人教版-数学-九年级下册--锐角三角函数 全章导学案

合集下载

人教版数学九年级下册教学设计28.1《锐角三角函数》

人教版数学九年级下册教学设计28.1《锐角三角函数》

人教版数学九年级下册教学设计28.1《锐角三角函数》一. 教材分析人教版数学九年级下册第28.1节《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的概念、定义及应用。

本节内容是学生对三角形知识深入理解的基础上进行学习的,对于培养学生的逻辑思维能力、空间想象能力和数学应用能力具有重要意义。

教材通过丰富的实例,引导学生探究锐角三角函数的定义,并运用函数思想解决实际问题。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,具有较好的逻辑思维能力和空间想象能力。

但是,对于锐角三角函数的概念和应用,部分学生可能会感到抽象和难以理解。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行针对性的教学。

三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念、定义及性质,能够运用锐角三角函数解决实际问题。

2.过程与方法:通过探究活动,培养学生合作交流、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。

四. 教学重难点1.重点:锐角三角函数的概念、定义及性质。

2.难点:锐角三角函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识锐角三角函数,激发学生的学习兴趣。

2.探究教学法:学生进行小组讨论,共同探究锐角三角函数的性质,培养学生的合作意识。

3.案例教学法:通过典型例题,讲解锐角三角函数在实际问题中的应用,提高学生的解决问题的能力。

六. 教学准备1.教学PPT:制作精美的教学PPT,展示锐角三角函数的相关概念、定义及应用。

2.教学案例:挑选具有代表性的例题,供课堂讲解和练习使用。

3.学习素材:为学生提供相关的学习资料,帮助学生巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计、工程测量等,引导学生认识锐角三角函数,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示锐角三角函数的概念、定义及性质,让学生初步了解并掌握相关知识。

人教版数学九年级下册28.1《锐角三角函数》配套教案

人教版数学九年级下册28.1《锐角三角函数》配套教案
首先,我发现学生在理解锐角三角函数的定义时,普遍存在一定的困难。可能是因为这些概念比较抽象,学生初次接触难以导学生逐步理解这些概念的本质。
其次,在新课讲授环节,我尽量用简洁明了的语言解释了正弦、余弦、正切的定义,并通过案例分析让学生看到这些概念在实际中的运用。但我也注意到,部分学生在案例分析时仍然显得有些迷茫。我想,可能是我讲解的速度过快,没有给学生足够的时间去消化和思考。下次我会尽量放慢节奏,让学生有更多的时间去理解和吸收。
3.锐角三角函数的关系式:了解正弦、余弦、正切之间的关系,如正切的定义可以用正弦和余弦表示。
4.锐角三角函数的应用:解决实际问题,如测量物体的高度、计算角度等。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的几何直观和空间观念,通过观察直角三角形中角度与边长的关系,理解锐角三角函数的定义及其性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
-锐角三角函数关系式的推导:学生需要掌握正弦、余弦、正切之间的推导过程,这对于逻辑思维能力和代数运算能力有一定要求。
-实际问题的模型建立:将实际问题转化为数学模型,需要学生具备较强的抽象思维和问题解决能力。
举例:在解决测量物体高度的问题时,学生需要将实际问题转化为直角三角形模型,并运用锐角三角函数知识。教师应指导学生如何确定所求的角度和边长,以及如何选择合适的三角函数进行计算。
在实践活动环节,学生分组讨论和实验操作的过程较为顺利,但我感觉有些小组在讨论时,组内成员的参与度并不均衡。为了提高讨论效果,我需要加强对每个小组的指导,确保每个学生都能积极参与到讨论中。

最新人教版九年级数学下册《用计算器求锐角三角函数值及锐角》精品导学案

最新人教版九年级数学下册《用计算器求锐角三角函数值及锐角》精品导学案

第二十八章 锐角三角函数28.1 锐角三角函数第4课时 用计算器求锐角三角函数值及锐角学习目标:1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题. 重点:1.会使用科学计算器求锐角的三角函数值.2.会根据锐角的三角函数值,借助科学计算器求锐角的大小. 难点:熟练运用计算器解决锐角三角函数中的问题.一、知识链接 1.填写下表: 2. sin 30° cos60°, cos 30° sin 60°,sin 230° + cos 230° = .一、要点探究探究点1:用计算器求锐角的三角函数值或角的度数 【典例精析】(1) 用计算器求sin18°的值;(2) 用计算器求tan30°36′的值;(3) 已知sin A = 0.501 8,用计算器求∠A的度数.练一练 1. 用计算器求下列各式的值(精确到0.000 1):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.探究点2:利用计算器探索三角函数的性质(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°____2sin15°cos15°;②sin36°____2sin18°cos18°;③sin45°____2sin22.5°cos22.5°;④sin60°____2sin30°cos30°;⑤sin80°____2sin40°cos40°.猜想:已知0°<α<45°,则sin2α___2sinαcosα.(2) 如图,在△ABC中,AB=AC=1,∠BAC=2α,请利用面积方法验证(1) 中的结论.练一练(1) 利用计算器求值,并提出你的猜想(结果保留四位小数):sin25°≈ ,cos65°≈ ,cos58°≈ ,sin32°≈ ,sin67°≈ ,cos23°≈ ,cos17°≈ ,sin73°≈ ;猜想:已知0°<α<90°,则sin αcos(90°-α),cos αsin(90°-α).(2) 利用计算器求值,并提出你的猜想(结果保留四位小数):sin20°≈ ,cos20°≈ ,sin220°≈ ,cos220°≈ ;sin35°≈ ,cos35°≈ ,sin235°≈ ,cos235°≈ ;猜想:已知0°<α<90°,则sin2α + cos2α = .二、课堂小结1. 用计算器求sin24°37′18″的值,以下按键顺序正确的是 ( )2. 下列式子中,不成立的是( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13. 利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到0.0001);(3) 若sin α = 0.5225,则α ≈ (精确到0.1°);(4) 若sin α = 0.8090,则α ≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5.用计算器比较大小:sin87°tan87°.6.在Rt△ABC中,∠C = 90°,∠BAC = 42°24′,∠BAC的平分线AT = 14.7 cm,用计算器求AC的长(精确到0.001cm).参考答案自主学习一、知识链接1.2.= = 1课堂探究一、要点探究探究点1:用计算器求锐角的三角函数值或角的度数【典例精析】例1解:(1)第一步:按计算器键;第二步:输入角度值18;屏幕显示答案:0.309 016 994.(2)方法①:第一步:按计算器键;第二步:输入角度值30.6 (因为30°36′= 30.6°);屏幕显示答案:0.591 398 351.方法②:第一步:按计算器键;第二步:输入角度值30,分值36 (使用键);屏幕显示答案:0.591 398 351.(3)第一步:按计算器键;第二步:然后输入函数值0. 501 8;屏幕显示答案:30.119 158 67°(按实际需要进行精确).还可以利用键,进一步得到∠A= 30°07′08.97 ″(这说明锐角A精确到1′的结果为30°7′,精确到1″的结果为30°7′9″).练一练 1. 解:(1)0.7314 (2)0.2164 (3)0.9041 (4)-0.78172.解:(1) ∠A ≈ 44.4°;∠B ≈ 0.6°.(2) ∠A ≈ 81.4°;∠B ≈ 36.9°. (3) ∠A ≈ 67.4°;∠B ≈ 26.6°.探究点2:利用计算器探索三角函数的性质例2 解:(1)① = ② = ③ = ④ = ⑤ = =(2)∵ S ∠ABC =12AB · sin2α · AC =12sin2α,S ∠ABC =12×2AB ·sin α · AC ·cos α =sin α ·cos α,∠sin2α=2sin αcos α. 此方法也是高中才会研究的求面积的计算公式,建议初中阶段不要深挖.练一练 解:(1)0.4226 0.4226 0.5299 0.5299 0.9205 0.9205 0.9563 0.9563 = =(2)0.3420 0.9397 0.1170 0.8830 0.5736 0.8192 0.3290 0.6710 1 当堂检测1. A2. B3.(1) 0.6428(2) 0.2672(3) 31.5 (4)54.04. 32°5. <6.解:∵ AT 平分∠BAC ,且∠BAC = 42°24′, ∴ ∠CAT =21∠BAC = 21°12′. 在Rt △ACT 中 ,cos ∠CAT =ACAT , ∴ AC = AT · cos ∠CAT = 14.7×cos21°12′ ≈13.705(cm).学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。

人教版九年级数学下册第28章: 锐角三角函数专题 导学案设计

人教版九年级数学下册第28章: 锐角三角函数专题 导学案设计

锐角三角函数及解直角三角形知识要点几何中的两个基本量是:线段的长度和角的大小 三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题。

三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具一、三角函数的计算和证明问题 1、正弦、余弦、正切和余切的定义※如图,在Rt △ABC 中,锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA 即sinA =斜边的对边A ∠=ca.※在Rt △ABC 中,锐角A 的邻边与斜边的比叫做∠A 的余弦, 记作cosA 即cosA =斜边的邻边A ∠=cb.※在Rt △ABC 中,锐角A 的对边与邻边的比叫做∠A 的正切, 记作tanA 即tanA =的邻边的对边A A ∠∠=ba.※在Rt △ABC 中,锐角A 的邻边与对边的比叫做∠A 的余切, 记作cotA 即cotA =的对边的邻边A A ∠∠=a b.【例1】1、在Rt △ABC 中,∠C =90°,a :b =3,则sinA = ; cosA = ;tanA = ;cotA = 。

2、已知∠α为锐角,则sin α+cos α的值是( )A 、大于1B 、等于1C 、小于1D 、不能确定3、如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连接CE ,求sin ∠ACE 的值.4、如图中,AB 是圆的直径,CD 是平行于AB 的弦,且AC 和BD 相交于E ,∠AED =α,△CDE 和△ABE 的面积之比是( )A 、cos αB 、sin αC 、cos 2αD 、sin 2αE 、1-sin α5、tan 67°30′的值是( ) A 、2+1 B 、2-2 C 、22-1 D 、21 E 、52 【练】(1)已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB =2,AB =29cm ,则S △ABC = (2)如图,在△ABC 中,∠C =90°,∠BAC =30°,BC =1,D 为BC 边上一点,tan ∠ADC 是方程3(x 2+x21)-5(x +x1)-2的一个较大的根,求CD 的长2、同角、互余角三角函数之间的数量关系 ※sin 2α+cos 2α=1;tan α·cot α=1;tan α=ααcos sin ;cot α=ααsin cos 【例2】1、已知:∠α是锐角,且sin α+cos α=332,则sin α·cos α= 2、已知:tan α=3,则ααααcos sin 5cos 2sin +-的值为※当α+β=90°时,sin α=cos β;cos α=sin β;tan α=cot β;cot α=tan β 4、计算:(1)cos 21°+ cos 22°+…+ cos 288°+ cos 289°= (2)tan 1°·tan 2°…tan 89°=(3)计算:sin 53°·cos 37°+cos 53°·sin 37°= 5、已知:二元方程mx 2-(m -2)x +41(m -1)=0两个不相等的实数根,恰好是直角三角形两个锐角的正弦值,求这个直角三角形的斜边与斜边上的高的比。

第28章-锐角三角函数-全章教案

第28章-锐角三角函数-全章教案
求 sinA 就是要确定∠
====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获

sin
A
A的对边 斜边
a c

同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化

【最新】人教版九年级数学下册第二十八章《锐角三角函数(2)》导学案

【最新】人教版九年级数学下册第二十八章《锐角三角函数(2)》导学案

新人教版九年级数学下册第二十八章《锐角三角函数(2)》导学案教师寄语 成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成 . 学习目标1、进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。

2、牢记特殊角的三角函数值,并能进行有关计算。

学生自主活动材料一.前置自学1.(1)若sin α=23,则锐角α= 度(2)在Rt △ABC 中,∠C=900,a=20,b=220,则∠B= 度 2.若∠A 是锐角,且cosA=53,则cos (900-A )=3.(1)sin30°·cos45°+cos60°; (2)2sin60°-2cos30°·sin45° (3)tan45°·sin60°-4sin30°·cos45°+6·tan30°4.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A . 3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B = 5.三角形在方格纸中的位置如图所示,则tan α的值是( )A .34 B .43 C .35 D .45 二.合作探究6.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .(21),B .(12),C .(211)+,D .(121)+,7.图是某商场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )m A .833B .4C .43D .8 8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25 B .253 C .10033D .25253+ 9.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( ) A .23B .32C .34 D .43三.拓展提升10.如图,△ABC 中,∠A=300,3tan 2B =,23AC =,则AB = . 11.如图,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE=6,3sin 5A =,则菱形ABCD 的周长是 . 12.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为___________.(已知:sin15°=624-,cos15°=624+)13.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为( ). A. 3 B.316 C. 320 D. 51614.如图,平面直角坐标系中,直线AB 与x 轴夹角为600,且点A 的坐标为(-2,0), 点B 在x 轴的上方,设AB a =,那么点B 的坐标为( )A.(,22--a a 23) B.(,22--a 2a ) C.(,22-a 2a ) D.( ,22-a a 23) 四.当堂反馈15.在△ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( ) A. 43 B. 34 C. 53 D. 5416.如果sin 2α+sin300=1,那么锐角α的度数是( )A.15 0 B.300 C.450 D.60017.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A.300 B.450 C.60 0D.不能确定18.已知tan α=125,α是锐角,则sin α= 已知=A ∠=- 03tan 3则A 19.等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 .20.以直角坐标系的原点O 为圆心,以1为半径作圆。

人教版九年级数学下册《锐角三角函数(一)》导学案

人教版九年级数学下册《锐角三角函数(一)》导学案

28.1锐角三角函数(一)导学案
一、教学目标
知识与技能初步了解锐角三角函数的意义,初步理
解在直角三角形中一个锐角的对边与斜边的
比值就是这个锐角的正弦的定义,并会根据
已知直角三角形的边长求一个锐角的正弦
值。

过程与方法从实际问题入手研究,经历从发现到解决
直角三角形中的一个锐角所对应的对边与斜
边之间的关系的过程,体会研究数学问题的
一般方法以及所采用的思考问题的方法。

情感态度与价值观在解决问题的过程中体验求索的科
学精神以及严谨的科学态度,进一步激发学
习需求。

二、教学重难点
重点锐角的正弦的定义
难点理解直角三角形中一个锐角与其对边与斜边比值的对应关系。

三、学习过程
1、验证正弦函数
2、正弦函数的定义
3、例题示范
4、巩固训练。

人教版九年级数学下册28.1:锐角三角函数 导学案设计

人教版九年级数学下册28.1:锐角三角函数 导学案设计

锐角三角函数课前自主复习1.三角函数定义如图,在△ABC 中,△C=90°,则BCACA BC A AB A AB BC A ====cot ,) (tan ,) (cos ,sin .2.特殊角30°、45°、60°角的三角函数值1.已知△α的补角是120°,则△=α ,=αsin .2.在Rt△ABC 中,已知△C=90°,AB=2BC ,现给出下列结论:△23sin =A ;△21cos =B ;△33tan =A ;△3tan =B .其中正确的结论有 (只需填上正确结论的序号).3.在Rt△ABC 中,△C=90°,AB=4,AC=1,则cosB 的值为( )A.415 B.41C.1515D.17174 4.如图,在4×4的正方形网格图中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则,△BAC 的正弦值是 .5.如图,正方形ABCD 的边长为22,过点A 作AE△AC ,AE=1,连接BE ,则tanE= ;课堂讲练结合例1.在△ABC 中,已知△C=90°,sinA=54,则=B tan ( ) A.34 B.43 C.53 D.54 例2.计算:=-+⎪⎭⎫⎝⎛--+︒-03)20192019(2172245sin 6 .【跟进训练1】如图,在Rt△ABC 中,△C=90°,BC=15,,815tan =A 则AB= .【跟进训练2】计算:()141.1245tan 3231-+︒+--⎪⎭⎫⎝⎛-例3.如图,在△ABC 中,已知△A=90°,AB=AC ,D 是AC 的中点,求tan△DBA 和sin△DBC【跟进训练3】在Rt△ABC 中,已知△C=90°,AB=4,,53sin =A 求斜边上的高CD例4.如图,在Rt△ABC 中,已知△B=90°,D 是BC 边上的一点,△C=30°,△ADB=45°,CD=100,求AB 的长.课内巩固训练1.如图是一个中心对称图形,A 为对称中心,若△C=90°,BC=1则B B '的长为( )A.4B.33 C.332 D.3342. 若△A 为锐角,且,03tan 2tan 2=-+A A 则△A= .3.如图,在数轴上点A 所表示的数x 的范围是( ) A.︒<<︒60sin 30sin 23x B.︒<<︒45cos 2330cos x C.︒<<︒45tan 30tan 23x D.︒<<︒30cot 45cot 23x4.如图,在Rt△ABC 中,已知△B=90°,△C=30°,点D 是BC 的中点,求sin△DAC.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以互相转化,类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad ),如图△,在△ABC 中,AB=AC ,顶角A 的正对记做sadA ,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解决下列问题: (1)sad60°= ;(2)对于︒<<︒1800A ,△A 的正对值sadA 的取值范围是 ; (3)如图△,已知53sin =A ,其中△A 为锐角,试求sadA 的值.课后作业A 组(基础训练)1.在△ABC 中,∠C=90°,如果,1,2==BC AB 那么A cos 的值是( )A.21B.55C.33D.232.已知∠A 是锐角且23sin =A ,那么∠A 等于( ) A.30° B.45° C.60° D.75°3.在△ABC 中,已知∠A 、∠B 都是锐角,且23cos ,21sin ==B A ,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定4.在Rt △ABC 中,已知∠C=90°,CD 是AB 边上的中线,BC=8,CD=5,则tan ∠ACD=( ) A.43 B.34 C.54 D.455.在Rt △ABC 中,已知∠C=90°,4,32tan ==AC A ,则=BC . 6.在△ABC 中,已知0)tan 1(22sin 2=-+-B A ,则∠C= . 7.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,BD=8,tan ∠ABD=43,则线段AB 的长为 .8.已知α是锐角,,3)20tan(3=︒+α则=α .9.计算:360sin 28232-+︒-+.B 组(能力提高)10.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )A.21B.1C.33D.311.如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在变AD 上,若AB=3,BC=4,则tan ∠AFE 的值是 .12.如图,在四边形ABCD 中,已知∠A=135°,∠B=∠D=90°,BC=4,AD=2,求四边形ABCD 的面积.13.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.14.如图,在矩形纸片ABCD中,AB=6,BC=8,把△BCD沿对角线BD折叠,使点C落在C'处,B'交AD于点G.E、F分别是DC'和BD上的点,线段EF交AD于点H,把△FDE沿EF折C叠,使点D落在D'处,点D'恰好与点A重合.C';(1)求证:△ABG≌△DG(2)求tan∠ABG的值;(3)求EF的长.。

人教版九年级下册数学28.1锐角三角函数(教案)

人教版九年级下册数学28.1锐角三角函数(教案)
其次,在新课讲授环节,我尝试用生动的案例和直观的图形来解释锐角三角函数的定义和应用。从学生的反馈来看,这种方法帮助他们更好地理解了抽象的数学概念。然而,我也注意到,在讲解函数关系时,部分学生还是显得有些迷茫。这可能是因为我在讲解时没有足够地强调和重复,导致学生难以消化这些难点知识。在今后的教学中,我需要更加关注这一点,通过更多实例和练习来帮助学生突破这一难关。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角与三条边的比值关系,包括正弦、余弦和正切。这些函数在解决实际问题中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的高度,展示如何利用锐角三角函数来计算,并了解它们在实际中的应用。
举例:以直角三角形为例,引导学生通过观察和测量,得出正弦、余弦、正切的定义,并通过计算具体角度的函数值,让学:学生需要记忆特殊角度的正弦、余弦、正切值,并理解这些值的含义,这对于部分学生来说可能存在记忆困难。
-函数关系的转换与应用:在解决实际问题时,学生需要能够灵活转换正弦、余弦、正切之间的关系,并应用于问题的解决,这是学生普遍感到难以掌握的部分。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
3.锐角三角函数的关系:掌握正弦、余弦、正切之间的基本关系,如正切的定义与正弦、余弦的关系。
4.锐角三角函数的应用:解决实际问题,如测量物体的高度、求角度等。

人教版九年级下册数学第二十八章锐角三角函数全章教案

人教版九年级下册数学第二十八章锐角三角函数全章教案

锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

三.情感目标:提高学生对几何图形美的认识。

教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序:一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。

二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)04530cos sia +ta60°-tan30° 三.拓展提高P76例1.(略)1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结解直角三角形应用(一)一.教学三维目标(一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学过程(一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba (2)三边之间关系 a 2 +b 2 =c 2(勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B =350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习的平分线AD=43,解此直角三角形。

人教版九年级下册28.1《锐角三角函数》教案

人教版九年级下册28.1《锐角三角函数》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-锐角三角函数关系的理解:正弦、余弦、正切之间的关系较为复杂,学生难以理解和记忆。
-锐角三角函数图像的掌握:学生可能无法将图像与函数的性质有效联系起来。
举例解释:
-通过对比和实际操作,帮助学生区分正弦、余弦、正切的定义,例如通过直角三角形的模型进行直观展示。
-设计具体的计算题目,指导学生如何根据角度求函数值,强调记忆特殊角度的函数值,如30°、45°、60°等。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过举分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量角度和距离,演示锐角三角函数的基本原理。
人教版九年级下册28.1《锐角三角函数》教案
一、教学内容
人教版九年级下册第28章《锐角三角函数》第1节,主要包括以下内容:
1.锐角三角函数的定义:正弦、余弦、正切的概念及其在直角三角形中的应用。
2.锐角三角函数的值:通过具体例子,让学生学会如何求锐角三角函数的值。
3.锐角三角函数的关系:掌握正弦、余弦、正切之间的基本关系,并能运用这些关系解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

精品人教版数学9年级下. 特殊角的锐角三角函数(教案与导学案)

精品人教版数学9年级下. 特殊角的锐角三角函数(教案与导学案)

第二十八章锐角三角函数28.1锐角三角函第3课时特殊角的锐角三角函数【知识与技能】1.理解并掌握30°,45°,60°的三角函数值,能用它们进展有关计算;2.能依据30°,45°,60°的三角函数值,说出相应锐角的度数.【过程与方法】经历探索30°,45°,60°角的三角函数值的过程,进一步体会三角函数的意义.【情感态度】在探索特殊角的三角函数值的过程中,增强学生的推理能力和计算能力. 【教学重点】熟记30°,45°,60°的三角函数值,并用它们进展计算.【教学难点】探索30°,45°,60°的三角函数值的指导过程.一、情境导入,初步认识问题在前面我们已经得到sin3o°= 12,sin45°=2,你能得到30°,45°角的其它三角函数值吗?不妨试试看.【教学说明】 教师可引导学生从所给结论sinA = sin30°=12出发,设 BC = 1,那么 AB = 2,由勾股定理可得30°的其它三角函数值,同样在图〔2)中,仍可设BC = 1, 那么AC = 1,45°的其它三角函数值.这里设BC = 1是为了方便计算.二、思考探究,获取新知通过对上述问题的思考,可以得到:sin30°=12,cos30°= 2,tan30°= 3,sin45°= 2,cos45°= 2, tan45°= 1.【想一想】 60°角的三角函数值各是多少?你是如何得到的?在学生的相互交流中可得出结论:sin60°= 2,cos60°= 12 ,tan60°教师再将上述所有结论整理,制成下表.三、典例精析,掌握新知例1 求以下各式的值.(1)cos260°+ sin260°;〔2〕cos45tan45sin45︒-︒︒.解〔1〕原式 =12()2 +32()2 =14+34= 1;〔2〕原式 =2222- 1 = 0.例2 〔1〕如图〔1〕,在Rt△ABC中,∠C=90°,AB = 6,BC = 3,求∠A的度数;〔2〕如图〔2〕,圆锥的高AO等于圆锥的底面半径OB的3倍,求α.解〔1〕∵sinA = BC32AB26==,∴∠A = 45°;〔2〕∵tanα = OA33OBOBOB==,∴α = 60°.【教学说明】以上两例均可先由学生自主完成,然后教师在展示解答过程,加深学生对本节知识的理解,并指明两例题的侧重点不一样,例1侧重于运用特殊角的三角函数值来参与计算,而例2那么是通过计算一个角的某一三角函数值后,利用锐角的三角函数值与锐角之间的一一对应关系,从而确定锐角的度数.这样处理,可让学生熟记特殊角的三角函数值.四、运用新知,深化理解1.在△ABC中,∠A,∠B都是锐角,且tanA = 12,cosB =32,那么△ABC的形状是〔〕A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.计算:〔1〕3tan30°- tan45°+ 12sin60°= ___________ .〔2〕60160sincos︒-︒+130tan︒- sin45°= ___________ .3.在Rt△ABC中,∠C=90°,BC = 7,AC = 21,试求∠A、∠B的度数.4.边长为2的正方形ABCD在平面直角坐标系中的位置如下图,且∠OBC=30°,试求A、D两点坐标.【教学说明】四道题均可让学生自主探究,也可小组内讨论,到达解决问题的目的.教师巡视,发现问题给予指导,对优秀者和积极参与者给予鼓励,增强学生的学习信心.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.B 【解析】∵cosB =32,∴∠B = 30°,又∵tanA =12<3 2= tan30°,∴∠A < 30°,∠A + ∠B < 60°,∴∠C = 180°- (∠A + ∠B)> 120°.即△ABC 是钝角三角形,应选B.2.〔1〕5314-〔2〕2232【解析】〔1〕原式 =31331322⨯-+⨯3314+ =5314-〔2〕原式 =3221312-233222323.由题意易得:tanA =73213BCAC===,tanB = 3ACBC=,∴∠A= 30°,∠B = 60°.4.解:∵ OB = BC·cosB =323⨯=, OC = BC·sinB =1212⨯=,∴B 点的坐标是〔3,0-〕.过D点作DE 垂直于y轴,交y轴于E点,易证△OBC≅△ECD,∴∠DCE = ∠CBO =30°.∴CE = cos∠DCE ·CD =3232⨯=,∴OE = OC + CE = 13+,DE = 112CD=,∴D 点的坐标是〔1,13-+〕.五、师生互动,课堂小结1.如何理解并熟记特殊角的三角函数值?同学间相互交流.2.运用特殊角的三角函数值可解决哪两类问题?【教学说明】师生共同回忆,对于问题1,可引导学生利用图形进展推理计算,也可通过表格中横排的数的变化规律来记忆.1.布置作业:从教材P68〜70习题28. 1中选取.2.完成创优作业中本课时的“课时作业〞局部.本课时教学以“自主探究〞为主体形式,所以应先给学生自主动手的时间,给学生提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作学习的能力.28.1 锐角三角函数第3课时特殊角的锐角三角函数一、新课导入1.课题导入情景:出示一副三角尺,教师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.〔板书课题〕2.学习目标〔1〕推导并熟记30°,45°,60°角的三角函数值.〔2〕能运用30°,45°,60°角的三角函数值进展简单的计算.〔3〕能由30°,45°,60°角的三角函数值求对应的锐角.〔4〕会运用计算器求锐角三角函数的三角函数值和由三角函数值求锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导〔1〕自学内容:教材P65探究~P66例3上面的内容.〔2〕自学时间:8分钟.〔3〕自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进展针对性指导.〔2〕生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.1.自学指导〔1〕自学内容:教材P66例3~P67练习上面的内容.〔2〕自学时间:10分钟.〔3〕自学方法:先自主学习,再同桌之间讨论交流,互相纠错.〔4〕自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求以下各式的值:1-2sin30°cos30°;=1-2×12×3223-3tan30°-tan45°+2sin60°;=3×3-1+2×3=231.(cos230°+sin230°)×tan60°.=[3〕2+〔12〕2]×3 3④在Rt△ABC中,∠C=90°,BC7AC21,求∠A、∠B的度数.∵tan A=73321==BCAC,∴∠A=30°,∠B=60°.2.自学:学生可结合自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.〔2〕生助生:小组交流、研讨.4.强化〔1〕求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法那么计算.〔2〕求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.〔3〕当A、B为锐角时,假设A≠B,那么sin A≠sin B,cos A≠cos B,tan A≠tanB.1.自学指导〔1〕自学内容:教材P67~P68.〔2〕自学时间:10分钟.〔3〕自学指导:完成探究提纲.〔4〕探究提纲:①用计算器求sin18°的值.sin18°=0.309016994.②用计算器求tan30°36′的值.tan30°36′=0.591398351.③sin A=0.5018,用计算器求锐角A的度数.∠A=30.11915867°或∠A=30°7′8.97″.④∠A是锐角,用计算器探索sin A与cos A的数量关系.sin2A+cos2A=1.⑤∠A 是锐角,用计算器探索sin A 、cos A 与tan A 的数量关系.sin tan cos.AA A⑥当一个锐角逐渐增大时,这个角的各三角函数值会发生怎样的变化呢?请用计算器探索其中的规律.正弦值逐渐增大,余弦值逐渐减小,正切值逐渐增大. ⑦用计算器求以下各锐角三角函数的值: sin35° 0.573576436 cos55° 0.573576436 tan80°25′43″ 5.93036308⑧以下锐角三角函数值,用计算器求相应锐角的度数: sin A =0.6275∠A =38.86591697° cos A =0.6252∠A =51.30313157° tan A =4.8425∠A =78.3321511°三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:〔1〕表现性评价:根据学生的情感态度和学习效果等方面进展评价. 〔2〕纸笔评价:课堂评价检测. 3.教师的自我评价〔教学反思〕.本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究〞的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进展计算.一、根底稳固〔70分〕1.(5分)2cos(α-10°)=1,那么锐角α= 70° .2.(5分) α为锐角,tanα3cosα等于〔A〕A.12B.22C.32D.333.(5分)用计算器计算cos44°的结果〔准确到0.01〕是〔B〕4.(5分)tanα=0.3249,那么α约为〔B〕A.17°B.18°C.19°D.20°5.(40分)求以下各式的值.〔1〕sin45°+cos45°;22=2.〔2〕sin45°cos60°-cos45°;=22×12-22=-2 4.〔3〕cos245°+tan60°cos30°;=2〕23×3=12+32=2.(4〕1-cos30°sin60°+tan30°.=3123+33=3-1.6.(10分)在△ABC中,∠A,∠B都是锐角,且sin A=3,tan B=1,求∠C的度数.解:∵∠A是锐角且sin A=32,∴∠A=60°.∵∠B是锐角且tan B=1,∴∠B=45°.∴∠C=180°-∠A-∠B=75°.二、综合应用〔20分〕7.(10分)在△ABC中,锐角A,B满足〔sin A-3〕2+|cos B-3|=0,那么△ABC是〔D〕A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形8.(10分)如图,△ABC内接于⊙O,AB,CD为⊙O的直径,D E⊥AB于点E,BC=1,AC=3,那么∠D的度数为30° .三、拓展延伸〔10分〕9.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin〔180°-α〕,cosα=-cos〔180°-α〕.〔1〕求sin 120°,cos 120°,sin 150°的值;解:sin120°=sin(180°-120°)=sin60°=3 .Cos120°=-cos(180°-120°)=-cos60°=-1 2 .sin150°=sin(180°-150°)=sin30°=1 2 .〔2〕假设一个三角形的三个内角的比是1∶1∶4,A ,B 是这个三角形的两个顶点,sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A =30°或120°,∠B =30°或120°.∴sin A =sin30°=12或sin A =sin120°=,cos B =cos30°=或cos B =cos120°=-12. 又∵sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根, ∴sin A +cos B =4m ,sin A ·cos B =-14. ∴sin A =12,cos B =-12,∴∠A =30°,∠B =120°,m=0.。

人教版数学九年级下册第二十八章锐角三角函数四步导学案

人教版数学九年级下册第二十八章锐角三角函数四步导学案

CBA人教版九年级下册数学第二十八章锐角三角函数 28.1锐角三角函数(1)——正弦、余弦学习目标1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算 学习重点:1. 理解正弦(sinA )概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实. 学习难点:1. 当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。

教学流程 【导课】问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ; 结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值【阅读质疑 自主探究】探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°, ∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?斜边c对边abC B A结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比 正弦函数概念:规定:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA= =ac. sinA =A a A c ∠=∠的对边的斜边 例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= . 【多元互动 合作探究】在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A•的对边与斜边的比都是 .在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A•的 ,•记作 ,【训练检测 目标探究】1.三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚A .43B .34 C .53 D .542.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则sinA=( )A .35B .45C .34D .43 3. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43 D . 54.如图,已知点P 的坐标是(a ,b ),则sin α等于( )CB AA .a bB .ba C 2222D a ba b ++【迁移应用 拓展探究】1.如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5,则sinA =_____,cosA =_____,sinB =_____,cosB =_____。

锐角三角函数全章教案

锐角三角函数全章教案

锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。

人教版九年级数学下册28.1锐角三角函数(教案)

人教版九年级数学下册28.1锐角三角函数(教案)
-函数值的计算:学生在运用定义进行计算时可能会出现错误,需要引导学生掌握计算方法和技巧。
-函数值性质的应用:如何将函数值的性质应用于解决实际问题,是学生在本节课中需要突破的难点。
举例1:对于正弦、余弦、正切函数定义的理解,可以通过画图和实际操作,让学生直观地感受到函数值的变化。
举例2:在计算函数值时,可以引导学生先确定直角三角形的两个已知边长,然后利用定义求解未知边长,如已知斜边和一个锐角,求另一个锐角的对边或邻边。
3.培养学生的空间观念:通过锐角三角函数的学习,使学生建立直角三角形中各元素之间的空间关系,提高空间观念。
本节课将着重关注学生核心素养的培养,使学生在掌握知识的同时,提高解决实际问题的能力,发展学科素养。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦(sin)、余弦(cos)、正切(tan)的定义是本节课的核心内容,需使学生理解并掌握。
其次,在新课讲授环节,我尽量使用生动的语言和形象的比喻来解释锐角三角函数的概念,但感觉在举例时,还可以选择更具代表性的例子,让学生更容易理解和接受。此外,在讲解重点难点时,要更加注意观察学生的反应,适时调整教学节奏,确保他们能够真正掌握这些核心知识。
在实践活动环节,我发现学生们在分组讨论和实验操作中表现出了很高的积极性。但同时,我也注意到有些学生在操作过程中对三角函数的应用还是有些迷茫。针对这个问题,我考虑在今后的教学中,可以增加一些实际操作的指导,让学生在动手实践的过程中更好地理解锐角三角函数的应用。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义及计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案九年级锐角三角函数全章教案一、教学目标:1. 了解锐角三角函数的概念和基本性质。

2. 掌握锐角三角函数的定义和计算方法。

3. 理解锐角三角函数的图像、性质和应用。

4. 能够运用锐角三角函数解决实际问题。

二、教学重点:1. 锐角三角函数的定义和计算方法。

2. 锐角三角函数的图像、性质和应用。

三、教学难点:1. 锐角三角函数的图像和性质。

2. 运用锐角三角函数解决实际问题。

四、教学准备:1. 教材:人教版九年级数学教材。

2. 教具:黑板、粉笔、计算器、投影仪等。

五、教学过程:第一课时:锐角三角函数的定义和计算方法1. 导入(5分钟)通过提问复习九年级学过的三角函数的概念和性质,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数的定义和计算方法,包括正弦、余弦和正切的定义,以及计算方法的示例。

3. 讲解(20分钟)详细讲解正弦、余弦和正切的计算方法,包括利用三角函数表和计算器进行计算的步骤和注意事项。

4. 练习(15分钟)让学生进行一些基础的计算练习,以巩固所学的知识。

5. 小结(5分钟)对本节课的内容进行小结,强调锐角三角函数的定义和计算方法。

第二课时:锐角三角函数的图像和性质1. 导入(5分钟)通过提问复习上节课学过的锐角三角函数的定义和计算方法,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数的图像和性质,包括正弦函数、余弦函数和正切函数的图像特点和周期性。

3. 讲解(20分钟)详细讲解正弦函数、余弦函数和正切函数的图像特点和性质,包括振幅、周期、对称轴等。

4. 练习(15分钟)让学生进行一些图像分析和性质探究的练习,以巩固所学的知识。

5. 小结(5分钟)对本节课的内容进行小结,强调锐角三角函数的图像和性质。

第三课时:锐角三角函数的应用1. 导入(5分钟)通过提问复习上节课学过的锐角三角函数的图像和性质,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数在实际问题中的应用,包括角度的测量、高度的计算等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CBCBACBA课题:28.1锐角三角函数(1)目标导航: 【学习目标】⑴: 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

⑵: 能根据正弦概念正确进行计算 【学习重点】理解正弦(sinA )概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实. 【学习难点】当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。

【导学过程】 一、自学提纲:1、如图在Rt △ABC 中,∠C =90°,∠A =30°,BC =10m ,•求AB2、如图在Rt △ABC 中,∠C =90°,∠A =30°,AB =20m ,•求BC二、合作交流:问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ; 结论:直角三角形中,30°角的对边与斜边的比值 思考2:在Rt △ABC 中,∠C =90°,∠A =45°,∠A 对边与斜边 的比值是一个定值吗?•如果是,是多少?斜边c对边abC B (2)1353CB A(1)34CB A结论:直角三角形中,45°角的对边与斜边的比值 三、教师点拨:从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A =45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C =∠C ′=90°, ∠A =∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比 正弦函数概念:规定:在Rt △BC 中,∠C =90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA = =ac. sinA =A a A c ∠=∠的对边的斜边 例如,当∠A =30°时,我们有sinA =sin 30°=;当∠A =45°时,我们有sinA =sin 45°= . 四、学生展示:例1 如图,在Rt △ABC 中, ∠C =90°,求sinA 和sinB 的值.随堂练习 (1): 做课本第79页练习. 随堂练习 (2):1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙ ﹚A .43B .34C .53D .542.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则sinA =( )A .35B .45C .34D .433. 在△ABC 中,∠C =90°,BC =2,sinA =23,则边AC 的长是( )A .13B .3C .43 D . 54.如图,已知点P 的坐标是(a ,b ),则sinα等于( ) A .a b B .ba C 2222D a b a b++五、课堂小结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A •的对边与斜边的比都是 .在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A •的 ,•记作 ,六、作业设置:课本 第85页 习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分)七、自我反思:本节课我的收获: 。

CB A课题:28.1锐角三角函数(2)【学习目标】⑴: 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。

⑵:逐步培养学生观察、比较、分析、概括的思维能力。

重点:难点: 【学习重点】理解余弦、正切的概念。

【学习难点】熟练运用锐角三角函数的概念进行有关计算。

【导学过程】 一、自学提纲:1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知AC = 5 ,BC =2,那么sin ∠ACD =( )AB .23CD3、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 且AB =5,BC =3.则sin ∠BAC = ;sin ∠ADC = .4、•在Rt △ABC 中,∠C =90°,当锐角A 确定时, ∠A 的对边与斜边的比是 , •现在我们要问:∠A 的邻边与斜边的比呢? ∠A 的对边与邻边的比呢? 为什么? 二、合作交流: 探究:一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?ABCDAB∠A的邻边b∠A的对边a 斜边c CA斜边c对边abC B A6CB A如图:Rt △ABC 与Rt △A `B `C `,∠C =∠C ` =90o ,∠B =∠B `=α, 那么与有什么关系?三、教师点拨: 类似于正弦的情况,如图在Rt △BC 中,∠C =90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的.我们把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA =A ∠的邻边斜边=ac;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA =A A ∠∠的对边的邻边=ab.例如,当∠A =30°时,我们有cosA =cos 30°=;当∠A =45°时,我们有tanA =tan 45°= .(教师讲解并板书):锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数.例2:如图,在Rt △ABC 中,∠C =90°,BC =•6,sinA =35,求cosA 、tanB 的值.四、学生展示:练习一:完成课本P 81 练习1、2、3 练习二: 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .2. 在中,∠C =90°,如果cos A =45 那么的值为()A .35B .54C .34D .433、如图:P 是∠的边OA 上一点,且P点的坐标为(3,4), 则cos α=_____________. 五、课堂小结:在Rt △BC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA = =ac. sinA =A a A c ∠=∠的对边的斜边 把∠A 的邻边与斜边的比叫做∠A 的余弦,记作 ,即 把∠A 的对边与邻边的比叫做∠A 的正切,记作 ,即六、作业设置:课本 第85页 习题28.1复习巩固第1题、第2题.(只做与余弦、正切有关的部分)七、自我反思:本节课我的收获: 。

课题:28.1锐角三角函数(3)⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。

⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式【学习重点】熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式【学习难点】30°、45°、60°角的三角函数值的推导过程【导学过程】一、自学提纲:一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?二、合作交流:思考:两块三角尺中有几个不同的锐角?是多少度?你能分别求出这几个锐角的正弦值、余弦值和正切值码?.三、教师点拨:归纳结果例3:求下列各式的值.(1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan 45°.例4:(1)如图(1),在Rt △ABC 中,∠C =90,AB 6,BC 3,求∠A 的度数.(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求a .四、学生展示: 一、课本83页 第1 题课本83页 第 2题 二、选择题.1.已知:Rt △ABC 中,∠C =90°,cosA =35 ,AB =15,则AC 的长是( ).A .3B .6C .9D .12 2.下列各式中不正确的是( ).A .sin 260°+cos 260°=1B .sin 30°+cos 30°=1C .sin 35°=cos 55°D .tan 45°>sin 45° 3.计算2sin 30°-2cos 60°+tan 45°的结果是( ). A .2 B 3 C 2 D .1 4.已知∠A 为锐角,且cosA ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A <90°C .0°<∠A ≤30°D .30°≤∠A <90°5.在△ABC 中,∠A 、∠B 都是锐角,且sinA =12 ,cosB = 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定6.如图Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,BC =3,AC =4,设∠BCD =a ,则tana •的值为( ). A .34 B .43 C .35 D .457.当锐角a >60°时,cosa 的值( ).A .小于12B .大于12C .大于 32D .大于18.在△ABC 中,三边之比为a :b :c =132,则sinA +tanA 等于( ). A .32313331.3.6222B C D ++ 9.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC 3•则∠CAB 等于( )A .30°B .60°C .45°D .以上都不对 10.sin 272°+sin 218°的值是( ).A .1B .0C .12D . 3 211.若( 3 tanA -3)2+│2cosB - 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 三、填空题.12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.13.cos 45sin 301cos 60tan 452︒-︒︒+︒的值是_______.14.已知,等腰△ABC •的腰长为4 3 ,•底为30•°,•则底边上的高为______,•周长为______. 15.在Rt △ABC 中,∠C =90°,已知tanB =52,则cosA =________.五、课堂小结:要牢记下表: 30° 45° 60° siaA cosA tanA六、作业设置:课本第85页习题28.1复习巩固第3题七、自我反思:本节课我的收获: 。

相关文档
最新文档