改善耐药环境文献

合集下载

多重耐药环境下的抗感染治疗探讨

多重耐药环境下的抗感染治疗探讨
美国东北部 欧洲南部 印度 中国
Akova M, et al. Clin Microbiol Infect. 2012;18(5):439-48.
欧洲个别国家 碳青霉烯类耐药肺炎克雷伯菌检出率最高达60%
EARS-Net 数据库 (2010)
http://ecdc.europa.eu/en/activities/surveillance/ EARS-Net/database/Pages/database.aspx
• >20岁院内获得性MDR鲍曼不动感染患者
• 入选两组:
– 泰阁治疗组:泰阁100mg首剂,后50mg bid,至少治疗5天,单药
或联合碳青霉烯、三代头孢(头孢他啶或头孢曲松),或哌拉西林/ 他唑巴坦
– 非泰阁治疗组:碳青霉烯和舒巴坦(亚胺培南/西司他丁500mg &舒
巴坦1g iv q6h,至少治疗5天)
51.2% - 95%
18.9% - 48.0%
42.9%
*MIC:最低抑菌浓度 #VPKP:产VIM-I型酶肺炎克雷伯菌 Akova M, et al. Clin Microbiol Infect. 2012;18(5):439-48.
耐碳青霉烯肠杆菌科细菌 当MIC>8mg/L,碳青酶烯类治疗失败率高达75%
26
XDR、PDR肠杆菌科细菌的抗菌治疗
多黏菌素(不推荐单药治疗,国内未上市)
替加环素(常需合用) 磷霉素的联合治疗(多粘、替加、碳青霉烯、氨基糖苷) 临床资料较少 (头孢他啶、头孢吡肟)+克拉维酸(对KPC有一定的抑 制作用)临床资料较少 氨曲南+阿米卡星?(产金属酶包括NDM-1部分菌株仍对 此2药敏感)临床资料较少
• 药物未能覆盖致病菌或细菌耐药,结合实验室痰培养 结果并评价其意义,审慎调整抗感染药物,并重复病 原学检查 • 特殊病原体感染,应重新对有关资料进行分析并进行 相应检查 • 出现并发症或存在影响疗效的宿主因素,应进一步检 查和确认,处理

细菌耐药机制范文

细菌耐药机制范文

细菌耐药机制范文细菌耐药机制是指细菌对抗药物的能力不断增强,导致药物对细菌的杀菌效果减弱或失效。

这一现象给医疗和公共卫生带来了巨大的挑战,因为耐药细菌不仅难以治疗,还会导致传染病的传播。

以下是细菌耐药机制的主要内容。

1.靶标修改:细菌可以通过改变药物的结合位点来减少药物与其所靶向的分子的亲和力,从而降低药物的效果。

例如,青霉素酶是一种能够水解青霉素的酶,可以使细菌菌群对青霉素类药物产生耐药性。

2.杀菌物质的降解:细菌通过产生酶破坏杀菌物质,从而使药物无法发挥作用。

例如,β-内酰胺酶是一种能够降解广谱β-内酰胺类抗生素的酶。

3.药物泵:细菌通过增加药物泵的表达来将药物排出细胞,从而减轻药物对细菌的杀伤作用。

这些泵可以通过主动转运药物从细胞内排出,包括广谱抗生素如喹诺酮类、氯霉素和四环素等。

4.耐药基因:细菌可以通过获得耐药基因来获得耐药性。

这些基因可以通过两种方式获得:传染和突变。

在传染中,细菌可以通过水平基因转移捕获耐药基因,从其他细菌中获得耐药性。

而在突变中,细菌可以通过突变产生新的基因或突变已有的基因,从而获得对药物的耐受性。

5.产生生物膜:细菌可以产生生物膜来保护自己免受外界环境和药物的影响。

生物膜是由多种生物大分子,如多糖、蛋白质和DNA等组成的,它可以包裹细菌,减少抗生素的渗透进入细菌内部。

6.代谢途径改变:细菌可以通过改变其代谢途径来抵御特定药物的作用。

例如,细菌可以通过改变磷酸乙酰转移酶的活性来逃避抗生素利福平的作用。

值得强调的是,细菌的这些耐药机制是非常灵活和多样的。

不同类型的细菌可能通过不同的机制来获得耐药性。

这意味着针对细菌的药物治疗需要根据不同的耐药机制来设计和开发。

此外,细菌耐药机制的复杂性还强调了预防感染和合理使用抗生素的重要性。

只有通过有效控制细菌的传播和减少抗生素的滥用,才能有效降低细菌耐药性的发展。

大肠杆菌的耐药性研究

大肠杆菌的耐药性研究

大肠杆菌的耐药性研究摘要:随着新的抗菌药物的不断出现和临床应用,引起医院感染的细菌种类也发生着变化,细菌耐药性的发展已成为抗感染治疗面临的一个严重问题,尤其是大肠杆菌对常用抗菌药物耐药的发展越来越令人担忧。

本文就大肠杆菌的研究现状、耐药原因、耐药机制、以及耐药性的消除做一扼要概述,并全面的阐述了细菌耐药性的耐药机制。

细菌耐药性产生的原因是多方面的,有细菌自身的原因也有滥用抗生素的原因等。

就以上的问题本文提出了对抗细菌耐药性的对策,要合理使用抗生素,加强对抗菌药物的研发等,以及对细菌耐药性所引发的思考。

关键词:耐药性;大肠杆菌;耐药机制近年来,随着临床上应用的抗菌药物的日益增多,特别是许多广谱抗生素及新型抗生素在临床上的广泛应用,使细菌耐药性成为全球关注的焦点。

其中肠杆菌属细菌是目前临床感染中最重要的病原菌,对抗生素的耐药性更为显著。

细菌的耐药性是普遍存在的,细菌耐药性产生的原因是多方面的,一方面,就细菌本身而言,细菌有显著的适应性和惊人的多变性,除了细菌先天固有的耐药性外,细菌也可以通过接合、转导和转化等方式,由染色体、质粒等介导产生基因突变,从而使细菌产生获得性耐药。

另一方面,就抗生素而言,大量广谱抗生素的广泛应用,特别是第三代头孢菌素的使用,更易筛选出耐药菌株[1]。

因此,适当的检测耐药菌株,了解细菌的分布及耐药情况,对防止和延缓细菌耐药性的产生,指导临床医生合理使用抗生素,控制病原菌特别是耐药菌株的播散和流行具有十分重要意义。

1 细菌耐药机制细菌主要通过以下几种方式抵制抗菌药物作用: ①产生灭活酶,使抗菌药物失活或结构改变。

细菌产生的灭活酶主有水解酶和钝化酶两大类。

水解酶可破坏药物使之失效,如β内酰胺酶可水解青霉素或头孢菌素的β内酰胺环而使药物失效。

这类酶可由染色体或质粒介导。

钝化酶又称合成酶,它们多数为革兰阴性菌所产生的氨基糖苷类抗生素的钝化酶。

该酶可修饰抗菌药物分子中某些保持抗菌活性所必需的基因,使其与作用靶位核糖体的亲和力大为降低,从而失去其抑制细菌蛋白质合成的作用。

细菌耐药性在环境中的传递及其应对措施

细菌耐药性在环境中的传递及其应对措施
( 1 . ga n gl i n g Vo c a t i o n a l a n d Te c hn i c al Co l l e ge, Y a n gl i n g, S h a an xi, 7 1 2 1 O0, Chi n a:2 . Y a n gl i n g Ji n h a i Bi o — t e c hn o l o gy Co Lt d. .
细 菌存 活下来 , 或 者 细 菌 从 环 境 中获得 耐 药 基 因 而 产生 。这 种耐 药性 由于 其可 遗传性 和可 传递 性 使 得
耐抗 菌 药 的基 因得 以广 泛传 播 , 大 大 增 加 了 耐 药 细
菌 出现 的概率 , 给 防治 细 菌 感 染 的 工 作 带来 了 很 大
Di f f e r e n c e s o f P o r k P r o d u c t i o n Ba s e d o n P QA PLUS b e t we e n Ch i n a a n d US A
BAI J u n , LI U S h u — h o n g , FAN Li n g — b i n 。 , ZHAO J i n g
严 重危 及全 球 公 共 健 康 的威 胁 之 一 。在 《 二 十 国集
根 据耐药 性 能 否 遗传 , 细 菌 对 抗 菌药 的 耐药 性 可 以分 为可遗 传 和不可 遗传 两 类 r j 。不 可遗 传 的耐
药性 是 了变化 而产生 的 , 当外界 的不 适 因素移 除 , 细 菌 的表 形 耐受会 逐渐 消失 ] 。而可 遗传 的耐药 性 是 由
动物 医 学进展 , 2 0 1 7 , 3 8 ( 7 ) : 1 0 0 — 1 0 4

《2024年抗生素及其抗性基因在环境中的污染、降解和去除研究进展》范文

《2024年抗生素及其抗性基因在环境中的污染、降解和去除研究进展》范文

《抗生素及其抗性基因在环境中的污染、降解和去除研究进展》篇一一、引言随着现代医疗技术的进步,抗生素的广泛应用已经成为控制感染性疾病的重要手段。

然而,抗生素的滥用以及不当处理不仅导致其在环境中大量残留,还引发了抗生素抗性基因(ARGs)的扩散,对人类健康和生态环境构成了严重威胁。

本文将就抗生素及其抗性基因在环境中的污染、降解和去除的研究进展进行综述。

二、抗生素在环境中的污染抗生素在医疗、农业和畜牧业中的大量使用,导致其被排放到各种环境中,如水体、土壤和空气等。

这些抗生素的残留不仅对环境中的微生物生态结构产生干扰,还可能直接威胁到人类的健康。

一些研究中指出,在江河湖泊、地下水和地表水中都能检测到一定浓度的抗生素残留。

三、抗生素抗性基因(ARGs)的污染与传播由于抗生素的滥用和持续的生物地球化学过程,大量抗生素抗性基因在各种环境如土壤、水体、废水处理系统等中迅速扩散。

这些抗性基因可能会转移至其他细菌中,使这些细菌具备抗药性,对现有的治疗手段产生威胁。

四、抗生素及其抗性基因的降解与去除研究进展(一)生物降解与去除微生物是环境中抗生素及其抗性基因降解的主要力量。

一些特定的微生物能够利用抗生素作为碳源或能源进行生长和繁殖,从而降低环境中的抗生素浓度。

同时,一些微生物还能够通过吸附、转化等方式去除抗性基因。

(二)物理化学方法物理化学方法如吸附法、氧化法等也被广泛应用于抗生素及其抗性基因的去除。

例如,活性炭、纳米材料等具有强大的吸附能力,可以有效地吸附并固定环境中的抗生素;而高级氧化技术如臭氧氧化、光催化氧化等则能够有效地降解抗生素分子。

(三)生态修复技术生态修复技术是近年来研究的热点。

通过构建人工湿地、植物修复等手段,可以有效地降低水体和土壤中的抗生素浓度,同时也能降低抗性基因的传播风险。

此外,一些新型的生态修复材料和技术也在不断涌现,为抗生素及其抗性基因的去除提供了更多的可能性。

五、结论与展望目前,抗生素及其抗性基因的环境污染问题已经成为全球关注的焦点。

我国细菌耐药问题的现状和防控策略

我国细菌耐药问题的现状和防控策略

一、前言近年来,细菌耐药危机日趋严峻,已经成为全球范围的重大公共安全问题,严重危害人类、动物的健康和生态环境。

细菌耐药的防控工作涉及医疗、农牧水产、环境等诸多领域,需要医务人员、兽医工作者、粮食和农业专家、环境专家、经济学家、政策制定者和消费者的共同参与,才有可能取得全面、系统、积极的效果。

如不通过跨学科、跨领域、跨部门、跨国界的研究与合作,不对细菌耐药的产生与快速传播进行有效防控,社会、经济和自然的可持续发展将面临重大的威胁。

细菌耐药的蔓延没有国界和种族之分,每个国家都难以独善其身,因此需要各国协同谋划,才能共同应对这一全球危机。

鉴于这一共识,世界卫生组织于2015年发布了控制细菌耐药的全球行动计划,呼吁各国政府在两年内拟定全国性的行动计划,从而形成全球统一的细菌耐药防控战线。

2016年9月,在二十国集团峰会(G20)上,抗生素耐药性的问题再次被提上议程。

峰会公报明确提到:“抗生素耐药性严重威胁公共健康、经济增长和全球经济稳定〃,并呼吁世界卫生组织、联合国粮食及农业组织、世界动物卫生组织、经济合作与发展组织于2017年提交联合报告,就应对这一问题及其经济影响提出政策选项。

2016年9月,联合国大会响应G20公报倡议,召开了抗微生物药物耐药性问题高级别会议,对共同抗击微生物耐药做出了承诺,表明全球领导人已认识到细菌耐药问题可能产生的灾难性后果。

中国作为抗菌药物的生产大国和使用大国,更应承担起相应的责任,在解决全球耐药危机中发挥重要的引领作用。

二、我国医疗和动物源病原菌耐药情况严重,环境中普遍存在耐药基因中国细菌耐药性监测网(CHlNET)数据显示,2005—2014年我国多数重要的临床分离菌对常用抗菌药物的耐药性呈逐年增长的趋势,多重耐药和广泛耐药菌比例明显增加,已经对临床抗感染治疗构成严重的威胁。

全国细菌耐药监测网(CARSS)报告也显示,多种重要耐药菌的检出率仍维持在较高水平,其中亚胺培南耐药鲍曼不动杆菌2015年的检出率(58.0%)较2012年(45.8%)大幅上升;亚胺培南耐药肺炎克雷伯菌2015年的检出率(6.8%)也较2014年(4.8%)明显增加。

中药消除细菌耐药性的研究进展

中药消除细菌耐药性的研究进展

消除效果又没有毒副作用或毒副作用较低 的耐药抑制剂 。
1 细 菌 对 抗 菌 药 物 耐 药 机 制 11 耐 药性 产 生 的遗 传 方 式 .
质( 分别命名为 : 1 I2 I3 对大肠杆菌 的耐药 性有 不同程 I 、 、 ) T T T
度 的抑 制 , 1 I 对氟喹诺酮 、 T 卡那 霉素 、 氯霉 素的耐药性有 很
2 对 耐药茵具有 消除作 用的 中药 单 味药 金银花 、 . 1 连翘 、
板蓝根 、 黄连 、 黄柏 、 马齿苋 、 腥草 、 鱼 蒲公英 、 梅 、 乌 柴胡 、 黄
芩、 射干等清热解毒药是 目前 多用 于消除耐药 性中药。雷连
成等试 验结果表 明 : 黄连 、 桔梗 、 朴 、 厚 黄芪等 中药 中 3种 物
维普资讯
专 论 与 综 述
中药 消 除 细 菌 耐 药 性 的研 究 进 展
刘立新 1,刘芳 萍 ,李 睿 , 2 ,曲 鹏
(. 1 东北农业大 学动 物医学院药理教研室 ,哈尔滨 1 0 3 ;2 佳 木斯大学化学与药学院 ,佳 木斯 00 . 5
临床常见 的病原菌产 生较严重 的耐药性 , 而且其耐药水平越
来越 高 , 出现 了多 重耐药菌 株 , 并 给人类 和动物 的健 康带来 极大 的危胁 。细菌耐 药性 问题 已经 成 为全球关 注的一个 热 点, 人们试 图寻找耐 药抑制 剂 , 克服 日益严重 的耐药性 问 来 题, 为此 , 国外研究 人员 已经开始研究 耐药 性抑制剂 , 如利 血 平、 氰氯 苯腙 ( C P)2 4 C C 、 ,一二硝 基酚 ( N ) , o e 等 虽然 对耐药 性均有一定 的抑制作用 , 但它们本身的毒性也较大。因此 , 研 究低毒 、 有效 的耐药性抑制剂 具有广泛 的应用价值 和 良好 的 前景 , 在国际上越来越受 到重 视。 中药是我 国特有 的天然 资 源, 在治疗 感染 、 逆转 ( 或抑制 ) 肿瘤细胞 耐药性 等方面显 示 了独特 的作用 , 这提示我们 可以在 中药 中寻找既有 良好 耐药

探索细菌的耐药机制与抗菌药物的合理应用措施

探索细菌的耐药机制与抗菌药物的合理应用措施

探索细菌的耐药机制与抗菌药物的合理应用措施摘要】随着抗菌药物的广泛应用,越来越多的细菌出现耐药性,而且耐药程度也越来越高。

细菌的耐药成为感染性疾病中治疗的难题,常因此而导致疗程的延长、费用的增加以及死亡率的升高,造成了巨大的经济损失。

本文综述了近年来国内外细菌耐药机制的研究进展,并结合本院实际工作提出合理使用抗菌药物的建议。

【关键词】抗菌药抗药性细菌治疗应用近年来,抗菌药物发展迅速,出现了许多疗效显著的新品种,在临床感染性疾病的防治中发挥着重要作用。

然而,随着抗菌药物的广泛使用,临床上细菌对抗菌药物的耐药问题也日趋严重,成为临床抗感染治疗失败的一个重要原因。

1 细菌耐药性的产生1.1细菌耐药性产生的分子遗传学基础(1)细菌在某一核苷酸碱基对中发生了点突变,引起抗菌药物作用靶位的结构变化,导致细菌耐药性的产生。

(2)通过转座子或插入顺序,细菌DNA的一大片全部重排,包括插入、倒位、复制、中间缺失或细菌染色体DNA的大段序列从原有部位转座至另一部位,引起细菌耐药性的产生。

(3)通过质粒或噬菌体所携带的外来DNA片段,导致细菌产生耐药性。

1.2突变耐药性突变耐药性即染色体介导的耐药性。

耐药性的产生系细菌经理化因素而诱发,也可为遗传基因DNA自发突变的结果。

细菌产生这种耐药性的发生率很低,由突变产生的耐药性,一般只对一种或两种类似的药物耐药,且较稳定,其产生和消失(即回复突变)与药物无关。

由突变产生的耐药菌的生长和细胞分裂变慢,竞争力也变弱。

因此,突变造成的耐药菌在自然界的耐药菌中仅居次要地位。

1.3质粒介导的耐药性质粒是一种染色体外的DNA,耐药质粒广泛存在于所有致病菌中。

因此,通过耐药质粒传递的耐药性在自然界发生的细菌耐药现象中最多见,也最重要。

耐药质粒在微生物间的转移方式有:①转化。

②转导。

③接合。

④易位或转座。

1.4细菌耐药性产生的机制(1)灭活酶或钝化酶的产生细菌通过耐药因子可产生破坏抗生素或使之失去抗菌活性的酶,使药物在作用于菌体前即被破坏或失效。

细菌耐药现状及对策

细菌耐药现状及对策

155 株克雷伯菌(SEANIR, in 2005)
•Drug
%R %I %S MIC50 MIC90
•Cefoxitin
20 4.5 75.5 4
256
•Cefo/sulb
21.9 14.2 63.9 8
64
•Pip/taz
12.3 3.9 83.9 4
128
•Ceftriaxone 33.5 14.2 52.3 8
OR的95%可信区间 0.98~1.05 0.16~2.70
0.602~14.56 0.916~1.095
1.65~40.7 0.3~5.56 0.522~2.936 0.61~12.4
•曹0彬.0王0辉01朱元珏 陈民4钧4..中华8呼吸结核杂志,9.20041年61~月2底1297卷第1期, P31-35..
•Drug
%R %I %S MIC50 MIC90
•Cefoxitin
17.3 14.5 68.2 8
64
•Cefo/sulb
8.4 20.1 71.5 16
32
•Pip/taz
2.8 3.4 93.9 2
16
•Ceftriaxone 41.9 25.1 33 32 256
•Cefotaxime 35.8 24 40.2 32 256
•三代头孢和ESBL Asensio A,et al. Clin Infect Dis. 2000 Jan;30(1):55-60.
•三代头孢和MRSA Washio M,Public Health. 1997 May;111(3):187-90. •三代头孢和CDAD Zadik PM, Moore AP. J Hosp Infect. 1998 Jul;39(3):189-93.

耐药机制总结报告范文(3篇)

耐药机制总结报告范文(3篇)

建筑设备期末题一、填空题每小题3分,共30分1.室内给水系统根据用途的不同一般可分为系统、给水系统给水系统三类;2.电话通信的目的是实现任意两个用户之间的 ;由终端设备、传输线路和交换设备三大部分组成的电话通信网就是完成信号的任务的; 3.我国规范规定的采暖期是以历年日平均温度低于或等于采暖室外临界温度的总日数;一般民用建筑和生产厂房,辅助建筑物采用℃;中高级民用建筑物采用℃;4.CATV系统主要由、、三部分组成;5.火灾自动报警及消防联动系统主要由、、等组成6.为了减轻垂直失调,一个垂直单管采暖系统所供层数不宜大于层7.通风空调中所指的工业有害物主要有①;②;③ ;8.集中式空调系统按照不同,可分为直流式、混合式和封闭式;9.“安全电压”为 V;10.雷云对大地之间进行的放电将产生有很大破坏作用的大气过电压;其基本形式有三种:、、 ;二、判断题每小题 2分,共14分,在题前内打“√”或打“×”,表示题的“对”或“不对”1.根据钢管的壁厚又分为普通钢管、加厚钢管及薄壁钢管等;2.不论是立管或横支管,其安装位置应有足够的空间以利于拆换管件和清通维护工作的进行;3.我国习惯认为用温度低于或等于100℃的热水采暖称为低温水采暖;4.蒸汽干管汽、水逆向流动时的坡度要求是:i≥5.全面送风可以保证室内污浊空气不能窜入相邻房间,适用于室内空气较为清洁的旅馆客房、医院手术室的地方;6.管道布置应遵循小管道让大管道,有压管道让无压管道原则;7.TN-S系统中中性线与保护线有一部分是共同的,有一部分是分开的;三、单选或多选题每小题 2分,共20分1.在连接两个及两个以上的大便器或3个及3个以上卫生器具的污水横管上,应设置 ;A.检查口 B.清除口 C.清扫口 D.排气口2.地漏的作用是排除地面污水,因此地漏应设置在房间的处,地漏箅子面应比地面低5mm左右;A.较低 B.比较低 C.最低 D.最高3.塑料管道在使用中应注意冷水管道应采用公称压力不低于等级的管材和管件;热水管道应采用公称压力不低于 MPa等级的管材和管件;A. B.1.0 C. D.4.集中供热系统中的热用户是指用热系统的用户:A.室内采暖用户 B.空调用户 C热水供应用户 D.蒸汽供应用户5.在下列设备中,不属于热水采暖系统用的设备是 ;A.疏水器 B.集气罐 C.除污器 D膨胀水箱 E.安全水封6.由于燃气燃烧后排除的废气中都含有一氧化碳,且当其容积浓度超过%时,人工呼吸min就会在2h内死亡;A.5 B.10 C.20 D.30 E.40 7.配电线路按电压高低分为高压配电线路即及以上的线路和低压配电线路即以下的线路;A.10kV B.3 kV C.35kV D.1kV8.避雷器应与被保护设备 ,装在被保护设备的电源侧;A.串联 B.并联 C.混联 D.串或并联9.插座接线规定:单相三线是 ;A.左相右零上接地 B左零右相上接地 C.左接地右相上接零D.左零右接地上接相10.灯具向上的光线40%~60%,其余向下;向上或向下发出的光通大致相同,光强在空间基本均匀分布,这类灯具 ;A.漫射型灯具 B.半直接型灯具 C.直接型灯具 D.间接型灯具四、作图题 5分:作出TN—S系统;五、简答题每小题 5分,共25分1.简述防止水质污染的措施;2.简说机械循环热水采暖系统的工作原理与特点;3.通风与空气调节在概念上有何区别4、通风空调系统安装注意哪几方面5、正常照明方式有哪几种什么是事故照明其适合于哪些场合六、简算题6分普通的40W的白炽灯的初始光通量为300 1m,普通的20W的荧光灯的初始光通量为450 1m,试比较哪种灯的发光效率η高一、填空题:共30分1、消防、生产、生活给水 ;2、发送、接受、传输和交换信息交换3、5、8.4、前端系统、传输系统、分配系统5、火灾报警控制装置、灭火设备、减灾设备6、127、粉尘、余热、余湿、有害蒸汽和气体 8、利用回风的情况9、36V 10、1直击雷2感应雷3雷电波侵入二、判断题:14分√√√√√××三、单选或多选题:共20分1、A2、C3、D4、ABC5、AE6、C7、DD8、B9、B 10、A四、如图5分五、简答题每小题 5分,共25分1.为了确保用水水质,在设计、施工、管理中要有防止水质污染的措施;1饮用水管道不得因回流而被污染;2生活饮用水管道不得与非饮用水管道连接;3水箱溢流管不得与排水系统直接连接,必须采用间接排水;4选用管材及配件时,要防止因材料腐蚀、溶解而污染水质;施工安装时,要保证工程质量,避免外界对水质的污染;5生活饮用水管道应避开毒物污染区,当受条件限制时,应采取防护措施;埋地生活饮用水贮水池与化粪池的净距,不得小于10M;6生活、消防合用的水箱池,应有防止水质变坏的措施;2.答:机械循环热水采暖系统的工作原理是先对系统充满水,然后启动水泵,系统中的水即可在水泵的压力作用下,连续不断地循环流动;机械循环主要优点是作用半径大,管径较小,锅炉房位置不受限制,不必低于底层散热器;缺点是因设循环水泵而增加投资,消耗电能,运行管理复杂,费用增高;3.答:通常通风只是把室外的新鲜空气经过适当的处理例如过滤、加热等后送入室内,并把室内的不符合卫生标准的污浊空气或废气经适当除害消毒处理符合排放标准后排至室外,以保持室内空气的新鲜程度;而对于空气调节,不仅要保持室内的空气温度和洁净度,同时还要保持一定的干湿度及流动的方向与速度;通风系统的目的主要在于消除生产过程中产生的灰尘、有害气体、余热和余湿的危害;空气调节系统的目的是用人工的方法使室内空气温度、相对湿度、洁净度和气流速度等参数达到一定要求的技术,以满足生产、生活对空气质量的更高更精确的要求;空气调节的主要任务是对空气进行加热、冷却、加湿、干燥和过滤等处理,然后将经过处理的空气输送到各个房间,以保持房间内空气温度、湿度、洁净度和气流速度稳定在一定范围内,以满足各类房间对空气环境的不同要求;4 1通风空调系统的安装与建筑物的施工进度以及有关工艺社别的安装情况有密切关系,所以必须考虑它们之间的施工配合;2在安装前应对到货的设备和加工成品进行检查;3安装前应对现场作以下检查;4安装工作开始进行时,先要进行现场测绘及绘制安装简图;5 正常照明是满足一般生产、生活需要的照明,有一般照明又称为总体照明、局部照明和混合照明三种照明方式;事故照明是指在正常照明突然停电的情况下,可供事故情况下继续工作和使人员安全通行疏散的照明,如医院的手术室、急救室、大型影剧院等都需要设置事故照明;六、6分解:由于 40W的白炽灯的发光效率η=300/40=1m/W20W荧光灯的发光效率η=600/20=301m/W所以荧光灯的发光效率高于白炽灯的发光效率;。

新型抗菌药物耐药性研究及应对策略

新型抗菌药物耐药性研究及应对策略

新型抗菌药物耐药性研究及应对策略一、引言随着抗生素的广泛应用和不当使用,耐药性逐渐成为全球公共卫生领域的一大挑战。

新型抗菌药物在抗菌治疗中扮演着重要的角色,然而随着新型抗菌药物的应用,一些耐药菌株也在逐渐出现。

本文就新型抗菌药物耐药性的研究现状及应对策略进行探讨。

二、新型抗菌药物耐药性的研究现状1.抗真菌药物耐药性的研究真菌感染在临床中越来越常见,且真菌耐药性不断增强,给治疗带来了极大困难。

目前,一些新型抗真菌药物如伊曲康唑、卡泊芬凯酮等广泛应用于真菌感染的治疗,但也出现了一些耐药菌株。

针对抗真菌药物耐药性的研究主要集中在耐药基因的筛查、耐药机制的解析以及耐药菌株的流行病学调查等方面。

2.抗生素耐药性的研究抗生素是治疗细菌感染的常用药物,然而细菌耐药性的快速发展使得一些细菌感染变得难以治疗。

目前,一些新型抗生素如环丙沙星、头孢西丁等被广泛用于临床,但也出现了细菌耐药性的问题。

抗生素耐药性的研究主要包括耐药基因的鉴定、耐药菌株的遗传特性分析以及耐药机制的探究等方面。

3.抗病毒药物耐药性的研究随着病毒感染的频繁发生,抗病毒药物的研究也受到了广泛关注。

目前,一些新型抗病毒药物如奥司他韦、依托那韦等被广泛用于病毒感染的治疗,但也出现了一些耐药病毒株。

抗病毒药物耐药性的研究主要包括耐药病毒株的检测、耐药机制的解析以及耐药病毒株的流行病学调查等方面。

三、新型抗菌药物耐药性的应对策略1. 加强监测与预警建立全国范围内的抗菌药物耐药性监测网络,及时监测各类耐药菌株的流行情况,提高对新型抗菌药物耐药性的认识和预警能力。

2. 优化抗菌药物使用合理使用抗菌药物,避免滥用和不当使用,减少抗菌药物对耐药菌株的选择压力,延缓耐药菌株的产生和传播。

3. 加强抗菌药物研发加大对新型抗菌药物的研发投入,寻找更具活性、更低毒性的抗菌药物,提高抗菌药物的治疗效果和耐药性。

4. 促进多学科合作鼓励医生、微生物学家、药剂师等多学科间的合作,加强对新型抗菌药物的研究和应用,提高治疗效果和减少耐药性的产生。

外科感染病原菌耐药现状及对策

外科感染病原菌耐药现状及对策

外科感染病原菌耐药现状及对策外科感染病原菌耐药现状及对策一、前言外科感染的防治向来是外科领域中的重点和难点之一,其治疗也面临着艰难和挑战。

随着抗生素的广泛应用,细菌开始产生抗药性,并且在传染病爆发或者治疗外科感染时,使细菌的耐药性进一步增强,对医院管理和外科手术管理提出了更高的要求。

因此,及时、准确、全面地掌握外科感染病原菌耐药现状,采取有效的防治措施迫在眉睫。

二、目的本文旨在对外科感染病原菌耐药现状进行全面深入地分析研究,总结提出相应的防治对策,以期为外科感染的防治提供参考。

三、现状分析1.国内外外科感染病原菌耐药性分析自二十世纪六、七十年代以来,各种细菌频繁地浮现耐药性,特别是革兰阴性菌和革兰阳性菌,已对全球人类健康造成为了极大的威胁。

据世界卫生组织统计,全球每年约有70万人死于多药耐药菌感染,贡献主要来自感染科和外科;其中,肺炎链球菌不敏感率最高,可达30-50%。

2.外科感染病原菌耐药性的危害外科手术是治疗疾病的重要方法,而术后感染是临床常见的并发症之一。

如不能及时治疗,不仅会延长住院治疗时间,增加医疗费用,而且会影响病人康复。

感染病原菌的耐药性会带来严重的危害,非但会导致感染治疗失败,延长病程,使治疗费用增加,而且还会增加感染病原菌传播的风险,增加医院感染的发生率和死亡率。

四、防治对策1.加强固定消毒对于手术器械、洗手间消毒等工作要求非常严格,以确保外科手术的安全。

2.加强感染预防工作完善预防措施,包括首要感染控制、切口感染和术区感染控制。

3.合理应用抗生素应针对感染菌种、已知的抗生素敏感/耐药情况,并结合患者的个体情况作出合理抗生素应用决策,减少药物的滥用和不当应用。

4.开展细菌培养和耐药性研究应加强临床细菌培养和耐药性研究,了解细菌的敏感性和耐药性,为临床应用提供科学依据。

五、附件(此处列举本文档所涉及附件如下:)1.细菌培养和耐药性研究报告2.感染控制手册3.手术器械消毒规程六、法律名词及注释(此处列举如下本文档所涉及的法律名词及注释:)1.《中华人民共和国传染病防治法》:规定了传染病的预防、控制和治疗等方面的内容。

微环境治疗改善难治性创面细菌耐药疗效分析

微环境治疗改善难治性创面细菌耐药疗效分析

微环境治疗改善难治性创面细菌耐药疗效分析罗艺;练慧斌;鞠海宾;主父中印【摘要】Objective To investigate the clinical value of the individualized treatment for microenvironment in reducing oc-currence of strain with bacterial drug resistance in the treatment of refractory wounds. Methods 63 patients hospitalized in our wards from June 2013 to June 2015 were divided into the individual treatment group (ITG, n=31) and the conventional treatment group (CTG, n=32) according to the random number table. There were no differences in sex or age before treat-ment between the two groups. The individualized treatment for microenvironment was made according to the mutant selec-tion windows theory, which was used in guiding the clinical treatment. Patients in both groups were treated with internal medical therapy and nursing, and individualized treatment were added to study group, while conventional treatment were added to control group. Bacterial culture of wound exudate and drug sensitivity test were performed before and after treat-ment in two groups. The data obtained were employed to proceed on the statistical analysis and the table production. Re-sults 9 cases(9/31)in ITG were proved to be infected by drug-resistance bacteria ,compared with 21 cases(21/32)in CTG. Significant differences were found between the two groups,χ2=8.45, P<0.05. Conclusion It is effective to use the individual-ized treatment for microenvironment to reduce occurrence of strain with bacterial drug resistance in the treatment of refrac-tory wounds.%目的:探讨创面微环境个体化治疗在改善难治性创面细菌耐药中的应用。

环境中耐药菌的分布现状及其耐药机制的研究

环境中耐药菌的分布现状及其耐药机制的研究

环境中耐药菌的分布现状及其耐药机制的研究肖斌;刘冲【摘要】Resistant bacterias gradually evolved to a global problem, which already existed widely in water, air, soil and other various environments. If these resistance genes of resistant baeterias spread to pathogenic bacteria and infected people, it would have serious consequences. The situation of restraining resistant bacteria was not optimistic. The problem of resistant bacteria should be attached great importance. According to the recent research on resistant bacterias, produc- tion and harm of resistance, the present distribution of resistant bacterias and the transfer of resistant gene were reviewed.%耐药菌问题已是逐步演变成一个全球性的问题。

它已广泛存在于水、空气、土壤等各种环境中,如果这些耐药菌携带的耐药基因传播到致病菌上,并感染人群,将对人群造成严重后果。

耐药菌问题应引起高度重视。

因此本文针对最近耐药菌的研究,概述了耐药菌耐药性的产生及危害,目前国内外环境中耐药菌的分布现状,以及耐药基因的传播方式。

【期刊名称】《广州化工》【年(卷),期】2012(040)013【总页数】3页(P5-7)【关键词】耐药菌;分布现状;耐药机制【作者】肖斌;刘冲【作者单位】东华大学环境科学与工程学院,上海201620;东华大学环境科学与工程学院,上海201620【正文语种】中文【中图分类】X508据报道,2001年美国销售土霉素15200 kg。

细菌耐药性问题解决新方向-荣创J85

细菌耐药性问题解决新方向-荣创J85

细菌耐药性问题解决新方向-荣创J85前言饲料全面禁抗以来,细菌耐药问题更为棘手,严重影响畜禽健康,特别是肠道问题突出。

为了解决细菌耐药的困扰,寻求更好的减抗替抗,中科荣信依托中科院糖生物工程课题组,在杜昱光院士的带领下开展了壳寡糖这一功能糖对微生物耐药性抑制作用及机制研究。

历经数载,荣创-J85终于问世。

研究发现荣创-J85能够有效清除细菌生物被膜,对阿莫西林等抗生素具有显著的增效作用。

此外,中科荣信将进一步推动荣创-J85与抗菌肽、精油等药物联合的研究,以期在绿色无抗、健康养殖产业中得到广泛应用。

功能糖荣创-J85必将在“抗耐药”和“减抗”中拥有更为广阔的应用前景。

解决细菌耐药性问题迫在眉睫根据世界动物保护协会的报告,全世界生产的抗生素中有 60% 以上用于农场动物。

抗生素的不当使用,会引发细菌耐药性。

世界动物保护协会发布报告《河流中的隐匿杀手——“超级细菌”》,报告泰国、美国、西班牙和加拿大养猪场周围的环境中检测到有利于增加细菌抗生素耐药性的基因。

抗生素的滥用加速了动物和环境中多重耐药细菌的发展。

同时长期低剂量使用饲用抗生素,会增加细菌的耐药性,可能加速'超级细菌’的产生。

所以我国2020 年7 月饲料开始全面禁抗,然而全国养殖场细菌性感染的病例逐渐增加,特别是肠道有害病原菌得不到有效控制,肠道健康问题突出,以梭菌性疾病、大肠杆菌、沙门氏菌等有害菌过量繁殖引起全身性感染尤为常见。

饲料禁抗导致抗生素在养殖端的使用增加,使得细菌耐药问题更为棘手。

因此减抗替抗,合理规范使用抗生素,解决细菌耐药性迫在眉睫。

解决细菌耐药性问题新领域-功能糖为了寻求更好的减抗替抗途径,解决细菌耐药的困扰,中科院糖生物工程课题组,在杜昱光院士的带领下开展了壳寡糖这一功能糖对微生物耐药性抑制作用及机制研究。

壳寡糖(也称几丁寡糖,学名β-1,4-寡糖-葡萄糖胺)是指聚合度在2-20范围的氨基葡萄糖和乙酰氨基葡萄糖聚合物,如壳二糖、壳三糖、壳四糖、壳五糖、壳六糖等,是一种来源于海洋甲壳类动物的酶解产物,具有水溶性好,易吸收,生物兼容性好的特点,在抑菌、抗氧化、抗炎、调节血脂和血糖、抗肿瘤、增强免疫及活化肠道菌群中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A NTIMICROBIAL A GENTS AND C HEMOTHERAPY,Dec.2009,p.5122–5126Vol.53,No.12 0066-4804/09/$12.00doi:10.1128/AAC.00064-09Copyright©2009,American Society for Microbiology.All Rights Reserved.Introduction of Ertapenem into a Hospital Formulary:Effect onAntimicrobial Usage and Improved In Vitro Susceptibility ofPseudomonas aeruginosaᰔEllie J.C.Goldstein,1,2*Diane M.Citron,1Victoria Peraino,3Tanya Elgourt,4Anne R.Meibohm,5and Shuang Lu5RM Alden Research Laboratory,Santa Monica,California1;Departments of Infectious Diseases,2Microbiology,3and Pharmacy,4 St.Johns’Health Center,Santa Monica,California90404;and Merck&Co.,Inc.,North Wales,Pennsylvania5 Received16January2009/Returned for modification2July2009/Accepted21September2009After ertapenem was added to the formulary of a344-bed community teaching hospital,we retrospectivelystudied its effect on antimicrobial utilization and on the in vitro susceptibility of various antimicrobial agentsagainst Pseudomonas aeruginosa.Three study periods were defined as preintroduction(months1to9),postin-troduction but before the autosubstitution of ertapenem for ampicillin-sulbactam(months10to18),and afterthe policy of autosubstitution(months19to48)was initiated.Ertapenem usage rose slowly from introductionto a range of36to48defined daily doses/1,000patient days(DDD)with a resultant decrease in ampicillin-sulbactam usage due to autosubstitution.Imipenem usage peaked6months after the introduction of ertap-enem and started to decline coincidently with the increased use of ertapenem.During the second period,imipenem usage decreased(slope؍؊1.28;P؍0.002).Prior to the introduction of ertapenem,the suscepti-bility of P.aeruginosa to imipenem increased from61to81%at month7but then decreased slightly to67%atmonth9.After the introduction of ertapenem,susceptibility continued to increase;the increasing trend wassignificant(slope؍1.74;P<0.001).In the third period,the median susceptibility(interquartile range)was88%(82to95%).This change appeared related to decreased imipenem usage.For every unit decrease in themonthly DDD of imipenem,there was an increase of0.38%(P؍0.008)in the susceptibility of P.aeruginosato imipenem in the same month.Ertapenem was effective in our antimicrobial stewardship program and mayhave helped improve the P.aeruginosa antimicrobial susceptibility to imipenem by decreasing the unnecessaryusage and selective pressure of antipseudomonal agents.The development of multidrug-resistant gram-negative pathogens driven by antimicrobial selective pressures has be-come an increasing concern in hospitalized patients(1,14,16). For Enterobacteriaceae,␤-lactamases such as the extended-spectrum␤-lactamases(ESBLs)and plasmid and chromo-somal AmpCs are probably the most important resistance mechanisms,although other extended-spectrum class A en-zymes,such as KPC,also are emerging(1).For P.aeruginosa, chromosomal AmpC,permeability changes(OprD),and the multidrug efflux pumps are probably the determining factors. Metallo-␤-lactamases are distinctly unusual in Enterobacteria-ceae and P.aeruginosa in the United States but are a more important problem in other geographic areas(10).The devel-opment,spread,and persistence of these resistance mecha-nisms complicates the selection of antimicrobial therapy when trying to avoid the increased selective pressures caused by the utilization of any one class of antimicrobial agents.Conse-quently,the Infectious Diseases Society of America has issued guidelines to enhance antimicrobial stewardship programs(4), with goals that include minimizing the emergence of resistance by the appropriate use of antimicrobials.The increased importance of ESBL resistance in Escherichia coli and Klebsiella species has necessitated the use of ESBL-stable␤-lactams like ertapenem(15,18).The FDA approved ertapenem,a carbapenem(19)without Pseudomonas aerugi-nosa activity,for use against community-acquired pneumonia, complicated intraabdominal infections,pelvic infections,com-plicated urinary tract infections,and skin and soft-tissue infec-tions,including diabetic foot infections.However,concern as to whether ertapenem might adversely affect the activity of the carbapenems imipenem and meropenem against P.aeruginosa has been a barrier for its use.Studies performed prior to ertapenem’s approval attempted to define risk factors for Pseudomonas resistance(6,11).Lau-tenbach et al.(11)found not only a higher mortality rate (31.1%)for patients infected with an imipenem-resistant P. aeruginosa than for those infected with imipenem-susceptible strains(16.7%)but also concluded that the only independent risk factor for imipenem resistance wasfluoroquinolone use. Fortaleza et al.(6)evaluated the problem of P.aeruginosa resistance and concluded that imipenem,amikacin,and van-comycin use were associated with imipenem-resistant P.aerugi-nosa.Patterson(16)has reviewed the various conflicting stud-ies of this topic and concludes that“the lack of alternative agents on the horizon that are active against gram-negative bacteria makes our efforts at controlling emergence of resis-tance all the more imperative.”Because we felt the addition of ertapenem to our formulary would have cost savings and clin-ical utility but were concerned about collateral damage,we retrospectively studied the effect of the addition of ertapenem on antimicrobial utilization and on the in vitro activity of imi-*Corresponding author.Mailing address:2021Santa Monica Blvd., Suite740East,Santa Monica,CA90404.Phone:(310)315-1511.Fax: (310)315-3662.E-mail:ejcgmd@.ᰔPublished ahead of print on28September2009.5122 at Yale University on April 21, 2010 Downloaded frompenem,ertapenem,levofloxacin,cefepime,tobramycin,and piperacillin-tazobactam on P.aeruginosa.(Parts of this study were presented previously at the44th Annual Meeting of the Infectious Diseases Society of America, Toronto,Canada,2006[3].)MATERIALS AND METHODSStudy design.We retrospectively collected and analyzed data on the antimi-crobial usage(defined daily dose/1,000patient days[DDD])and antimicrobial susceptibility for P.aeruginosa in a344-bed community teaching hospital from January2002to December2005.The hospital has a51-bed oncology unit that is involved in research programs,a32-bed intensive care unit,and a32-bed step-down unit.The average daily census for the study period was approximately200; the average length of stay varied from4.6to9.1days,with an average stay of5 days,excluding newborns and outliers.Ertapenem was added to the formulary in September2002,and in July2003a policy of autosubstituting ertapenem for ampicillin-sulbactam was instituted because of increased(40%)E.coli resistance to ampicillin-sulbactam and because of its relatively high cost.(Ampicillin-sul-bactam wasϳ$45/day,not including nursing and pharmacy time or the bag and intravenous administration setup materials for three to four daily administra-tions,while ertapenem wasϳ$45/day with one administration per day).The policy of reminding physicians to voluntarily substitute cefotaxime for cefepime if no P.aeruginosa was isolated from cultures after72h of empirical therapy was continued.No other antimicrobial-prescribing restrictions were instituted,and no other new agents were added to the formulary during the study period.No unusual infection control measures were instituted during this period. Statistical analysis.To investigate the trends in antibiotic usage in the sus-ceptibility of P.aeruginosa,wefirst defined three periods in the48-month study. Thefirst period,months1to9,was prior to the introduction of ertapenem to the formulary.During the second period,months10to19,ertapenem was in the for-mulary but there was no required substitution for ampicillin-sulbactam.The last period,months20to48,was after the autosubstitution policy was implemented. The impact of introducing ertapenem to the hospital formulary on the usage of imipenem and on the susceptibility of P.aeruginosa to imipenem was evaluated by the use of time-series analyses.Time-series analysis estimates regression models while relaxing the assumption that observations are inde-pendent by estimating the serial correlation or autocorrelation among obser-vations collected over time(e.g.,antibiotic usage and susceptibility across different periods)(21).An autoregressive error model that corrects for serial correlation was built using PROC AUTOREG in SAS(version8)for Win-dows(20).The Yule-Walker method proposed by Gallant and Goebel(7)was used as the estimation method.A segmented model was used to assess the changes in trends(i.e.,slopes) of the usage of imipenem and the susceptibility of P.aeruginosa to imipenem in each of the three periods.The trend is defined as the slope of the response (i.e.,antimicrobial usage or susceptibility)over time(x unit change for every 1month change of time).Similar methods were applied to evaluate changes in the trends of the usage of levofloxacin,cefepime,and piperacillin-tazobac-tam and the susceptibility of P.aeruginosa to these agents,except that data for the second and third periods were combined.To model the susceptibility of P. aeruginosa to imipenem,initially we included the current and historical(last13 months)usage of imipenem and ertapenem and the time in the model.Only statis-tically significant(␣ϭ0.05)predictors of the outcome variable were kept in thefinal model;thus,the variables in the model were the current use of imipenem and the current month.RESULTSTable1and Fig.1show the monthly usage(DDD)of imi-penem and ertapenem and the susceptibility of P.aeruginosa to imipenem during the48months of observation.The usage of ertapenem increased slowly from its introduction to the for-mulary in month10through month15(DDDϭ8),and then usage increased more sharply.Prior to the implementation of the policy of autosubstituting ertapenem for ampicillin-sulbac-tam,the DDD was35.Subsequently through month42,usage was relatively consistent,generally in the range of36to48DDD. Toward the end of the observation period(months43to48), ertapenem usage increased and then began to decrease again. In the9months of observation prior to the introduction of ertapenem,the usage of imipenem increased significantly(13 to39DDD;slopeϭ3.18;PϽ0.001).Imipenem usage peaked in month15(DDDϭ59)and then started to decline(the slope during the second period wasϪ1.28;Pϭ0.002),which is coincident in time with the sharper increase in the use of ertapenem.Overall,usage declined significantly during the second period(the change of slope wasϪ4.46;PϽ0.001). During the third period,imipenem usage was relatively con-stant,generally between22and29DDD.Contrary to the trend of increasing the use of imipenem prior to the introduction of ertapenem,there was a significant decrease in the use of imi-penem when ertapenem became available.Prior to the introduction of ertapenem,the susceptibility of P.aeruginosa to imipenem increased from61to81%at month 7but then decreased slightly to67%at month9(slopeϭ0.60; Pϭ0.51).After the introduction of ertapenem(months10to 19),susceptibility continued to increase and was above80%for the last4months;the increasing trend was significant(slopeϭ1.74;PϽ0.001);however,the change in the rate of increase (the change in the slope was1.14)was not statistically signifi-cant(Pϭ0.36).In the third period(months20to48),there was no consistent increasing or decreasing trend(slopeϭ0.02; Pϭ0.85)in susceptibility.The median susceptibility(inter-quartile range)was88%(82to95%).For2006to2008,ϳ87%of our P.aeruginosa isolates(ϳ300/year)remained susceptible to imipenem with continued ertapenem usage(data not shown). During the study periods,there was a decreased use of imi-penem and an increased use of ertapenem(Table1).This result-antly decreased use of imipenem was statistically significantly related to the improved susceptibility of P.aeruginosa to imi-penem(Table1).For every unit decrease in the monthly DDD of imipenem,there was an increase of0.38%(Pϭ0.008)in the susceptibility of P.aeruginosa to imipenem in the same month.age of ertapenem and imipenem and susceptibility of P.aeruginosa to imipenemPeriod MonthsErtapenem usage(DDD)Imipenem usage(DDD)Susceptibility(%)of P.aeruginosato imipenemPercentile aRangePercentile aRangePercentile aRange 255075255075255075Prior to ertapenem usage0–9000025303413–4062697760–81After addition of ertapenemto formulary10–1978205–3528354323–5971758263–91After policy substitution20–4839445324–7922252913–5082889567–100a50th percentile is the median;25th and75th percentiles are thefirst and third quartiles(interquartile range),respectively.V OL.53,2009INTRODUCTION OF ERTAPENEM INTO HOSPITAL FORMULARY5123at Yale University on April 21, 2010 Downloaded fromThe use of levofloxacin generally was constant throughout the study period;the susceptibility of P.aeruginosa to levo-floxacin tended to increase(slopeϭ0.53;Pϭ0.021)after the introduction of ertapenem(Fig.2a).The use of cefepime gen-erally was constant throughout the study period using the three-period model;cefepime use was increasing during the first period(before ertapenem was added,slopeϭ2.70and Pϭ0.006),while use during the second period wasflat.The susceptibility of P.aeruginosa to cefepime tended to increase (slopeϭ0.54;PϽ0.0001)after the introduction of ertapenem (Fig.2b).Cefoxitin and piperacillin-tazobactam usage were affected by distributor/manufacturer supply shortages for brief periods;otherwise,their usage was constant.The susceptibility of P.aeruginosa to piperacillin-tazobactam became more stable and tended to increase slightly after ertapenem was added (slopeϭ0.14;Pϭ0.040)due to less variability(Fig.2c).While the susceptibility of P.aeruginosa to these agents tended to increase slightly during the study period,the increasing trends began before the introduction of ertapenem.Against E.coli,P.mirabilis,Klebsiella species,and Entero-bacter cloacae,there was either no change or minor changes in susceptibilities to the various agents,including imipenem,sub-sequently to the inclusion of ertapenem in the formulary(data not shown).All of the aforementioned species remained100% susceptible to ertapenem.E.coli susceptibility to levofloxacin declined from90to83%.ESBL enzymes(data not shown) were present in3%of Klebsiella species isolates in2002prior to the introduction of ertapenem,but the level fell to2%in 2005.ESBL enzymes were present in1%of E.coli isolates without significant change.These rates remained constant dur-ing2006and2007(data not shown).DISCUSSIONWhile studies often yield diverse and conflicting results when attempting to define specific antimicrobial resistance risk factors(16,17),selective antibiotic pressure generally is ac-cepted as an important causal reason.For ESBL-producing strains and other multiresistant gram-negative bacteria,car-bapenems are the current antimicrobial therapy of choice(9, 15).There is also a need for a nonpseudomonal carbapenem to diminish the selective pressure exerted by carbapenem use on P.aeruginosa.The Infectious Diseases Society of America stewardship guidelines(4)have noted that“education alone,without in-corporation of active intervention,is only marginally effective in changing antimicrobial prescribing practices and has not demonstrated a sustained effect(evidence grade B-II).”Our study suggests that adding ertapenem to our formulary was an effective antimicrobial management program tool.The in-creased ertapenem usage per se did not show a statistically significant impact on the imipenem susceptibility of P.aerugi-nosa;however,the increased ertapenem use was simultaneous with a decline in imipenem usage,and this decreased imi-penem use paralleled the improved imipenem susceptibility of P.aeruginosa.There are several limitations to our study,which include the limitation of group-level studies,the issue of using proportion versus incidence as the main outcome,and the limitation of a single-institution study.Time effects versus exposure effects, which are a potential problem,were adjusted for by our sta-tistical methods.Several other studies,most presented in abstract form,also have noted that the addition of ertapenem to a hospital for-mulary did not adversely affect the in vitro activity of imipenem and/or meropenem against P.aeruginosa.Crank et al.(3)re-ported that2years after the addition of ertapenem to the Rush University Medical Center in Chicago formulary,there was no effect on carbapenem resistance to P.aeruginosa.Goff et al.(8) also reported that P.aeruginosa susceptibility to imipenem remained at approximately72%during the4years after the addition of ertapenem to the formulary at Ohio State Univer-sity.Similarly,Carmeli et al.(2)retrospectively studied theage(DDD)of imipenem and ertapenem and susceptibility of P.aeruginosa to imipenem.Line A indicates the introduction of ertapenem to the formulary.Line B indicates the implementation of the policy of substituting ertapenem for ampicillin-sulbactam.5124GOLDSTEIN ET AL.A NTIMICROB.A GENTS C HEMOTHER.at Yale University on April 21, 2010 Downloaded fromeffect of ertapenem on their formulary and found by multivar-iate analysis that ertapenem was not associated with a high incidence (P ϭ0.88)or increased proportion (P ϭ0.66)of imipenem-resistant P.aeruginosa ,but imipenem and mero-penem usage were associated with both a high incidence (P ϭ0.0014)and an increased proportion (P ϭ0.036)of imipenem-resistant P.aeruginosa strains.Our findings and those of the aforementioned studies are in accord with those of Livermoreage (DDD)and susceptibility of P.aeruginosa to levofloxacin (a),cefepime (b),and piperacillin-tazobactam (c).Line A indicates the introduction of ertapenem to the formulary.Line B indicates the implementation of the policy of substituting ertapenem for ampicillin-sulbactam.V OL .53,2009INTRODUCTION OF ERTAPENEM INTO HOSPITAL FORMULARY 5125at Yale University on April 21, 2010 Downloaded fromet al.(13),who reported that the selectivity of imipenem-resistant P.aeruginosa strains by ertapenem usage“should be minimal under clinical conditions.”Recently,Lima et al.(12)evaluated the impact of ertap-enem use for ESBL-Enterobacteriaceae infections at a tertiary-care university hospital in Brazil from March2006to February 2007.The use of ertapenem was mandated and substituted for imipenem for the treatment of these infections,unless there was a coinfection with a nonfermenting gram-negative aerobic bacillus.Imipenem use decreased64.5%(from46.3to16.1 DDD)during the study period,and ertapenem use rose to 42.57DDD.During the study period,1of the18P.aeruginosa strains isolated was imipenem resistant,whereas4/20(20%) were resistant during the study of the prior year,which showed a trend but was not statistically significant.They speculated that increased ertapenem use“may have had a positive effect on the hospital ecology,with no evidence of resistance devel-opment associated with its use.”Other potential benefits of ertapenem use may be on limit-ing collateral damage to the fecalflora,which can act as a reservoir of resistance.DiNubile et al.(5)reviewed the expe-rience with ertapenem in two large multicenter,comparative trials(OASIS I and OASIS II)of complicated,community-acquired intraabdominal infections.Resistant Enterobacteria-ceae organisms were significantly(PϽ0.001)less likely to emerge in patients treated with ertapenem than in those treated with the comparator agents piperacillin-tazobactam or ceftriaxone plus metronidazole.No ertapenem-treated patient became fecally colonized with an ESBL-producing organism at the end of therapy,while this occurred in2.1%of piperacillin-tazobactam-and9.3%of ceftriaxone plus metronidazole-treated patients.These data are in accord with our study(data are not presented on ESBL-stable rates of incidence)and provide assurance that increased resistance,including that to ESBLs,in gram-negative rods is unlikely when ertapenem is used clinically in the hospital setting and when coupled with standard infection control practices.Our study suggests that when coverage for P.aeruginosa is not required,as in most community-acquired infections,the use of Pseudomonas-sparing agents,such as ertapenem,re-duces antibiotic pressure.It is possible that additional restric-tions of other antipseudomonal agents,such as ceftazidime, cefepime,piperacillin-tazobactam,andfluoroquinolones,also help with decreasing Pseudomonas resistance.In our study,the addition of ertapenem to our formulary was an important component of our antimicrobial stewardship program and was cost-effective and helped improve our P.aeruginosa suscepti-bilities.ACKNOWLEDGMENTSWe thank Judee Knight and Alice E.Goldstein for various forms of assistance.This study was supported in part by a grant from Merck&Co.,Inc. Ellie J.C.Goldstein is on the advisory boards of Merck,Bayer, Schering-Plough,GlaxoSmithKline,Optimer,and Theravance,and he is in the Speakers Bureau of Merck,Schering-Plough,GlaxoSmith-Kline,OrthoMcNiel,and Aventis.He received research support from Merck,Schering-Plough,GlaxoSmithKline,Optimer,Theravance, Aventis,OrthoMcNiel,Wyeth,and Pfizer.Shuang Lu is employed by Merck Research Laboratories and may own stock or stock options. Anne R.Meibohm formerly was employed by Merck Research Labo-ratories and may own stock or stock options.REFERENCES1.Bratu,E.P.,ndman,R.Haag,R.Recco,A.Eramo,M.Alam,and J.Quale.2005.Rapid spread of single ribotype of KPC-producing,carbapen-ems-resistant Klebsiella pneumoniae in New York City.Ann.Intern.Med.165:1430–1435.2.Carmeli,Y.,S.Lidji,E.Shsbsti,S.Navon-Venezia,and M.J.Schwaber.2007.The effect of group1versus group2carbapenems on imipenem resistant P.aeruginosa:ecological study,abstr.K-396,p.315.Abstr.47th Intersci.Conf.Antimicrob.Agents Chemother.3.Crank,C.W.,B.Hota,and J.Segreti.2006.Effect of ertapenem utilizationon Pseudomonas aeruginosa susceptibility to imipenem,abstr.285,p.99.Abstr.44th Ann.Meet.Inf.Dis.Soc.Am.4.Dellit,T.H,R.C.Owens,J.E.McGowan,Jr.,D.N.Gerding,R.A.Wein-stein,J.Burke,W.C.Huskins,D.L.Paterson,N.O.Fishman,C.F.Carpenter,P.J.Brennan,M.Billeter,and T.M.Hooton.2007.Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance an-timicrobial stewardship.Clin.Infect.Dis.44:159–177.5.DiNubile,M.J.,I.Friedland,C.Y.Chan,M.R.Motyl,H.Giezek,M.Shivaprakash,R.A.Weinstein,and J.P.Quinn.2005.Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-ab-dominal infections:observations from two randomized comparative clinical trials of ertapenem therapy.Eur.J.Clin.Microbiol.Infect.Dis.24:443–449.6.Fortaleza,C.M.,M.P.Freire,D.de C.Filho,and M.de Caravalho Ramos.2006.Risk factors for the recovery of imipenem-or ceftazidime-resistant Pseudomonas aeruginosa among patients admitted to a teaching hospital in Brazil.Infect.Control Hosp.Epidemiol.27:901–906.7.Gallant,A.R.,and J.J.Goebel.1976.Nonlinear regression with autoregres-sive errors.J.Am.Stat.Assoc.71:961–967.8.Goff,D.A.,and J.E.Mangino.2008.Ertapenem:no effect on aerobicgram-negative susceptibilities to imipenem.J.Infect.57:123–127.9.Hyle,E.P.,A.D.Lipworth,T.E.Zaoutis,I.Nachamkin,W.B.Bilker,andutenbach.2005.Impact of inadequate initial antimicrobial therapy onmortality in infections sue to extended-spectrum B-lactamase-producing En-terobacteriaceae.Ann.Intern.Med.165:1375–1380.10.Jones,R.N.,D.J.Biedenbach,and A.C.Gales.2003.Sustained activity andspectrum of selected extended-spectrum B-lactams(carbapenems and cefepime)against Enterobacter spp.and ESBL-producing Klebsiella spp: report from the SENTRY antimicrobial surveillance program(USA,1997–2000).Int.J.Antimicrob.Agents21:1–7.utenbach,E.,M.G.Weine,I.Nachamkin,W.B.Bilker,A.Sheridan,andN.O.Fishman.2006.Imipenem resistance among Pseudomonas aeruginosa isolates:risk factors for infection and impact of resistance on clinical and economic outcomes.Infect.Control Hosp.Epidemiol.27:893–900.12.Lima,A.L.L.,P.R.Olivera,A.P.Paula,K.Dal-Paz,F.Rossi,and A.V.Zumiotti.2009.The impact of ertapenem use on the susceptibility of Pseudo-monas aeruginosa to imipenem:a hospital case study.Infect.Control Hosp.Epidemiol.30:487–490.13.Livermore,D.M.,S.Mushtaq,and M.Warner.2005.Selectivity of ertap-enem for Pseudomonas aeruginosa mutants cross-resistant to other carbap-enems.J.Antimicrob.Chemother.55:306–311.14.Neuhauser,M.M.,R.A.Weinstein,R.Rydman,L.H.Danziger,G.Karam,and J.P.Quinn.2003.Antibiotic resistance among gram-negative bacilli in US intensive care units.JAMA289:885–888.15.Paterson,D.L.2006.Resistance in gram-negative bacteria:Enterobacteria-ceae.Am.J.Infect.Control34(Suppl.I):S20–S28.16.Patterson,J.E.2006.Multidrug-resistant gram-negative pathogens:multipleapproaches and measures for prevention.Infect.Control Hosp.Epidemiol.27:889–892.17.Pfaller,M.A.,and J.Segreti.2006.Overview of the epidemiological profileand laboratory detection of extended-spectrum␤-lactamases.Clin.Infect.Dis.42(Suppl.4):S153–S163.18.Ramphal,R.,and P.C.Ambrose.2006.Extended-spectrum␤-lactamases andclinical outcomes:current data.Clin.Infect.Dis.42(Suppl.4):S164–S172. 19.Shah,P.,and R.D.Isaacs.2003.Ertapenem,thefirst of a new group ofcarbapenems.J.Antimicrob.Chemother.52:538–542.20.SAS Institute.1999.SAS/ETS8user’s guide.SAS Institute,Cary,NC.21.Shardell,M.,A.D.Harris,S.S.El-Kamary,J.P.Furuno,ler,andE.N.Perencevich.2007.Statistical analysis and application of quasi experimentsto antimicrobial resistance intervention studies.Clin.Infect.Dis.45:901–907.5126GOLDSTEIN ET AL.A NTIMICROB.A GENTS C HEMOTHER.at Yale University on April 21, 2010 Downloaded from。

相关文档
最新文档