2017届(理)人教版A版 正弦定理和余弦定理 检测卷

合集下载

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。

必修5余弦定理同步测试带答案新人教A版

必修5余弦定理同步测试带答案新人教A版

适用精选文件资料分享必修5 余弦定理同步测试(带答案新人教 A 版)必修 5 余弦定理同步测试(带答案新人教 A 版)课时目标 1 .娴熟掌握正弦定理、余弦定理; 2 .会用正、余弦定理解三角形的有关问题. 1 .正弦定理及其变形 (1)asin A =bsin B =csin C =2R. (2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C. (3)sin A=a2R ,sin B=b2R,sin C =c2R. (4)sin A ∶sin B ∶sin C =a∶b∶c. 2 .余弦定理及其推论 (1)a2 =b2+c2-2bccos_A. (2)cos A =b2+c2-a22bc. (3)在△ABC中,c2 =a2+b2? C为直角;c2>a2+b2? C为钝角;c2<a2 +b2? C为锐角. 3 .在△ ABC中,边 a、b、c 所对的角分别为A、B、C,则有: (1)A +B+C=π,A+B2=π2-C2. (2)sin(A +B)=sin_C ,cos(A +B)=- cos_C ,tan(A +B)=- tan_C. (3)sin A+B2=cos C2,cos A +B2=sin C2. 一、选择题1.已知 a、b、c 为△ ABC的三边长,若满足 (a +b-c)(a +b+c) =ab,则∠C的大小为 () A.60° B.90° C.120° D.150°答案C 分析∵(a+b-c)(a+b+c)=ab,∴a2+b2-c2=-ab,即 a2+b2-c22ab=- 12,∴cos C =- 12,∴∠ C=120 °. 2 .在△ABC中,若 2cos Bsin A=sin C,则△ ABC的形状必定是 () A.等腰直角三角形 B .直角三角形 C.等腰三角形 D.等边三角形答案C 分析∵2cos Bsin A = sin C =sin(A +B),∴sin Acos B -cos Asin B = 0 ,即 sin(A -B)=0,∴ A= B. 3. 在△ ABC中,已知 sin A∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A.30°B.60° C.90° D.120°答案 B 分析∵a∶b∶c= sin A∶ sinB ∶sinC =3∶5∶7,没关系设 a=3,b=5,c=7,C为最大内角,则 cos C=32+52-722×3×5=- 12. ∴C=120°. ∴最小外角为60°. 4 .△ ABC的三边分别为 a,b,c 且满足 b2=ac,2b =a+c,则此三角形是 ( ) A .等腰三角形 B .直角三角形 C.等腰直角三角形 D.等边三角形答案 D 分析∵2b=a+c,∴4b2= (a+c)2 ,即 (a -c)2 =0. ∴a=c. ∴2b= a+c=2a. ∴b= a,即 a=b=c. 5 .在△ ABC中,角 A,B,C所对的边长分别为a,b,c,若 C=120°, c =2a,则 ( ) A .a>b B.a<b C.a=b D.a 与 b 的大小关系不可以确立答案 A 分析在△ ABC中,由余弦定理得, c2 =a2+b2-2abcos 120 °= a2+b2+ab. ∵c= 2a,∴ 2a2=a2+b2+ab. ∴a2- b2=ab>0,∴ a2>b2,∴ a>b. 6 .假如将直角三角形的三边增添相同的长度,则新三角形的形状是( ) A.锐角三角形B .直角三角形C.钝角三角形D.由增添的长度确立答案A 分析设直角三角形三边长为 a,b,c,且 a2+b2=c2,则(a +x)2 +(b +x)2-(c +x)2 =a2+b2+2x2+2(a +b)x -c2-2cx-x2=2(a +b-c)x+x2>0,∴c+x 所对的最大角变成锐角.二、填空题 7 .在△ ABC 中,边 a,b 的长是方程 x2-5x+ 2=0 的两个根, C=60°,则边 c=________. 答案 19 分析由题意: a+b=5,ab=2. 由余弦定理得:c2=a2+b2-2abcos C =a2+b2-ab=(a +b)2 -3ab=52-3×2= 19,∴c= 19. 8 .设 2a+ 1,a,2a - 1 为钝角三角形的三边,那么 a 的取值范围是 ________.答案 2<a<8 分析∵2a- 1>0,∴a>12,最大边为 2a+1. ∵三角形为钝角三角形,∴ a2+ (2a -1)2<(2a +1)2 ,化简得: 0<a<8.又∵ a+ 2a-1>2a+1,∴a>2,∴2<a<8. 9 .已知△ ABC的面积为 23,BC=5,A=60°,则△ ABC的周长是 ________.答案 12 分析 S△ABC=12AB?AC?sin A =12AB?AC?sin60°= 23,∴AB?AC= 8,BC2=AB2+AC2-2AB?AC?cos A=AB2+AC2-AB?AC=( AB +AC)2-3AB?AC,∴(AB+ AC)2=BC2+3AB? AC=49,∴AB+ AC=7,∴△ ABC的周长为 12. 10.在△ ABC 中,A=60°,b=1,S△ABC= 3,则△ ABC外接圆的面积是 ________.答案 13π3 分析 S△ABC= 12bcsin A =34c=3,∴c=4,由余弦定理:a2=b2+c2-2bccos A =12+42-2×1×4cos 60°= 13,∴a=13.∴2R=asin A =1332=2393,∴R=393. ∴S外接圆=πR2=13π3.三、解答题11.在△ ABC中,求证:a2-b2c2=-C. 证明右侧=sin Acos B-cos Asin Bsin C=sin Asin C?cos B-s in Bsi n C?cos A =ac?a2+ c2-b22ac-bc?b2+c2-a22bc=a2+c2-b22c2-b2+c2-a22c2=a2-b2c2=左侧.因此 a2-b2c2=-在△ ABC中, a,b,c 分别是角 A,B,C 的对边的长,cosB = ,且 ? =- 21. (1) 求△ ABC的面积; (2) 若 a=7,求角 C. 解(1)∵ ?? ? =- 21,∴ ?? ? =21. ??∴ ? = | |?||?cosB = accosB = 21. ??∴ac=35,∵ cosB =,∴??sinB = . ??∴S△ABC = acsinB =×35× = 14.??(2)ac =35, a=7,∴ c=5. 由余弦定理得, b2=a2+c2-2accos B=32,∴b=42. 由正弦定理:csin C =bsin B. ∴sin C =cbsin B =542×45=22. ∵c<b 且 B 为锐角,∴C必定是锐角.∴C=45°. 能力提高 13 .已知△ ABC中,AB=1,BC=2,则角 C的取值范围是 ( ) A.0<C≤π6 B.0<C<π2C.π6<C<π2D. π6<C≤π3 答案 A 分析方法一 ( 应用正弦定理)∵ABsin C = BCsin A ,∴ 1sin C =2sin A ∴sin C = 12sin A ,∵0<sin A ≤1,∴0<sin C ≤12. ∵AB<BC,∴ C<A,∴C 为锐角,∴0<C≤ π6. 方法二 ( 应用数形联合 ) 以下列图,以 B 为圆心,以 1 为半径画圆,则圆上除了直线 BC上的点外,都可作为 A 点.从点C向圆B作切线,设切点为 A1和 A2,当 A 与 A1、A2 重合时,角 C最大,易知此时: BC=2,AB=1,AC⊥AB,∴ C=π6,∴0<C≤ π6. 14.△ ABC中,内角 A、B、C的对边分别为 a、b、c,已知 b2=ac 且cos B =34. (1) 求 1tan A +1tan C 的值;(2)设 ? = ,求 a+c 的值. ?? 解 (1) 由 cos B =34,得 sin B =1-342=74. 由 b2=ac及正弦定理得 sin2 B=sin Asin C. 于是 1tan A+1tan C=cos AsinA+cos Csin C=sin Ccos A+cos Csin Asin Asin C=+=s in Bsin2 B =1sin B =477. (2) 由 ? = 得 ca?cosB = 由cos B =34,可得 ca=2,即 b2=2. 由余弦定理: b2=a2+c2-2ac?cos B ,得 a2+c2=b2+2ac?cos B = 5,∴(a + c)2 =a2+c2+2ac=5+4=9,∴ a+c=3. 1 .解斜三角形的常有种类及解法在三角形的 6 个元素中要已知三个 ( 最少有一边 ) 才能求解,常有种类及其解法见下表:已知条件应用定理一般解法一边和两角 ( 如 a,B,C) 正弦定理由 A+B+C=180°,求角 A;由正弦定理求出 b 与 c. 在有解时只有一解.两边和夹角( 如a,b,C) 余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由 A+B+C=180°求出另一角.在有解时只有一解.三边 (a ,b,c) 余弦定理由余弦定理求出角 A、B;再利用 A+B+C=180°,求出角C.在有一解时只有一解 . 两边和此中一边的对角如 (a ,b,A) 余弦定理正弦定理由正弦定理求出角 B;由 A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c. 可有两解、一解或无解 . 2. 依据所给条件确立三角形的形状,主要有两种门路(1) 化边为角; (2) 化角为边,并常用正弦 ( 余弦 ) 定理实行边、角变换.。

正弦定理和余弦定理

正弦定理和余弦定理

的最大值为 2

【分析】利用三角形的面积计算公式得 •a• = bcsinA,求出 a2=2bcsinA;利用余弦定理可得 cosA=

得 b2+c2=a2+2bccosA,代入 + =
,化为三角函数求最值即可.
【解答】解:因为 S△ABC= •a• = bcsinA,
即 a2=2bcsinA;
由余弦定理得 cosA=


第 4 页(共 12 页)






故选:B. 【点评】本题考查三角形的解法,考查余弦定理的应用,是中档题.
5.在△ABC 中,
,则 BC 边上的高为( )
A.
B.
C.
D.
【分析】利用余弦定理求得 AB 的值,再根据△ABC 的面积求出 BC 边上的高. 【解答】解:△ABC 中,AC= ,BC= ,B=45°, 由余弦定理得 AC2=AB2+BC2﹣2AB•BC•cos45°, 即 5=AB2+2﹣2•AB• • ,
13.在△ABC 中,BC=3,∠A 的平分线交 BC 于点 D,且 BD=2,则△ABC 面积的最大值是

第 1 页(共 12 页)
14.在△ABC 中,三个内角 A,B,C 的对边分别为 a,b,c,已知 a2+c2﹣b2+2ac=2 bcsinA. (Ⅰ)求角 B; (Ⅱ)当 b=1 且△ABC 的面积最大时,求 a+c 的值.
正弦定理和余弦定理
1.在△ABC 中,BC 边上的中线 AD 长为 3,且 cosB= ,cos∠ADC=﹣ ,则 AC 边长为( )
A.4
B.16

2017届高三数学人教版A版数学(理)高考一轮复习教案:3.7 正弦定理和余弦定理 Word版含答案

2017届高三数学人教版A版数学(理)高考一轮复习教案:3.7 正弦定理和余弦定理 Word版含答案

第七节 正弦定理和余弦定理正、余弦定理掌握正、余弦定理的内容,并能解决一些简单的三角形度量问题.知识点 正弦定理和余弦定理 1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C . (2)a =2R sin_A ,b =2R sin B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).易误提醒 (1)由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.必记结论 三角形中的常用结论 (1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)在△ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C (A ,B ,C ≠π2).[自测练习]1.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b,c ,若a =c=6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:在△ABC 中,易知∠B =30°,由余弦定理b 2=a 2+c 2-2ac cos 30°=4.∴b =2. 答案:A2.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32 解析:在△ABC 中,根据正弦定理,得AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.答案:B3.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知AC 2=AB 2+BC 2-2AB ·BC cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin 120°=12×5×3×32=1534.答案:1534考点一 利用正弦、余弦定理解三角形|1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .2 2 C .2D. 3解析:由余弦定理a 2=b 2+c 2-2bc cos A ,即4=b 2+12-6b ⇒b 2-6b +8=0⇒(b -2)(b -4)=0,由b <c ,得b =2.答案:C2.(2015·高考安徽卷)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 解析:因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin 45°=6sin 60°,解得AC =2.答案:23.(2015·高考福建卷)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.解析:因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8×sin A ,解得sin A=32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8×cos A =52+82-2×5×8×12=49,所以BC =7.答案:7正、余弦定理的应用原则(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的运用.考点二 利用正、余弦定理判断三角形形状|(2015·沈阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边且2a sin A=(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[解] (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,a 2=b 2+c 2-2bc cos A , ∴bc =-2bc cos A ,cos A =-12.又0<A <π,∴A =23π.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C , ∴sin 2A =(sin B +sin C )2-sin B sin C . 又sin B +sin C =1,且sin A =32, ∴sin B sin C =14,因此sin B =sin C =12.又B 、C ∈⎝⎛⎭⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.判定三角形形状的两条途径(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·(a 2+b 2-c 2)2ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)△ABC 为等边三角形. ∵S △ABC =12bc sin A =334,即12bc sin π3=334,∴bc =3,① ∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.考点三 三角形的面积问题|(2015·高考全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin Bsin C; (2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1)知AB =2AC ,所以AC =1.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.7.三角变换不等价致误【典例】 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )] =a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cosB.法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac, ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0,∴a 2-b 2=0或a 2+b 2-c 2=0.即a =b 或a 2+b 2=c 2. ∴△ABC 为等腰三角形或直角三角形.[易误点评] (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形. (2)代数运算中两边同除一个可能为0的式子,导致漏解. (3)结论表述不规范.[防范措施] (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子,然后进行判断.(2)在三角变换过程中,一般不要两边约去公因式,应移项提取公因式,以免漏解;在利用三角函数关系推证角的关系时,要注意利用诱导公式,不要漏掉角之间关系的某种情况.[跟踪练习] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A +tan B =2sin Ccos A .(1)求角B 的大小;(2)已知a c +ca =3,求sin A sin C 的值.解:(1)tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin Bcos A cos B=sin (A +B )cos A cos B =sin C cos A cos B, ∵tan A +tan B =2sin C cos A ,∴sin C cos A cos B =2sin Ccos A ,∴cos B =12,∵0<B <π,∴B =π3.(2)a c +c a =a 2+c 2ac =b 2+2ac cos B ac, ∵a c +ca =3,∴b 2+2ac cos B ac =3, 即b 2+2ac cosπ3ac =3,∴b 2ca=2,而b 2ca =sin 2B sin A sin C =sin 2π3sin A sin C =34sin A sin C , ∴sin A sin C =38.A 组 考点能力演练1.(2016·兰州一模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( )A .30°B .45°C .60°D .75°解析:因为在锐角△ABC 中,b =2a sin B ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0<A <π2,所以A =30°,故选A. 答案:A2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于( )A.45 B .-45C.1517D .-1517解析:S +a 2=(b +c )2⇒a 2=b 2+c 2-2bc ⎝⎛⎭⎫14sin A -1,由余弦定理得14sin A -1=cos A ,结合sin 2A +cos 2A =1,可得cos A =-1517.答案:D3.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A.12 B .1 C. 3D .2解析:∵a 2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bc sin A =3,故选C.答案:C4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53B.107C.57D.5214 解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [π-(A+B )]=sin(A +B )=sin A cos B +cos A ·sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57.答案:C5.(2015·唐山一模)在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010B.31010C.55 D.255解析:由已知条件可得图形,如图所示,设CD =a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010.答案:B6.(2015·高考重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 答案:47.(2015·高考北京卷)在△ABC 中,a =4,b =5,c =6,则sin 2A sin C =________.解析:由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 答案:18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.解析:∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B .由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35.答案:359.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且23a sin B =5c ,cos B =1114.(1)求角A 的大小;(2)设BC 边的中点为D ,|AD |=192,求△ABC 的面积.解:(1)由cos B =1114得sin B =5314. 又23a sin B =5c ,代入得3a =7c ,由a sin A =c sin C得3sin A =7sin C , 3sin A =7sin(A +B ),3sin A =7sin A cos B +7cos A sin B ,得tan A =-3,A =2π3. (2)AB 2+BD 2-2AB ·BD cos B =194, c 2+⎝⎛⎭⎫76c 2-2c ·76c ·1114=194,c =3,则a =7. S =12ac sin B =12×3×7×5314=1534. 10.(2016·杭州模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -12c =b .(1)求角A 的大小;(2)若a =1,求△ABC 周长的取值范围.解:(1)由a cos C -12c =b 得sin A cos C -12sin C =sin B. 又sin B =sin(A +C )=sin A cos C +cos A sin C ,所以12sin C =-cos A sin C . 因为sin C ≠0,所以cos A =-12. 又因为0<A <π,所以A =2π3. (2)由正弦定理得b =a sin B sin A =23sin B ,c =23sin C . l =a +b +c =1+23(sin B +sin C ) =1+23[sin B +sin(A +B )] =1+23⎝⎛⎭⎫12sin B +32cos B =1+23sin ⎝⎛⎭⎫B +π3.因为A =2π3,所以B ∈⎝⎛⎭⎫0,π3, 所以B +π3∈⎝⎛⎭⎫π3,2π3. 所以sin ⎝⎛⎭⎫B +π3∈⎝⎛⎦⎤32,1. 所以△ABC 的周长的取值范围为⎝⎛⎦⎤2,233+1. B 组 高考题型专练1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 解析:由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin 2π3=b 12,所以b =1. 答案:12.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析:由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,故a =8. 答案:83.(2015·高考课标卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为1.4.(2015·高考湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C . 解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B, 所以sin B =cos A .(2)因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34. 由(1)sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°. 由cos A =sin B =32知A =30°,从而C =180°-(A +B )=30°. 综上所述,A =30°,B =120°,C =30°.5.(2015·高考浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积. 解:(1)由tan ⎝⎛⎭⎫π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得 sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =b sin B,得b =3 5.由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9.。

人教版高中数学必修五《 正、余弦定理在三角形中的》测试卷

人教版高中数学必修五《 正、余弦定理在三角形中的》测试卷

1.2.2 解三角形实际应用举例习题班级: 组名: 姓名: 设计人:连秀明 审核人:魏帅举 领导审批:一、选择题1.在△ABC 中,若b =1,c =3,∠C =2π3,则a 的值是( ) A.1 B. 3 C. 2 D.22.在△ABC 中,下列各式正确的是 ( )A. a b =sinB sinAB.asinC =csinBC.asin(A +B)=csinAD.c2=a2+b2-2abcos(A +B) 3.已知ABC ∆的三边分别为a 、b 、ab b a ++22,则ABC ∆的最大角是 ( )A.135°B.120°C.60°D.90°4有A 、B 两个小岛相距10 nmile ,从A 岛望B 岛和C 岛成60°的视角,从B 岛望A 岛和C 岛成75°角的视角,则B 、C 间的距离是 ( )A.5 2 nmileB.10 3 nmileC. 1036 nmileD.5 6 nmile5.如下图,为了测量隧道AB 的长度,给定下列四组数据,测量应当用数据A.α、a 、bB.α、β、aC.a 、b 、γD.α、β、γ6、边长为5、7、8的三角形的最大角与最小角之和为 ( )A 、90°B 、 120°C 、 135°D 、150°7、在△ABC 中,8b =,83c =,163ABC S =,则A ∠等于 ( )A 、30B 、60C 、30或150D 、60或1208、在△ABC 中,60B =,2b ac =,则△ABC 一定是 ( )A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形9.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522 m10.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时( )A .5海里B .53海里C .10海里D .103海里 二、填空题11.在△ABC 中,tanB =1,sinC =26,b =100,则c = . 12.在△ABC 中,已知503b =,150c =,30B =,则边长a = 。

高中数学-余弦定理、正弦定理应用举例跟踪测试卷及答案

高中数学-余弦定理、正弦定理应用举例跟踪测试卷及答案

课时跟踪检测 (十三) 余弦定理、正弦定理应用举例层级(一) “四基”落实练1.如图,两座灯塔A 和B 与河岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的 ( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及题图可知,∠A =∠B =40°.又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m, 2 0 3 m C .10(3-2)m, 20 3 mD.1532 m ,2033m 解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 3.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 kmD .60 2 km解析:选B 如图所示,依题意有AB =15×4=60,∠DAC =60°,∠ CBM =15°,所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BMsin 30°,解得BM =30 2 (km).4.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船的航行速度为( )A.1762n mile/h B .34 6 n mile/h C.1722n mile/h D .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762(n mile/h).故选A. 5.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )A .30°B .45°C .60°D .75°解析:选B 依题意可得AD =2010(m), AC =305(m),又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22.又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.6.某人朝正东方向走x m 后,向右转150°,然后朝新方向走3 m ,结果他离出发点恰好为3m ,那么x 的值为_______.解析:如图,在△ABC 中,AB =x ,B =30°,BC =3,AC =3,由余 弦定理得(3)2=x 2+32-2×3×x ×cos 30°, ∴x 2-33x +6=0,∴x =3或2 3. 答案:23或 37.如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°, 45°,且∠BAC =135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236) 解析:由题意可知,AB =200 m ,AC =100 2 m , 由余弦定理可得BC =40 000+20 000-2×200×1002×-22≈316.2(m), 这辆汽车的速度为316.2÷14≈22.6(m/s). 答案:22.68.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,求山高MN .解:根据图示,AC =100 2 m .在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°解得AM =100 3 m .在△AMN 中,MNAM =sin 60°,所以MN =1003×23=150(m). 层级(二) 能力提升练1.如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与 A ,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ):①测量A ,B ,b ;②测量a ,b ,C ;③测量A ,B ,a .则一定能确定A ,B 间距离的所有方案的个数为( )A .3B .2C .1D .0解析:选A 对于①,利用内角和定理先求出C =π-A -B ,再利用正弦定理b sin B =c sin C解出c ;对于②,直接利用余弦定理c 2=a 2+b 2-2ab cos C 即可解出c ;对于③,先利用内角和定理求出C =π-A -B ,再利用正弦定理a sin A =csin C解出c .故选A. 2.当太阳光线与水平面的倾斜角为60°时,一根长为2 m 的竹竿,要使它的影子最长,则竹竿与地面所成的角α=________. 解析:如图,设竹竿的影子长为x . 依据正弦定理可得2sin 60°=xsin (120°-α).所以x =43·sin(120°-α). 因为0°<120°-α<120°,所以要使x 最大,只需120°-α=90°, 即α=30°时,影子最长. 答案:30°3.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为______小时.解析:如图,设A 地东北方向上存在点P 到B 的距离为30千米, AP =x .在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB ·cos A ,即302=x 2+402-2x ·40cos 45°,化简得x 2-402x +700=0, |x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400, |x 1-x 2|=20,即图中的CD =20(千米),故t =CD v =2020=1(小时).答案:14.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直 弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217s .A 地测得该仪器弹至最高点H 时的仰角为30°. (1)求A ,C 两地的距离; (2)求该仪器的垂直弹射高度CH . (声音的传播速度为340 m/s)解:(1)由题意,设AC =x m ,则BC =x -217×340=(x -40)m.在△ABC 中,由余弦定理,得BC 2=BA 2+AC 2-2BA ·AC cos ∠BAC , 即(x -40)2=10 000+x 2-100x ,解得x =420. 所以A ,C 两地间的距离为420 m.(2)在Rt △ACH 中,AC =420 m ,∠CAH =30°, 所以CH =AC tan ∠CAH =140 3 m. 所以该仪器的垂直弹射高度CH 为140 3 m.5.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树 顶端点C 的仰角大小为75°. (1)求BC 的长;(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精确到0.01 m ,其中3≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4. 由正弦定理得BC sin 45°=4sin 30°, 解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42,所以DC =42sin 75°.因为sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+2 3. 所以CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m. 层级(三) 素养培优练1.北京冬奥会,首钢滑雪大跳台(如图1)是冬奥历史上第一座与工业遗产再利用直接结合的竞赛场馆,大跳台的设计中融入了世界文化遗产敦煌壁画中“飞天”的元素.西青区某校研究性学习小组为了估算赛道造型最高点A (如图2)距离地面的高度AB (AB 与地面垂直),在赛道一侧找到一座建筑物PQ .测得PQ 的高度约为25米,并从P 点测得A 点的仰角为30°.在赛道与建筑物PQ 之间的地面上的点M 处测得A 点、P 点的仰角分别为75°和30°(其中B ,M ,Q 三点共线).则该学习小组利用这些数据估算得赛道造型最高点A 距离地面的高度约为(参考数据:2≈1.41,3≈1.73,6≈2.45)( )A .59B .60C .65D .68解析:选A 如图所示,由题意得∠AMB =75°,∠PMQ =30°,∠AMP =75°,∠APM =60°,∠PAM =45°,在△PMQ 中,PM =PQsin ∠PMQ=50,在△PAM 中,由正弦定理得AM sin ∠APM =PMsin ∠PAM,AM sin 60°=50sin 45°,所以AM =256, 在△ABM 中,AB =AM ·sin ∠AMB =256×sin 75° =256×6+24, 所以AB =150+5034≈150+50×1.734=236.54=59.125,所以赛道造型最高点A 距离地面的高度约59.2.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 的北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. (3)是否存在v ,使得小艇以v 海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由. 解:(1)设相遇时小艇的航行距离为S 海里,则由余弦定理,可得S =900t 2+400-2×30t ×20cos (90°-30°) =900t 2-600t +400=900t -132+300, 故当t =13时,S min =103,此时v =303,即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意可知(v t )2=202+(30t )2-2·20·30t ·cos(90°-30°), 化简得,v 2=400t2-600t 900=400 1t -342+675. 由于0<t ≤12,所以1t ≥2,所以当1t =2时,v 取得最小值1013, 即小艇航行速度的最小值为10 13 海里/时. (3)存在.由(2)知,v 2=400t2-600t +900,设1t =u (u >0), 于是400u 2-600u +900-v 2=0.小艇总能有两种不同的航行方向与轮船相遇,等价于方程有两个不等正根,即6002-1 600(900-v 2)>0,900-v 2>0,解得153<v <30, 所以v 的取值范围是(153,30).。

(完整版)正弦定理和余弦定理典型例题

(完整版)正弦定理和余弦定理典型例题

《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

(完整版)正弦定理、余弦定理综合训练题含答案

(完整版)正弦定理、余弦定理综合训练题含答案

正弦定理、余弦定理综合训练题1.[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2 B.3 C .2 D .3[解析] D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D. 2.[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( ) A.310 B.1010 C.55 D.31010[解析] D 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A,解得sin A =3×225=31010. 3.[2013·新课标全国卷Ⅰ] 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2 A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5[解析] D 由23cos 2A +cos 2A =0,得25cos 2A =1.因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,根据余弦定理,得49=b 2+36-12b ·15,即b 2-125b 4.[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin B sin A =2113. -13=0,解得b =5或b =-135(舍去). 5.[2015·全国卷Ⅰ] 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C.(1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a =2,所以△ABC 的面积为1.6.[2015·全国卷Ⅱ] △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2D C.(1)求sin ∠B sin ∠C; (2)若∠BAC =60°,求∠B.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DC sin ∠CAD. 因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B. 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°. 7.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C=13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A=5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 8.[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6[解析] C ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A=1,即A =π4. 9.[2015·广东卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .22 C .2 D. 3 [解析] C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.10.[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.[解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 11.[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则b c=________.[解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得b c 2+b c-2=0,解得b c =1或b c=-2(舍去).12.[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ). 又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B.(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.。

数学:新人教A版必修五 1.1正弦定理和余弦定理(同步练习)

数学:新人教A版必修五 1.1正弦定理和余弦定理(同步练习)

1. 1.1正弦定理作业 1、 在ABC ∆中,若A b a sin 23=,则B 等于 ( )A. ο30B. ο60C. ο30或ο150D. ο60或ο1202、在ABC ∆中,已知ο45,1,2===B c b ,则a 等于 ( )A. 226-B. 226+ C. 12+ D. 23-3、不解三角形,确定下列判断中正确的是 ( )A. ο30,14,7===A b a ,有两解B. ο150,25,30===A b a ,有一解C. ο45,9,6===A b a ,有两解D. ο60,10,9===A c b ,无解4、在ABC ∆中,已知B a b sin 323=,C B cos cos =,则ABC ∆的形状是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形5、在ABC ∆中,ο60=A ,3=a ,则=++++C B A cb a sin sin sin ( )A. 338 B. 3392 C. 3326 D. 326、在ABC ∆中,已知ο30=A ,ο45=C 20=a ,解此三角形。

7、在ABC ∆中,已知ο30,33,3===B c b ,解此三角形。

参考答案: 1、 解析:由A b a sin 23=可得23sin b A a =,由正弦定理可知B b A a sin sin =,故可得23sin =B ,故=B ο60或ο120。

2、 解析:由正弦定理可得C c B b sin sin =,带入可得21sin =C ,由于b c <,所以ο30=C ,ο105=B ,又由正弦定理B b A a sin sin =带入可得226+=a 3、解析:利用三角形中大角对大边,大边对大角定理判定解的个数可知选B。

4、解析:由B a b sin 323=可得23sin a B b =,所以23sin =A ,即ο60=A 或ο120,又由C B cos cos =及()π,0,∈C B 可知C B =,所以ABC ∆为等腰三角形。

(完整版)正弦定理、余弦定理综合训练题含答案

(完整版)正弦定理、余弦定理综合训练题含答案

正弦定理、余弦定理综合训练题1. [2016全国卷I ] △ ABC 的内角A , B , C 的对边分别为 a , b , c.已知a = 5, c = 2, cos A = 2,则 b =() A. .2B. 3 C . 2D . 32 1[解析]D 由余弦定理得5= b 2 + 4-2 X b X 2X 3,解得b = 3或b =- 3(舍去),故选D. n 1B = —, BC 边上的高等于§BC ,贝U sin A =( )D.S 10D ,设BC = 3,则有 AD = BD = 1 , AB = 2,由余弦定理 得AC = \ 5.由正弦定理得 “5= s^A , n sin Asin ’43. [2013新课标全国卷I ]已知锐角厶 A + cos 2A = 0, a = 7, c = 6,贝U b =( A . 101[解析]D 由23cos2A + cos 2A = 0,得25cos2A = 1•因为△ABC 为锐角三角形,所以cos A =. 51 12在A ABC 中,根据余弦定理,得 49 = b 2 + 36- 12b •即卩b 2—厂b5 545 4. ________________ [2016全国卷n ] △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若cos A =5, cos C = ^, a = 1,贝U b= .4 53 12[解析]因为cos A = 5, cos C = 13,且A , C 为三角形的内角,所以sin A = 5, sin C =〔3, sin63 「, a b ~― asin B 21B = si n(A + C)= sin AcosC + cos As in C = 65.又因为 sin A = sin B ,所以 b = sin A =伯. 13—13 = 0,解得 b = 5 或 b =— 5 (舍去).5. [2015 全国卷 I ]已知 a , b , c 分别是△ ABC 内角 A , B , C 的对边,sin 2B = 2sin Asin C. (1)若 a = b ,求 cos B;⑵若B = 90°,且a =〔 2, 求厶ABC 的面积. 解:(1)由题设及正弦定理可得b 2 = 2ac.又a = b ,所以可得b = 2c , a = 2c.2. [2016全国卷川]在厶ABC 中, [解析]D 作AD 丄BC 交BC 于点解得sin A =学=噜ABC 的内角A , B , C 的对边分别为 a , b , c , 23COS 2D . 5⑵由(1)知 b 2= 2ac.因为B = 90°,所以由勾股定理得a 2+ c 2= b 2. 故 a 2 + c 2= 2ac ,得 c = a = 2, 所以△ABC 的面积为1.6. [2015 全国卷n ] △ ABC 中,D 是 BC 上的点,AD 平分/ BAC , BD = 2DC. sin / B (1)求跖/C ; ⑵若/ BAC = 60°,求/ B. 解:(1)由正弦定理得AD _ BD AD _ DC sin ZB sin /BAD’ sin ZC sin /CAD 因为AD 平分Z BAC , BD = 2DC ,所以 sin ZB DC 1 sinZC BD 2⑵因为/C = 180°—/BAC + /B),/BAC = 60°,所以、i'3 1sin ZC = sin( ZBAC +/B)= ? cos/B + in ZB.V 3由(1)知 2sinZB = sin/C ,所以 tanZB = 3,即/B = 30°7. [2014新课标全国卷n ]四边形ABCD 的内角A 与C 互补,AB = 1, BC = 3, CD 2.(1)求 C 和 BD ;⑵求四边形ABCD 的面积.解:(1)由题设及余弦定理得 BD 2= BC 2+ CD 2— 2BC CDcos C =13 — 12cos C ,①BD 2= AB 2+ DA 2— 2AB DAcos A由余弦定理可得 cos B =a 2+ c 2— b2ac1 4.DA ==5 + 4cos C .②1 —由①②得 cos C = 2,故 C = 60°,BD =7.⑵四边形ABCD 的面积1 1S = ?AB DA si n A + ?BC CDsi n C1 1/ 1X 2 + 2 x 3X 2 sin 60°=2 38. [2016 山东卷]△ ABC 中,角 A , B , C 的对边分别是 a , b , c.已知 b = c , a 2= 2b 2(1 — sin A), 贝U A =(nCG'•b = c , a 2 = 2b 2( 1 — sin A),「.2b 2sin A = b 2+ c 2— a 2= 2bccos A = 2b 2cos A ,「.tanA=1,即 A = 4. 9.[2015广东卷]设厶ABC 的内角 A , B , C 的对边分别为 a , b , c.若a = 2, c = 2.3, cos A =于且b<c ,则b =( ) A . 3B . 2 .2C . 2D. 3[解析]C 由余弦定理得 a 2= b 2 + c 2— 2bccos A ,所以22 = b 2+ (2\'勺)2— 2x b x 2屈,即卩 b 2— 6b + 8= 0,解得 b = 2 或 b = 4•因为 b<c,所以 b = 2. 10. [2016上海卷]已知△ ABC 的三边长分别为3, 5, 7,则该三角形的外接圆半径等于32+ 52 — 72 1[解析]利用余弦定理可求得最大边 7所对角的余弦值为2x 3x 5 =—2,所以此角的正弦值为牙•设三角形外接圆的半径为R ,由正弦定理得2R=^|,所以R = 于.22冗 b11. ________________________________________________________ [2016 北京卷]在厶 ABC 中,/ A =〒,a = ■. 3c ,则b = _______________________________ .3 c2 n b b[解析]由余弦定理 a 2= b 2+ c 2— 2bccos A 可得,3c 2= b 2+ c 2— 2bccos 3,整理得 2+ — 2= 0,3 c cnD.?[解析]C解得b= 1或c=—2(舍去).12. [2016浙江卷]在厶ABC 中,内角 A , B , C 所对的边分别为 a , b , c.已知b + c = 2acos B. (1)证明:A = 2B ;2⑵若cos B = 3,求cos C 的值.解:⑴证明:由正弦定理得 sin B + sin C = 2sin Acos B ,故 2s in Acos B = sin B + sin (A + B)= sin B + sin Acos B + cos As in B ,于是 sin B = sin (A — B). 又 A , B € (0, n ),故 O V A — B Vn, 所以 B =n —(A — B)或 B = A — B , 因此A =%(舍去)或A = 2B ,所以A = 2B.=—cos(A + B) = — cos Acos B + sin A sin B =⑵由cos B =cos 2B = 2cos 2B — 1 = — 9,故 cos A =— 9, sin sin cos C。

人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理)

人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理)

c=2,cos A=23,则 b=( )
A. 2
B. 3
C.2
D.3
栏目 导引
第六章 平面向量及其应用
【解析】 (1)因为 cos C=2cos2 C2-1=2×15-1=-35,所以由余
弦 定 理 , 得 AB2 = AC2 + BC2 - 2AC·BCcos C = 25 + 1 -
课件
课件
课件
栏目 导引
第六章 平面向量及其应用
在△ABC 中,a=2 3,c= 6+ 2,B=45°, 解这个三角形.
解:根据余弦定理得, 课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
b2=a2+c2-2accos B=(2 3)2+( 6+ 2)2-2×2 3×( 6+
2)×cos 45°=8,
所以 b=2 2. 又因为 cos A=b2+2cb2c-a2=8+2(×26+2×2()26-+(22)3)2=12,
所以 A=60°,C=180°-(A+B)=75°.
栏目 导引
第六章 平面向量及其应用
已知三边(三边关系)解三角形
(1)在△ABC 中,已知 a=3,b=5,c=
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
3 课件

【步步高】高考数学大一轮复习 4.6 正弦定理和余弦定理试题(含解析)新人教A版

【步步高】高考数学大一轮复习 4.6 正弦定理和余弦定理试题(含解析)新人教A版

4.6 正弦定理和余弦定理一、选择题1.在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( ). A .135° B .105° C .45° D .75°解析 由正弦定理知BC sin A =AB sin C ,即2sin A =3sin 60°,所以sin A =22,又由题知,BC<AB ,∴A =45°. 答案 C2.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的大小为( ).A .60°B .90°C .120°D .150° 解析 由(a +b -c )(a +b +c )=ab ,得(a +b )2-c 2=ab , ∴c 2=a 2+b 2+ab =a 2+b 2-2ab cos C , ∴cos C =-12,∴C =120°.答案 C3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a =λ,b =3λ(λ>0),A =45°,则满足此条件的三角形个数是( )A .0B .1C .2D .无数个 解析:直接根据正弦定理可得asin A =bsin B,可得sin B =b sin A a =3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0. 答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴sin A cos A +cos 2B =sin 2B +cos 2B =1. 答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2 B. 2C. 12D. 12-解析 2122cos 2222222=+-≥-+=ba c c abc b a C ,故选C. 答案 C6.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A∈⎝⎛⎦⎥⎤0,π3.答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎪⎨⎪⎧a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A.答案 A 二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2.答案29. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________. 解析:根据正弦定理,a sin A =csin C,由3a =2c sin A ,得a sin A =c32,∴sin C =32,而角C 是锐角.∴角C =π3. 答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得x +2+y 2= 2x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动, 所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2.答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A +tan Ctan B的值是________.解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tanC tan B=4.法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab,即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c2a 2+b 2-c 2=4.答案 4 三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C , 法一 如图(1),图(1)a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0), ∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A =b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a . 解析:由余弦定理b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 2π3=a 2+c 2+ac =(a +c )2-ac . 又∵a +c =4,b =13,∴ac =3.联立⎩⎪⎨⎪⎧a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.解析 (1)由正弦定理,设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin A sin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A ,因此sin Csin A=2. (2)由sin C sin A =2得c =2a .由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5.从而a =1,因此b =2.。

高中数学 第一章 解三角形 1.1 正弦定理和余弦定理 第2课时 余弦定理达标检测(含解析)新人教A

高中数学 第一章 解三角形 1.1 正弦定理和余弦定理 第2课时 余弦定理达标检测(含解析)新人教A

余弦定理A 级 基础巩固一、选择题1.(多选)在△ABC 中,以下结论正确的是() A .若a 2>b 2+c 2,则△ABC 为钝角三角形 B .若a 2=b 2+c 2+bc ,则A 为120° C .若a 2+b 2>c 2,则△ABC 为锐角三角形 D .若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3解析:对于A 项,由cos A =b 2+c 2-a 22bc<0,可知角A 为钝角,则△ABC 为钝角三角形,故正确.对于B 项,由a 2=b 2+c 2+bc ,结合余弦定理可知cos A =-12,所以A =120°,故正确.对于C 项,由a 2+b 2>c 2,结合余弦定理可知cos C =a 2+b 2-c 22ab>0,只能判断角C 为锐角,不能判断角A ,B 的情况,所以△ABC 不一定为锐角三角形,故错误.对于D 项,由A ∶B ∶C =1∶2∶3可得A =30°,B =60°,C =90°,则a ∶b ∶c =sin 30°∶sin 60°∶sin 90°=12∶32∶1≠1∶2∶3,故错误.答案:AB2.已知锐角三角形的边长分别为1,3,a ,则a 的X 围是() A .(8,10) B .(22,10) C .(22,10) D .(10,8)解析:只需让边长为3和a 的边所对的角均为锐角即可.故⎩⎪⎨⎪⎧1+a 2-322×1×a>0,12+32-a22×1×3>0,1+3>a ,1+a >3,解得22<a <10.答案:B3.若三角形三边长分别为5,7,8,则其最大角和最小角的和为() A .90°B.120°C.135°D.150°解析:中间的角设为θ,则cos θ=52+82-722×5×8=12,因为0°<θ<180°,所以θ=60°, 所以最大角和最小角之和为120°. 答案:B4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B 等于()A.14B.34C.24D.23解析:cos B =a 2+c 2-b 22ac =a 2+(2a )2-ac 2a ·2a =5a 2-2a 24a 2=34. 答案:B5.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是() A .等腰直角三角形B .直角三角形 C .等腰三角形D .等边三角形 解析:因为2cos B sin A =sin C ,所以2·a 2+c 2-b 22ac·a =c ,所以a =b ,所以△ABC 为等腰三角形. 答案:C 二、填空题6.在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________.解析:cos C =a 2+b 2-c 22ab =ab 2ab =12,又C ∈(0,π),所以C =π3.答案:π37.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.解析:由正弦定理得到边b ,c 的关系,代入余弦定理的变化求解即可. 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .又b -c =14a ,所以12c =14a ,即a =2c .由余弦定理得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c23c 2=-14.答案:-148.如图所示,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析:因为sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,所以在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , 所以BD 2=18+9-2×32×3×223=3, 所以BD = 3. 答案: 3 三、解答题9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C . 代入cos Aa+cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得:sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解:由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)可知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知和正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.因为0°<A <180°,所以A =120°. (2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .① 由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1.② 由①②及sin A =32,得sin B sin C =14, 所以sin B =sin C =12.因为0°<B <60°,0°<C <60°, 所以B =C ,所以△ABC 是等腰三角形.B 级 能力提升1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若B =60°,b 2=ac ,则△ABC 的形状是()A .直角三角形B .钝角三角形C .等腰非等边三角形D .等边三角形解析:由余弦定理可得b 2=a 2+c 2-2ac cos 60°=a 2+c 2-ac =ac ,所以(a -c )2=0,所以a =c ,因为B =π3,所以△ABC 的形状是等边三角形.答案:D2.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:因为cos C =BC 2+AC 2-AB 22×BC ×AC =22,所以sin C =22, 所以AD =AC ·sin C = 3. 答案: 33.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,b =c cos A +a sin C . (1)求角C ;(2)若AC 边上的高为13b ,求cos B .解析:(1)因为b =c cos A +a sin C ,所以由正弦定理得sin B =sin C cos A +sin A sinC ,所以sin(A +C )=sin C cos A +sin A sin C ,即sin A cos C +cos A sin C =sin C cos A +sin A sin C , 即sin A cos C =sin A sin C ,因为sin A ≠0,且cos C ≠0,所以tan C =1,因为C ∈(0,π),所以C =π4.(2)由题意可得13b =a sin π4=22a ,则b =322a .在△ABC 中,由余弦定理可得c 2=a 2+b 2-2ab =a 2+92a 2-3a 2=52a 2,则c =102a .易得cos B =a 2+c 2-b 22ac=a 2+52a 2-92a 22×102a ×a =-1010.。

人教A版6.4.3余弦定理、正弦定理综合检测卷

人教A版6.4.3余弦定理、正弦定理综合检测卷

人教A 版6.4.3余弦定理、正弦定理综合检测卷一、单选题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若30A =︒,45B =︒,2a =,则b 等于( ) A .2B .22C .4D .422.ABC 中,若1,2,30a c B ︒===,则ABC 的面积为( )A .12B .32C .1D .33.已知ABC 的三边长分别为7,5,3,则ABC 的最大内角的大小为( ) A .150︒B .120︒C .60︒D .75︒4.如图,四边形 ABCD 中,∠ADC =120°,∠ACD =30°,∠BCD =90°,DC =3,BC =2,则AB =( )A .5B .6C .7D .225.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于akm ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kmB 3 a kmC 2 akmD .2akm6.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2222a b c ac =-,则角B 的大小是( ) A .45B .60C .90D .1357.在ABC △中,A ,B ,C 的对边分别为a ,b ,c ,已知3c =,π3C =,sin 2sin B A =,则ABC △的周长是( ) A .33B .23+C .33+D .43+8.在三角形ABC 中,cos cos a B b A =,则三角形ABC 是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形9.如图,地面四个5G 中继站A .B .C .D ,已知A .B 两个中继站的距离为10km ,ADB CDB ∠=∠=30,45DCA ∠=︒,60ACB ∠=︒,则C ,D 两个中继站的距离是( )A .23kmB .22kmC .()62km +D .()62km -10.在ABC 中,60B =︒,2b ac =,则ABC 一定是 A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形11.已知ABC 三个内角A ,B ,C 及其对边a ,b ,c ,其中,角B 为锐角,3b =且()222tan 3a c bB ac +-=, 则ABC ∆面积的最大值为( ) A .33B .33C .34D .3212.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .3kmB .10kmC 10kmD .62km第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.在△ABC 中,已知AC =2,BC =3,B =6π,那么sin A =_____. 14.ABC 中,cos cos 2b C c B b +=,则ab=________ 15.如图,在ABC 中,点D 是边BC 上的一点,1DC =,3AC =,3BD =,120ADC =∠︒,则AB 的长为________.16.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知3b =22cos c a b A -=,则a c +的最大值为________.三、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3A π=,sin 3sin B C =.(1)求tan C 的值; (2)若7a =ABC 的面积.18.在ABC 中,sin cos()6b A a B π=-. (1)求B ; (2)若5c =,4C π,求a 边.19.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=. (1)求角A 的大小;(2)若2a =,ABC ∆的面积为212-,求b c +的值.20.已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB 边上的高为332. (1)求B 的大小;(2)求cos 3cos AC A B +的值.21.如图,D 是直角ABC 斜边BC 上一点,3AC DC =.(1)若30DAC ∠=︒,求角B 的大小; (2)若2BD DC =,且3DC =,求AD 的长.22.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知1a =,sin cos ()cos c B B b C -=.(1)求BC 边上的高AD 的长; (2)求tan A 的最大值.参考答案1.B 【分析】直接利用正弦定理即可求解. 【详解】30A =︒,45B =︒,2a =,∴由正弦定理sin sin a b A B=,可得2sin 21sin 2a Bb A===故选:B . 【点睛】本题主要考查了正弦定理在解三角形中的应用,属于基础题. 2.A 【分析】直接利用三角形面积公式1sin 2S ac B =⋅进行计算. 【详解】因为1,2,30a c B ︒===, 又1sin 2S ac B =⋅ 所以ABC 的面积为11112222S =⨯⨯⨯=. 故选:A. 【点睛】本题考查了三角形的面积公式.属于容易题. 3.B 【分析】根据大边对大角,由余弦定理,即可得出结果. 【详解】三角形中,大边对大角,所以边长为7的边所对的角最大,记作角A ,由余弦定理,可得:222357925491cos 235302A +-+-===-⨯⨯,解得:120A =︒. 故选:B. 【点睛】本题主要考查由余弦定理解三角形,熟记余弦定理即可,属于基础题型. 4.C 【分析】在ADC 中可得AD DC ==3AC =,在ABC 中,由余弦定理求AB . 【详解】在ADC 中,120ADC =∠︒,30ACD ∠=︒,DC =30DAC ACD ∴∠=∠=︒,∴AD CD ==2cos303AC AD ∴=︒=.在ABC 中,3AC =,2BC =,60ACB ∠=︒,∴9AB == 故选:C【点睛】本题主要考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平. 5.B 【分析】先根据题意确定ACB ∠的值,再由余弦定理可直接求得AB 的值. 【详解】在ABC ∆中知∠ACB =120°,由余弦定理得AB 2=AC 2+BC 2-2AC·BCcos120°=2a 2-2a 2×12⎛⎫- ⎪⎝⎭=3a 2,∴AB 故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题. 6.A 【分析】由222a b c =-利用余弦定理可得cos 2B =,结合B 的范围即可得B 的值. 【详解】ABC 中,222a b c =-+,可得:222a c b +-=,∴由余弦定理可得:222cos 222a cb B ac ac +-===, ()0,180B ∈, 45B ∴=,故选A .【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用. 7.C 【解析】 【分析】首先用正弦定理将sin 2sin B A =转化为2b a =,再利用余弦定理列方程,求出,a b 的值,由此求得三角形周长. 【详解】因为sin 2sin B A =,由正弦定理得2b a =,由余弦定理得,22222222cos 423c a b ab C a a a a =+-=+-=,又c =1a =,2b =.则ABC 的周长是3+故应选C 【点睛】本小题主要考查解三角形,考查正弦定理和余弦定理的应用.正弦定理主要用于边和角的互化,余弦定理主要用于列方程求未知数.属于基础题. 8.C 【分析】直接代正弦定理得()sin 0A B -=,所以A=B ,所以三角形是等腰三角形. 【详解】由正弦定理得cos cos sinA B sinB A =,所以cos cos sinA B sinB A -=0,即()sin 0A B -=, 所以A=B,所以三角形是等腰三角形. 故答案为C 【点睛】本题主要考查正弦定理解三角形,意在考察学生对这些知识的掌握水平和分析推理能力. 9.C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】解:在ADC 中,sin 75sin 60DC AC=︒︒,在BCD 中,sin 45sin 30DC BC=︒︒,设DC x =,则2AC x =,2BC x =, 在ABC 中,由余弦定理,2222cos60AB AC BC AC BC =+-⨯⋅︒,解得x =故选:C 【点睛】思路点睛:把待求量放到三角形中,然后利用正余弦定理解三角形是解决这类问题的一般思路,基础题.【分析】根据余弦定理得到a c =,进而得到三个角相等,是等边三角形. 【详解】ABC 中,60B =︒,2b ac =,()2222221cos 20022a cb B ac ac a c ac +-==⇒+-=⇒-= 故得到a c =,故得到角A 等于角C ,三角形为等边三角形. 故答案为D. 【点睛】这个题目考查了余弦定理的应用,以及特殊角的三角函数值的应用,属于简单题. 11.A 【分析】由余弦定理求得3B π=,且223ac a c =+-,再由三角形的面积公式和基本不等式可得选项. 【详解】由()222tan a c b β+-=得222tan 2a c b ac β⎛⎫+-= ⎪⎝⎭cos tan 2ββ=,即sin 2B =,而02B π<<,所以3B π=,所以1sin 2ABCSac B ==,又因为222221cos 322a c b B ac a c ac +-==⇒=+-,所以22323ac a c ac =+-≥-,所以3ac ≤3ac ≤=故选:A . 【点睛】本题考查运用余弦定理解三角形,三角形的面积公式,以及运用基本不等式求最值,属于中档题. 12.C由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒,在ADC中,由正弦定理得sin 2sin sin 75CD ADCAC DAC ⋅∠===∠︒在BDC中,由正弦定理得1sin 1sin 2CD BDCBC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用. 13.34【分析】利用正弦定理列方程,解方程求得sin A . 【详解】依题意2,3,6b a B π===,由正弦定理得sin sin a b A B=, 所以3sin3236sin sin 24sin 6A A ππ=⇒==. 故答案为:34【点睛】本小题主要考查正弦定理解三角形,属于基础题. 14.2由余弦定理化角为边后即得结论. 【详解】由余弦定理222222cos cos 222a b c a c b b C c B b c a b ab ac+-+-+=⋅+⋅==,∴2ab=. 故答案为:2.15 【分析】首先在ADC 中利用余弦定理求AD ,再在ABD △中利用余弦定理求AB . 【详解】ADC 中根据余弦定理2222cos120AC AD DC AD DC =+-⋅⋅,即213122AD AD ⎛⎫=+-⋅⋅-⎪⎝⎭,整理为220AD AD +-=,解得:1AD =, ABD △中利用余弦定理2222cos60AB AD BD AD BD =+-⋅⋅,211921372AB ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,所以AB =【点睛】方法点睛:利用正余弦定理解三角形,一般包含以下几种情况: 1.已知两角和一边,利用正弦定理解三角形;2.已知两边和其中一边的对角,求角用正弦定理,求边用余弦定理;3.已知两边和夹角,用余弦定理解三角形.16.【分析】先根据正弦定理与两角和的正弦公式,化简22cos c a b A -=,可得(2cos 1)sin 0B A -=,从而可求出角B ,再利用余弦定理结合基本不等式可求出a c +的最大值解:因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+, 所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=, 化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =, 因为(0,)B π∈,所以3B π=,因为b =所以由余弦定理得,222232cos a c ac B a c ac =+-=+-, 所以2()33a c ac +-=, 所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号所以a c +≤a c +的最大值为故答案为:【点睛】此题考查正弦定理、余弦定理的应用,考查两角和与差的三角函数公式和诱导公式,考查基本不等式的应用,属于中档题17.(1)tan 5C =;(2)4S =. 【分析】 (1)因为3A π=,所以23B C π+=,然后,由sin 3sin B C =变为2sin 3sin 3C C π⎛⎫-=⎪⎝⎭,进而求解即可(2)利用正弦定理和余弦定理,求出b 和c ,利用面积公式求解即可 【详解】解:(1)因为3A π=,所以23B C π+=, 故2sin 3sin 3C C π⎛⎫-=⎪⎝⎭,1sin 3sin 2C C C +=,即5sin 22C C =,得tan 5C =. (2)由sin sin b cB C=,sin 3sin B C =,得3b c =. 在ABC 中,由余弦定理,得22222212cos 92(3)72a b c bc A c c c c c =+-=+-⨯⨯⨯=,又因为a =1c =,3b =,所以ABC 的面积为1sin 24S bc A ==. 【点睛】关键点睛:解题的关键在于利用正弦定理,化简得3b c =,以及利用余弦定理求出b 和c ,难点在于运算,难度属于中档题18.(1)3B π=;(2)a =【分析】(1)在ABC 中,利用正弦定理及其sin cos()6b A a B π=-,可得sin cos()6B Bπ,利用和差公式化简整理可得B .(2)在ABC 中,利用两角和的正弦函数公式可求sin A 的值,进而根据正弦定理即可求解a 的值. 【详解】解:(1)在ABC 中,由正弦定理sin sin a b A B=,又sin cos()6b A a B π=-,可得sin sin sin cos()6B A A Bπ, 因为(0,)A π∈,sin 0A ≠, 可得sin cos()6BBπ, 可得:31sin cos sin 2BBB , 则tan B = 又由(0,)B π∈,可得3B π=.(2)在ABC 中,由余弦定理及5c =,4Cπ,3B π=,可得1sin sin()sin cos sin cos 22224A B C B C C B =+=+=+⨯=, 所以由正弦定理sin sin a cA C=,可得5·sin sin 2c A a C === 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 19.(1)4A π=.(2)2b c +=. 【解析】分析:(1)利用正弦定和三角形内角和定理与三角恒等变换,即可求得A 的值; (2)由三角形面积公式和余弦定理,即可求得b c +的值. 详解:(1)由已知及正弦定理得:sin cos sin sin sin A B B A C +=,()sin sin sin cos cos sin C A B A B A B =+=+ sin cos sin BsinA A B ∴=,sin 0sin cos B A A ≠∴=()0,4A A ππ∈∴=(2)1sin 22ABCSbc A bc ====又()(22222cos 22a b c bc A b c bc =+-∴=+-+所以,()24, 2.b c b c +=+=.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,齐总利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 20.(1)π3;(2)8. 【分析】(1)利用三角形ABC 的面积相等,求出B 的大小;(2)由余弦定理得出AC ,以及cos A ,可得cos 3cos AC A B +的值. 【详解】(1)由三角形面积可知11838sin 22B ⨯=⨯⨯⨯,sin 2B =,又因为B 是锐角,所以π3B ∠=. (2)由(1)可知2222cos 6492449AC AB BC AB BC B =+-⨯⨯=+-=, 所以7AC =.又因为2226449913cos 228714AB AC BC A AB AC +-+-===⨯⨯⨯,因此113cos 3cos 378214AC A B +=⨯+⨯=. 【点睛】本题考查余弦定理在解三角形中的应用,考查三角形的面积公式,属于基础题.21.(1)60B ∠=︒;(2) 【分析】(1)在ADC 中,由正弦定理得可得ADC ∠,从而求得B 角; (2)由直角三角形求得AC ,再用余弦定理计算AD .解:(1)在ADC 中,由正弦定理得:sin sin DC ACDAC ADC =∠∠,由题意得:sin ADC DAC ∠=∠=, ∵6060ADC B BAD B ∠=∠+∠=∠+︒>︒, ∴120ADC =∠︒, ∴60B ∠=︒; (2)3DC =,9BC AC ∴==,∴在 Rt ABC中,AB ===∴cos 3C =, 在ABD △中,由余弦定理得:(222323AD =+-⨯⨯=. 【点睛】本题考查正弦定理、余弦定理解三角形,掌握正弦定理与余弦定理解三角形的类型是解题关键.正弦定理解三角形类型:(1)已知两角及一角对边;(2)已知两边及一边对角(这种类型可能出现两解,需判断);余弦定理解三角形类型:(1)已知两边及夹角;(2)已知三边求内角. 在已知两边及一角时都可得用余弦定理解三角形. 22.(1)1; (2)43. 【分析】(1)由条件结合正弦定理可得sin sin sin B C A =,然后可得答案; (2)设BD x =,CD y =,则1x y +=,然后可得11tan tan 1tan tan()11tan tan 111+++=-+=-===----B C x yx y A B C B C xy xy xy,然后可利用基本不等【详解】(1)由已知及正弦定理,得sin sin sin cos sin cos B C C B B C -= 即sin sin sin cos sin cos sin()B C C B B C B C =+=+因为πB C A +=-,所以sin()sin B C A +=,所以sin sin sin B C A = 所以sin b C a =又因为1a =,所以sin 1AD b C == (2)设BD x =,CD y =,则1x y +=①当0x =,或0y =时,tan 1A = ②当0xy ≠时,1tan =B x,1tan =C y此时11tan tan 1tan tan()11tan tan 111+++=-+=-===----B C x yx y A B C B C xy xy xy因为2x y xy +≥14≤xy 所以11411314≤=--xy,当且仅当x y =时等号成立 所以当12x y ==时,tan A 取得最大值43综上,tan A 的最大值为43【点睛】本题考查了正弦定理、三角恒等变换以及利用基本不等式求最值,考查了学生的转化能力,属于中档题.。

人教新课标A版高中必修5数学1.1 正弦定理和余弦定理同步检测A卷

人教新课标A版高中必修5数学1.1 正弦定理和余弦定理同步检测A卷
25. (5分) (2017·合肥模拟) 已知f(x)=ln(x+m)﹣mx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设m>1,x1 , x2为函数f(x)的两个零点,求证:x1+x2<0.
参考答案
一、 选择题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
A .
B .
C .
D .
7. (2分) 如图所示, , , 三点在地面上的同一直线上, ,从 两点测得 点的仰角分别为 , ,则 点离地面的高为 ( )
A .
B .
C .
D .
8. (2分) (2016高二上·湖北期中) 钝角△OAB三边的比为2 :2 :( ﹣ ),O为坐标原点,A(2,2 )、B(a,a),则a的值为( )
③b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题________.
三、 解答题 (共5题;共55分)
21. (15分) (2017·桂林模拟) 已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
B . 90°
C . 150°
D . 120°
2. (2分) (2018高三上·黑龙江月考) 在 中,角 的对边分别为 ,若 ,则 ( )
A .
B .
C .
D .
3. (2分) (2019高三上·深州月考) 在 中,内角 所对的边分别为 .已知 ,则 ( )

《正弦定理和余弦定理》试题(新人教必修)

《正弦定理和余弦定理》试题(新人教必修)
第8
题.如图,已知△ABC中,AD为
BAC
的均分线,利用正弦定理证明
AB
BD
AC

DC
A
B
π
C
D
AB
BD
答案:证明:由正弦定理得
sin
AC
sin
AB
BD.
DC
AC
DC
sin
π
sin
第9题.在△ABC中,已知sin2
A
sin2B
sin2C,求证:△ABC为直角三角形.
答案:证明:设
a
b
c
k 0,
sin B
x的范围.
cos A
0,
答案:解:
△ABC为锐角三角形,
cos B

x 5,
0且1
cosC
0
2
2
x
2


2
3
0
x
2
2
2
2

13
即3
x
2
0
x
2

x
2
2
2

5
2
3
0
1
x 5.
1
x 5.
5x13.
4 / 7
第14题.在△ABC中.为何说sin A sin B是A
B的充要条件?
答案:因为sin A
sin B
,A
B2180,所以所求B160或
B2
120.
第21题.已知△ABC中,
A
60

B
45,且三角形一边的长为
m,解这个三角
形.
答案:依题意,有

2017-2018学年人教A版数学五课时达标检测(一)正弦定理含答案

2017-2018学年人教A版数学五课时达标检测(一)正弦定理含答案

课时达标检测(一)正弦定理一、选择题1.在△ABC中,下列式子与错误!的值相等的是( )A。

错误!B。

错误!C。

错误! D.错误!解析:选C 由正弦定理得错误!=错误!,所以错误!=错误!.2.在△ABC中,若sin A>sin B,则A与B的大小关系为( )A.A>B B.A<BC.A≥B D.A,B的大小关系不确定解析:选A ∵sin A〉sin B,∴2R sin A>2R sin B,即a>b,故A〉B.3.一个三角形的两个角分别等于120°和45°,若45°角所对的边长是46,那么120°角所对边长是()A.4 B.12错误!C.4错误!D.12解析:选D 若设120°角所对的边长为x,则由正弦定理可得xsin 120°=错误!,于是x=错误!=错误!=12,故选D。

4.在△ABC中,已知b=40,c=20,C=60°,则此三角形的解的情况是()A.有一解B.有两解C.无解D.有解但解的个数不确定解析:选C 由正弦定理得bsin B=错误!,∴sin B=错误!=错误!=错误!〉1.∴角B不存在,即满足条件的三角形不存在.5.以下关于正弦定理或其变形的叙述错误的是()A.在△ABC中,a∶b∶c=sin A∶sin B∶sin CB.在△ABC中,若sin 2A=sin 2B,则a=bC.在△ABC中,若sin A>sin B,则A>B,若A>B,则sin A >sin B都成立D.在△ABC中,错误!=错误!解析:选B 由正弦定理易知A,C,D正确.对于B,由sin 2A=sin 2B,可得A =B ,或2A +2B =π,即A =B ,或A +B =错误!,∴a =b ,或a 2+b 2=c 2,故B 错误.二、填空题6.(北京高考)在△ABC 中,a =3,b =错误!,∠A =错误!,则∠B =________。

2017-2018学年人教A版数学五课时达标检测(四)正、余弦定理在三角形中的应用含答案

2017-2018学年人教A版数学五课时达标检测(四)正、余弦定理在三角形中的应用含答案

课时达标检测(四) 正、余弦定理在三角形中的应用一、选择题1.在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,则cos θ是( )A 。

35B .-错误!C .±错误!D .±错误!解析:选C ∵S △ABC =错误!AB ·BC sin ∠ABC=错误!×2×5×sin θ=4,∴sin θ=45. 又θ∈(0,π),∴cos θ=±错误!=±错误!.2.在△ABC 中,已知A =30°,a =8,b =83,则△ABC 的面积为( )A .32错误!B .16C .323或16D .323或16错误!解析:选D 在△ABC 中,由正弦定理错误!=错误!,得sin B =错误!=错误!=错误!,又b >a ,∴B =60°或120°。

当B =60°时,C =180°-30°-60°=90°,∴S△ABC=错误!×8×8错误!=32错误!;当B=120°时,C=180°-30°-120°=30°,∴S△ABC=错误!ab sin C=错误!×8×8错误!×错误!=16错误!。

3.在△ABC中,A=60°,AB=2,且S△ABC=错误!,则边BC的长为()A.错误!B.3C。

错误!D.7解析:选A ∵S△ABC=12AB·AC sin A=错误!,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3.即BC=3。

4.△ABC的周长为20,面积为103,A=60°,则BC的边长等于( )A.5 B.6C.7 D.8解析:选C 如图,由题意得错误!由②得bc=40,由③得a2=b2+c2-bc=(b+c)2-3bc=(20-a)2-3×40,∴a=7.5.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为错误!m2,则此人这时离开出发点的距离为()A.3 m B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 组 考点能力演练1.(2016·兰州一模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( )A .30°B .45°C .60°D .75°解析:因为在锐角△ABC 中,b =2a sin B ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0<A <π2,所以A =30°,故选A.答案:A2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于( )A.45 B .-45C.1517D .-1517解析:S +a 2=(b +c )2⇒a 2=b 2+c 2-2bc ⎝⎛⎭⎫14sin A -1,由余弦定理得14sin A -1=cos A ,结合sin 2A +cos 2A =1,可得cos A =-1517.答案:D3.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A.12 B .1 C. 3D .2解析:∵a 2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bc sin A=3,故选C.答案:C4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53B.107C.57D.5214解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [π-(A+B )]=sin(A +B )=sin A cos B +cos A ·sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57.答案:C5.(2015·唐山一模)在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:由已知条件可得图形,如图所示,设CD =a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010.答案:B6.(2015·高考重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 答案:47.(2015·高考北京卷)在△ABC 中,a =4,b =5,c =6,则sin 2A sin C =________.解析:由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 答案:18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.解析:∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B .由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35.答案:359.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且23a sin B =5c ,cos B =1114.(1)求角A 的大小;(2)设BC 边的中点为D ,|AD |=192,求△ABC 的面积. 解:(1)由cos B =1114得sin B =5314.又23a sin B =5c ,代入得3a =7c , 由a sin A =csin C得3sin A =7sin C , 3sin A =7sin(A +B ),3sin A =7sin A cos B +7cos A sin B , 得tan A =-3,A =2π3.(2)AB 2+BD 2-2AB ·BD cos B =194,c 2+⎝⎛⎭⎫76c 2-2c ·76c ·1114=194,c =3,则a =7. S =12ac sin B =12×3×7×5314=1534. 10.(2016·杭州模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -12c =b .(1)求角A 的大小;(2)若a =1,求△ABC 周长的取值范围.解:(1)由a cos C -12c =b 得sin A cos C -12sin C =sinB.又sin B =sin(A +C )=sin A cos C +cos A sin C , 所以12sin C =-cos A sin C .因为sin C ≠0,所以cos A =-12.又因为0<A <π,所以A =2π3.(2)由正弦定理得b =a sin B sin A =23sin B ,c =23sin C .l =a +b +c =1+23(sin B +sin C )=1+23[sin B +sin(A +B )] =1+23⎝⎛⎭⎫12sin B +32cos B=1+23sin ⎝⎛⎭⎫B +π3. 因为A =2π3,所以B ∈⎝⎛⎭⎫0,π3, 所以B +π3∈⎝⎛⎭⎫π3,2π3. 所以sin ⎝⎛⎭⎫B +π3∈⎝⎛⎦⎤32,1. 所以△ABC 的周长的取值范围为⎝⎛⎦⎤2,233+1.B 组 高考题型专练1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 解析:由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin2π3=b12,所以b =1.答案:12.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,故a =8. 答案:83.(2015·高考课标卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解:(1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.4.(2015·高考湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B ,所以sin B =cos A .(2)因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34.由(1)sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°.由cos A =sin B =32知A =30°,从而C =180°-(A +B )=30°. 综上所述,A =30°,B =120°,C =30°.5.(2015·高考浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.解:(1)由tan ⎝⎛⎭⎫π4+A =2,得 tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =bsin B,得b =3 5.由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9.。

相关文档
最新文档