and also do not know what sort of value indicates“male”or“female”.This makes dense representations as a black-box.Moreover,even if there exists some dimension corresponding to the gender informa-tion,such dimension would be active in all the word vectors including irrelevant words like“parametric”,“stochastic”, and“bayesian”,which is very difficult in interpretation and uneconomic in storage.Therefore,a natural question is that:can we improve the interpretability of Word2Vec while keeping their promising performances?In this paper,we argue that sparsification is a possible an-swer for this question.In other domains(e.g.,image pro-cessing and computer vision),sparse representations have al-ready been widely used as a way to increase interpretability [Olshausen and Field,1997;Lewicki and Sejnowski,2000]. For word representations,Murphy et al.[2012]improved dimension interpretability by introducing non-negative and sparse constraints into matrix factorization(NNSE).Re-cently,Faruqui et al.[2015]verified the effectiveness of spar-sity under Word2Vec in a post-processing way.They con-verted the dense word vectors derived from Word2Vec us-ing sparse coding(SC)and showed the resulting word vec-tors are more similar to the interpretable features used in NLP.However,SC usually suffers from heavy memory usage since they require a global matrix.This makes it quite dif-ficult to train SC on large-scale text data.Since Word2Vec can easily scale up to large-scale raw text data,is it possi-ble to directly derive sparse word representations under the Word2Vec framework?In this paper,unlike SC introducing sparsity in a post-processing stage,we propose to directly applying the sparse constraint to Word2Vec.Specifically,we take CBOW as an example to conduct the study.A natural way to produce sparse representations is to add an`1regularizer on the word vectors.This is non-trivial in CBOW since the online op-timization with stochastic gradient descent(SGD)cannot di-rectly produce the sparse solutions for`1regularizer.To solve this issue,we employ the Regularized Dual Averaging(RDA) alogrithm[Xiao,2009]to optimize`1regularized loss func-tion of CBOW in online learning.In this way,we can ef-ficiently learn sparse word representations from large-scale raw text data on thefly.We evaluate our model on both expressive power and inter-Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)pretability.For expressive power,we evaluate the learned rep-resentations on two tasks,word similarity and word analogy. The results show that the proposed sparse model can achieve competitive performance with the state-of-the-art models un-der the same setting.Furthermore,our method also outper-forms other sparse representation models significantly.For interpretability,we introduce a new evaluation metric for word intrusion task to get rid of human evaluation.Exper-imental results demonstrate the effectiveness of our sparse representations in comparison with the dense representations.2Related WorkRepresenting words as continuous vectors in a low-dimensional space dates back several decades[Hinton et al., 1986].Based on the distributional hypothesis[Harris,1954; Firth,1957],various methods have been developed in the NLP community,including matrix factorization[Deerwester et al.,1990;Murphy et al.,2012;Faruqui et al.,2015; Pennington et al.,2014]and neural networks[Bengio et al., 2003;Collobert and Weston,2008].According to the con-straint on the representations,we group the existing models into two categories,i.e.,dense word representation models and sparse word representation models.2.1Dense Word Representation ModelsInspired by the success in deep learning for NLP,there has been aflurry of subsequent work exploring various neural network structures and optimization methods to represent words as low-dimensional dense continuous vector[Bengio et al.,2003;Collobert and Weston,2008;Mikolov et al., 2013a;Mnih and Kavukcuoglu,2013;Mikolov et al.,2013b]. Among all these neural embedding approaches,CBOW and SG are two state-of-the-art methods due to their simplicity, effectiveness and efficiency.Besides,low-rank decomposition and spectral methods are also popular choices to learn dense word representations. LSA[Deerwester et al.,1990]used Singular Value Decom-position(SVD)to factorize the word-document matrix to ac-quire continuous word representations.GloVe[Pennington et al.,2014]factorized a log-transformed word-context co-occurrence matrix.Canonical Correlation Analysis(CCA) also provided a powerful tool to derive the word represen-tations[Dhillon et al.,2011;Stratos et al.,2015].Levy and Goldberg[2014b]showed the connection between matrix fac-torization and Skip Gram with negative sampling. Because of its advantage over traditional one-hot(local) representation,the dense vectors learned by these models have been successfully used in various natural language pro-cessing tasks,e.g.,language modeling[Bengio et al.,2003], named entity recognition[Collobert et al.,2011],and parsing [Socher et al.,2013].2.2Sparse Word Representation ModelsDense word representations have dominated the NLP com-munity because of their effectiveness in a variety of NLP tasks.Nonetheless,they are usually criticized for lacking of interpretability and extravagance of storage[Griffiths et al., 2007].On the contrary,sparse representation is considered as a potential choice for interpretable word representations. It is believed that human brain represents the information in a sparse way.For example,in human vision,neurons in the primary visual cortex(V1)are believed to have a distributed and sparse representation[Olshausen and Field,1997;At-twell and Laughlin,2001].In human language,Vinson and Vigliocco[2008]showed that the gathered descriptions for a given word are typically limited to approximately20 30 features in feature norming1.In practice,sparse overcomplete representations have been widely used as a way to improve separability and inter-pretability in image processing and computer vision[Ol-shausen and Field,1997;Lewicki and Sejnowski,2000]. There have been some work trying to explore sparse word representations.Murphy et al.[2012]improved the inter-pretability of word vectors by introducing sparse and non-negative constraints into matrix tely,Faruqui et al.[2015]converted dense word vectors derived from any state-of-the-art word vector model(e.g.,CBOW or SG)into sparse vectors using sparse coding and showed the resulting word vectors are more similar to the interpretable features typically used in NLP tasks comparing with original dense word vectors.3Our ApproachIn this section,we take CBOW as an example to conduct the study.Wefirst briefly introduce CBOW and then elaborate the proposed sparse representations model.It is easy to apply the sparse constraint to SG model using the same strategy elaborated in this section.3.1NotationFirst of all,We list the notations used in this paper.Let C=[w1,...,w N]2denotes a corpus of N word sequence over the word vocabulary W.The contexts for word w i2W (i.e.,i-th word in corpus)are the words surrounding it in an l-sized window(c i l,...,c i 1,c i+1,...,c i+l),where c j2 C,j2[i l,i+l].Each word w2W and context c2C are associated with vectors#‰w2R d and#‰c2R d respectively, where d is the representation dimensionality.In this paper,#‰x denotes the vector of the variable x unless otherwise speci-fied.The entries in the vectors are treated as parameters to be learned.3.2CBOWContinuous Bag-of-Words(CBOW)is a simple and effective state-of-the-art word representation model[Mikolov et al., 2013a].It aims to predict the target word using context words in a sliding window.Formally,given a word sequence C,the objective of CBOW is to maximize the following log-likelihood:L cbow=NX i=1⇣log p(w i|h i)⌘1It is a task that participants are asked to list the properties of a word.2It is worth noting that w i and w j in corpus C could be the same word w in the vocabulary W.where h i denotes the combination of w i ’s contexts.We use softmax function to define the probabilities p (w i |h i )as follows:p (w i |h i )=exp(#‰w i ·#‰h i )P w 2W exp(#‰w ·#‰h i )where #‰h i denotes the projected vectors of w i ’s contexts.It is defined as the average of all context word vectors in CBOW 3:#‰h i =12li +lX j =i l j =i#‰c j3.3Sparse CBOWIn order to learn sparse word representations,a straight-forward way is to introduce the sparse constraint,e.g.,the `1regularizer,on word vectors.In this way,we obtain the new objective function as follows:L s cbow =L cbow Xw 2Wk #‰w k 1where is the hyperparameter that controls the degree of reg-ularization.As we know,the optimization of word2vec is in an on-line fashion using stochastic gradient descent as in [Mikolov et al.,2013b ],which makes it very efficient in learning.How-ever,a main drawback of directly applying stochastic subgra-dient descent to an `1regularized objective in online training is that it will not produce a sparse solution.That is because the approximate gradient of SGD used at each update is very noisy and the value of each entry in the vector can be eas-ily moved away from zero by those fluctuations.Fortunately,there have been several studies concerning the online opti-mization algorithms that target such `1regularized objectives [Langford et al.,2009;Duchi and Singer,2009;Xiao,2009;McMahan and Streeter,2010].In this paper,we propose to employing the Regularized Dual Averaging (RDA)algorithm [Xiao,2009]to produce the sparse representations.3.4Optimization DetailsThe RDA method keeps track of the online average subgradi-ents at time t :¯g t =P t t 0=1g t 0.Here,the subgradient g t 0at time t 0does not include the regularization term ( =0).ForSparse CBOW,we use g t #‰w ito denote the subgradient with respect to #‰w i at time t .However,the derivatives of L cbow include high computa-tional complexity normalization terms.For efficient learn-ing,we employ the negative sampling technique [Mikolov et al.,2013b ]to approximate the original softmax function.It actually defines an alternative training objective function as follows:L ns cbow=N X i =1⇣log (#‰w i ·#‰h i )+k ·E ˜w ⇠P ˜W log ( #‰˜w·#‰h i )⌘3It can also be sum,average,concatenate,max pooling,etc.Algorithm 1RDA algorithm for Sparse CBOW 1:procedure S PARSE CBOW(C )2:Initialize :#‰w,8w 2W,#‰c ,8c 2C,¯g 0#‰w=#‰0,8w 2W 3:for i =1,2,3,...do 4:t update time of word w i5:#‰h i =12l i +l X j =i l j =i#‰c j6:g t #‰w i =h1h (w i ) (#‰w t i ·#‰h i )i #‰h i 7:¯g t #‰w i=t 1t ¯g t 1#‰w i+1t g t#‰w i 8:Update #‰w i element-wise according to9:#‰w t +1ij =(0if |¯g t #‰w ij |#(w i),⌘t ¯g t #‰w ij#(w i)sgn(#‰w t ij ) otherwise,where ,j =1,2,...,d10:for k = l,..., 1,1,...,l do11:update #‰c i +k according to 12:#‰c i +k :=#‰c i +k +↵2l h 1h i (w i ) (#‰w ti ·#‰h i )i #‰w t i 13:end for 14:end for15:end procedurewhere (x )=1/(1+exp( x )),P ˜W denotes the distribu-tion 4of sampled negative word ˜w (i.e.,random sampled word which is not relevant with current contexts),and k is the num-ber of negative samples.Negative sampling transforms the computationally expensive multi-class classification problem into a binary classification problem which can be regarded as to distinguish the correct word w i from the random sampled words.With the negative sampling,the subgradient of the posi-tive/negative word w i at time t given contexts h i is:g t #‰w i =h 1h i (w i ) (#‰w t i ·#‰h i )i #‰h i where 1h (w )is an indicator function whether w is the rightword in context h or not,and #‰w t idenotes the vector for word w i at time t .Following the RDA algorithm,the update procedure forvectors #‰w i and #‰c iis shown in Algorithm 1.Specifically,we first initialize each word vector #‰w and context vector #‰crandomly using the same scheme as in Word2Vec .Then,the subgradient of word vector #‰w iat time t is computed as shown in line 6and its online average subgradients ¯g t #‰w iis computed in line 7.We update each entry of #‰w i according toline 9,where ⌘is the learning rate,sgn(·)is a sign function,#‰w ij denotes the j -th entry of word vector #‰w i ,and ¯g t #‰w ijis the corresponding average subgradient at time t .Context vector #‰cis updated according to line 12,where ↵is the learning rate.We adopt the same linear learning rate schedule de-scribed in [Mikolov et al.,2013a ],decreasing it linearly to zero at the end of the last training epoch.4It is defined as p ˜W (w )/#(w )0.75,where #(w )means the number of word w appearing in corpus C .Table1:Summary of results.We report precision(%)for word analogy task and spearman correlation coefficient for the word similarity task.Higher values are better.Bold scores are the best.Model Dim Sparsity Semantic Syntactic Total WS-353SL-999RW Average‡GloVe3000%79.3161.4869.5759.1832.3534.1348.81 CBOW3000%79.3868.8073.6067.2138.8245.1956.21 SG3000%77.7967.3272.0970.7436.0745.5556.11 PPMI(W-C)40,00086.55%74.0238.9953.0262.3524.1030.4542.48 PPMI(W-C)388,72399.61%58.5531.1943.6058.9923.0127.9838.40 NNSE(PPMI)†30089.15%29.8927.6828.5668.6127.6041.8241.65 SC(CBOW)?30088.34%28.9928.4328.6859.8530.4438.7539.43 SC(CBOW)?300095.85%74.7161.2467.3568.2239.1244.7554.61 Sparse CBOW30090.06%73.2467.4870.1068.2944.4742.3056.29†The input matirx of NNSE is the40000-dimensional representations of PPMI in fourth row.?The input matirx of SC is the300-dimensional representations of CBOW in second row.‡The average performance is calculated across the four different datasets/tasks(one for word analogy and three for word similarity),following the way used in[Faruqui et al.,2015].4ExperimentsIn this section,we investigate the expressive power5and in-terpretability of our Sparse CBOW model by comparing with baselines including both dense and sparse models.Firstly, we describe our experimental settings including the corpus, hyper-parameter selections,and baseline methods.Then we evaluate expressive power of all models on two tasks,i.e., word analogy and word similarity.After that,we test the in-terpretability using word intrusion task and case study.4.1Experimental SettingsWe take the widely used Wikipedia April2010dump6 [Shaoul and Westbury,2010]as the corpus to train all the models.It contains3,035,070articles and about1billion words.We preprocess the corpus in a common way by lower-casing the corpus and removing pure digit words and non-English characters.During training,the words occurring less than20times are ignored,resulting in a vocabulary of 388,723words.Following the practice in[Mikolov et al., 2013b;Pennington et al.,2014],we set the context window size as10and use10negative samples.Like CBOW,we set the initial learning rate of Sparse CBOW model as↵=0.05 and decrease it linearly to zero at the end of the last training epoch.For the`1regularization penalty ,we perform a grid search on it and select the value that maximizing performance on one development testset(a small subset of WordSim-3537) while achieving at least90%sparsity in word vectors.We compare our model with two classes of baselines:•Dense representation models:GloVe[Pennington et al., 2014],CBOW,and SG[Mikolov et al.,2013a].•Sparse representation models:sparse coding(SC) [Faruqui et al.,2015],positive pointwise mutual infor-mation(PPMI),and NNSE[Murphy et al.,2012].5We focus on the intrinsic evaluation task since different extrin-sic tasks favor different embeddings[Schnabel et al.,2015] 6http://www.psych.ualberta.ca/⇠westburylab/downloads/westb urylab.wikicorp.download.html7Set1in http://www.cs.technion.ac.il/⇠gabr/resources/data/wor dsim353/For GloVe8,CBOW9,and SG9,we train them using the released tools on the same corpus with the same setting as our models for fair comparison.For SC10,we use the result matrix of CBOW as its initial matrix.The PPMI matrix is built based on the word-context co-occurrence counts with window size as10.Similar to[Murphy et al.,2012],we im-plement NNSE based on word-context co-occurrence PPMI matrix using the SPAMS package11.Due to the memory is-sue,the PPMI matrix for NNSE is built over a vocabulary of 40,000most frequent words just as the same setting in[Mur-phy et al.,2012].4.2Expressive PowerTo evaluate the expressive power of the representations of each model,we conduct experiments on two tasks,i.e.,word analogy and word similarity.Word Analogy.The word analogy task is introduced by Mikolov et al.[2013c;2013a]to quantitatively evaluate the models ability of encoding the linguistic regularities between word pairs.The dataset contains5types of semantic analo-gies and9types of syntactic analogies12.The semantic anal-ogy contains8869questions,typically about places and peo-ple,like“Athens is to Greece as Paris is to France”,while the syntactic analogy contains10,675questions,mostly focusing on the morphemes of adjective or verb tense,such as“run is to running as walk to walking”.This task is to assume the last word is missing(e.g.,“a is to b as a0is to”)and to correctly predict it.It is answered us-ing3C OS M UL for performance concern[Levy and Goldberg, 2014a]:arg maxx2W\{a,b,a0}sim(x,b)sim(x,a0)2sim(x,a)+✏where✏is used to prevent division by zero and sim(x,y) computes the similarity between word x and y.It is defined 8/projects/glove/9https:///p/word2vec/10https:///mfaruqui/sparse-coding11http://spams-devel.gforge.inria.fr12/p/word2vec/source/browse/trunk/questi ons-words.txtas sim(x,y)=(cos(x,y)+1)/2due to the non-negative con-straint for similarity in3C OS M UL.The prediction is judged as correct only if x is exactly the missing word in the evalua-tion set.The evaluation metric for this task is the percentage of questions answered correctly.Word Similarity.The word similarity task is employed to measure how well the model captures the similarity between two words.We evaluate our model on three different test-sets:(1)WordSim-353(WS-353)[Finkelstein et al.,2002], it is the most commonly used testset for semantic models, and consists of353pairs of English words;(2)SimLex-999 (SL-999)[Hill et al.,2015],it is constructed to overcome the shortcomings of WS-35313and contains999pairs of nouns (666),verbs(222),and adjectives(111);(3)Rare Word (RW)[Luong et al.,2013],it consists of2034word pairs, with more rare and morphological complex words than other word similarity testsets.These datasets all contain word pairs together with human assigned similarity scores.The performance is evaluated using the spearman rank cor-relation between the similarity scores computed on learned word vectors and the human judgements14.Result Table1summarizes the results on word analogy and word similarity tasks.The third block shows the results of word analogy task. It is easy to see that word analogy is more challenging for sparse models.All sparse models have not been able to out-perform CBOW and SG.It seems like that dense represen-tations are more effective on revealing linguistic regularities between word pairs.Nevertheless,we found Sparse CBOW can achieve the similar performance comparing with CBOW if we reduce its sparsity level less than85%.The fourth block shows the results of word similarity task on three different testsets.It is easy to observe that WS-353 is quite easy for all the models while SL-999is more chal-lenging as Hill et al.[2015]claimed.For SL-999,Sparse CBOW performs significantly better than all the other models including both sparse models and state-of-the-art dense mod-els.This indicates that the salient semantic meanings learned from Sparse CBOW can be very helpful for modeling word similarities.The last block of the table reports the average performance on all tasks.As we can see,NNSE and SC are much worse than the dense models(GloVe,SG,and CBOW)and their cor-responding baseline,PPMI(W-C)and CBOW respectively. Moreover,SC still performs a little bit worse than CBOW even with10times dimensionality vectors.Even so,the pro-posed Sparse CBOW still achieves the best average perfor-mance.It is worth stressing that our sparse model performs as well as or even better than the state-of-the-art dense models with only about10%non-zero entries of dense models. Effects of Vector LengthThe dimensionality is an important configuration in word representations.In Figure1,we report the average perfor-13SL-999focuses on measuring how well models capture simi-larity,rather than relatedness or association that WS-353do.As a result,it is more challenging for word representation models.14In all experiments,we removed the word pairs that cannot be found in the vocabulary4045505560DimensionalityAveragePerformanceFigure1:Average performance of CBOW and Sparse CBOW across all tasks against the varying dimensionality.mances of CBOW and Sparse CBOW across all tasks against the varying dimensionality.As can be seen in Figure1,the peak performance of both CBOW and sparse CBOW are very close.CBOW achieves its best performance under the di-mension300,and then drops with the increasing dimension-ality.On the contrary,Sparse CBOW is more stable than CBOW.Moreover,Sparse CBOW performs slightly better than CBOW on all dimensions except the smaller dimensions (50,100).It suggests that sparsity can make the word repre-sentation learning process more stable.4.3InterpretabilityTo evaluate the interpretability of our learned sparse word representations,we conduct experiments on word intrusion task and some case studies focusing on individual dimen-sions.Word IntrusionFollowing[Murphy et al.,2012;Faruqui et al.,2015],we also evaluate the interpretability of learned word representations through the word intrusion task.The task seeks to measure how coherent each dimension of these vectors are.The data construction of word intrusion task proceeds as follows:for each dimension i of the learned word vector,it first sorts the words on that dimension alone in descending order.Next,it creates a set consisting of the top5words from the sorted list,and also one word from the bottom half of this list,which is also present in the top10%of some other dimension i0.The last word added from the bottom half is called an intruder.An example of such a set constructed from a dimension of the Sparse CBOW is shown below: {poisson,parametric,markov,bayesian,stochastic,jodel} where jodel is the intruder word which means an aircraft com-pany,while the rest of the words represent different concepts in statistical learning.The goal of the traditional word intrusion task is to evaluate whether human judges can identify the intruder word.How-Table2:Results for word intrusion task.Higher values are better.Bold scores are the best.Model Sparsity DistRatioGloVe0%1.07CBOW0%1.09SG0%1.12NNSE(PPMI)89.15%1.55SC(CBOW)88.34%1.24Sparse CBOW90.06%1.39ever,such manual evaluation method is an arduous,costly, and subjective process.In this paper,we propose a new eval-uation metric for the word intrusion task without human as-sessment.The intuition of word intrusion task is that if the learned representation is coherent and interpretable,then it should be easy to pick out the intruder word.To this end,the intruder word should be dissimilar to the top5words while those top words should be similar to each other.Therefore, we use the ratio of the distance between the intruder word and top words to the distance between the top words to quan-tify the interpretability of learned word representations.The higher ratio corresponds to better interpretability since it in-dicates the intrusion word is far away from the top words and can be easy picked out.Formally,the evaluation metric can be formalized as:DistRatio=1ddX i=1InterDist iIntraDist iIntraDist i=X w j2top k(i)X w k2top k(i)w k=w j dist(w j,w k)k(k 1)InterDist i=X w j2top k(i)dist(w j,w b i)kwhere top k(i)denotes top k words on dimension i,w bi de-notes the intrusion word for dimension i,dist(w j,w k)de-notes the distance between word w j and w k,IntraDist i de-notes the average distance between top5words on dimension i,and InterDist i denotes the average distance between the intruder word and top words on dimension i.In this paper,k is set as5and dist(w j,w k)is defined as euclidean distance. Result We run the experiment ten times since there exists randomness in selection of intruder words.The average re-sults for300dimensional vectors of each model are reported in Table2.we can observe that all sparse models perform significantly better than dense models.This confirms that the sparse representations are more interpretable than the dense vectors.Besides,as the two methods based on CBOW,the results show that our model can gain more improvement than SC.The reason might be that our method directly learns the sparse word representations with respect to the original pre-dictive task of CBOW,and thus may avoid the information loss caused by a separate sparse coding step in SC. Moreover,NNSE obtains the highest score for this task. This suggests that,besides sparse constraint,non-negative constraint might also be a good choice for improving the interpretability of word representations.Luo et al.[2015]Table3:Top5words of some dimensions in CBOW and Sparse CBOW.Model Top5WordsCBOWbeat,finish,wedding,prize,readrainfall,footballer,breakfast,weekdays,angeleslandfall,interview,asked,apology,dinnerbecomes,died,feels,resigned,strainedbest,safest,iucn,capita,tallestSparsepoisson,parametric,markov,bayesian,stochastic CBOWntfs,gzip,myfile,filenames,subdirectorieshugely,enormously,immensely,wildly,tremendouslyearthquake,quake,uprooted,levees,spectacularlybosons,accretion,higgs,neutrinos,quarksalso verified that non-negativity is a beneficial factor for in-terpretability in skip gram model.Case StudyBesides the quantitative evaluation,we also conduct some case studies to verify if a vector dimension is interpretable. For this purpose,we select topfive words from word vectors’dimensions and check whether these words reveal some se-mantic or syntactic groupings.Table3shows top5words from some dimensions in learned CBOW and Sparse CBOW,one dimension per row. For Sparse CBOW,It is clear to see that thefirst row lists the concepts in statistical learning,second row talks about the computerfile system,the third row contains all adverbs describing“to a great degree”,the fourth row lists different things about disasters like earthquake orflood,and the last row talks about particles in physics.All these show the di-mensions of Sparse CBOW reveal some clear and consistent semantic meanings.In contrast,the dimensions of CBOW do not convey consistent meanings.These results also confirm that our proposed model has a better interpretability.5ConclusionIn this paper,we present a method to learn sparse word repre-sentations directly from raw text data.The proposed Sparse CBOW model applies the`1regularization on CBOW model and uses regularized dual averaging algorithm to optimize it in online training.The experimental results on both word similarity tasks and word analogy tasks show that,compared with the original CBOW model,Sparse CBOW can obtain competitive results using less than10%non-zero elements. Besides,we also test our model on word intrusion task and design a new evaluation metric for it to get rid of human eval-uation.The results demonstrate the effectiveness of our pro-posed model in interpretability. AcknowledgmentsThis work was funded by973Program of China under Grants No.2014CB340401and2012CB316303,863Pro-gram of China under Grants No.2014AA015204,the Na-tional Natural Science Foundation of China(NSFC)un-der Grants No.61232010,61472401,61433014,61425016, 61203298,and61572473,Key Research Program of the Chi-nese Academy of Sciences under Grant No.KGZD-EW-T03-2,and Youth Innovation Promotion Association CAS under Grants No.20144310and2016102.。

相关文档
最新文档