浅尝基于CATIA有限元分析
基于catia与ansys的汽车驱动桥壳有限元分析
基于catia与ansys的汽车驱动桥壳有限元分析汽车驱动桥壳是汽车传动系统中不可或缺的部件,是汽车传动系统性能和可靠性的关键指标。
因此,对于汽车驱动桥壳的强度、刚度及疲劳性能的精确分析和预测具有重要意义。
近年来,有限元分析技术在汽车驱动桥壳分析领域得到广泛应用,可以有效获取整个汽车驱动桥壳的力学特性,为企业的产品质量提供有力支持。
本文基于Catia与Ansys有限元软件,采用节点法建立了汽车驱动桥壳模型,然后分析了汽车驱动桥壳的材料特性和结构特性。
首先,利用热处理工艺处理汽车驱动桥壳的材料,然后采用Catia 软件建立汽车驱动桥壳的有限元模型,并将材料参数和结构参数以及节点位置等信息导入模型,进而利用Ansys有限元分析软件对汽车驱动桥壳的力学特性进行分析。
在节点法的有限元有限元模型建立上,利用柔性节点、支座节点和悬臂梁元素,能够精确反映汽车驱动桥壳模型,解决汽车驱动桥壳实体模型中存在的几何复杂度和渐近问题。
有限元分析中,施加静载荷和动载荷分析,并利用应力平均值计算汽车驱动桥壳的材料强度指标,同时利用许用应力与应力最大值的比值判断汽车驱动桥壳的有效性。
为了更准确地提高汽车驱动桥壳的精度,本文采用KG分类结构网格方法,实现了粗模型与细模型的转换,即能够精确模拟实体模型中存在的几何非线性和材料非线性,从而得到准确无误的汽车驱动桥壳分析结果。
分析结果表明,汽车驱动桥壳模型的强度和刚度满足了汽车传动系统的要求,疲劳性能达到国家规定的明确要求,从而证明了本文提出的有限元分析方法是有效的、可行的。
本文以Catia与Ansys有限元软件建立汽车驱动桥壳有限元模型,并利用精细结构网格及求解器分析了汽车驱动桥壳的强度、刚度及疲劳性能,得出了较为准确的力学特性结果。
因此,本文提出的基于Catia与Ansys有限元分析技术具有较好的实用性,可以为汽车驱动桥壳相关产品的质量提供可靠的研究支持。
在未来的应用中,可以进一步改进有限元分析软件的计算精度,以满足不断提高的产品强度要求,并利用多因素及多组分的设计方法,研究设计新型汽车驱动桥壳的结构和性能。
CATIA装配部件有限元分析
CATIA装配部件有限元分析CATIA(计算机辅助三维交互应用)是一种广泛应用于机械设计和制造领域的软件。
它提供了一套完整的工具和功能,用于实现产品创新、设计优化和数字化制造。
CATIA的装配部件有限元分析是其中一个功能强大的工具,可以帮助工程师评估设计的结构强度和性能。
装配部件有限元分析(FEA)是一项工程分析技术,用于通过将大型复杂结构分解为小的离散单元,然后通过求解线性和非线性方程组来模拟和预测结构的行为和响应。
在CATIA中,装配部件有限元分析可以通过定义装配体与零部件之间的约束关系和关联关系来分析和评估整个装配体的性能。
在进行装配部件有限元分析之前,首先需要定义整个装配体的几何模型。
CATIA可以通过多种方式创建几何模型,包括绘制、拉伸、旋转、剪切等操作,以及导入其他CAD软件中的模型。
一旦几何模型定义完毕,就可以将其转换为有限元网格模型。
在有限元网格模型中,装配体被分解为小的离散单元,每个单元称为有限元。
这些有限元具有一些特定的属性,如几何形状、材料特性和边界条件。
材料特性定义了材料的力学性能,如弹性模量、屈服强度和断裂韧性。
边界条件定义了固定和加载条件,如约束、力、压力等。
一旦有限元网格模型定义完毕,就可以进行装配部件的有限元分析。
CATIA提供了多种分析类型,包括静态分析、动态分析、热分析、疲劳分析和优化分析。
静态分析用于评估结构的强度和稳定性,动态分析用于分析结构的振动特性,热分析用于评估结构的热响应,疲劳分析用于评估结构在不同加载条件下的寿命,优化分析用于改进结构设计。
装配部件有限元分析的结果通常以图形和数值形式呈现。
CATIA可以生成各种图表和图形,以显示应力、应变、位移、刚度等参数的分布情况。
此外,CATIA还可以生成报告和动画,以帮助工程师更好地理解和解释分析结果。
总之,CATIA的装配部件有限元分析是一种强大的工具,可以帮助工程师评估装配体的强度、稳定性和性能。
通过使用CATIA的装配部件有限元分析,工程师可以优化设计、降低制造成本并提高产品质量。
CATIA有限元分析报告计算实例完整版
CATIA有限元分析报告计算实例完整版CATIA有限元分析是一种重要的工程分析方法,主要用于预测结构或零部件在特定载荷下的应力、应变和变形情况,从而指导设计改进和优化。
有限元分析通常需要进行大量的计算和数据处理,因此需要专业软件和工程知识来完成。
下面将介绍CATIA有限元分析报告的计算实例,以帮助理解其应用方法和结果展示。
1.问题描述假设我们需要对一个简单的梁进行有限元分析,以评估其在受到特定载荷时的应力情况。
该梁的尺寸为1000mm*100mm*10mm,材料为钢,载荷为1000N。
我们希望得到在梁上各个位置的应力分布情况,并据此判断结构是否安全。
2.模型建立首先在CATIA中建立梁的三维模型,包括尺寸、材料属性等信息。
然后选择适当的有限元分析模块,如ABAQUS或ANSYS,并将模型导入到该软件中进行网格划分和边界条件设置。
3.网格划分在有限元分析中,需要将结构划分为多个小单元(单元网格),以便进行数值计算。
通过划分网格可以更准确地模拟结构的行为,并得到更可靠的结果。
在CATIA中,可以通过设置单元种类、密度和边界条件等参数来进行网格划分。
4.载荷和约束设置在有限元分析中,需要定义结构的载荷(如力、压力等)和约束条件(如固定支撑、弹簧支撑等)。
在这个例子中,我们需要将1000N的载荷作用在梁的一个端点上,并在另一端点设置固定支撑。
5.求解和结果分析将载荷和约束条件设置完毕后,可以开始进行有限元分析求解。
软件将根据模型的几何形状、材料性质和加载情况,计算出结构在各个节点处的应力、应变等数据。
最后,可以根据计算结果生成报告,并进行结果分析和结构安全评估。
6.结果展示有限元分析报告通常包括结构的应力云图、变形云图、最大应力值等信息。
通过这些图表可以直观地了解结构在不同载荷下的响应情况,从而做出合理的结构设计和改进决策。
在这个例子中,我们可以展示梁上各个位置的应力分布情况,并与钢材的屈服极限进行比较,以评估结构的安全性。
CATIA有限元分析
CATIA有限元分析CATIA有限元分析是指使用CATIA软件来进行工程结构的有限元分析。
有限元分析是一种数值分析方法,通过将结构分割成若干个小的有限元单元,通过对这些单元的力学性能进行计算和求解,来预测和评估结构在不同工况下的应力、变形、疲劳寿命等性能。
1.轻松的建模能力:CATIA提供了丰富的建模工具,可以快速准确地建立复杂的结构模型。
用户可以使用CATIA的二维绘图、三维建模、参数化建模等功能,来创建几何模型。
2.自动网格划分:有限元分析的第一步是将结构模型划分成有限元单元网格。
CATIA提供了自动网格划分工具,可以根据用户的要求和精度设置,自动分割结构模型,并生成有限元单元网格。
3.强大的前处理功能:CATIA具有强大的前处理功能,可以设置分析的载荷、约束、材料属性等。
用户可以通过设置各种边界条件,对结构模型进行静力学、动力学、热分析等不同类型的分析。
4.精确的求解能力:CATIA使用先进的数值计算算法,能够高效准确地求解有限元分析问题。
它可以通过迭代等方法,计算结构在不同工况下的应力、变形、位移、模态等。
同时,CATIA还可以进行后处理,对分析结果进行可视化和分析。
5.多种分析类型:CATIA不仅可以进行静态分析,还可以进行动态分析、热分析、疲劳分析等多种类型的分析。
用户可以通过选择不同的分析类型,来预测和评估结构在不同工况下的性能。
总之,CATIA有限元分析是一种强大的工程分析工具,它可以用于设计、优化和验证各种类型的工程结构。
通过CATIA的有限元分析,工程师可以快速准确地评估结构的性能,并进行结构优化,提高产品的质量和可靠性。
catia有限元分析简述
前言运用固体力学理论(包括结构力学、弹性力学、塑性力学等)对结构进行强度和刚度分析,是工程设计的重要内容之一。
随着科学技术的进步和生产的发展,工程结构的几何形状和载荷情况日益复杂,新的材料不断出现,使得寻找结构分析的解析解十分困难,甚至不可能,因而人们转而寻求近似解。
1908年,W.Ritz提出一种近似解法,具有重要意义。
它利用带未知量的试探函数将势能泛函近似,对每一个未知量求势能泛函的极小值,得到求解未知量的方程组。
Ritz法大大促进了弹性力学在工程中的应用。
Ritz法的限制是试探函数必须满足边界条件。
对于几何形状比较复杂的结构来说,寻找满足整个边界条件的试探函数也非易事。
1943年,R.Couran对Ritz法做了极其重要的推广。
他在求解扭转问题时,将整个截面划分为若干个三角形区域,假设翘曲函数在各个三角形区域内做近似线性分布,从而克服了以前Ritz法要求整体近似函数满足全部边界条件的困难。
Couran这样应用Ritz法与有限元法的初期思想是一致的。
但是这种近似解法要进行大量数值计算,在当时还是个难题。
因此,未能得到发展。
有限单元法是采用计算机求解数学物理问题的一种数值计算近似方法。
它发源于固体力学,后迅速扩展到流体力学、传热学、电磁学、声学等其它物理领域。
固体力学有限元法的理论依据,从发展历史看,主要有三种途径,即结构矩阵法、变分法和加权余量法。
整个计算过程是泰国编制好的程序在电子计算机上自动进行。
它具有极大的通用性,在程序功能范围内,只要改变输入的数据,就可以求解不同的工程实际问题。
这种解法完全改变了解析法中针对一种实际问题寻找一种解法的局限性。
在1946年电子计算机诞生以后,首先采用它进行数值计算的是杆系结构力学。
它的理论依据是由结构力学位移法和力学演变成的矩阵位移法和矩阵力学,统称为结构矩阵法。
它采用矩阵代数运算,不仅能使算式书写简明,而且编制计算机程序非常方便。
结构矩阵法的力学概念清楚,全部理论公式按结构力学观点讲都是准确的,仅在数值计算过程中,由于计算机存储位数的限制,造成舍入误差。
CATIA有限元分析计算实例
CATIA有限元分析计算实例CATIA是一种用于设计和制造的三维计算机辅助设计软件,它在各个行业都有广泛的应用。
其中,有限元分析(Finite Element Analysis,FEA)是CATIA中的一个重要功能,可以用于模拟和预测各种物理现象,并帮助设计者优化产品性能。
下面,我将介绍一个CATIA中的有限元分析计算实例,以展示其在工程设计中的应用。
假设我们正在设计一个汽车引擎盖。
我们想要在不同条件下评估引擎盖的结构强度和振动特性,以确保其能够坚固地保护发动机并满足相关的安全标准。
首先,我们需要创建一个引擎盖的三维模型。
使用CATIA的建模工具,我们可以绘制引擎盖的外形并添加必要的细节,如散热口和雨刷器孔。
建模完成后,我们可以对模型进行网格划分,将其划分为小的有限元单元,以便进行分析。
接下来,我们需要定义材料属性。
我们可以选择适当的材料,如钢或铝合金,并输入其弹性模量、泊松比和密度等参数。
这些参数将用于计算结构的应力和变形情况。
然后,我们需要定义边界条件。
引擎盖与车身连接,并受到来自风压和振动的作用。
我们可以将车身的约束定义为固定边界条件,并将风压和振动加载定义为外力边界条件。
这样,我们就能够在实际工作条件下模拟引擎盖的行为。
完成上述步骤后,我们可以运行有限元分析。
CATIA将根据定义的材料和边界条件,以及单元网格的约束,计算引擎盖在不同载荷下的应力和振动情况。
结果可以以颜色图或数值表的形式呈现,使我们能够直观地了解结构的性能。
分析完成后,我们可以评估引擎盖的结构强度和振动特性。
如果发现存在应力过大或振动过大的情况,我们可以进行优化设计。
例如,我们可以增加材料的厚度或在关键部位加强结构,以提高引擎盖的强度。
另外,我们还可以通过改变材料或结构来改善振动特性。
综上所述,CATIA的有限元分析功能为工程设计者提供了一个强大的工具,可以模拟和预测产品的性能。
通过进行有限元分析,设计者可以优化产品的结构和材料,以确保其满足设计要求并具有良好的性能。
CATIA有限元分析计算实例完整版
CATIA有限元分析计算实例完整版CATIA是一种强大的三维建模和设计软件,广泛应用于制造和工程领域。
它具有一系列功能强大的工具,可以进行有限元分析(FEA)计算。
有限元分析是一种工程分析方法,用于模拟和评估物体在各种载荷和边界条件下的性能和行为。
下面是一个使用CATIA进行有限元分析的示例:1.首先,打开CATIA软件并创建一个新的零件文件。
选择适当的模板和单位。
2.在零件文件中创建几何形状。
可以使用CATIA的建模工具来创建复杂的几何形状,或者导入现有的几何数据。
3.完成几何形状后,选择有限元分析工作台并打开分析模块。
这将打开有限元分析的工具和界面。
4.网格划分:在分析模块中,选择网格划分工具。
这将自动将几何形状划分为小的有限元单元,以便进行计算。
可以选择不同的划分方法和网格密度,以满足特定的计算需求。
5.材料属性定义:选择材料定义工具,为每个划分单元指定适当的材料属性。
可以从材料库中选择现有材料,也可以手动输入自定义材料属性。
6.边界条件设定:选择边界条件工具,为模型的不同部分设置适当的边界条件。
这可能包括约束、载荷和外部条件等。
可以通过使用图形界面或数值输入来定义这些条件。
7.求解器选择和设置:选择合适的求解器,并根据需要进行设置。
CATIA提供了多种求解器选项,包括静态、动态、热力学和疲劳分析等。
8.运行计算:在完成所有前期设置和准备工作后,开始运行有限元分析计算。
CATIA将自动执行计算,并生成相应的结果。
9.结果评估:一旦计算完成,可以使用CATIA的结果评估工具来查看和分析计算结果。
这包括位移、应力、变形和应变等。
10.优化和改进:根据需要,可以根据计算结果进行优化和改进。
CATIA提供了自动优化和参数化建模工具,可以帮助用户更好地改进设计。
通过以上步骤,可以使用CATIA进行完整的有限元分析计算。
CATIA的有限元分析模块提供了一整套功能和工具,使用户能够轻松地模拟、分析和评估复杂的工程问题。
CATIA有限元分析模块
CATIA有限元分析模块CATIA是法国达索公司开发和销售的一款三维设计软件,主要应用于航空、汽车、船舶、机械等工业领域。
CATIA的有限元分析模块是CATIAV5软件中的一个重要组成部分,它可以帮助工程师对产品进行结构、热分析,从而评估产品的性能和安全性。
有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,通过将复杂结构分割为许多简单的有限元单元,将物理问题转化为离散的代数方程求解,从而得到结构的应力、变形、热分布等参数。
有限元分析在产品设计、优化和验证过程中起着至关重要的作用。
1.建模与前处理:CATIA可以创建复杂的几何模型,并提供了多种建模工具,如草图、曲线、曲面等。
在建模完成后,可以使用前处理工具对几何模型进行网格划分,生成有限元模型。
2.材料与属性:CATIA提供了广泛的材料库和属性设置功能,使用户可以选择适当的材料属性,并为每个单元指定材料属性。
这些属性主要包括杨氏模量、泊松比、密度等。
3.载荷与边界条件:CATIA允许用户定义各种载荷和边界条件,如力、压力、热源等。
用户可以在几何模型上指定这些载荷和边界条件,以模拟实际工作条件。
4.分析类型:CATIA支持多种分析类型,包括静态分析、动态分析、热分析、模态分析等。
用户可以根据需求选择合适的分析类型,并进行参数设置。
5.求解器:CATIA使用强大的求解器来解决有限元模型的代数方程。
这些求解器可以通过迭代方法求解大型和复杂的方程组,并提供准确的结果。
6.可视化和后处理:CATIA提供了丰富的可视化工具,可以对分析结果进行可视化展示,并为用户提供方便的后处理功能。
用户可以从不同角度观察结果,进行剖面分析,生成报告等。
7.优化与验证:CATIA的有限元分析模块还提供了优化和验证工具,可以对设计进行优化,以提高产品性能和效率,并验证设计是否满足规定的要求。
除了以上主要功能外,CATIA的有限元分析模块还具有易学易用的特点,用户可以通过图形界面进行操作,并提供了详细的帮助文档和教程。
catia有限元分析模块
目 录
• catia有限元分析模块简介 • catia有限元分析模块的基本操作 • catia有限元分析模块的高级功能 • catia有限元分析模块的案例分析 • catia有限元分析模块的未来发展
01 catia有限元分析模块简 介
什么是有限元分析
有限元分析(FEA)是一种数值分析方法,用于模拟和分析复 杂结构的力学行为。它通过将连续的结构离散化为有限个小的 单元(或称为元素),然后利用数学方法来求解这些单元的响 应,从而得到整个结构的性能。
1. 建立汽车整体和局部结构的有限元模型。
03
2. 定义材料属性,包括各材料的弹性模量、泊松比、 密度和抗撞性能参数等。
案例二:汽车碰撞安全性分析
01
02
03
04
3. 设定碰撞条件,如碰 撞速度、碰撞角度等。
4. 进行碰撞模拟,记录 碰撞过程中各节点的应 力、应变和位移等数据。
5. 分析碰撞结果,评估 汽车结构的安全性能。
03 catia有限元分析模块的 高级功能
非线性分析
非线性分析
能够模拟复杂的非线性行为,如塑性变形、弹性变形、超弹性等。
材料非线性
支持多种非线性材料模型,如弹塑性、粘塑性、损伤和断裂模型等。
边界条件和载荷非线性
能够处理复杂的边界条件和载荷,如随时间变化的载荷和位移约束。
动力学分析
模态分析
计算系统的固有频率和模态形状,用于评估系统 的振动特性。
CATIA有限元分析模块提供了强大的前后处理工具,可以 方便地创建和编辑模型、划分网格、定义边界条件和载荷 等,提高了分析的效率和精度。
多种求解器支持
CATIA有限元分析模块支持多种求解器,如Nastran、 Abaqus、Marc等,可以满足用户不同的分析需求。
CATIA有限元工程结构分析
CATIA有限元工程结构分析引言有限元分析是一种用于工程结构和材料的计算方法,它将连续物体分割为许多小的有限元,然后通过数值方法对这些有限元进行计算,以模拟真实物体的行为。
CATIA是一种常用的三维建模和分析软件,它提供了强大的工具和功能,可用于进行有限元工程结构分析。
本文将介绍CATIA中有限元分析的基本原理、使用方法和应用场景,并讨论一些常见的有限元分析模型和技术。
有限元分析基本原理有限元分析的基本原理是将连续物体离散化为有限个小的、相互连接的有限元,并通过数值方法对这些有限元进行计算,以模拟物体的静态或动态行为。
在CATIA中,有限元分析主要涉及以下几个方面:1.几何建模:CATIA提供了丰富的建模工具,可以创建各种复杂的三维几何形状。
在有限元分析中,首先需要将实际物体的几何形状建模成CATIA中的几何实体,以供后续分析使用。
2.网格划分:在有限元分析中,连续物体被划分为许多小的有限元,这些有限元之间通过节点相连形成网格。
CATIA提供了网格划分工具,可以自动或手动将几何实体划分为网格。
3.材料特性定义:有限元分析需要定义物体的材料特性,例如弹性模量、泊松比和密度等。
CATIA提供了材料库和材料编辑工具,可以方便地定义和管理材料特性。
4.约束和加载条件设置:在有限元分析中,需要设置物体的约束条件和加载条件,以模拟外部加载对物体的影响。
CATIA提供了丰富的约束和加载条件设置工具,可以灵活地定义各种约束和加载条件。
5.计算和后处理:CATIA可以使用各种数值方法对有限元模型进行计算,并根据计算结果生成分析报告和可视化结果。
CATIA提供了强大的后处理功能,可以对分析结果进行可视化、动画展示和数据分析。
CATIA有限元分析使用方法CATIA的有限元分析功能主要通过工作台的“CAE”模块提供。
下面是进行CATIA有限元分析的基本步骤:1.建立几何模型:使用CATIA提供的3D建模工具创建物体的几何模型。
基于catia与ansys的汽车驱动桥壳有限元分析
基于catia与ansys的汽车驱动桥壳有限元分析
汽车驱动桥壳是汽车驱动系统中的重要组成部分,其准确的分析和结构设计对汽车的可靠性和经济性具有重要的影响。
本文介绍了基于Catia与Ansys的汽车驱动桥壳有限元分析,重点介绍了如何在Catia软件中建模,以及如何在Ansys软件中仿真结构性能。
一. Catia有限元建模
Catia V5软件是一种三维建模软件,它可以将三维模型转换为有限元模型,可以用于汽车驱动桥壳的建模。
Catia提供了多种建模功能,如实体建模、参数建模等,可以快速准确的生成汽车驱动桥壳的有限元模型,可以有效的提高汽车驱动桥壳的设计质量。
二. Ansys结构性能的仿真分析
Ansys软件是一款用于结构性能仿真的分析软件,可以建立汽车驱动桥壳的三维模型,并可以进行多种结构力学仿真分析,如结构强度分析、受力分析等。
可以模拟汽车驱动桥壳在安全性、可靠性和结构刚度等方面的性能,从而检查结构设计是否符合要求。
三.值分析结果
基于Catia和Ansys的有限元分析可以模拟汽车驱动桥壳的结构性能,有效应用FEM,可以得出满足安全性要求的结构设计。
实验结果表明,汽车驱动桥壳的结构刚度和承载能力满足要求,结构的可靠性较高。
四.论
本文介绍了基于Catia与Ansys的汽车驱动桥壳有限元分析,并
且介绍了Catia建模和Ansys仿真结构性能的步骤以及相关数值研究结果,说明了Catia与Ansys软件联合使用可以有效的解决汽车驱动桥壳的结构分析和设计问题,可以极大的提高汽车驱动桥壳的可靠性、安全性和经济性。
CATIA有限元分析计算实例1
有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动软件。
单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。
图11-1 单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。
在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【1】。
点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。
(2)进入【草图绘制器】工作台在左边的模型树中单击选中【平面】, 如图11-3所示。
单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。
这时进入【草图绘制器】工作台。
图11-2 【新建零部件】对话框图11-3 单击选中【平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。
在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。
用同样分方法再绘制一个同心圆,如图11-6所示。
图11-4 【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。
点击【约束】工具栏内的【约束】按钮,如图11-7所示。
点击选择圆,就标注出圆的直径尺寸。
用同样分方法标注另外一个圆的直径,如图11-8所示。
图11-6 两个同心圆草图图11-7 【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。
在【直径】数值栏内输入100,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100。
用同样的方法修改第二个圆的直径尺寸为50。
修改尺寸后的圆如图11-10所示。
图11-8 标注直径尺寸的圆草图图11-9 【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。
退出【草图绘制器】工作台,进入【零部件设计】工作台。
图11-10 修改直径尺寸后的圆图11-11【工作台】工具栏(5)拉伸创建圆筒点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。
catia有限元分析简述
前言运用固体力学理论(包括结构力学、弹性力学、塑性力学等)对结构进行强度和刚度分析,是工程设计的重要内容之一。
随着科学技术的进步和生产的发展,工程结构的几何形状和载荷情况日益复杂,新的材料不断出现,使得寻找结构分析的解析解十分困难,甚至不可能,因而人们转而寻求近似解。
1908年,W.Ritz提出一种近似解法,具有重要意义。
它利用带未知量的试探函数将势能泛函近似,对每一个未知量求势能泛函的极小值,得到求解未知量的方程组。
Ritz法大大促进了弹性力学在工程中的应用。
Ritz法的限制是试探函数必须满足边界条件。
对于几何形状比较复杂的结构来说,寻找满足整个边界条件的试探函数也非易事。
1943年,R.Couran对Ritz法做了极其重要的推广。
他在求解扭转问题时,将整个截面划分为若干个三角形区域,假设翘曲函数在各个三角形区域内做近似线性分布,从而克服了以前Ritz法要求整体近似函数满足全部边界条件的困难。
Couran这样应用Ritz法与有限元法的初期思想是一致的。
但是这种近似解法要进行大量数值计算,在当时还是个难题。
因此,未能得到发展。
有限单元法是采用计算机求解数学物理问题的一种数值计算近似方法。
它发源于固体力学,后迅速扩展到流体力学、传热学、电磁学、声学等其它物理领域。
固体力学有限元法的理论依据,从发展历史看,主要有三种途径,即结构矩阵法、变分法和加权余量法。
整个计算过程是泰国编制好的程序在电子计算机上自动进行。
它具有极大的通用性,在程序功能范围内,只要改变输入的数据,就可以求解不同的工程实际问题。
这种解法完全改变了解析法中针对一种实际问题寻找一种解法的局限性。
在1946年电子计算机诞生以后,首先采用它进行数值计算的是杆系结构力学。
它的理论依据是由结构力学位移法和力学演变成的矩阵位移法和矩阵力学,统称为结构矩阵法。
它采用矩阵代数运算,不仅能使算式书写简明,而且编制计算机程序非常方便。
结构矩阵法的力学概念清楚,全部理论公式按结构力学观点讲都是准确的,仅在数值计算过程中,由于计算机存储位数的限制,造成舍入误差。
CATIA有限元分析
1D Property 1维特性
User Material 自定义材料
Mapping Property 绘图特性
2021/10/10
7
2021/10/10
Octree Tetrahedron Mesher 八叉树四面体网格 Octree Triangle Mesher 八叉树三角形网格 Beam Mesher 梁网格 Element Type 元素类型 Local Mesh Size 局部网格大小 Local Mesh Sag局部网格凹陷 2D Property 2维特性 Imported Composite Property 引进复合结构
Surface welding Connection Properties 表面焊接连接属性
Nodes to Nodes Connection Properties
节点到节点的连接属性
Node Interface Properties 节点接口属性
16
Restraints 约束工具栏
Clamp 固定
Rigid Connection Properties 刚性连接属性 Smooth Connection Properties光滑连接属性
Virtual Bolt Tightening Connection Properties
虚拟螺栓紧固连接属性 Virtual Spring Bolt Tightening Connection Properties
位移
Principal Stress 主应力
Precision 精度
2021/10/10
5
Analysis Result 结果分析工具栏
Generate Report 生成报告
CATIA有限元分析模块
CATIA有限元分析模块CATIA有限元分析模块是一种用于进行结构分析的强大工具。
它是CATIA软件的一部分,可以用于设计和分析各种产品和系统的结构行为。
有限元分析(FEA)是一种数值方法,用于预测结构在施加外部荷载时的行为。
CATIA的有限元分析模块提供了一些功能和工具,使用户可以进行结构分析,以评估和优化其设计。
1.建模和网格化:模型建立是进行有限元分析的第一步,CATIA提供了强大的建模工具,可以帮助用户轻松快速地创建几何模型。
一旦模型建立完成,用户可以使用网格化工具将模型分解为有限元网格,以进行数值分析。
CATIA提供了多种网格化选项和控制参数,以满足不同分析需求。
2.材料和断面属性:有限元分析需要指定材料的力学性质和截面属性。
CATIA提供了丰富的材料数据库,用户可以从中选择材料,并指定其力学性质。
此外,CATIA还提供了多种截面属性的定义方式,以适应不同的分析需求。
3.边界条件和加载:在进行有限元分析之前,用户需要定义结构的边界条件和加载情况。
CATIA提供了多种边界条件的定义选项,如约束条件和连接条件。
用户可以指定结构的自由度边界条件,以及不同类型的加载条件,如力、压力、温度等。
4.求解和后处理:一旦定义了模型、材料和加载条件,用户可以使用CATIA的求解器来解算有限元方程组,得到结构的响应结果。
CATIA提供了多种求解方法和选项,以满足不同的求解需求。
求解完成后,用户可以通过后处理工具来可视化和分析结果,如应力分布、变形图等。
5.优化和参数化:CATIA的有限元分析模块还提供了优化和参数化分析的功能。
用户可以使用优化工具来优化结构的设计,以满足给定的性能指标。
此外,CATIA还支持参数化建模,用户可以通过改变设计参数来研究不同设计方案的性能。
总的来说,CATIA的有限元分析模块是一个功能强大的工具,可以帮助用户进行结构分析,并评估和优化其设计。
它提供了多种功能和工具,使用户能够轻松地进行模型建立、网格化、材料和加载定义、求解和后处理等操作。
基于CATIA有限元分析模块的结构优化设计
基于CATIA有限元分析模块的结构优化设计以汽车座椅靠背骨架解锁手柄为例,介绍CATIA软件中有限元分析模块和DMU运动模块在汽车零部件设计过程中的应用以及结构优化设计,通过利用CATIA软件对解锁手柄的应力应变分析结果对其进行优化设计,从而满足企业标准。
标签:解锁手柄;有限元分析;CATIA0 引言CATIA软件作为功能强大的计算机辅助设计软件,已经被广泛地应用到汽车零部件设计领域,在汽车零部件产品设计过程中,CATIA不仅可提供3D、2D 的设计工作,还可进行产品的有限元分析以及DMU运动仿真分析,提高产品的设计质量,大大降低了产品的开发费用。
本文以汽车座椅骨架的零部件设计为例,利用CATIA软件,进行3D建模、2D设计,通过有限元分析进一步对产品进行优化设计,最终达到设计的最优方案。
1 产品三维设计方案建立汽车座椅作为汽车重要的系统之一,可实现前后滑动、升降调节以及靠背角度调节等多方向调节,其中手动靠背角度调节功能的实现是通过解锁手柄运动带动调角器圆盘运动,调角器圆盘与靠背边板进行连接,从而实现靠背角度调节。
通过周边环境的校核以及调角器自身的性能,确定调角器解锁手柄的初步方案,初步设定解锁手柄材质为Q345,料厚为2.5mm。
利用CATIA三维建模模块进行数据的设计,初步方案见图1所示。
2 产品零部件标准的建立解锁手柄的侧向刚度需要建立标准,侧向刚度太弱,乘客在调节靠背过程中,调角器手柄与座椅旁侧板干涉,产生划痕,乘客抱怨,为避免此类失效问题发生,汽车行业标准QC/T 844-2011特针对此制定了相关的标准,具体如下。
标准要求:手动调角器手柄的侧向变形量(S=S1+S2)不大于15mm,只有一侧施加力时,变形量S1或S2均不大于10mm。
实验方法:如图2所示,将模拟的靠背骨架总成置于刚性夹具上,按如下步骤进行操作:①在图示距离手柄末端20mm处均匀施加一水平向左的力F1(49N),最大变形量S1;②然后向右方向施加力F2(49N)的力,最大变形量为S2;③变形量在施力点通过百分比测量。
CATIA_有限元分析
CATIA_有限元分析有限元分析是一种数值分析方法,用于模拟实际结构或部件在应力和变形等方面的行为。
它可以帮助工程师提前预测产品在使用过程中的性能和强度,并优化设计以满足要求。
CATIA提供了一套完整的有限元分析工具,包括建模、网格划分、加载和求解等功能。
在CATIA中进行有限元分析的第一步是建立几何模型。
CATIA提供了各种建模工具,可以帮助工程师创建几何形状,包括直线、曲线、曲面等。
几何模型可以通过绘制2D概念图或直接建立3D实体来创建。
CATIA还支持导入其他CAD软件创建的几何模型。
完成几何建模后,CATIA提供了一个功能强大的网格划分工具,用于将几何模型转换为有限元网格。
有限元网格是由无数个小单元组成的,每个小单元代表了结构的一小块。
网格划分的精度直接影响到有限元分析结果的准确性和计算速度。
CATIA提供了不同的网格划分算法和参数设置来满足不同的需求。
网格划分完成后,工程师可以指定加载和边界条件。
CATIA允许用户在结构上施加各种不同类型的力、压力和约束,以模拟真实的工况。
加载和边界条件的设置需要一定的工程经验和知识,以确保分析结果的可靠性。
一旦加载和边界条件设置完成,CATIA会自动求解有限元问题,并生成相应的结果。
结果包括应力、应变、变形等数据,可以用来评估产品的性能和可靠性。
通过分析结果,工程师可以确定哪些地方需要改进,并进行优化设计。
CATIA的有限元分析模块不仅能够进行静态分析,还支持动态分析、热分析、疲劳分析等不同类型的分析。
它还提供了一系列的后处理工具,用于可视化和解释分析结果。
工程师可以通过图形和表格等方式来展示和报告分析结果。
总结起来,CATIA的有限元分析功能为工程师提供了一个全面的工具集,用于分析和优化产品的性能和设计。
它可以帮助工程师在设计阶段解决问题,减少试错成本,提高产品的质量和效率。
在CATIA的指导下进行有限元分析,工程师可以更好地理解产品的行为,并做出更合理的设计决策。
基于catia的简单零件设计及有限元分析
基于catia的简单零件设计及有限元分析专用汽车结构与设计课程论文摘要零件受载时的变形平衡及可靠性是工程应用中最常见的问题,汽车作为最普遍的交通工具,其中的要求更是广泛。
那么对某一具体的零部件,分析及解决这一问题的最方便最有效的方法就是有限元分析法,下面基于catia软件,对一实际的三脚连接静态受载的问题,首先进行零件实体建模,再利用有限元分析模块来解决。
在此过程中,我们可以看到解决改善这类问题的方法。
关键词零件实体建模有限元分析应力变形正文基于如下问题的解决方法探索:已知三脚连接件如下,需要分析其受载时的状况。
分析:要解决其受载变形平衡及可靠性的问题,就得首先清楚其受载情况然后在从应力应变的角度去分析,而此零件不是简单的简支梁支杆的问题,所以不能用传统的方法去解决,但是我们可以将其转化了成熟知的问题,再来解决。
有限元分析法就是基于这个目的而产生的,它的基本概念就是用较简单的问题代替复杂的问题再求解,将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解总域的满足条件(如结构的平衡条件),从而得到问题的解。
当然这个解不是准确解,而是近似解,因为实际问题被较简单的问题所近似代替。
由于大多数实际问题难以得到准确解,而有限元不仅能适应各种复杂形状,而且计算过程通过计算机完成的,精度高,速度快,因而成为行之有效的工程分析手段。
所以基于此问题,我们利用catia中的有限元分析模块来解决。
当然前提条件是实体建模已完成,因此我们将问题分两步来完成。
一.零件实体建模零件的三视图及立体图已经充分给出,根据这我们就可以做出零件实体。
1.打开catia,进入开始—机械设计—零件设计,点启用混合设计后就可以进入零件设计的界面了。
2.凸台1设计首先点击YZ平面并进入草绘,完成三脚中的一脚的剖面的设计:在进行X方向的对称拉伸:3.倒R8圆角14.钻Φ10*5的盲孔1先进入草绘选择好圆心点再完成孔的设计5.挖Φ15凹槽1先完成平面草绘再进行拉伸,选择好方向,点选直到下一个6.圆形阵列1完成另两个脚进入草绘,完成圆形阵列1的轴线圆形阵列1:7.R35平面圆角1,28.肋1先完成肋1的横截面设计,进入草绘再完成肋1纵向位移线设计,进入草绘完成肋1:9.末端Φ40*14的旋转体设计先进入草绘,完成旋转轮廓及转轴的设计完成旋转体:10.螺纹孔3的设计与第4步钻孔类似,先完成草图里圆心的位置设定,再完成螺纹孔3:选择好需要倒圆的肋的棱边,完成倒圆角2:12.旋转体上表面倒R8圆角3设置如下:完成如图:14.底面倒R1圆角15.填充材料steel最终完成零件实体的建模:二.有限元分析实体建模完成后,就可以进行有限元分析了,不过我们得先知道零件的连接受载情况,查资料可知,此三脚连接件的三个脚连接某一零件,而末端的螺纹孔连接另一个零件。
基于CATIA的减速器齿轮轴的有限元分析
第32卷 第2期2010年06月 延 边 大 学 农 学 学 报Journal of Agricultural Science Yanbian University V ol.32No.2 Jun.2010收稿日期:2010-01-15作者简介:郭越(1973-),女,吉林舒兰人,延边大学工学院机械系讲师.基于CATIA 的减速器齿轮轴的有限元分析郭 越(延边大学工学院机械工程系,吉林延吉133002)摘要:以CAT IA 为平台对减速器齿轮轴进行三维实体建模,并运用分析与模拟模块进行有限元分析,最后得到齿轮轴的网格图、应力分布图及位移分布图,对后继齿轮轴的可靠性设计起重要作用.关键词:齿轮轴;建模;有限元分析;应力分布图中图分类号:TP391.9 文献标识码:A 文章编号:1004-7999(2010)02-0150-03减速器是现代机械装备中使用较广的通用机械装备,具有结构紧凑、传动效率高、传递运动准确、可靠等优点.CATIA 是由法国达索飞机公司(Dassault System)推出的高级计算机辅助设计、制造和分析软件(CAD/CAE/CAM),广泛应用于航天、汽车、造船和电子设备等行业,涵盖基础结构、机械设计、造型、分析与模拟、数控加工、数字化仿真等模块,并在三维特征建模方面功能强大,很方便地进行复杂三维零件的特征参数化造型,完成的参数化造型能根据按人机交互形式输入的设计变量来控制特征的有无,形成新的尺寸,从而再生出新的三维零件.1 齿轮轴的三维建模以二级直齿圆柱齿轮减速器的齿轮轴为例,进行三维建模(图1).此齿轮轴为高速轴,在CAT IA 软件设计中先生成齿轮,其基本参数如表1.齿轮的生成是通过渐开线方程创建齿轮齿廓[1],并运用/圆阵列0、/切割0、/合并0功能,得到标准渐开线圆柱齿轮的截面图,再通过/拉伸(Pad)0、/旋转(Rotate)0等命令生成齿轮及齿轮轴[2].齿轮轴的简略尺寸如图2.表1 渐开线圆柱直齿轮的设计参数Table 1 Design pa rameter of the sta ndard involute str aight toothed spur gear齿数(z)Number of teeth模数(m)Modulus 压力角(A )Pr essure angle 齿顶高系数(H a *)Addendum coefficient 顶隙系数(C *)H eadspace coef ficient 齿轮宽度(H )Gear width 22220b 10.2545图1 齿轮轴图2 齿轮轴的尺寸Fig.1 Gear shaf t Fig.2 Dimension of gear shaft第2期郭越:基于CA TIA 的减速器齿轮轴的有限元分析2 轮轴的有限元分析2.1 指定材质及网格划分在进行有限元分析前,要对已设计好的齿轮轴模型赋予材质,45钢,调质,H BS=240~270.为了使齿轮更逼真,点击/视图0)/渲染样式0)/带材料着色0命令[3],然后转入到CAT IA 分析与模拟(Analysis &Simulation)模块中的创成式结构分析(Generative Structure Analysis)子模块进行静应力分析,然后划分网格.在CAT IA 界面的管理树中Finite Model.1)Nodes and Elements )OCTREE T etr ahedron Mesh .1:Gear shaft 上点击鼠标右键,出现菜单,选择OCT REE Tetrahedron Mesh .1:Gear shaft 对象)定义,弹出对话框,在对话框中设置单元的尺寸和类型.由于各处所受应力不同,网格划分可不同,应力较集中的区域网格划分要细,使它更接近于实际工作情况,计算结果更加精确.该齿轮轴由于有键槽、轴肩处应力集中,网格要细化,所以取单元尺寸为2mm,其它部分为50mm(图3).2.2 施加约束及载荷根据零件和分析需要可施加适当的约束,运用夹紧(Clamp)命令对齿轮轴的轴端施加约束[4],假定在键槽的工作面和齿轮的节点上分别施加大小分别为24MPa 和10MPa 的分布压力,这2个压力使轴产生大小相等、方向相反的转矩.为了更清楚看到施加载荷,可设置Custmize View Modes 对话框隐去网格(图4).2.3 求解并查看结果单击/Computer 0命令,在弹出对话框中选/All 0,单击/确定0命令后,计算机以对话框的形式显示对输入参数处理的进度条,这一系列计算都是系统自动完成.求解过程完成后,可查看分析结果.单击/Defor ma 2tion(显示划分的网格)0命令,就可显示出齿轮轴的网格图(图3).可以看到,网格细化的部位,网格密度较大.单击/Von Mises Stress(米塞斯应力)0命令,显示出米塞斯应力图(图5).图中不同的颜色代表不同的应力值大小.单击/Displacement(位移)0命令,显示出位移图(图6).151延边大学农学学报第32卷152图6位移图Fig.6Displacement2.4结果分析由图5,6可知,右边的数据是米塞斯应力、位移值的变化范围,用不同的颜色表示.从下到上由最小值逐步变到最大值,颜色由蓝色变到红色.在CAT IA软件模式下,只要把鼠标放在齿轮轴上的某一位置,就能显示出该位置的应力值.齿轮轴的材料为45钢,屈服极限为355MPa最大米塞斯应力为349MPa,出现在有键槽的轴的右端(图5),由于D max<[D],所以强度合格.最大位移为1.63mm(图6),其变形量为0.62mm/ m,远小于国家规定的1.5mm/m[5],刚度满足要求.若对齿轮轴的应力或位移状态不满意时,可直接进入模块Mechanical Design中的Part Design子模块修改结构尺寸,使其满足在载荷工况下的技术要求.3结束语在CAT IA环境下快速完成齿轮轴的精确建模,并进行有限元分析,将建模和分析两项工作在同一软件平台上操作,避免三维模型在不同软件接口之间导入导出时数据丢失现象的发生,更准确分析齿轮轴实际工作的状况,为齿轮轴的精确设计提供可行的方法.参考文献:[1]孙桓,陈作模.机械原理[M].北京:高等教育出版社,2002.[2]单岩,谢龙汉.CATIAV5机械设计应用实例[M].北京:清华大学出版社,2004.[3]郭越.基于CAT IA直齿圆柱齿轮的有限元分析[J].延边大学农学学报,2009,31(4):287-290.[4]盛选禹,唐守琴.CATIA有限元分析命令详解与实例[M].北京:机械工业出版社,2005.[5]王雪琴.基于UG的装载机驱动桥壳有限元分析[J].现代交通技术,2008,5(2):81-83.Finite element analysis of gear shaft of retarder based on CATIAGU O Yue(Mecha nica l Engineering Depa r tment,E ngineer ing College of Yanbian U niver sity,Y a nj i J ilin133002,China) Abstr act:An introduction to the precise modeling method of retarder of gear shaft is given on the bases of the CATIA,gear shaft is operated finite element analysis with the module of Analysis&Simulation,final2 ly through finite element analysis,grid char t,press distribution,displacement were obtained,it is impor2 tant to design r eliably later gear shaft.Key words:gear shaft;establish model;finite element analysis;stress distribution map。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装配篇(ASSEMBLY) 3.必要的网格划分
装配篇(ASSEMBLY) 4.运算与分析
装配篇 (ASSEMBLY) 5.反馈处理(模型更改,重新分析) 6.最终设计
焊接篇(WELDING) 1.建模的正确与否对分析结果的逼真性产生直接影响。
Body形式制件分析结果
零件焊接制件分析结果
THANK YOU !
浅尝基于CATIA的有限元分析
Taste Finite Element Analysis Based On CATI 二、 三、 四、 五、 CATIA有限元分析之装配篇 CATIA有限元分析之焊接篇 CATIA有限元分析之振动篇 基于ADAMS的动力学仿真分析 时间安排9:10~10:10
流程(PROCESS)
1.建模 2.材料属性(材料、单位) 3.施加约束 4.施加载荷 5.划分网格 6.运算 7.结果分析 8.反馈处理,过程重复。 9.最终设计
装配篇(ASSEMBLY)
1.建模&指定材质&更改单位
装配篇(ASSEMBLY)
2.进入Generative Structrual Analysis模块,建立限制、约束,施加载荷