九年级数学下册 26.2 用树状图或列表法求概率(第2课时

合集下载

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

思考: 一位同学画出如图所示的树状图.
第1次摸出球 第2次摸出球


红 白红 白
知1-导
从而得到,“摸出两个红球”和“摸出两个白球”的 概 率相等,“摸出一红一白”的概率最大.
他的分析有道理吗?为什么?
分析:把两个白球分别记作白1,和白2.如图, 用画树 状图的 方法看看有哪些等可能的结果:
知1-导
并且它们发生的可能性都相等,事件A包含其
中的m种结果,那么事件A发生的概率P(A)
=

知识点 1 两步试验的树状图
知1-导
问题
口袋中装有1个红球和2个白球,搅匀后从中摸出 1个球, 放回搅匀,再摸出第2个球,两次摸球就可能出现3种结 果:
(1)都是红球; (2)都是白球; (3)一红一白. 这三个事件发生的概率相等吗?
知1-练
2 质地均匀的骰子六个面分别刻有1到6的点数,掷
两次骰子,得到向上一面的两个点数,则下列事
件中,发生可能性最大的是( )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13 D.点数的和小于2
(来自《典中点》)
知1-练
3 如图,一个小球从A点入口往下落,在每个交叉口 都有向左或向右两种可能,且两种可能性相等.则
同步练习
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一 个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成 相等的三个扇形).
12
12 3
如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏 者获胜的概率.
解:每次游戏时,所有可能出现的结果如下:
关注的结果数,既不能遗漏任何一种

湘教版九年级下册数学用画树状图法求概率测试题

湘教版九年级下册数学用画树状图法求概率测试题

湘教版九年级数学下册测试题测试题湘教版初中数学第2课时 用画树状图法求概率1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).A .1B .101C .1001D .10001 3.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .61 4.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51B .52C .53D .54 5.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.6.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.7.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.8.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.9.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.10.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.11.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.12.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?13.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中1有红球4个,绿球5个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.15.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.初中生提高做题效率的方法厚薄读书法:复习课本要厚薄结合著名数学家华罗庚先生说:“书要能从薄读到厚,还要能从厚读到薄。

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

第三章概率的进一步认识3.1 用树状图或表格求概率第 2 课时一、教学目标1.能运用画树状图和列表的方法计算一些简单事件的概率.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《石头、剪刀、布》图片、《用列举法求概率——列表法》微课.五、教学过程【复习引入】1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师出示问题,学生回忆上节课节课所学内容.设计意图:通过对上节课的复习帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?师生活动:教师出示问题,学生思考、讨论,教师适当引导,最后师生共同得出答案.解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状共同图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为31 93 =;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为31 93 =;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为31 93 =.因此,这个游戏对三人是公平的.师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.设计意图:本例题从理论上求出了在玩“石头、剪刀、布”的游戏时双方胜、平、负的概率,让学生进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.【典例精析】例小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?师生活动:教师找几名学生板演,讲解出现的问题.分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就最大.解:选择数字7;理由:列表如下:由表可知,共有36种可能的结果,每种结果出现的可能性相同,其中和为7的概率最大,概率为61366=,所以选择数字7获胜的概率最大.【课堂练习】1.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得的面朝上的点数之和是3的倍数的概率是().A .B .C .D .2.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P =_________.3.小莉和爸爸玩“锤子、剪刀、布”的游戏,每次用一只手可以出“锤子、剪刀、布”三种手势之一,规则是:锤子赢剪刀、剪刀赢布、布赢锤子.若两人出相同手势,则算打平.如果小莉这次出“布”手势,则小莉赢的概率是___________.4.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏________(填“公平”或“不公平”).5.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.师生活动:教师找几名学生板演,讲解出现的问题.6.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字1,2,3,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.参考答案1.A .2..3.13.4.不公平.5.解:将三张大小一样而画面不同的画片分别记为A ,B ,C ,将出现的可能结果列表如下:由表可知,出现的总结果有9种,其中,能拼成原来的一幅画的结果有(A 上,A 下),13165185613(B 上,B 下),(C 上,C 下)三种,所以所求的概率为3193. 解:列表分析如下:由列表可知,所有可能出现的结果有9种,其中第二次抽取的数字大于第一次抽取的数字的情况有3种,所以P (第二次抽取的数字大于第一次抽取的数字)==.设计意图:让学生加深对所学知识的理解.六、课堂小结1.用树状图或表格求概率注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(2)1.用树状图或表格求概率3913。

九年级数学下册第26章概率初步:用树状图法求概率习题课件新版沪科版pptx

九年级数学下册第26章概率初步:用树状图法求概率习题课件新版沪科版pptx
HK版九年级下
第26章 概率初步
26.2 等可能情形下的概率计算
提示:点击 进入习题
答案显示
1D 2A 3D 4C
5D 6D 7 见习题 8 见习题
提示:点击 进入习题
9 见习题
10 见习题 11 见习题
12 见习题
答案显示
1.【中考·大连】不透明袋子中装有红、绿小球各一个,除
颜色外无其他差别,随机摸出一个小球后,放回并摇匀,
A.217B.13Fra bibliotekC.19
D.29
6.小红、小明、小芳在一起做游戏时,需要确定游戏的先
后顺序.他们约定用“石头、剪刀、布”的方式确定,则
在一个回合中三个人都出“布”的概率是( D )
1
1
1
1
A.3
B.9
C.18
D.27
7.小刚很擅长球类运动,课外活动时,足球队、篮球队 都力邀他到自己的阵营,小刚左右为难,最后决定通 过掷硬币来确定.规则如下:连续抛掷硬币三次,若 三次正面朝上或三次反面朝上,则由小刚任意挑选两 球队;若两次正面朝上一次正面朝下,则小刚加入足 球阵营;若两次反面朝上一次反面朝下,则小刚加入 篮球阵营.
(3)这个规则对两个球队是否公平?为什么? 解:这个规则对两个球队公平.理由如下: 两次正面朝上一次正面朝下的情况有3种,正正反, 正反正,反正正. 两次反面朝上一次反面朝下的情况有3种,正反反, 反正反,反反正.
所以 P(小刚加入足球阵营)= P(小刚加入篮球阵营)=38. 所以这个规则对两个球队公平.
【点拨】本题易混淆“放回”与“不放回”而致错, 第一次“放回”与“不放回”,直接影响第二次等可 能的结果,若放回,则包含放回的小球;若不放回, 则不包含这个小球.

沪科版九年级数学下册同步练习 26.2 等可能情形下的概率计算 含答案

沪科版九年级数学下册同步练习 26.2 等可能情形下的概率计算 含答案

沪科版九年级数学下册同步练习26.2 等可能情形下的概率计算一.选择题(共9小题)1.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,篮球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法,则两次摸到的都是白球的概率为()A. B.C. D.2.同时投掷两枚硬币每次出现反面都向上的概率为()A. B. C. D.3.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为()A. B.C. D.4.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A. B.C. D.5.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A. B.C.D.6.在1,2,3三个数中任取两个,组成一个两位数,则组成的两位数是偶数的概率为()A. B. C. D.7.一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为()A.B. C. D.8.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.9.如图中任意画一个点,落在黑色区域的概率是()(第9题图)A. B. C.π D.50二.填空题(共4小题)10.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.11.甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是.12.抛掷两枚均匀的硬币,硬币落地后,朝上一面恰好出现一正一反的概率是.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三.解答题(共5小题)14.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.15.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或画树状图的方法求出选中小亮A的概率.(第15题图)16.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用画树状图法或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.17.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.18.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.参考答案一.1.A【解析】列表,得(白,蓝)(白,蓝)(黄,蓝)(蓝,蓝)(蓝,蓝)﹣﹣(白,蓝)(白,蓝)(黄,蓝)(蓝,蓝)﹣﹣(蓝,蓝)(白,蓝)(白,蓝)(黄,蓝)﹣﹣(蓝,蓝)(蓝,蓝)(白,黄)(白,黄)﹣﹣(蓝,黄)(蓝,黄)(蓝,黄)(白,白)﹣﹣(黄,白)(蓝,白)(蓝,白)(蓝,白)﹣﹣(白,白)(黄,白)(蓝,白)(蓝,白)(蓝,白)∴一共有30种等可能的结果,两次摸到的都是白球的有2种情况,∴两次摸到的都是白球的概率为=.故选A.【点评】此题考查了通过列表法或画树状图法求概率.注意列表法与画树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为概率=所求情况数与总情况数之比.2.A【解析】画树状图,得(第2题答图)共4种情况,出现反面都向上的有1种情况,所以概率为.故选A.【点评】考查概率的求法;用到的知识点为概率等于所求情况数与总情况数之比;得到反面都向上的情况数是解决本题的关键.3.A【解析】画树状图如答图.(第3题答图)共有9种等可能的结果数,其中两人同坐2号车的结果数为1,所以两人同坐2号车的概率=.故选A.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.4.D【解析】如答图.(第4题答图)共12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.【点评】考查概率的求法;用到的知识点为概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的易错点.5.D【解析】随机掷一枚均匀的硬币两次,落地后情况如下:(第5题答图)至少有一次正面朝上的概率是.故选D.【点评】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.A【解析】如答图.(第6题答图)共有6种情况,是偶数的有2种情况,所以组成的两位数是偶数的概率为.故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.7.D【解析】列表如下:红红黑绿绿绿红﹣﹣﹣(红,红)(黑,红)(绿,红)(绿,红)(绿,红)红(红,红)﹣﹣﹣(黑,红)(绿,红)(绿,红)(绿,红)黑(红,黑)(红,黑)﹣﹣﹣(绿,黑)(绿,黑)(绿,黑)绿(红,绿)(红,绿)(黑,绿)﹣﹣﹣(绿,绿)(绿,绿)绿(红,绿)(红,绿)(黑,绿)(绿,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(黑,绿)(绿,绿)(绿,绿)﹣﹣﹣所有等可能的情况有30种,其中两次都是红球的情况有2种,则P==.故选D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.B【解析】从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为=.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.B【解答】∵黑色区域的面积占了整个图形面积的,∴落在黑色区域的概率是.故选B.【点评】此题主要考查几何概率的意义:如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.二.10.【解析】根据题意知,掷一次骰子有6个可能的结果,而奇数有3个,所以掷到上面为奇数的概率为.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.【解析】画树状图,如答图.(第11题答图)∵共有6种等可能的结果,取出的两球标号之和为4的有2种情况,∴取出的两球标号之和为4的概率是=.【点评】此题考查的是用列表法或画树状图法求概率.注意画树状图法与列表法可以不重复、不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;画树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.【解析】朝上一面发生的结果总数有4种,即(正,正)、(反,反)(正,反)、(反,正),所以朝上一面恰好出现一正一反的概率是.【点评】用到的知识点为概率=所求情况数与总情况数之比.13.3【解析】这个不透明的盒子中装有2+n个球.又∵从中随机摸出一个球,它是白球的概率为,∴=,解得n=3.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三.14.解:(1)设袋中蓝球的个数为x个.∵从中任意摸出一个是白球的概率为,∴=,解得x=1.∴袋中蓝球的个数为1;(2)画树状图,如答图.(3)(第14题答图)∵共有12种等可能的结果,两次都是摸到白球的有2种情况,∴两次都是摸到白球的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复、不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,画树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,(2)×360°=54°,40×35%=14;补充图形如答图.(3)600×=330;…(2分)(4)画树状图,如答图.∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)(第15题答图)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复、不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,画树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.解:(1)画树状图如答图.(第16题答图)∵共有9种等可能结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为;(2)∵小明同学两科都抽到准备得较好的实验题目的有3种情况,∴他两科都抽到准备得较好的实验题目的概率为=.【点评】此题考查了利用画树状图法与列表法求概率.用到的知识点为概率=所求情况数与总情况数之比.17.解:(1)列表如下:小亮和小明 2 3 42 2+2=4 2+3=5 2+4=63 3+2=5 3+3=6 3+4=74 4+2=6 4+3=7 4+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.【点评】此题考查了利用列表法求概率.注意画树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为概率=所求情况数与总情况数之比.18.解:(1)画树状图如答图.(第18题答图)(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为=.【点评】本题考查了列表法与画树状图法,利用列表法或画树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

九年级数学《用列举法求概率(2)》课件

九年级数学《用列举法求概率(2)》课件

解:(2)120×16=96(个).
20
答:估计达到良好及以上的社区有 96 个. (3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用a,b,c,d表 示,根据题意画树状图如下:
共有 12 种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有 2 种, 则小明恰好提到干垃圾和湿垃圾的概率是 2 = 1.
答案图
共有 12 种等可能的结果数,其中两次摸到红球的结果数为 2, 所以两次摸到红球的概率= 2 = 1.
12 6
6.(2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张 卡片的背面朝上,洗匀.
(1)若从中任意抽取 1 张,抽的卡片上的数字恰好为 3 的概率
1
是 4;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取 1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用 “画树状图”或“列表”等方法写出分析过程)
பைடு நூலகம்
为( C )
A.1
B.1
C.1
D.2
4
3
2
3
8.(创新题)数学课上,李老师准备了四张背面看上去无差别的 卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如 图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中 随机抽取一张卡片后不放回,再随机抽取一张.
a=1 b= 2 c=3 A
解:(1)画树状图得:
答案图
则点Q所有可能的坐标有 (1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) 共12种.
(2)∵共有 12 种等可能的结果,其中在函数 y=-x+5 的图象上

沪科版九年级数学下册第2课时 用“树状图”或“列表法”求概率课件

沪科版九年级数学下册第2课时 用“树状图”或“列表法”求概率课件

解 设2名领奖学生都是女生的事件为A ,
两种奖项各选1名学生的结果用“树状图”来
表示.
开始
获演奏奖的

女'
女"
获演奏奖的 男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
由于共有12种结果,且每种结果出现的 可能性相等,其中2名领奖学生都是女生的结 果有4种,所以事件A发生的概率为
运用列表法求概率的步骤如下: ①列表;
②通过表格确定公式中m、n的值;
③利用P(A)= mn计算事件的概率.
随堂演练
1.学校新开设了航模、彩绘、泥塑三个社团,
如果征征、舟舟两名同学每人随机选择参加其中
一个社团,那么征征和舟舟选到同一社团的概率
是( C )
2
1
1
1
A. 3
B.2
C. 3
D. 4
2.从1、2、-3三个数中,随机抽取两个数相
P(A)= 1 4
思考 1枚出现正面、1枚出现反面的概率 是多少?
设1枚出现正面、1枚出现反面的事件为B P(B)= 1 2
计算等可能情形下概率的关键是确定所 有可能性相等的结果总数n和求出其中使事件 A发生的结果总数m.“树状图”能帮助我们有 序地思考,不重复、不遗漏地得出n和m.
例3 某班有1名男生、2名女生在校文艺演 出中获演唱奖,另有2名男生、2名女生获演奏 奖.从获演唱奖和演奏奖的学生中各选1名去领 奖,求2名领奖学生都是女生的概率.
解 同时抛掷2枚硬币一次,可能出现如下4 种不同的结果:
(正,正),(正,反),(反,正),(反,反)
我们可以用“树状图”来表示上述所有可 能出现的结果.
第1枚
第2枚 结果

26.2.3 用列表法求概率

26.2.3  用列表法求概率

(2)从表中所列结果可以得到,两次摸牌所有等可能出现的
结果有16种,其中都是既是中心对称图形又是轴对称图 9 . 形的有9种,故所求概率是 16
知2-讲
总 结
对于两次操作事件的概率,如抽取牌,放回和不
放回其概率是有区别的,如第一次抽出不放回,则第
二次就不能抽出第一次抽出的牌了,实质上反映在表 格上就是去掉表格中一条对角线上的所有结果.
知2-讲
总 结
从这个例子 中再次体会弄清 楚所有可能结果 的重
要性.
如同“树状 图”一样,“列表 法”也能帮助我们 有序地思考.
(来自教材)
知2-讲
例4 如图所示,有四张背面相同的纸牌A、B、C、D,其正面分 别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后 随机摸出一张,放回后洗匀,再随机摸出一张. (1)用列表法表示两次摸牌所有可能出现的结果(纸牌用A、B、 C、D表示); (2)求两次摸牌的牌面图形都是既是中心对称图形,又是轴对 称图形的概率.
可能结果.虽然同时抛掷2枚均匀的骰子一次,点数 之 和可能为2,3,•••,12中的任何一种,但是它们并不是 发生的所有可能结果.所有可能结果有哪些呢?我们知 道: 第1枚骰子可能掷出1,2,…,6中的每一种情况, 第2枚骰 子也可能掷出1,2,…,6中的每一种情况, 而且无论第1枚 骰子掷出1,2,中的哪一种情况,第2枚 骰子都可能掷 出1,2,…,6中的任一种情况.所以我们
可能性相等,求两个圆盘的指针同时落在偶数代表的
扇形上的概率.
(来自教材)
知2-练
3 (中考· 株洲)从2,3,4,5中任意选两个数,记作a和b,
12 那么点(a,b)在函数y= 图象上的概率是( x 1 1 1 1 A. B. C. D. 2 3 4 6

用画树状图法求概率(教案、教学反思、导学案)

用画树状图法求概率(教案、教学反思、导学案)

第2课时用画树状图法求概率【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入,初步认识播放视频《田忌赛马》,提出问题,引入新课.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.(1)你知道孙膑给的是怎样的建议吗?(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.二、思考探究,获取新知1.用列表法求概率课本第136页例2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.【教学说明】教师引导学生列表,使学生动手体会如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,总结并解答.指导学生如何规范的应用列表法解决概率问题.由例2可总结得:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:①列表;②通过表格确定公式中m、n的值;③利用P(A)=m/n计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?答:“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作此改动对所得结果没有影响.2.树状图法求概率.课本第138页例3.分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?介绍树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤:①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图”法方便?一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、运用新知,深化理解在一只不透明的盒子里装有用“贝贝”(B)、“晶晶”(J)、“欢欢”(H)、“迎迎”(Y)和“妮妮”(N)五个福娃的图片制成的五张外形完全相同的卡片.小华设计了四种卡片获奖的方案(每个方案都是前后共抽两次,每次从盒子里抽取一张卡片).(1)第一次抽取后放回盒子并混合均匀,先抽到“B”后抽到“J”;(2)第一次抽取后放回盒子并混合均匀,抽到“B”和“J”(不分先后);(3)第一次抽取后不再放回盒子,先抽到“B”后抽到“J”;(4)第一次抽取后不再放回盒子,抽到“B”和“J”(不分先后);问:(1)上述四种方案,抽中卡片的概率依次是_____,_____,_____,_____;(2)如果让你选择其中的一种方案,你会选择哪种方案?为什么?【教学说明】这是只涉及两个步骤的试验,一般情况下用列表法求解,但第(3)、(4)种方案中涉及到“不放回”的问题,我们选择树状图法更好.学生交流合作,教师指导分析列表或画树状图.【答案】(1)1/25,2/25,1/20,1/10;(2)选择方案(4),因为方案(4)获奖的可能性比其它几种方案获奖的可能性大.四、师生互动,课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?【教学说明】教师提出问题,让学生进行回顾思考,并相互交流.1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.25.2 用列举法求概率第2课时用画树状图法求概率一、导学1.导入课题:猜一猜:假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果3枚卵全部成功孵化,则3只雏鸟中恰有3只雌鸟的概率是多少?问题:你能用列表法列举所有可能出现的结果吗?本节课我们学习用画树状图法列举所有可能出现的结果. (板书课题)2.学习目标:会用画树状图法求出事件发生的概率.3.学习重、难点:重点:用画树状图法列举所有可能出现的结果.难点:画树状图.4.自学指导:(1)自学内容:教材第138页至第139页的例3.(2)自学时间:10分钟.(3)自学方法:认真阅读思考后,弄清树状图的画法及作用.(4)自学参考提纲:①本次试验涉及到 3 个因素,用列表法不能(能或不能)列举所有可能出现的结果.②摸甲口袋的球会出现 2 种结果,摸乙口袋的球会出现3 种结果,摸丙口袋的球会出现2 种结果.画树状图为:③由树形图得,所有可能出现的结果有12 种,它们出现的可能性相等.满足只有一个元音字母的结果有5 种,则P(一个元音)=5 12.满足只有两个元音字母的结果有4 种,则P(两个元音)=1 3 .满足三个全部为元音字母的结果有 1 种,则P(三个元音)=1 12.满足全是辅音字母的结果有 2 种,则P(三个辅音)=1 6 .④你还能用别的方法列举出全部结果吗?试试看.(A,C,H ),(A,C,I),(A,D,H),(A,D,I),(A,E,H),(A,E,I),(B,C,H),(B,C,I),(B,D,H),(B,D,I),(B,E,H ),(B,E,I).二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:了解学生是否会画树状图.(2)差异指导:教师对个别突出的个性或共性问题进行适时点拨引导.2.生助生:引导学生通过合作交流解决疑点.四、强化1.画树状图法适用的条件,树状图的画法及作用.2.练习:(1)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:①三辆车全部继续直行;②两辆车向右转,一辆车向左转;③至少有两辆车向左转. 解:设三辆汽车分别为甲、乙、丙,它们经过十字路口时所有可能发生的结果用树状图表示如下:由图可知,所有可能的结果有27种,这些结果出现的可能性相等.② 满足三辆车全部继续直行(记为事件A )的结果有1种,所以()P A =127. ②两辆车向右转,一辆车向左转(记为事件B )的结果有3种,所以()PB ==31279. ③至少有两辆车向左转(记为事件C )的结果有7种,所以()P C =727. (2)假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚卵全部成功孵化,那么3只雏鸟中恰有3只雌鸟的概率是多少?解:设3枚卵分别为甲、乙、丙,它们卵化后的可能结果如下:由图可知,所有可能的结果有8种.这些结果出现的可能性相等.其中满足3只雏鸟中恰有3只雌鸟(记为事件A )的结果有1种,所以P (A )=18.(3)一只蚂蚁要在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是多少?解:用树状图表示蚂蚁的路径如下:其中“1”表示没有食物,“2”表示有食物.由图可知,所有可能出现的结果有6种,这些结果出现的可能性相等.蚂蚁能获得食物(记为事件A )的结果有2种.所以()P A ==2163. 五、评价 1.学生的自我评价(围绕三维目标):怎样画树状图?何时用画树状图法比较方便?2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课引入一种新的列举方法——画树状图法,让学生感受到这种方法的简捷性和实用性.通过求较复杂概率的数学活动,针对不同的数学问题,采用不同的数学方法,体验各种方法之间存在的内在联系,体会数学在现实生活中的应用价值,培养学生缜密的逻辑思维习惯和发散性思维.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是(C )A. 23B. 12C. 13D. 142.(10分)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的概率为(A )A. 16B. 14C. 13D. 123.(10分)从1、2、-3三个数中,随机抽取两个数相乘,积是负数的概率是23.4.(10分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,只好把杯盖与茶杯随机地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少?解:杯盖与茶杯的搭配结果如下:由图可知,共有4种搭配结果,其中颜色搭配正确(记为事件A )的结果有2种,所以()P A ==2142.其中颜色搭配错误(记为事件B )的结果有2种,所以()P B ==2142. 5.(30分) 妞妞和爸爸玩“石头、剪刀、布”游戏.每次用一只手可以出“石头”“剪刀”“布”三种手势之一,规则是“石头”赢“剪刀”、“剪刀”赢“布”、“布”赢“石头”,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“石头”手势的概率是多少?解:爸爸可能出“石头”“剪刀”和“布”共3种手势,所以爸爸出“石头”手势的概率为13. (2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?妞妞出“布”,爸爸可能出三种手势中的任意一种,而只有爸爸出“石头”,妞妞才能赢,所以妞妞赢的概率为13. (3)妞妞和爸爸出相同手势的概率是多少?列举出妞妞和爸爸出的手势结果如下:由图可知共有9种可能的结果,且每种结果出现的可能性相等.其中两人出相同手势(记为事件A )的结果有3种,所以()PA ==3193. 二、综合应用(20分) 6.(20分)第一个盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球,1个黄球.解:分别从两个盒中随机取出1个球的可能结果如下图所示:共有6种可能的结果,且每种结果出现的可能性相等.(1)所有的结果中,满足取出的2个球都是黄球(记为事件A )的结果有1种,所以()P A =16. (2)取出的2个球中1个白球,1个黄球(记为事件B )的结果有3种,所以()P B ==3162. 三、拓展延伸(10分)7.(10分) 两张图片形状完全相同,把两张图片全部从中间剪断,再把四张形状相同的小图片混合在一起.从四张图片中随机地摸取一张,接着再随机地摸取一张,则两张小图片恰好合成一张完整图片的概率是多少?解:设第一张图片为A ,剪断的两张分别为A1,A2;第二张图片为B ,剪断的两张分别为B1,B2.列举出所有结果如下:共有12种可能的结果,且每种结果出现的可能性相等.其中恰好合成一张完整图片(记为事件A )的结果有4种,所以()P A ==41123.。

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件
例1 某班有1名男生、2名女生在校文艺演出中获演 唱奖,另有2名男生、2名女生获演奏奖.从获演唱 奖和演奏奖的学生中各任选一人去领奖,求两人都 是女生的概率.
解:设两名领奖学生都是女生的事件为A,两种奖 项各任选1人的结果用“树状图”来表示.
探究新知
开始
获演唱奖的

女'
女''
获演奏奖的
男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
(1)P(全部继续直行)= 1 ; 27
共有27种行驶方向
(2)P(两车向右,一车向左)= 1 ;
(3)
P(至少两车向左)=
7 27
.
9
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;
袋中装有2个相同的小球,分别写有数字1和2.从两个
口袋中各随机取出1个小球,取出的两个小球上都写有
数字2的概率是( C )
A.12
B.13
C.1
4
D.16
解析:如图所示,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14 .
链接中考
2.在一个不透明的袋子里装有两个黄球和一个白球,它 们除颜色外都相同,随机从中摸出一个球,记下颜色后 放回袋子中,充分摇匀后,再随机摸出一个球.两次都 摸到黄球的概率是( A )
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?

九年级数学 第三章 概率的进一步认识1 用树状图或表格求概率第2课时 利用概率判断游戏的公平性作业

九年级数学 第三章 概率的进一步认识1 用树状图或表格求概率第2课时 利用概率判断游戏的公平性作业
第八页,共十四页。
解:不公平,理由如下: 列表如右,由表可知共有9种等可能的结果,其中和为偶数的有5种结果,
和为奇数的有4种结果,∴按照小明的想法参加(cānjiā)敬老

4
5
6
4
8
9
10
5
9
பைடு நூலகம்
10
11
6
10
11
12
服务活动的概率为59 ,按照小亮的想法参加文明礼仪宣传活动的概率
为49 ,由59 ≠49 知这个游戏不公平
第十一页,共十四页。
解:(1)列表(liè biǎo)格表示(a,b)对应的值为:
ab 1 2 3 4
1 (1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
3 (1,3) (2,3) (3,3) (4,3)
第十二页,共十四页。
(2)游戏不公平.∵符合有理数根的有 2 种,而符合无理数根的只有 1 种, ∴P(小丽赢)=16 ,P(小兵赢)=112 .∴P(小丽赢)≠P(小兵赢). ∴这个游戏不公平. 设计方案:小冬抽出(a,b)中使关于 x 的一元二次方程 x2-ax+2b=0 根为等根时小丽赢,方程的根为无理数时小兵赢
第三章 概率(gàilǜ)的进一步认识
3.1 用树状图或表格(biǎogé)求概率
第2课时 利用概率判断游戏的公平性
第一页,共十四页。
第二页,共十四页。
1.小明和小亮做游戏,先各自在纸上写一个正整数,
然后都拿给对方看.
他们约定(yuēdìng):若两人所写的数都是奇数或是偶数,则小明获胜;
若两人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )

沪科版数学九年级下册26 第2课时 用“树状图”或“列表法”求概率教案与反思

沪科版数学九年级下册26 第2课时 用“树状图”或“列表法”求概率教案与反思

26.2等可能情形下的概率计算知人者智,自知者明。

《老子》原创不容易,【关注】,不迷路!第2课时用“树状图”或“列表法”求概率1.进一步学习概率的计算方法,能够进行简单的概率计算;2.理解并掌握用树状图法求概率的方法,能够运用其解决实际问题(重点,难点).3.理解并掌握用列表法求概率的方法,能够运用其解决实际问题(重点,难点).一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:用树状图法求概率【类型一】转盘问题有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?[来源:Z+xx+]解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A大于B的有5种情况,A小于B的有4种情况,再利用概率公式即可求得答案.解:选择A转盘.画树状图得:∵共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,∴P(A大于B)=59,P(A小于B)=49,∴选择A转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为概率等于所求情况数与总情况数之比.【类型二】游戏问题甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是________.解析:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是48=12,故答案为12.方法总结:列表法或画树状图法可不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件. 【类型三】数字问题 将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?解析:(1)将分别标有数字1,2,3的三张卡片匀后,背面朝上放在桌上,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数恰好是4的倍数的情况,再利用概率公式即可求得答案.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴(抽到奇数)=;(2)画树状图得:∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13. 方法总结:用树状图法求概率时,要做到不复不遗漏.本题的解题关键是准确理解题意,求出符合题设的数的个数.探究点二:用列表法求概率[【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:第一次第二次1 21(1,1)(1,2)2(2,1)(2,2)由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(2,1),(2,2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:第一次第二次01 20——(0,1)(0,2)1(1,0)——(1,2)2(2,0)(2,1)——共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.三、板书设计转盘问题↓用树状图法求概率↙↘游戏问题数字问题[教学过程中,强调在面对多步完成的事件时,通常选择树状图求概率.【素材积累】辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。

青岛版九年级下册数学《利用画树状图和列表计算概率》PPT教学课件(第2课时)

青岛版九年级下册数学《利用画树状图和列表计算概率》PPT教学课件(第2课时)

4.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用 “石 头、剪刀、布”的游戏来决定,游戏时三人每次做“石头” “剪 刀”“布”三种手势中的一种,规定“石头” 胜“剪刀”, “剪刀”胜 “布”, “布”胜“石头”. 问一次比赛能淘汰一人的概率是多少?
解:
游戏开始




乙石 剪 布 石 剪 布 石 剪 布
你知道物体与影子有什么关系吗?
物体在日光或灯光的照射下,会在地 面、墙壁等处形成影子,影子与物体 的形状有密切的关系.
投影线
投影面
物体在光线的照射下,会在地面或强面上留下它 的影子,这种现象就是投影 太阳的光线可看作平行的,像这样的光线照射在 物体上,所形成的投影叫做平行投影.光线是投 影线,地面或强面是投影面.

右 左直 右
第 三 左直右左直右 左直右左直右 左直右 左直右 左直右左直右 左直右 辆
共有27种行驶方向 (1) P(全部继续直行) 1
27 (2) P(两车右转,一车左转) 3 1 (3) P(至少两车向左转) 7 27 9
27
3.用数字1,2,3,组成三位数,求其中恰有2个相同的数字的 概率.
(3)旗杆的高度与它投影长的比和小明的身高与他投影
长的比有什么关系?为什么?
1.下图是一棵大树在阳光下的投影,请 画出另一棵树的投影(用线段表示)
2.结合地理知识,谈谈在我国哪些地区会有太阳 直射现象. 这时人的投影是什么样的?
我学会了—— 我感到疑惑的地方是—— 我理解了——
拓展延伸
自学课本P166 做一做
如果阳光斜射在地面上,一张矩形纸片在 地面上的影子会是什么形状?
总结:
不论矩形纸片处于什么位置,在阳光

6.1 用树状图或表格求概率第2课时课件(五四制)九年级数学下册

6.1 用树状图或表格求概率第2课时课件(五四制)九年级数学下册
1 用树状图或表格1求1概1 1率
第2课时
基础主干落实 重点典例研析 素养当堂测评
基础主干落实
3
4
A 公平
重点典例研析
5
【重点1】游戏的公平性 【典例1】(2024·青岛市北区质检)在一个不透明的盒子中装有2枚白色棋子和2 枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出2枚棋子. (1)请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率. 【自主解答】(1)列表如下:
项目 三峡大坝(D) 清江画廊(E) 三峡人家(F)
11
A
B
C1
C2
AD
BD
C1DC2DAE来自BEC1EC2E
AF
BF
C1F
C2F
12
B
13
2.如图,小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的 转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘.若其中一个 转盘转出了红色,另一个转出了蓝色,则可配成紫色.此时,配成紫色的概率是_____.
8
【技法点拨】 游戏公平性问题解决方法
1.分别计算概率:通过列表法或树状图法计算概率. 2.比较:比较两人或两种规则的概率. 3.确定结论:若概率相等,则游戏公平;若概率不相等,则游戏不公平.
9
10
【典例2】(教材再开发·P75“想一想”拓展)宜昌景色宜人,其中三峡大坝、清江画 廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定 在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以 及选派部门、旅游景点等信息如图. (2)设选中C部门游三峡大坝的概率为P1,选中B部门游清江画廊或者三峡人家的概 率为P2,请判断P1,P2大小关系,并说明理由.

(九年级资料)31用树状图或表格求概率第2课时

(九年级资料)31用树状图或表格求概率第2课时

第三章概率的进一步认识3.1 用树状图或表格求概率〔二〕一、学生知识状况分析“两步〞之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。

二、教学任务分析教科书基于学生对等可能事件概率的求解和利用树状图、表格求“两步〞事件经验的累积,提出本节课的具体学习任务:理解树状图和表格法各自的特点,并能根据不同情境选择适当的方法求比拟复杂的事件发生的概率。

而更为长远的学习目标应该让本局部知识与实际问题产生联系,凸显数学的实用性。

本课《游戏公平吗(二)》内容附属于“统计与概率〞这一板块,因而务必效劳于统计教学的远期目标:“开展学生对数据的来源、处理数据的方法以及由此得到的结论进行合理质疑的能力,以切实提高学生统计抉择能力。

〞为此,本节课的教学目标是:①通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法;②通过具体情境,感受一件事情公平与否在现实生活中广泛存在,表达数学的价值;③让学生掌握一定判断事件公平性的方法,提高其决策能力。

三、教学过程分析本节课设计了五个教学环节:第一环节:温故知新,做好铺垫;第二环节:创设情景,导入课题;第三环节:激发兴趣,探求新知;第四环节:稳固根底,检测自我;第五环节:课堂小结,布置作业。

第一环节:温故知新,做好铺垫提问:上节课,你学会了用什么方法求某个事件发生的概率?目的:通过学生答复,回想上节课主要内容,为这节课计算概率做好铺垫。

第二环节:创设情景,导入课题本节是从“石头、剪刀、布〞这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率,进而得到判断游戏规那么公平与否的依据。

本节课提供了多种具体情境,一方面使学生感受概率存在的普遍性,另一方面适应不同的情境,得到概率。

内容(展例如题,引出新课):小明、小颖和小凡做“石头、剪刀、布〞的游戏游戏规那么如下:由小明和小颖玩“石头、剪刀、布〞游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头〞的规那么决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?目的:通过儿时的游戏,激发学生学习新知的兴趣。

九年级数学下 第26章 概率初步26.2 等可能情况下的概率计算第3课时 用列表法求概率学

九年级数学下 第26章 概率初步26.2 等可能情况下的概率计算第3课时 用列表法求概率学

用列表法求概率学习目标:学会可能出现的结果数较大时,可以采用列表法来列出各种可能的结果,以避免重复或漏计。

活动过程:活动一 列举事件发生的所有可能 各同学思考下列问题,小组长组织交流 同时掷两枚质地均匀的硬币有几种可能的结果? 同时掷两枚质地均匀的骰子有几种可能的结果?问题2与问题1相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。

怎样避免这个问题呢?活动二 运用列表法求概率各同学自主完成例1的解题过程,小组交流、订正,并完成题后小结 例1:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2。

解:思考 :将题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?(就本例的3个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能的结果,因此作此改动对所得结果没有影响。

)题后小结:当一个事件涉及两个因素且可能出现的结果数目较多时,通常采用 列表法。

其步骤如下:① ②1 2 3 4 5 6 1 2 3 4 5 6填写表格过程中,注意数对的有序性。

③ 活动三 牛刀小试小组长组织交流,将解答过程展示于小黑板上某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同)。

选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次)。

作为游戏者,你会选择哪个装置呢?并请说明理由。

活动四 再回首本堂课你学到了哪些知识与方法?在运用时有哪些细节要向大家做个提醒呢?1、如果试验只涉及两个因素,并且每个因素取值数为有限多个的情形,就可以用列表法求概率,即使涉及两因素有先后顺序的概率问题,这个表也是适用的。

《等可能情形下的概率计算+第2课时》精品教学方案

《等可能情形下的概率计算+第2课时》精品教学方案

第二十六章概率初步26.2 等可能情形下的概率计算第2课时用直接列举法和列表法求概率一、教学目标1.会用直接列举法和列表法求简单事件的概率;2.能利用概率知识解决涉及两个因素的事件的概率问题;3.经历试验、列表、统计、运算等活动,渗透数形结合,分类讨论、特殊到一般的思想,培养学生在具体情境中分析问题和解决问题的能力;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:会用直接列举法和列表法求简单事件的概率.难点:当可能出现的结果很多时,会用列表法列出所有可能得结果.三、教学用具多媒体等.四、教学过程设计【探究】问题3 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1,2,…,6,记抛出的点数之和等于8为事件A,则事件A发生的概率是多少?教师活动:带领学生进行分析,要求事件A发生的概率,即用事件A包含的结果的个数除以这个试验所有可能的结果的个数.如何求所有可能的结果呢?如果我们把每一种可能的结果记为(x,y),其中x表示第一枚骰子向上一面的点数,y表示第二枚骰子向上一面的点数.让学生尝试用列举法列举出这个试验所有可能的结果,在学生感受到结果较多,一个个列举太麻烦之后,教师提示:有没有其他的方法来求概率呢?引出列表法.老师逐步按照分步的方式,把事件分为两步,第1步:掷第1枚骰子,第2步:掷第2枚骰子,然后逐步列表.教师此时可使学生明确:当一个试验有两个相关因素,且所有可能的结果较多时,为不重不漏地列出所有可能的结果,通常采用列表法.预设答案:从上面表格中可以看出,同时抛掷2枚骰子一次,所有可能出现的结果有36种,由于骰子是均匀的,所以每个结果出现的可能性相等.事件A的结果有:(2,6),(3,5),(4,4),(5,3),(6,2)共5种.所以P(A)=5 36.追问:记抛出的点数之和等于12为事件B,则事件B发生的概率是多少?预设答案:事件B的结果只有:(6,6)一种.所以P(B)=1 36.【归纳】用列表法求概率的步骤:1.列表;2.通过表格计数,确定所有等可能的结果数n 和关注的结果数m的值;3.利用概率公式mP An=()计算出事件的概率.【典型例题】1辆车,并且仔细观察第2辆车的情况,如比第1辆车好,就乘第2辆车;如不比第1辆车好,就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适度较好的车?解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:(上中下),(上下中),(中上下),(中下上),(下上中),(下中上).假定6种顺序出现的可能性相等,我们来看一看在各种可能的顺序之下,甲、乙两人分别会乘到哪一辆汽车:不难得出,甲乘到上等、中等、下等3种汽车的概率都是13;而乙乘到上等汽车的概率是36=12,乘到中等汽车的概率是26=13,乘到下等汽车的概率却只有1 6 .答:乙的乘车办法更有利于乘上舒适度较好的车. 教师活动:教师给出练习,随时观察学生完成情况思维导图的形式呈现本节课的主要内容:教科书第99页练习第4题.。

湘教版九年级数学下册第2课时 用树状图法求概率课件

湘教版九年级数学下册第2课时 用树状图法求概率课件

►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
(1)怎样表示和列举一次游戏的所有可能的结果? (2)用A,B,C表示指定事件:
A:“小明胜”; B:“小华胜”; C:“平局”. 求事件A,B,C的概率.
石头 剪刀 布 石头 剪刀 布 石头 剪刀 布
(石头,石头)
(石头,剪刀)
(石头,布) (1)一次游戏共 (剪刀,石头) 有9个可能结果, (剪刀,剪刀) 而且它们出现的 (剪刀,布) 可能性相等. (布,石头)
能结果:(乙,丙,甲),(丙,乙,甲).
P A 2 0.25.
8
(1)列表法和树形图法的优点是什么?
优点:利用树形图或表格可以清晰地表示出某个事件发 生的所有可能出现的结果;从而较方便地求出某些事件 发生的概率.
(2)什么时候使用“列表法”方便?什么时候使用“树形图 法”方便?
当试验包含两步时,列表法比较方便,当然,此时也可 以用树形图法;当试验在三步或三步以上时,用树形图 法方便.
93
93
93
如图,甲、乙、丙三人做传球的游戏.开始时,球在甲 手中,每次传球,持球的人将球任意传给其余两人中的一人, 如此传球3 次. (1)写出3 次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球3次后,球又回到甲的手中”,写 出A发生的所有可能结果; (3)求P(A).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档