等差数列前n项和性质教案

合集下载

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计一、引言等差数列是数学中常见的数列类型之一,它的前n项和公式是数学教学中的重要内容。

本文将针对等差数列前n项和公式的教学设计进行讨论,旨在帮助学生理解和应用该公式。

二、教学目标通过本次教学,学生将能够:1. 掌握等差数列的定义和性质;2. 推导等差数列前n项和公式;3. 熟练应用前n项和公式解决实际问题。

三、教学内容1. 等差数列的定义和性质在开始介绍前n项和公式之前,首先向学生介绍等差数列的定义和性质。

教师可以通过提供具体的数列示例,并引导学生观察数列中的规律,以加深他们对等差数列的理解。

2. 推导等差数列前n项和公式为了引导学生主动参与教学过程,并提高他们对公式的理解程度,教师可以采用探究性学习的方法来推导等差数列前n项和公式。

以下是一种教学策略:(1)教师先给出一个等差数列,例如:2, 5, 8, 11, 14, ...(2)教师引导学生观察数列中的规律,如何由前一项得到后一项。

(3)学生通过观察和思考,可以发现每一项与前一项的差是相同的,即公差(d)。

(4)接下来,教师可以引导学生通过等差数列的通项公式(an =a1 + (n-1)d)来表示数列中的各项。

(5)通过代入相应的值,教师指导学生推导出等差数列前n项和的公式(Sn = (n/2)(a1 + an))。

3. 应用前n项和公式解决实际问题为了提高学生的应用能力,教师可以设计一些实际问题,要求学生运用前n项和公式解决。

例如:(1)小明连续10天每天跑步,第一天跑了2公里,每天比前一天多跑3公里,问小明共跑了多少公里?(2)某商店连续7天的销售额分别是100元、110元、120元、...,每天比前一天增加10元,求7天的总销售额。

四、教学步骤1. 引导学生回顾等差数列的定义和性质;2. 通过探究性学习的方法,引导学生推导等差数列前n项和的公式;3. 提供实际问题,要求学生运用前n项和公式进行计算;4. 指导学生总结等差数列前n项和的公式;5. 练习巩固:提供更多练习题,让学生进行接触和熟练应用。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的公式。

3. 能够运用前n项和公式解决实际问题。

二、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的公式。

3. 等差数列前n项和的性质。

三、教学重点与难点1. 教学重点:等差数列的概念及其性质,等差数列的前n项和的公式。

2. 教学难点:等差数列前n项和的性质的应用。

四、教学方法1. 采用讲授法,讲解等差数列的概念、性质和前n项和的公式。

2. 运用案例分析法,分析等差数列前n项和的性质在实际问题中的应用。

3. 引导学生通过小组讨论,探讨等差数列前n项和的性质。

五、教学过程1. 导入:通过生活中的实例,引导学生思考等差数列的概念,激发学生兴趣。

2. 新课导入:讲解等差数列的定义及其性质,引导学生理解等差数列的特点。

3. 公式讲解:讲解等差数列的前n项和的公式,让学生掌握计算等差数列前n项和的方法。

4. 案例分析:分析等差数列前n项和的性质在实际问题中的应用,让学生学会运用知识解决实际问题。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结:对本节课的内容进行总结,强调等差数列前n项和的性质及其应用。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对等差数列概念和性质的理解程度。

2. 课堂练习:观察学生在练习中的表现,评估其对等差数列前n项和公式的掌握情况。

3. 课后作业:批改课后作业,评估学生对课堂所学知识的巩固程度。

七、教学反思1. 反思教学内容:检查教学内容是否全面,重点是否突出,难点是否讲清楚。

2. 反思教学方法:评估所采用的教学方法是否适合学生,是否有效激发学生的兴趣和参与度。

3. 反思教学效果:根据学生反馈和作业情况,评估教学目标的达成程度。

八、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列前n项和公式在生活中的运用,如计算工资、奖金等。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案第一章:等差数列的概念1.1 等差数列的定义引导学生了解等差数列的定义,即从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

通过示例让学生理解并掌握等差数列的定义。

1.2 等差数列的性质引导学生学习等差数列的性质,如等差数列的通项公式、相邻项的关系等。

通过示例让学生应用等差数列的性质解决问题。

第二章:等差数列的前n项和2.1 等差数列前n项和的定义引导学生了解等差数列前n项和的定义,即前n项的和。

通过示例让学生理解并掌握等差数列前n项和的定义。

2.2 等差数列前n项和的公式引导学生学习等差数列前n项和的公式,即S_n = n/2 (a_1 + a_n),其中S_n 表示前n项的和,a_1表示首项,a_n表示第n项。

通过示例让学生应用等差数列前n项和的公式解决问题。

第三章:等差数列前n项和的性质3.1 等差数列前n项和的性质引导学生学习等差数列前n项和的性质,如前n项和与项数的关系、前n项和与首项和末项的关系等。

通过示例让学生应用等差数列前n项和的性质解决问题。

3.2 等差数列前n项和的计算方法引导学生学习等差数列前n项和的计算方法,如高斯求和法、分组求和法等。

通过示例让学生应用等差数列前n项和的计算方法解决问题。

第四章:等差数列前n项和的应用4.1 等差数列前n项和在实际问题中的应用引导学生了解等差数列前n项和在实际问题中的应用,如计算工资、统计数据等。

通过示例让学生应用等差数列前n项和解决实际问题。

4.2 等差数列前n项和在数学竞赛中的应用引导学生了解等差数列前n项和在数学竞赛中的应用,如解决数列问题、证明数学定理等。

通过示例让学生应用等差数列前n项和解决数学竞赛问题。

第五章:等差数列前n项和的拓展5.1 等差数列前n项和的拓展知识引导学生学习等差数列前n项和的拓展知识,如等差数列的求和公式、等差数列的极限等。

通过示例让学生了解等差数列前n项和的拓展知识。

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。

能够熟练运用公式解决与等差数列前 n 项和相关的问题。

2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。

让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。

公式的熟练运用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。

提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。

方法一:依次相加。

方法二:倒序相加。

设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。

\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。

等差数列前n项和性质及应用教案

等差数列前n项和性质及应用教案

等差数列前n项和性质及应用教案一、知识梳理等差数列是指数列中相邻两项之差保持不变的数列。

设等差数列的首项为a1,公差为d,则其第n项表示为an = a1 + (n-1)d。

1. 等差数列的前n项和公式等差数列的前n项和公式即为等差数列中前n项之和。

设等差数列的首项为a1,公差为d,前n项和表示为Sn,则:Sn = (a1 + an) ×n / 2 = (2a1 + (n-1)d) ×n / 2。

2. 等差数列前n项和的求解步骤设等差数列的首项为a1,公差为d,前n项和表示为Sn,则求Sn的步骤如下:(1)求出an的值:an = a1 + (n-1)d。

(2)将a1、an代入Sn的公式,得到Sn = (a1 + an) ×n / 2。

(3)化简Sn的公式,得到Sn = (2a1 + (n-1)d) ×n / 2。

(4)根据公式计算Sn的值。

二、应用举例等差数列的前n项和性质及应用在数学问题中有着广泛的应用,下面以几个具体的例子来说明。

例1:小明在一个等差数列中的第5项为11,公差为3,求该等差数列的前10项和。

解:设该等差数列的首项为a1,公差为d,则a5 = a1 + 4d = 11。

由此可得到方程组:a1 + 4d = 11,a1 + 9d = ?(要求解的第10项)。

解方程组得到a1 = -9,d = 5。

代入等差数列前10项和的公式可得:S10 = (2a1 + 9d) ×10 / 2 = -18 + 225 = 207。

例2:一个等差数列的首项为3,公差为4,它的前n项和等于560,求这个等差数列的第n项。

解:设该等差数列的第n项为an,则根据等差数列前n项和公式可得:Sn = (2a1 + (n-1)d) ×n / 2 = 560。

代入a1 = 3,d = 4,并整理方程,得到:2 ×3n + 4n^2 - 4n - 1120 = 0。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算公式。

3. 能够运用等差数列的前n项和公式解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

三、教学难点1. 等差数列的前n项和的公式的推导过程。

2. 运用等差数列的前n项和公式解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。

2. 通过实例分析,让学生掌握等差数列的前n项和的应用。

3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。

五、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

3. 等差数列的前n项和的性质。

4. 运用等差数列的前n项和公式解决实际问题。

第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标1. 让学生理解等差数列的概念,掌握等差数列的通项公式。

2. 让学生掌握等差数列的前n项和公式,并能灵活运用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 等差数列的概念:定义、性质。

2. 等差数列的通项公式:ar + (a1 a)d。

3. 等差数列的前n项和公式:S_n = n/2 (a1 + a_n) 或S_n = n/2 (2a1 + (n 1)d)。

三、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式。

2. 教学难点:等差数列前n项和公式的推导及灵活运用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等差数列的性质。

2. 使用数形结合法,帮助学生直观理解等差数列的前n项和公式。

3. 利用实例分析,让学生学会解决实际问题。

五、教学过程1. 引入:通过生活中的实例,如连续的自然数、等间隔的时间等,引导学生思考等差数列的特点。

2. 讲解:讲解等差数列的定义、性质,引导学生推导等差数列的通项公式。

3. 探讨:分组讨论等差数列的前n项和公式,引导学生运用归纳法进行推导。

4. 应用:通过例题,让学生学会运用等差数列的前n项和公式解决实际问题。

教案编辑专员:[[您的名字]]六、教学练习1. 让学生通过练习题加深对等差数列概念、通项公式和前n项和公式的理解。

2. 培养学生运用所学知识解决实际问题的能力。

练习题:(1)判断题:等差数列的任意两项之和等于这两项中间项的两倍。

(对/错)(2)填空题:已知等差数列的首项为3,公差为2,求第10项的值。

(3)计算题:已知等差数列的首项为2,公差为3,求前5项的和。

七、拓展与应用1. 让学生了解等差数列在实际生活中的应用,如等差数列在统计、物理、经济学等领域中的应用。

2. 培养学生将所学知识运用到实际问题中的能力。

案例分析:分析现实生活中等差数列的应用实例,如连续奖金发放、等额本息还款等,引导学生运用等差数列的知识解决实际问题。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案教案标题:等差数列的前n项和教案教案目标:1. 学生能够理解等差数列的概念,并能够识别等差数列中的公差和首项。

2. 学生能够计算等差数列的前n项和。

3. 学生能够运用等差数列的前n项和公式解决实际问题。

教学准备:1. 教师准备白板、黑板、彩色粉笔或白板笔。

2. 教师准备等差数列的练习题和解答。

3. 学生准备纸和笔。

教学步骤:引入:1. 教师通过提问的方式引导学生回顾等差数列的概念。

例如:“你们还记得等差数列是什么吗?可以举个例子吗?”2. 学生回答后,教师对等差数列的概念进行解释和补充,确保学生对等差数列有清晰的理解。

解释公差和首项:1. 教师解释公差的概念,并在黑板上写下公差的符号(一般用d表示)。

2. 教师解释首项的概念,并在黑板上写下首项的符号(一般用a₁表示)。

计算等差数列的前n项和:1. 教师介绍等差数列的前n项和的公式:Sn = n/2 * (2a₁ + (n-1)d)。

2. 教师通过示例演示如何使用公式计算等差数列的前n项和。

例如:“现在我们来计算等差数列1, 3, 5, 7, 9的前4项和。

”3. 学生跟随教师的示例,计算其他等差数列的前n项和。

应用等差数列的前n项和:1. 教师提供一些实际问题,要求学生运用等差数列的前n项和公式解决。

例如:“小明每天存储一定数量的零花钱,第1天存储1元,第2天存储3元,第3天存储5元,以此类推。

请问,小明存储了前10天的零花钱总额是多少?”2. 学生独立解决问题,并将答案写在纸上。

3. 学生互相交流并比较答案,教师随机选几位学生回答问题。

总结:1. 教师带领学生回顾本节课所学内容,强调等差数列的概念、公差和首项的重要性。

2. 教师总结等差数列的前n项和的计算公式,并鼓励学生多做练习,加深理解和熟练掌握。

拓展练习:1. 教师提供更多的等差数列练习题和解答,让学生进行自主练习。

2. 学生可以将等差数列的前n项和应用到其他实际问题中,进一步加深对该概念的理解和应用。

等差数列前n项和公式教案

等差数列前n项和公式教案

等差数列前n项和公式教案等差数列前n项和的公式教案A、知识目标: 掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教学过程复习提问:1. 等差数列的定义2. 等差数列的通项公式3. 等差中项4. 由等差中项得到的等差数列的性质二、创设情景,导入新课。

先给学生讲一下高斯的故事,1+2+3+…+100=?这是200多年前高斯的老师给他们出的题目,高斯是怎样做出来的呢?他用了什么高明的方法.(学生说出做法)得到1+100=2+99=3+98=......=50+51=101,有50个101,所以得1+2+3+......+100=50×101=5050。

他用了等差数列的什么性质?:数列{a}是等差数列,若m+n=p+q,则am+an=a+a. (学生回答) npq教授新课(尝试推导)1 1+2+3+…+n-1+nn+n-1+n-2+…+2+1(n+1)+ (n+1)+(n+1)+ …+ (n+1)+ (n+1)S,a,(a,d),(a,2d),?,[a,(n,1)d]n1111S,a,(a,d),(a,2d),?,[a,(n,1)d]nnnnn,n(a,a)2Sn 1n)n(a,a1n1)nn(,S,nSnad,,2n12代入等差数列的通项公式an=a1+(n-1)d得到(可让学生推导)1)nn(,Snad,,n12学生思考:比较这两个公式,能说说它们分别从哪些角度反映了等差数列的性质.(1)、等差数列的任意第k项与倒数第k项等于首末两项的和等差数列的前n项和与他的首项、公差之间的关系,而且是关于n的“二次函数”。

《等差数列的前n项和》教学设计

《等差数列的前n项和》教学设计

《等差数列的前n项和》教学设计【篇一】教学准备教学目标掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学重难点掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学过程【示范举例】基准1:数列就是首项为23,公差为整数,且前6项为正,从第7项开始为负的等差数列(1)谋此数列的公差d;(2)设前n项和为sn,求sn的值;(3)当sn为正数时,谋n的值.【篇二】教学准备工作教学目标数列议和的综合应用领域教学重难点数列议和的综合应用领域教学过程典例分析3.数列{an}的前n项和sn=n2-7n-8,(1)谋{an}的通项公式(2)求{|an|}的前n项和tn4.等差数列{an}的公差为,s=,则a1+a3+a5+…+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}就是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn,谋数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为sn,且s10=s15,求当n为何值时,sn有值,并算出它的值.已知数列{an},an∈n,sn=(an+2)2(1)澄清{an}就是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.未知f(x)=x2-2(n+1)x+n2+5n-7(n∈n)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点至x轴的距离形成数列{dn},谋数列{dn}的前n项和sn.11.购买一件售价为元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12.某商品在最近天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系就是g(t)=-t/3+/3(0≤t≤)谋这种商品的日销售额的值注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值。

《等差数列前n项和》教案

《等差数列前n项和》教案

《等差数列前n项和》教案一、教学目标1. 让学生理解等差数列前n项和的定义及公式。

2. 培养学生运用等差数列前n项和公式解决实际问题的能力。

3. 引导学生通过探究等差数列前n项和的性质,提高其数学思维能力。

二、教学内容1. 等差数列前n项和的定义。

2. 等差数列前n项和的公式。

3. 等差数列前n项和的性质。

三、教学重点与难点1. 重点:等差数列前n项和的定义、公式及性质。

2. 难点:等差数列前n项和的公式的推导及应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的定义及公式。

2. 利用案例分析法,让学生通过解决实际问题,掌握等差数列前n项和的性质。

3. 采用小组讨论法,培养学生的合作意识及数学交流能力。

五、教学过程1. 导入:回顾等差数列的基本概念,引导学生思考等差数列前n项和的定义。

2. 新课:讲解等差数列前n项和的定义,推导出等差数列前n项和的公式。

3. 案例分析:运用等差数列前n项和公式解决实际问题,引导学生发现等差数列前n项和的性质。

4. 课堂练习:布置练习题,让学生巩固等差数列前n项和的公式及性质。

5. 总结:对本节课的内容进行总结,强调等差数列前n项和的重要性质。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂问答:通过提问等方式了解学生对等差数列前n项和定义及公式的理解程度。

2. 练习题:分析学生完成练习题的情况,评估学生对等差数列前n项和的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解学生对等差数列前n项和性质的理解。

七、教学拓展1. 等差数列前n项和的公式在实际问题中的应用,如计算工资、奖金等。

2. 引导学生探究等差数列前n项和的公式的推导过程,提高学生的数学思维能力。

八、教学反思1. 反思教学方法的有效性,根据学生的反馈调整教学策略。

2. 分析学生的学习情况,针对性地进行辅导,提高学生的学习效果。

九、课后作业1. 巩固等差数列前n项和的公式及性质。

等差数列的前n项和公式

等差数列的前n项和公式

《等差数列的前n项和公式》教学设计一、教学内容分析《等差数列的前n项和公式》是高等教育出版社数学基础模块下册第六章的重要内容之一,本节课主要研究如何应用倒序相加法推导等差数列的前n项和公式以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法。

它反映了从特殊到一般的数学思维形式,这对发展学生的思维能力、培养学生的创新意识等方面有着重要的作用。

二、学情分析任教的班级是一年级物流专业。

1、知识基础:在本节课之前学生已经掌握了等差数列的通项公式,理解等差数列的基本性质,小学时对高斯算法有所了解,这三者形成了学生思维的“最近发展区”,为新课学习提供了基础;2、认知水平与能力:学生初步具有一定的逻辑思维能力,但思维不够深刻、片面、不严谨,对问题解决的一般性思维过程认识模糊.3、班级学生特点:多数学生能积极主动参与数学学习,动手操作能力较强。

但缺乏自信,同时渴望表现,渴望肯定。

三、设计思想建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的生成与发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从《张丘建算经》中等差数列的求和问题及泰姬陵陵寝三角形图案中的圆宝石谈起,结合小学高斯的算法,探究这种方法如何推广到一般等差数列的前n项和的求法.以问题驱动任务完成为主线,通过设计一些从简单到复杂、从特殊到一般、从具体到抽象的问题,层层铺垫,步步深入,组织和启发学生通过观察、类比、联想、猜测、实践操作获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.四、教学目标1、知识目标:掌握等差数列的前n项和公式,并能用公式解决简单的问题;2、能力目标:通过公式的探索、发现,体验从特殊到一般的研究方法,培养学生观察猜想、类比分析、归纳总结和逻辑推理的能力,渗透方程(组)思想.3、情感目标:通过生动有趣的数学史故事,激发学生求知的欲望和探究的热情,渗透数学文化,增强学生爱国主义情感。

等差数列前n项和优秀教案

等差数列前n项和优秀教案

等差数列前n项和优秀教案一、教学目标:1. 知识与技能:使学生理解等差数列前n项和的定义,掌握等差数列前n项和的计算公式,能够运用等差数列前n项和的知识解决实际问题。

2. 过程与方法:通过探究等差数列前n项和的规律,培养学生逻辑思维能力和归纳总结能力。

3. 情感态度价值观:激发学生对数学知识的兴趣,培养学生的团队合作精神。

二、教学重点与难点:重点:等差数列前n项和的定义,计算公式。

难点:等差数列前n项和的灵活运用。

三、教学过程:1. 导入新课:回顾等差数列的基本概念,引导学生思考等差数列前n 项和的意义。

2. 探究等差数列前n项和的规律:引导学生分组讨论,总结等差数列前n项和的计算公式。

3. 讲解等差数列前n项和的计算公式:详细讲解等差数列前n项和的计算公式,并通过例题演示应用过程。

4. 练习与拓展:布置适量练习题,巩固等差数列前n项和的计算方法,并引导学生运用所学知识解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列前n项和的规律。

2. 利用多媒体辅助教学,生动展示等差数列前n项和的应用过程。

3. 采用分组讨论法,培养学生的团队合作精神和沟通能力。

4. 运用实例分析法,使学生更好地理解等差数列前n项和的实际意义。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习完成情况:检查学生练习题的完成质量,评估学生对等差数列前n项和的掌握程度。

3. 小组讨论:评价学生在分组讨论中的表现,包括逻辑思维、沟通能力等。

4. 课后反馈:收集学生对课堂内容的反馈意见,为后续教学提供改进方向。

六、教学内容与课时安排:第六章:等差数列前n项和的性质与应用课时安排:2课时本章主要内容有:1. 等差数列前n项和的性质;2. 等差数列前n项和在实际问题中的应用。

七、教学内容与课时安排:第七章:等差数列前n项和的计算公式推导课时安排:2课时本章主要内容有:1. 等差数列前n项和的计算公式的推导过程;2. 等差数列前n项和的计算公式的应用。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案一、教学目标1. 知识与技能:让学生掌握等差数列前n项和的定义、公式及性质,能够运用等差数列前n项和公式解决实际问题。

2. 过程与方法:通过探究等差数列前n项和的规律,培养学生的逻辑思维能力和归纳总结能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

二、教学重点与难点1. 教学重点:等差数列前n项和的公式及性质。

2. 教学难点:等差数列前n项和的公式的推导和应用。

三、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的规律。

2. 利用多媒体辅助教学,直观展示等差数列前n项和的过程。

3. 采用小组讨论法,培养学生的团队合作精神。

四、教学过程1. 导入新课:通过回顾等差数列的基本概念,引导学生思考等差数列前n项和的意义。

2. 自主探究:让学生利用已知等差数列的性质,尝试推导等差数列前n项和的公式。

3. 小组讨论:学生分小组讨论等差数列前n项和的公式,总结出公式的适用范围和条件。

4. 讲解与示范:教师对等差数列前n项和的公式进行讲解,并通过例题展示公式的应用。

5. 练习与反馈:学生独立完成练习题,教师及时给予反馈,巩固所学知识。

五、课后作业2. 请举一个实际问题,运用等差数列前n项和公式进行解决。

六、教学拓展1. 引导学生思考等差数列前n项和的公式在实际生活中的应用,如计算员工工资、奖金等。

2. 探讨等差数列前n项和公式与其他数列前n项和公式的联系与区别。

七、课堂小结1. 回顾本节课所学内容,让学生总结等差数列前n项和的公式及其应用。

2. 强调等差数列前n项和公式的条件限制,提醒学生在实际应用中注意。

八、复习巩固1. 安排一次课堂测试,检测学生对等差数列前n项和的掌握程度。

2. 针对测试结果,针对性地进行讲解和辅导,帮助学生巩固所学知识。

九、教学反思1. 教师对本节课的教学过程进行反思,总结教学方法的优缺点。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案第一章:等差数列的概念1.1 引入等差数列的概念利用日常生活中的实例引入等差数列的概念,如连续的自然数、等差增加的工资等。

引导学生思考等差数列的特点和性质。

1.2 等差数列的定义给出等差数列的定义:一个数列从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做这个数列的公差,这个数列叫做等差数列。

解释等差数列的公差的概念,并引导学生理解公差的意义。

1.3 等差数列的表示方法介绍等差数列的通项公式:an = a1 + (n-1)d解释等差数列的首项、末项、项数等概念。

第二章:等差数列的性质2.1 等差数列的性质引导学生探究等差数列的性质,如相邻两项的差是常数、等差数列的任意一项都可以用首项和公差表示等。

2.2 等差数列的求和公式引导学生推导等差数列的前n项和公式:Sn = n/2 (a1 + an)解释等差数列的前n项和的意义。

第三章:等差数列的求和公式的应用3.1 求等差数列的前n项和引导学生运用等差数列的求和公式求解等差数列的前n项和。

举例讲解求和公式的应用。

3.2 等差数列的项数与前n项和的关系引导学生探究等差数列的项数与前n项和的关系,如项数增加时前n项和的变化趋势等。

第四章:等差数列前n项和的性质4.1 等差数列前n项和的性质引导学生探究等差数列前n项和的性质,如前n项和随着项数的增加而增加、前n项和的公式中的系数等。

4.2 等差数列前n项和的运用引导学生运用等差数列前n项和的性质解决实际问题,如计算等差数列的前n 项和等。

第五章:等差数列前n项和的拓展5.1 等差数列前n项和的拓展引导学生思考等差数列前n项和的拓展问题,如等差数列的前n项和的最大值、最小值等。

5.2 等差数列前n项和的应用实例举例讲解等差数列前n项和的应用实例,如计算等差数列的前n项和的最大值、最小值等。

第六章:等差数列前n项和的图解法6.1 等差数列前n项和的图解法引入利用图形直观展示等差数列前n项和的变化规律。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算方法。

3. 能够运用等差数列的前n项和解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算方法。

三、教学难点1. 等差数列的性质的理解与应用。

2. 等差数列的前n项和的计算方法的推导与理解。

四、教学准备1. 教师准备PPT或黑板,展示等差数列的定义、性质和前n项和的计算方法。

2. 教师准备一些实际问题,用于引导学生运用等差数列的前n项和解决实际问题。

五、教学过程1. 引入:教师通过PPT或黑板,展示一些数列的例子,引导学生思考数列的规律。

2. 讲解:教师讲解等差数列的定义、性质和前n项和的计算方法,通过示例进行解释和说明。

3. 练习:教师给出一些等差数列的问题,让学生独立解决,并给出答案和解析。

4. 应用:教师给出一些实际问题,引导学生运用等差数列的前n项和解决实际问题,并提供解答和解析。

5. 总结:教师对本节课的内容进行总结,强调等差数列的概念、性质和前n项和的计算方法的重要性和应用价值。

六、教学拓展1. 引导学生思考等差数列的前n项和的性质,如奇数项和偶数项的和是否相等。

2. 引导学生探索等差数列的前n项和的公式推导过程。

七、课堂小结1. 回顾本节课学习的等差数列的概念、性质和前n项和的计算方法。

2. 强调等差数列的前n项和在实际问题中的应用价值。

八、作业布置1. 完成教材或练习册上的相关习题,巩固等差数列的概念、性质和前n项和的计算方法。

2. 选取一道实际问题,运用等差数列的前n项和解决,并将解题过程和答案写下来。

九、课后反思1. 教师对本节课的教学效果进行反思,观察学生对等差数列的概念、性质和前n 项和的计算方法的掌握程度。

2. 针对学生的掌握情况,调整教学方法和解题策略,为下一节课的教学做好准备。

十、教学评价1. 学生完成作业的情况,判断学生对等差数列的概念、性质和前n项和的计算方法的掌握程度。

等差数列前n项和公式教案

等差数列前n项和公式教案

等差数列前n项和公式教案
主题:等差数列前n项和公式教案
1. 教学目标:
- 理解等差数列的概念和性质。

- 掌握求等差数列前n项和的公式。

- 能够运用公式解决实际问题。

2. 教学准备:
- 教师准备黑板、粉笔。

- 学生准备笔和纸。

3. 教学内容和步骤:
步骤一:引入概念
- 教师向学生介绍等差数列的概念,即连续两项之间的差值相等。

- 示例:2,5,8,11,14,...
步骤二:求等差数列前n项和的公式
- 提出问题:如何求等差数列前n项和?
- 引导学生思考,当n为几时,前n项和容易求得。

- 让学生观察并找规律,求出前n项和公式的一般形式。

- 讲解:前n项和公式为Sn = n(a1 + an) / 2,其中Sn表示前n项和,a1表示首项,an表示末项。

- 示例:对于等差数列2,5,8,11,14,当n = 4时,前n 项和为(4(2 + 14)) / 2 = 32。

步骤三:应用解决实际问题
- 找一些实际问题,让学生运用前n项和公式解决。

例如:小明连续7天每天花费5元,求这7天的总花费。

- 讲解解题步骤,并引导学生进行解答。

4. 总结与拓展:
- 教师对本节课的要点进行总结,并强调等差数列前n项和公式的重要性和应用。

- 课后布置拓展练习,巩固所学知识。

5. 教学反思:
此教案标题与要求不同,已修改。

等差数列的前n项和的性质教案

等差数列的前n项和的性质教案

等差数列的前n项和的性质教案教案标题:等差数列的前n项和的性质教案目标:1. 理解等差数列的概念和性质;2. 掌握等差数列前n项和的计算方法;3. 能够运用等差数列前n项和的性质解决实际问题。

教案步骤:引入(5分钟):1. 引导学生回顾等差数列的定义,并提醒学生等差数列的特点。

2. 提问:你们知道如何求等差数列的前n项和吗?请思考一下。

探究(15分钟):1. 将学生分成小组,每组给出一个等差数列,要求计算该等差数列的前n项和。

2. 学生在小组内讨论解决方法,并展示出来。

3. 教师引导学生总结归纳求等差数列前n项和的公式。

讲解(15分钟):1. 教师通过讲解,介绍等差数列前n项和的公式:Sn = (a1 + an) * n / 2。

- Sn表示前n项和;- a1表示等差数列的首项;- an表示等差数列的末项;- n表示项数。

2. 教师通过示例演示如何利用公式计算等差数列的前n项和。

练习(15分钟):1. 学生个人完成一些计算等差数列前n项和的练习题。

2. 学生互相交流答案,并对错题进行讨论和解释。

拓展(10分钟):1. 引导学生思考:如果只知道等差数列的首项和公差,如何求前n项和?2. 教师讲解等差数列前n项和的另一种计算方法:Sn = n * (2a1 + (n-1)d) / 2。

- Sn表示前n项和;- a1表示等差数列的首项;- d表示等差数列的公差;- n表示项数。

3. 学生通过练习题巩固新学的计算方法。

总结(5分钟):1. 教师和学生一起总结等差数列前n项和的计算方法和性质。

2. 提醒学生在实际问题中如何应用等差数列前n项和的性质。

作业:1. 布置一些练习题,要求学生计算等差数列的前n项和。

2. 鼓励学生思考并解决实际问题,运用等差数列前n项和的性质。

教案评估:1. 教师观察学生在小组讨论中的参与度和解决问题的能力;2. 学生完成的练习题和解决实际问题的情况;3. 学生对等差数列前n项和的计算方法和性质的理解程度。

等差数列的前n项和公式教案

等差数列的前n项和公式教案

等差数列的前n项和公式(教案)一.教学目标:1.知识与技能目标:掌握等差数列前n项和公式,并且能能够灵活运用其求和。

2.过程与方法目标:让学生经历公式的推导过程,体会数形结合的思想,体验从特特殊到一般的研究方法。

3.情感态度与价值观目标:使学生获得发现的成就感,优化思维品质,提高代数的推导能力。

二.教学重难点:1.重点:等差数列前n项和公式的推导,掌握及灵活运用。

2.难点:诱导学生用“倒序相加法”求等差数列前n项和。

三.教法与学法分析:1.教法分析:采用“诱导启发,自主探究式”学法为主,讲练结合为辅的教学方法。

2.学法分析:采用“自主探究式学习法”和“主动学习法”。

四.课时安排:1个课时五.教学过程导入:我们已经学过等差数列的定义an+1-an=d(n属于正整数),等差数列的通项公式an=a1+(n-1)d,等差数列的等差中项2an=an-1+an+1,若m+n=p+q,则am+an=ap+aq.我们应该怎样求a1+a2+……..+an,其中{an}为等差数列,记sn=a1+a2+…….an我们知道200多年前高斯的老师给他们出了一道目,让他们计算1+2+……+100=?当时10岁的高斯花了大概10s钟的时间就算出来了。

高斯是怎样做出来的呢?他使用了什么高明的方法?1+2+……..+100=(1+100)+(2+99)+……(50+51)=50*101,所以1+2+….+100=5050,这就是著名的高斯算法,到后来,人们就从高斯算法中得到启发,求出了等差数列1+2+…….+n的前n项和的算法(二)探究新知,发现规律从高斯算法中,人们怎样求出等差数列1,2,3,…….,,n的前n项和的首先 sn=1+ 2+ ….+n (1)Sn=n+ (n-1)+……+ 1 (2)2sn=(n+1)+(n+1)…….+(n+1) (n个(n+1))所以sn=n*(n+1)/2 即为sn的前n项和我们把上面的方法称为“倒序相加法”,也就是说高斯当时用的就是“倒序相加法”算出了1+2+…….+100的和然而这个方法可以推广到等差数列的前n项和(1)定义:一般说来,我们把a1+a2+……+an叫做等差数列的前n 项和,用Sn表示即Sn=a1+a2+…..+an从高斯算法中得到的启示,对于一般的等差数列我们可以用两种方法来表示,其中a1是首项,d是公差1.Sn=a1+ a2+…..+ an= a1+(a1+d)+......+a1+[a1+(n-1)d]Sn=an+ an-1+......+ a1= an+ [a1-(n-1)d]+......+a1两式相加得2 Sn=(a1+an)+(a1+an)+......+(a1+an) 有n个(a1+an)所以Sn=n(a1+an)/22. Sn=a1+ a2+…..+ an= a1+(a1+d)+......+a1+[a1+(n-1)d]=na1+[1+2+.....+(n-1)d]=na1+n(n-1)d/2然而1和2是可以相互转化将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到Sn=na1+n(n-1)d/2这两个方法的区别:第一个公式反映了等差数列的首项与末项之和跟第k项与倒数第k项之和是相等的;第二个公式反映了等差数列的前n项和公式与它首项与公差d之间的关系,而且是关于n的“二次函数”,可以与二次函数作比较。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案一、教学目标知识与技能:1. 理解等差数列的定义及其性质;2. 掌握等差数列前n项和的公式;3. 会运用等差数列前n项和公式解决实际问题。

过程与方法:1. 通过探究等差数列的性质,引导学生发现等差数列前n项和的规律;2. 利用公式法、图象法、列举法等多种方法求解等差数列前n项和;3. 培养学生的数学思维能力和解决问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和自信心;2. 培养学生勇于探索、积极思考的精神;3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 等差数列前n项和的公式;2. 运用等差数列前n项和公式解决实际问题。

难点:1. 等差数列前n项和的公式的推导;2. 灵活运用等差数列前n项和公式解决复杂问题。

三、教学准备教师准备:1. 等差数列的相关知识;2. 等差数列前n项和的公式;3. 教学案例和练习题。

学生准备:1. 掌握等差数列的基本知识;2. 具备一定的数学思维能力;3. 准备笔记本,做好笔记。

四、教学过程1. 导入:通过复习等差数列的基本知识,引导学生回忆等差数列的性质,为新课的学习做好铺垫。

2. 探究等差数列前n项和的公式:引导学生发现等差数列前n项和的规律,引导学生利用已知的等差数列性质推导出前n项和的公式。

3. 讲解等差数列前n项和的公式:讲解公式的含义、推导过程及其应用,让学生理解并掌握公式的运用。

4. 运用公式法、图象法、列举法等多种方法求解等差数列前n项和:通过具体案例,让学生学会运用不同的方法求解等差数列前n项和,培养学生的数学思维能力和解决问题的能力。

5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。

五、课后反思教师在课后要对教案进行反思,分析教学过程中的优点与不足,针对性地调整教学方法,以提高教学效果。

关注学生的学习情况,了解学生在学习等差数列前n项和过程中遇到的问题,及时给予解答和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

———————教学教案————————
班级37 班高二年级科目:数学授课教师:蔡丽梅
教案内容
课次 2 授课时间2015 年9 月21 日星期一
课题等差数列前n项和的性质
侯课要求拿出课本,练习本,笔记本,双色笔。

坐姿端正,注意力集中。

学习目标1.会求等差数列前n项和的最值。

2.会利用性质解答有关问题。

重点:等差数列前n项和的性质及应用;求等差数列前n项和的最值。

难点:等差数列前n项和性质的理解。

讲练结合的教学过程及要点一、辅助环节
导入语:前面咱们学习了等差数列的前n项和公式,知道有两个公式,它们各自的特点不一样,咱们做题时要根据特点准确选择。

那么它还有没有其它的重要性质呢?今天咱们一起来学习等差数列前n项和的性质。

板题:等差数列前n项和的性质(出示学习目标)
自学指导:
1.认真看课本P45例4完成自学检测1,2。

2.独立完成,注意步骤的规范。

3.时间8分钟。

二、先学环节:
生:认真看书,做自学检测
师:了解学生学习进度,发现学生做题中出现的问题。

三、后教环节
师:“时间到,同桌互换试卷,根据评分标准打分。

算出总分,时间2
分钟。

”出示答案。

生:互换试卷后对照答案打分。

算出总分。

师:统计满分、优秀、及格人数。

“换回试卷,自查自纠。

不会的小声问同桌,时间2分钟。


生:自查自纠,或小声问同桌。

师:“时间到,还有不懂的请举手?”预案:个别学生出错的题,指定好学生课下教会他。

若是共性问题,引导学生讨论后得出答案。

把规律总结好,让学生强化理解记忆。

四 、课堂小结
1 知识总结
232,,k k k k k S S S S S --成等差数列.
2对应本节目标找差距
3落实一清三习。

课堂
小结 等差数列的前n 项和的性质 1232,,k k k k k S S S S S --成等差数列.
作业分层
见活页作业。

相关文档
最新文档