导数压轴题的几种处理方法

合集下载

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题2

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题2

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

导数压轴题的几种处理方法

导数压轴题的几种处理方法

2、直接求导后对参数展开讨论,然后求出含参最值,从而 确定参数范围
例题: 设
,其中

(1)若
有极值,求 的取值范围;
(2)若当

恒成立,求 的取值范围.
解:( 1)由题意可知:

有两个不同的实数根,故
解得:
,即
(2)由于

恒成立,则
由于
,且
有极值,

( 4 分)
,即
(6 分)
,则①Βιβλιοθήκη 当时,在则当
时,
有零点需满足
二、适当处理后能够简化运算:
上都单调递减,于是函数 上单调递减,所以当
,即
.
3、(2014 年一测 )已知函数 f (x)=xlnx , g(x)=k(x-1) ( 1)若 f (x)>=g(x),求 k 的范围
.⑴解 : 注意到函数 f (x) 的定义域为 (0, ) ,
所以 f (x) g(x) 恒成立
f (x)
x
设 h(x) ln x k (x 1) (x 0) ,
h (x) x x2
x x2
1
k
xk

,
g(x)
恒成立 ,
x
------------2

当 k 0 时 , h (x) 0 对 x 0 恒成立 , 所以 h(x) 是 (0, ) 上的增函数 ,
注意到 h(1) 0 , 所以 0 x 1 时 , h(x) 0 不合题意 .-------4 分
处取得极大值、在
处取得极小值,
,解得:

(8 分)


时,
,即

上单调递增,且

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法总结很全.
方法 3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max

破解导数问题常用到的4种方法

破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

六招破解高考导数压轴题

六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一:等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

方法导引例1已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x )=e ax -1-ax ,其中常数e =2.71828.(1)求f (x )的最小值;(2)当a ≥1时,求证:对任意x >0,都有xf (x )≥2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x )≥2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x +-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x )≥2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

高考数学:导数压轴题的归纳总结方法

高考数学:导数压轴题的归纳总结方法

高考数学:导数压轴题的归纳总结方法今天我们来聊聊高考数学导数压轴题的归纳总结方法。

在对导数专题归纳总结的时候,可以细分为两个层面。

第一,对题型进行归纳总结。

举例说明,下图的题目中的第二小问,如果去做归纳总结的话,很多题目都跟这道题目相类似,这种题目可以概括为一般形式:如果用归纳总结的思路去做的话,可以细分到之前说的双变量这一类问题的大类,大类下面有一个小类,叫做极值点偏移问题。

希望大家在学习导数专题的过程中,不要简单地光做题,而要在做题中能发现这样一类题型。

导数的问题做多了之后就会发现,很多时候都有相似之处,将这些相似之处提取出来,我们就可以将它一般化为这样一种题型,把它抽象出来。

本质上说,我们就是找这样的一般问题,再从一般的角度去解决方法,看这一类的问题有什么具体的解决套路,这样就可以在学习过程中达到事半功倍的效果了。

第二,对解题方法和解题方向进行归纳总结。

什么叫做解题方法?就是对于之前已经分好类的xx问题,我们可以第一步xxxxx,第二步xxxxxx……第x步xxxxxx,问题解决。

大家可以看出,这样一类问题,方法和套路性比较强。

结合具体例子来谈,还是这个题目,刚刚说可以划归为双变量分类下的极值点偏移这种具体的问题。

对于这一类极值点偏移具体的问题,刚才已经提出一般化的解题题型,那么这一类一般化的解题题型,应该怎样去解决呢?极值点偏移问题三步走:(1)画图观察极值点偏移方向(2)利用f(x)的单调性转移不等式(3)构造f(x)=f(x)-f(2a-x)完成证明在做题的时候,对于这种一般化的问题进行归纳总结,归纳总结出一步一步的套路。

当你完成这种从题型到解决方法的归纳总结之后,就会对导数这一类具体问题拍着胸脯说:“考试,考到这样一类问题,把题目做完,应该是一件十拿九稳的事情。

”因为你把一般的问题都做完,考试题目只要是已经归纳总结过的题型,你只需要把已经总结出的方法往上套,结合具体的题目,将一些条件拿过来进行运算,最后就可以将这一类题目做出来。

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。

常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。

2.利用对数平均不等式ab<a-b+a+b。

3.变换主元等方法lna-lnb^2<ln(a-b^2)。

接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。

题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。

解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。

②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。

③若a0,函数f(x)单调递增。

2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。

在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。

2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。

而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。

【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。

如何搞定高中数学的导数压轴大题?

如何搞定高中数学的导数压轴大题?

如何搞定高中数学的导数压轴大题?
如果水平足够,稳定在135以上,大部分时候能考140以上,那就可以刷导数压轴题了。

导数压轴题的难点一直围绕函数的单调性、极值和最值展开,以导数为工具探究函数的性质,借此研究不等式、方程等问题,着重考查分类讨论、数形结合、化归与转化的数学思想方法,意在考查学生的运算求解能力、推理论证能力,充分体现数学理性思维的特点,从思维的层次性、深刻性和创新性等方面进行考查。

(重点我加粗和划线了)题型非常多而且新,这里没办法一一说完整,需要你网络下载一些导数压轴题题型分类,导数压轴题技巧之类的去学习,或者买专门的资料,比如高考压轴题,满分秘籍(导数篇),数学小丸子的解题笔记(导数压轴题与放缩应用)等很多。

过段时间我会在头条里面发布我整理的一些导数题型图片版,欢迎使用。

高中数学:掌握这7种函数构造方法,巧解导数难题!

高中数学:掌握这7种函数构造方法,巧解导数难题!

⾼中数学:掌握这7种函数构造⽅法,巧解导数难题!近⼏年⾼考数学压轴题,多以导数为⼯具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性⾼、综合性强等特点,⽽构造函数是解导数问题的最基本⽅法,但在平时的教学和考试中,发现很多学⽣不会合理构造函数,结果往往求解⾮常复杂甚⾄是⽆果⽽终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本⽂以近⼏年的⾼考题和模考题为例,对在处理导数问题时构造函数的⽅法进⾏归类和总结,供⼤家参考.⼀、作差构造法1.直接作差构造评注:本题采⽤直接作差法构造函数,通过特殊值缩⼩参数范围后,再对参数进⾏分类讨论来求解.2.变形作差构造⼆、分离参数构造法分离参数是指对已知恒成⽴的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到⼀个⼀端是参数,另⼀端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应⽤较多,就是⽤新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的⽬的.换元构造法是求解多变元导数压轴题的常⽤⽅法.评注:本题的两种解法通过将待解决的式⼦进⾏恰当的变形,将⼆元字母变出统⼀的⼀种结构,然后⽤辅助元将其代替,从⽽将两个变元问题转化⼀个变元问题,再以辅助元为⾃变量构造函数,利⽤导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某⼀个变元看作主元(即⾃变量),将其它变元看作常数,来构造函数,然后⽤函数、⽅程、不等式的相关知识来解决问题的⽅法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第⼆问是⼀道典型且难度⽐较⼤的求参问题,这类题⽬很容易让考⽣想到⽤分离参数的⽅法,但分离参数后利⽤⾼中所学知识⽆法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式⼦,解决这类问题的有效⽅法就是⾼等数学中的洛必达法则;若直接构造函数,⾥⾯涉及到指数函数、三⾓函数及⾼次函数,处理起来难度很⼤.本题解法中两次巧妙利⽤第⼀问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅⼒.。

导数压轴题处理套路

导数压轴题处理套路

QQ 群545423319导数压轴题处理套路专题一双变量同构式(含拉格朗日中值定理) ..................................................... - 2 - 专题二分离参数与分类讨论处理恒成立(含洛必达法则) .................................... - 4 - 专题三导数与零点问题(如何取点) .................................................................. - 7 - 专题四隐零点问题整体代换 .............................................................................. - 13 - 专题五极值点偏移 ........................................................................................... - 18 - 专题六导数处理数列求和不等式 ....................................................................... - 25 -说明:题目全来自网络和群友分享,在此一并谢过专题一双变量同构式(含拉格朗日中值定理)例1.已知f(x)=(a+1)ln x+ax2+1(1)讨论f(x)的单调性(2)设a≤ -2,求证:∀x1,x2∈(0,+∞),f(x1)-f(x2)≥4x1-x2例2.已知函数f(x)=1x2-ax+(a-1) ln x,a>1。

2(2)证明:若a<5,则对任意 x 1,x 2∈(0,+∞),x 1≠ x 2,有f(x1)-f(x2) > -1。

x1- x2例3.设函数f(x)=ln x+m x,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;x(3)若对任意b>a>0,f(b)-f(a)<1恒成立,求m的取值范围.b - a例4. 已知函数 f (x ) =1 - ln xx(1)讨论函数 y = f (x ) 的单调性(2)对任意的 x , x ∈ ⎡ e 2 , +∞ f (x 1 ) - f (x 2 ) > k,有 ,求 k 的取值范围12⎣ ) x 1 - x 2 x 1 x 2例5. 已知函数 f (x ) = 12 x 2 - a ln x + ( a - 2)x ,是否存在 a ∈ R ,对任意 x 1 ,x 2 ∈ (0, +∞) ,x 1 ≠ x 2 , f ( x 1 ) - f ( x 2 )> a 恒成立?若存在,求之;若不存在,说明理由。

高中数学:掌握这7种函数构造方法,巧解导数难题!

高中数学:掌握这7种函数构造方法,巧解导数难题!

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注: 本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注: 本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注: 本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

导数专题:同构压轴题的高考中的应用

导数专题:同构压轴题的高考中的应用

导数专题:同构压轴题的高考中的应用
函数同构问题是当下的一个热门问题,2022、2020的导数问题就可以从同构角度构造恒成立。

同构问题常见于指对混合函数的恒成立或零点问题中,重在观察和变形,所以技巧性较强。

当然这类指对混合函数的恒成立也可用其他方法完成,在这里学习同构,更多的是提升观察与思维能力。

一. 基本原理
答题思路:
(一)【直接变形】
(二)【先凑再变形】
若式子无法直接进行变形同构,往往需要凑常数、凑参数或凑变量,如两边同乘以x,同加上x等,再用上述方式变形。

常见的有:
二. 典例分析。

放缩法在导数压轴题中的应用

放缩法在导数压轴题中的应用

放缩法在导数压轴题中的应用放缩法是一种重要的数学方法,尤其在证明不等式中经常用到。

近几年数列在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩。

下面举几个例子,以供参考。

例1:(2012年高考辽宁卷理科第21题(Ⅱ))设$f(x)=\ln(x+1)+\frac{9x}{x+6}$,证明:当$1<x<2$时,$f(x)<x+1-1$。

证明:由基本不等式,当$x>0$时,$2(x+1) \cdot 1 <(x+2)^2$,故$x+1<\frac{x^2+15x+2}{2(x+1)}$。

因此。

begin{align*}f(x)&=\ln(x+1)+\frac{9x}{x+6}\\ln(x+1)+\frac{x+1}{2}\\ln\sqrt{(x+1)^2}+\ln e^{\frac{x+1}{2}}\\ln(x+1)+1\\x+1-1end{align*}例2:(2013年新课标全国Ⅱ卷第21题(Ⅱ))已知函数$f(x)=e^{-\ln(x+m)}$,当$m \leq 2$时,证明$f(x)>x$。

例3:(2014年高考新课标Ⅰ卷理科第21题)设函数$f(x)=ae^{\ln x}+b$,曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=e(x-1)+2$。

I)求$a,b$;II)证明:$f(x)>1$。

例4:(2016年高考山东卷理科第20题(Ⅱ))已知$f(x)=a(x-\ln x)+\frac{2x-1}{2}$,当$a=1$时,证明$f(x)>f'(x)+\frac{3}{2x}$,对于任意的$x \in [1,2]$成立。

例5:(2016年高考新课标Ⅲ卷文科21题)设函数$f(x)=\ln x-x+1$。

I)证明当$x \in (1,+\infty)$时,$1<\frac{x-1}{\ln x}<x$;II)设$c>1$,证明当$x \in (0,1)$时,$1+(c-1)x>c$。

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题在高中数学中,导数算是难度天梯里排No.1的存在,在高考出题人的心中,导数算是一个超赞的存在,天生的守门员。

但其实,现在同学们接触的只是导数世界的“皮毛”,真正的精髓还是要到大学中才会学习。

导数大题是近年来高考的重点和热点问题,也是高考必考的板块之一,不管是简答题还是选择、填空都有涉及,也是拉分项。

我们不可否认导数解答题的难度,但也不能过分地夸大。

像导数、函数这样的大板块,同学们必须会解题。

遇到一个问题应该认真分析题型与问题条件,反复思考结论,每步做到“言必有据,步步合理”不用题海战术,每个板块都能攻克了!今天给大家整理总结了高考导数大题的常见类型及求解策略方法,大家通做一遍,复习提分效果更佳!热点题型1构造偏导数2整体规划统一变量3比(差)值换元4同构性双变量5切线估计与剪刀差模型6不等式放缩7主元法8多项式拟合经典例题1.构造偏函数注:1.构造偏差函数的基本应用①.函数f x 的极值点为x0;②.函数f x1,然后证明:x1+x2>2x0或x1+x2<2x0.=f x22.构造偏差证明极值点偏移的基本方法:①.构造一元差函数F x =f x -f2x0-x;-f x0-x或是F x =f x+x0②.对差函数F x 求导,判断单调性;③.结合F(x0)=0或F(0)=0,判断F x 的符号,从而确定f x 与f2x0-x的大小关系;④.由f x 1 =f x 2 =f x 0-x 0-x 2 _____f x 0+x 0-x 2 =f 2x 0-x 2 的大小关系,得到f x 1 ____f 2x 0-x 2 ,(横线上为不等号);⑤.结合f x 单调性得到x 1____2x 0-x 2,进而得到x 1+x 22___x 0.例1.(2023届福建七市联考)已知函数f (x )=e x -ax 22,a >0.(1)讨论f x 的极值点个数;(2)若f x 有两个极值点x 1,x 2,且x 1<x 2,当e <a <e 22时,证明:f x 1 +2f x 2 <3e 2.2.整体划归,统一变量法例2.(2023届泉州一诊).已知函数f x =e x x2-a+2x+a+3(1)讨论f x 的单调性;(2)若f x 在0,2有两个极值点x1,x2,求证:f x1f x2<4e2.例3.(2023届温州二模)已知函数f x =a2x2-x-x ln x a∈R.(1)若a=2,求方程f x =0的解;(2)若f x 有两个零点且有两个极值点,记两个极值点为x1,x2,求a的取值范围并证明f x1+f x2<12e.3.比(差)值代换消元例4.(2023届武汉二月调考)已知关于x的方程ax-ln x=0有两个不相等的正实根x1,x2,且x1<x2.(1)求实数a的取值范围;(2)设k为常数,当a变化时,若x k1x2有最小值e e,求常数k的值.例5.(2023届南通二模)已知函数f(x)=ax-ln x-a x.(1)若x>1,f(x)>0,求实数a的取值范围;(2)设x1,x2是函数f(x)的两个极值点,证明:f(x1)-f(x2)<1-4a2 a.4.同构型双变量例6.已知函数f(x)=axe x和g(x)=ln xax有相同的最大值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.5.切线估计与“剪刀差模型”注4.“剪刀模型”基本原理1.函数凸凹性:若函数f (x )在区间I 上有定义,若f (x )≥0,则称f (x )为区间I 上的凸函数. 反之,称f (x )为区间I 上的凹函数.2.切线不等式:f (x )在I 上为凸函数,∀x 0∈I ,有f (x )≥f (x 0)(x −x 0)+f (x 0). 反之,若f (x )为区间I 上的凹函数,则∀x 0∈I ,有f (x )≤f (x 0)(x −x 0)+f (x 0).注:切线不等式是剪刀模型的理论依据.3.剪刀模型已知函数f (x )为定义域上的凸函数,且图象与y =m 交于A ,B 两点,其横坐标为x 1,x 2,这样如下图所示,我们可以利用凸函数的切线与y =m 的交点将x 1,x 2的范围予以估计,这便是切线放缩的基本原理.如图,在函数图象先减后增的情形下,两条切线和两条割线即可估计出零点的一个上下界,而切割线的方程均为一次函数,这样我们就可以得到一个显式解(精确解)的估计.例7.(2023届皖南八校联考)已知函数f x =3x -e x +1,其中e =2.71828⋯是自然对数的底数.(1)设曲线y =f x 与x 轴正半轴相交于点P x 0,0 ,曲线在点P 处的切线为l ,求证:曲线y =f x 上的点都不在直线l 的上方;(2)若关于x 的方程f x =m (m 为正实数)有两个不等实根x 1,x 2x 1<x 2 ,求证:x 2-x 1<2-34m .6.不等式放缩例8.(2023届湖北七市州联考T22).已知函数f x =a ln x-x-1 x+1.(1)当a=1时,求函数f x 的单调区间;(2)若g x =a x2-1ln x-x-12a≠0有3个零点x1,x2,x3,其中x1<x2<x3.(ⅰ)求实数a的取值范围;(ⅱ)求证:3a-1x1+x3+2<2.注5. 一些重要的不等式放缩2x-1 x+1<3x2-1x2+4x+1<ln x,x∈1,+∞ln x<3x2-1x2+4x+1<2x-1x+1<x-1,x∈0,17.主元法例9.(2022北京卷)已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).8.多项式拟合例10.(2021新高考1卷)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.针对性训练1.已知函数f x =ae x-x-3有两个零点.(1)求实数a的取值范围.(2)函数g x =f x +x-ln x+1,证明:函数g x 有唯一的极小值点.2.已知f(x)=e x-a2x2-x.(1)若f x 在x=0处取得极小值,求实数a的取值范围;(2)若f x 有两个不同的极值点x1,x2(x1<x2),求证:fx1+x22<0(f x 为f x 的二阶导数).3.已知函数f x =2ae2xx,a≠0.(1)讨论函数f x 的单调性;(2)若ln x-xf x ≤ln a恒成立,求实数a的取值范围.4.已知函数f x =e x+x,g x =ax2+2x+1.(1)当a=12时,讨论函数F x =f x -g x 的单调性;(2)当a<0时,求曲线y=f x 与y=g x 的公切线方程.5.已知f x =a 2x 2-a +2 x +2ln x .(1)讨论f x 的单调性;(2)确定方程f x =a 2x 2的实根个数.6.已知函数f x =a -3 ln x -3ax -1xa ∈R ,ln3≈1.1.(1)当a <0时,试讨论f x 的单调性;(2)求使得f x ≤0在0,+∞ 上恒成立的整数a 的最小值;(3)若对任意a ∈-4,-3 ,当x 1,x 2∈1,4 时,均有m +ln4 ⋅a >f x 1 -f x 2 +3ln4成立,求实数m 的取值范围.7.已知函数f x =ln x-2ax.(1)讨论函数f(x)的单调性;(2)若f(x)≤0恒成立,求a的取值范围.8.已知m>0,e是自然对数的底数,函数f x =e x+m-m ln mx-m.(1)若m=2,求函数F x =e x+x2-4x+2-f x 的极值;2(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.9.已知函数f x =-ln x,g x =e-x-e x.(1)若∃x∈0,1,g x >f a 成立,求实数a的取值范围;(2)证明:h x =f x +cosπx2e有且只有一个零点x0,且1-e2e<g cosπx02e<1-e e.10.已知函数f x =e x tan x-1-1,f x 的导函数为f x .记函数f x 在区间nπ-3π2,nπ-π2内的零点为x n,n∈N∗.(1)求函数f x 的单调区间;(2)证明:x n+1-x n<π.11.已知函数f x =m ln x+x+m+1x.(1)求函数f x 的单调区间;(2)当m=1时,证明:x2f x <e x+x3.12.已知函数f x =m2x2+m-1x-1m∈R.(1)求函数f x 在区间1,2上的最大值;(2)若m为整数,且关于x的不等式f x ≥ln x恒成立,求整数m的最小值.13.已知函f x =x+ae x,a∈R.(1)讨论f x 在0,+∞的单调性;(2)是否存在a,x0,x1,且x0≠x1,使得曲线y=f x 在x=x0和x=x1处有相同的切线?证明你的结论.14.已知函数.(1)若,求在点处的切线方程;(2)若()是的两个极值点,证明:.15.已知函数.(1)证明:;(2)若,求实数的取值范围;(3)证明:.16.设函数.(1)讨论的单调性;(2)若当时,不等式恒成立,求m的取值范围.17.已知函数.(1)当时,讨论函数在上的单调性;(2)当时,,求实数的取值范围.18.对定义在区间上的函数,如果对任意都有成立,那么称函数在区间上可被替代.(1)若,试判断在区间上,能否可被替代?(2)若,且函数在上可被函数替代,求实数的取值范围.19.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意实数,都有恒成立,求实数的取值范围.20.已知函数.(1)求函数的零点;(2)证明:对于任意的正实数k,存在,当时,恒有.。

导数压轴题的几种处理方法

导数压轴题的几种处理方法

导数压轴题的几种处理方法导数压轴题在高等数学中属于比较重要的部分,对于学生来说也是比较难以掌握和解答的问题。

在解决导数压轴题的过程中,有一些常用的处理方法可以帮助我们更好地理解题目、分析问题以及解决问题。

接下来,我将介绍一些常见的导数压轴题处理方法。

1.代数化简法:对于一些复杂的函数表达式,我们可以通过代数化简的方法将它转化为更简单的形式。

在处理导数压轴题时,代数化简法也是一种常用的处理方法。

可以通过分子有理化、公式换元、加减引理等方法对函数进行化简,从而更方便地进行导数运算。

2.函数性质法:当给定函数的性质或公式时,可以通过利用函数的性质和公式进行求导。

对于一些常见函数,如指数函数、对数函数、三角函数等,有一些基本的求导公式,可以通过直接套用公式进行求导。

3.极限转换法:在求导过程中,有时候我们可以通过将导数的定义转化为极限的形式,然后利用极限的性质来求导。

极限转换法通常适用于一些特殊的函数形式,如分段函数、绝对值函数等。

4.高阶导数法:对于一些特殊的问题,我们还可以通过求取高阶导数来解决。

通过求取函数的一阶、二阶、甚至更高阶导数,可以更全面地了解函数的性质和特点,从而更好地解答问题。

5.导数的几何意义法:导数的几何意义是描述函数变化率的概念,一些导数压轴题可以通过对导数的几何意义进行分析来解决。

例如,利用导数的几何意义可以判断函数的增减性、极值点和拐点等。

6.隐函数求导法:一些函数的表达式难以直接求导,可以通过对方程两边同时求导的方法来解决。

这种方法通常适用于隐函数关系的导数压轴题,可以通过对隐函数关系进行求导然后解方程得到结果。

7.递归求导法:对于一些重复出现的函数表达式,可以通过递归求导法直接求取导数的表达式。

这种方法适用于一些具有规律性的函数,可以通过重复进行相同的导数运算来求取导数。

8.利用导数性质法:导数具有一些特定的性质,如导数的和、差、积、商、复合函数等性质。

在求导过程中,可以通过利用这些性质来简化计算过程,从而更快速地求解导数问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(I)求证:1-xfx11x;(II)若fxgx恒成立,求实数a取值范
第一问略:
(1)若f(x)>=g(x),求k的范围
.⑴解:注意到函数f(x)的定义域为(0,),
所以f(x)g(x)恒成立
f(x)
g(x)
恒成立,
x
x
k(x1)
设h(x)lnx
(x0),
h(x)x
x2
x
x2

1
k
xk
,
------------2 分
当k0时,h(x)0对x0恒成立,所以h(x)是(0,)上的增函数,
由ex1x(x0)可得ex1x(x0).从而当a12时,
f'(x)ex12a(ex1)ex(ex1)(ex2a),
故当x(0, ln 2a)时,f'(x)0,而f(0)0,于是当x(0, ln 2a)时,f(x)0.
综合得a的取值范围为(,
1
].
2
值 值
f(x)xex(1)值
f(x)值
值 值 值
5、(2014年二测)(2)0x1值f(x)f(
k
),值
k值 值

x
f(x)(1x)e
(xR)
f(x
x
,当
时,
,当
时,
x1,----3分
所以函数f(x)的增区间为(,1),减区间为(1,),
其极大值为f(1)
1
,无极小值.-----------5 分
e
(Ⅱ)由题知0x1, 当k0时,因为kx0x1,由⑴知函数在(,1)单调递增,
x(e,)
f(x)0,f(x)
2
单减;当
1
时,
单增。

1
1
f(x)在
t,
上单减,在
,t2
上单增,所以
e
e
②当t
1
时,f(x)在t,t2上单增,所以
e
f(x)min
f(t)tlnt。
(6 分)
(2)要证原命题成立,需证:f(x)
x
2
(x0)成立。
ex
e

x
2
, 则
1x
, 令

, 当
x(0,1)
时 ,
g(x)ex
等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法:
1、求导之后,将参数分离出来,构造新函数,计算
1lnx
例:已知函数f(x).
(Ⅰ)若函数在区间(a,a12)(其中a0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x1时,不等式f(x)
k
恒成立,求实数k的取值范围;
解得:
,即
(4分)
(2)由于

恒成立,则
,即
(6分)
由于
,则
①当 时, 在 处取得极大值、在 处取得极小值,
则当 时,,解得:;(8分)
②当 时, ,即 在 上单调递增,且 ,
则 恒成立;(10分)
③当 时, 在 处取得极大值、在 处取得极小值,
则当 时,
综上所述,的取值范围是:
,解得:
但是对于导数部分的难题,上述方法不能用时,我们得另辟蹊径:
2
a1
1
所以
1
,
解得
a1.
… 4 分
a
1
2
2
(Ⅱ)不等式f(x)
k
,即为
(x1)(1lnx)
k,
记g(x)
(x1)(1lnx)
,
x1
x
x
所以
xlnx
… 6 分
[(x1)(1lnx)]x(x1)(1lnx)
g(x)
x2
x2
,
令h(x)xlnx,则h(x)11x,x1,h(x)0.
h(x)在[1,)上单调递增,[h(x)]minh(1)10,从而g(x)0
故g(x)在[1,)上也单调递增,[g(x)]ming(1)2,所以k2…8 分
2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围
例题:设 ,其中 .
(1)若 有极值,求 的取值范围;
(2)若当 , 恒成立,求 的取值范围.
解:(1)由题意可知: ,且 有极值,
则 有两个不同的实数根,故 ,
当x(, 0)时,f'(x)0;当x(0,)时,f'(x)0.故f(x)在(, 0)单调
减少,在(0,)单调增加
(II)f'(x)ex12ax
由(I)知ex1x,当且仅当x0时等号成立.故
f'(x)x2ax(12a)x,
从而当12a0,即a12时,f'(x)0 (x0),而f(0)0,于是当x0时,f(x)0.
2、设函数 ,记 ,若函数 至少存在
一个零点,则实数 的取值范围是.

,令 ,,发现
函数 在 上都单调递增,在 上都单调递减,于是函数
在 上单调递增,在 上单调递减,所以当
时,所以函数 有零点需满足 ,即.
二、适当处理后能够简化运算:
3、(2014年一测)已知函数f(x)=xlnx,
g(x)=k(x-1)
e
ex
x1
g(x)
g(x)0
g(x)0,g(x)
x(1,)
g(x)0,g(x)
x1
单 增 ; 当
时 ,
单 减 , 所 以 当
时 ,
g(x)max
1

(9分)
e
1
1
1
1
又由(1)得f(x)在(0,
)上单减,在(
,)上单增,所以当x
时,f(x)min

e
e
e
e
又 f(1)01eg(1),f(x)g(x),(11分)所以对一切x(0,),都有lnxe1xex2成立。(12分)
x
1
解:(Ⅰ)因为
f(x)
1lnx

x
0
,则
lnx

… 1 分
x
f(x)
x

0x
1
时,
0
;当
x
1
时,

所以
f(x)
在(0,1)上单调递
f(x)
f(x)0
增 ; 在(1,)上 单 调 递 减 ,
所 以 函 数f(x)在x1处 取 得 极 大 值.
… 2 分
因为函数f(x)在区间(a,a
1
)(其中a0)上存在极值,
一、分开求左右最值:
1、已知函数f(x)xlnx。 (1)求函数f(x)在t,t2(t0)上的最小值;(2)求证:对一切x0,,都有lnxe1xex2
解(1)f(x)lnx1,令f(x)0,得x1e,
当x(0,1e)时,f(x)0,f(x)
分)
t0①当0t1e时,
f(x)minf(1e)1e;(4分)
注意到h(1)0,所以0x1时,h(x)0不合题意.-------4分
当k0时,若0xk,h(x)0;若xk,h(x)0.
所以h(x)是(0,k)上的减函数,是(k,)上的增函数,
故只需h(x)minh(k)lnkk10.--------
6 分
令u(x)lnxx1(x0),
u(x)1x11xx,
当0x1时,u(x)0;当x1时,u(x)0.
所以u(x)是(0,1)上的增函数,是(1,)上的减函数.
故u(x)u(1)0当且仅当x1时等号成立.
所以当且仅当k1时,h(x)0成立,即k1为所求.
三、放缩后,求参数范围
4、设函数f(x)ex1xax2。
(1)若a0,求f(x)的单调区间;
(2)若当x0时f(x)0,求a的取值范围
(1)a0时,f(x)ex1x,f'(x)ex1.
所以f(x)f(kx),符合题意;-------7分
当0k1时,取xk,可得f(k)f(1),这与函数在(,1)单调递增
不符;9 分
当k1时,因为kx1x1,由⑴知函数f(x)在(1,)单调递减,所以f(kx)f(1x),即只需证f(x)f(1x),即证xex1xe1x,
即lnxxlnx1x,2 lnxx1x0,令h(x)2 lnxx1x(0x1),
则h(x)x22x1(x1)20对0x1恒成立,
x2x2
所以h(x)为(0,1)上的减函数,所以h(x)h(1)0,
所以f(x)f(
k
),符合题意.-------
11 分
x
综上:k(, 0] [1,)为所求.------------
12 分
6、(2013年辽宁)已知函数
fx1xe2x,gxaxx312xcosx.当x0,1时2
相关文档
最新文档