数学人教B版必修3教案:3.3 几何概型 Word版含答案
人教新课标版数学高一数学人教B版必修3学案几何概型
§3.3随机数的含义与应用3.3.1几何概型自主学习学习目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.自学导引1.几何概型的概念事件A理解为区域Ω的某一子区域A,如图,A的概率只与子区域A的____________(长度、面积或体积)成________,而与A的________和________无关.满足以上条件的试验称为____________.2.几何概型的概率计算公式在几何概型中,事件A的概率定义为:________________,其中,μΩ表示________________,μA表示________________________.对点讲练知识点一与长度或角度有关的几何概型例1公共汽车站每隔5 min有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车不超过3 min的概率.点评几何概型应用广泛,其难点是确定几何度量.本例中,设定乘客到站后开来一辆公共汽车的时刻t后,就容易写出Ω、A,这里设“t”是关键.变式迁移1某人从东西走向的河的南岸向东北方向游去,游了100 m后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100 m之内能够到达南岸边的概率.知识点二与面积有关的几何概型例2在墙上挂着一块边长为16 cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm,某人站在3 m之外向此板投镖.设投镖击中线上或没有投中木板都不算,可重投,问:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?点评在研究射击、射箭、投中、射门等实际问题时,常借助于区域的面积来计算概率的值.此时,只需分清各自区域特征,分别计算其面积,然后利用公式P(A)=构成事件A的区域面积来计算事件的概率.试验的全部结果构成的区域面积变式迁移2两个对讲机持有者莉莉和霍伊都为卡尔货运公司工作,他们的对讲机接收范围为25公里,在下午3∶00时莉莉正在基地正东距离基地30公里以内的某处向基地行驶.而此时霍伊正在基地正北距基地40公里以内的某地向基地行驶,试计算他们能够通过对讲机交谈的概率有多大?知识点三与体积有关的几何概型问题例3在1升高产小麦种子中混入了1粒带麦锈病的种子,从中随机取出10毫升,则“取出的种子中含有麦锈病的种子”的概率是多少?点评如果试验的结果所成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总的体积及事件A所分布的体积.其概率的计算P(A)=构成事件A的区域体积试验的全部结果构成的区域体积.变式迁移3有一杯2升的水,其中含有一个细菌,用一个小杯从这水中取出0.1升水,求小杯水中含有这个细菌的概率.1.几何概型与古典概型的异同点(1)相同点古典概型与几何概型中基本事件发生的可能性都是相等的.(2)不同点①古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.②在古典概型中,概率为0的事件为不可能事件,概率为1的事件是必然事件,而在几何概型中概率为0的事件可能发生,概率为1的事件不一定发生.2.几何概型计算步骤(1)判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.(2)计算基本事件的总体与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点.(3)利用概率公式计算.课时作业一、选择题1.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( ) A.12 B.13 C.14 D.16 2.一张方桌的图案如图所示,将一颗豆子随机扔到桌面上,假设豆子不落在线上,则豆子落在红色区域和落在黄色或绿色区域的概率分别是( )A.13,23B.13,16C.16,13D.23,343.在正方形ABCD 内任取一点P ,则使∠APB >90°的概率是( )A.π8B.π4C.π16D.π24.在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,落在正方形内的概率为( )A.12B.14C.14πD.12π5.在区间(10,20-1,20,30,2内来到车站,故Ω={x |t -5<x ≤t },欲乘客候车时间不超过3 min ,必有t -3≤x ≤t ,所以A ={x |t -3≤x ≤t },所以P (A )=A 的度量Ω的度量=35=0.6. 答 乘客候车时间不超过3 min 的概率为0.6.变式迁移1 解如图所示,某人从B 沿北偏东45°方向游了100 m 到达O 点处.由图可知,∠OBA =45°,OA =OB =100 m ,在点O 处只有向阴影方向游100 m 之内才能到达岸边,故所求的概率为P =90°360°=14. 例2 解 S 正方形=16×16=256(cm 2),S 小圆=π×22=4π(cm 2),S 圆环=π×42-π×22=12π(cm 2),S 大圆=π×62=36π(cm 2),S 大圆外=16×16-36π=(256-36π)(cm 2),则(1)投中大圆的概率P (A 1)=36π256≈0.442. (2)投中小圆与中圆形成的圆环的概率为P (A 2)=12π256≈0.147. (3)投中大圆之外的概率为P (A 3)=256-36π256=1-36π256=1-P (A 1)≈0.558. 变式迁移2 解 设x 和y 分别代表莉莉和霍伊距基地的距离,于是0≤x ≤30,0≤y ≤40.则他俩所有可能的距离的数据构成有序数对(x ,y ),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为试验的全部结果,每一个点都代表莉莉和霍伊的一个特定的位置,他们可以通过对讲机交谈这一事件仅当他们之间的距离不超过25公里时发生,因此构成该事件的点由满足不等式x 2+y 2≤25的数对组成,此不等式等价于x 2+y 2≤625.图中,长和宽分别为40和30的矩形区域表示试验的所有结果构成的区域,以25为半径的14圆的区域表示事件发生的区域,而矩形的面积为30×40=1 200(平方公里),而扇形的面积为14π×252=625π4(平方公里),故所求事件成功的概率为 P =625π4×1 200=625π4 800=25π192. 例3 解 取出10毫升种子,其中“含有麦锈病种子”记为事件A ,则P (A )=取出的种子体积所有种子体积=101 000=0.01. 所以“含有麦锈病种子”的概率为0.01.变式迁移3 解 记“小水杯中含有这个细菌”为事件A ,则事件A 的概率只与取出水的体积有关,符合几何概型的条件,又μA =0.1升,μΩ=2升,所以由几何概型的概率公式,得P (A )=μA μΩ=0.12=0.05. 课时作业1.B2.A3.A4.D5.C 6.113解析 由题意得,区域D 所对应的面积是大正方形的面积S 大=13,事件A ={飞镖落在阴影部分}对应的区域面积是阴影部分(小正方形)的面积,S阴=(13-22-2)2=1,所以P (A )=113. 7.7138.23解析 由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23. 9.解 如图所示,在CB 上取点M 0,使∠CAM 0=30°,设BC =a ,则CM 0=33AC =33BC =33a . 于是有P (∠CAM <30°)=CM 0CB =33a a=33. 10.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34. (2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为P (A )=3×2-12×223×2=23.。
人教版高中必修3(B版)3.3.1几何概型教学设计
人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。
2.掌握分段讨论和间断函数的求解方法。
3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。
4.培养学生的逻辑思维和推理能力。
二、教学重点
1.了解几何概型的性质。
2.学会运用几何概型的思想解决几何问题。
三、教学难点
1.掌握分段讨论和间断函数的求解方法。
2.学会几何问题中常用的一些策略和方法。
四、教学资源
1.人教版高中数学(B版)教材。
2.电脑和投影仪。
3.黑板、彩色粉笔。
五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。
2. 理论讲解
1.讲解几何概型的概念和性质。
2.介绍分段讨论和间断函数的求解方法。
3.讲解如何运用几何概型的思想解决几何问题。
3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。
2.带着学生复习之前学过的几何知识,解决一些常见问题。
4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。
同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。
六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。
2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。
3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。
高中数学人教B版必修3 3.3 教学设计 《几何概型》(人教)
《几何概型》◆教学目标【知识与能力目标】初步体会几何概型的意义,会用公式求解简单的几何概型的概率。
【过程与方法能力目标】通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法。
【情感态度价值观目标】用具有现实意义的实例,激发学生的学习兴趣培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
◆教学重难点◆【教学重点】几何概型的基本特征及如何求几何概型的概率。
【教学难点】如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量。
◆教学过程一、新课导入我们知道古典概型只有在满足“有限性”和“等可能性”两个性质的前提下才能适用,那么对于试验结果有无穷多个的情形该怎样处理呢?例1.在转盘上有8个面积相等的扇形,转动转盘,求转盘停止转动时指针落在阴影部分的概率。
例2. 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率。
观察上述两例,可知以上两个试验的可能结果个数无限,所以它们都不是古典概型。
先看例1,由经验得知“指针落在阴影部分的概率”可以用阴影部分的面积与总面积之.比来衡量,即P(A)=12同样地,例2中由于取水样的随机性,所求事件A : “在取出的2ml的水样中有草履虫”=0.04.的概率等于水样的体积与总体积之比2500二、探究新知通过对上述例题的探讨,引出几何概型的概念以及特点进行归纳总结。
几何概型如果把事件A理解为区域Ω的某一个子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称满足以上条件的试验为几何概型。
在几何概型中,事件A的概率定义为:P(A)=µA,其中μΩ表示区域Ω的几何度量,μAµΩ。
高中数学人教B版必修3学案3.3.1 几何概型 Word版含解析
随机数的含义与应用几何概型.理解几何概型的定义及特点.(重点).掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点).与长度、角度有关的几何概型问题.(易混点)[基础·初探]教材整理几何概型阅读教材,完成下列问题..定义如果把事件理解为区域Ω的某一子区域(如图--所示),的概率只与子区域的几何度量(长度、面积或体积)成正比,而与的位置和形状无关,满足以上条件的试验称为几何概型.图--.几何概型的概率公式在几何概型中,事件的概率定义为:()=,其中μΩ表示区域Ω的几何度量,μ表示子区域的几何度量..判断(正确的打“√”,错误的打“×”)()几何概型的概率与构成事件的区域形状无关.( )()在射击中,运动员击中靶心的概率在()内.( )()几何概型的基本事件有无数多个.( )【答案】()√()×()√.在区间[-]上随机取一个数,则≤的概率为.【解析】∵区间[-]的长度为,由≤得∈[-],而区间[-]的长度为,取每个值为随机的,∴在[-]上取一个数,≤的概率=.【答案】[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型]某汽车站每隔有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过的概率.【精彩点拨】乘客在上一辆车发车后的之内到达车站,等车时间会超过.【尝试解答】设上一辆车于时刻到达,而下一辆车于时刻到达,则线段的长度为,设是线段上的点,且=,=,如图所示.记“等车时间超过”为事件,则当乘客到达车站的时刻落在线段上(不含端。
高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》
几何概型一李立峰(广东省汕头市澄海中学)一、教材与考试大纲要求分析《几何概型》人教版必修3第三章第3节的内容,考试大纲要求:了解几何概型的意义。
从大纲要求及近年全国卷考题可以看到,几何概型的意义及计算是概率中的重要知识,在考题中也经常出现。
二、教学目标1理解几何概型的概念及特点。
通过实例分析,从“特殊 一般”的归纳推理,从长度、面积多角度展示满足几何概型的问题的特点,由实例分析让学生理几何概型的概念和特点;注意古典概型与几何概型的联系与区别,在对比的过程中掌握几何概型的概念及特点。
2理解并掌握几何概型的计算公式。
通过设计问题情境,将教材中实例进行大胆改编,通过分析,从长度、面积多角度分析几何概型问题的计算规律,从而引导学生自行归纳出几何概型的计算公式。
3综合运用几何概型的知识与其他知识网络交汇解决问题。
通过例题和习题的设计,把几何概型与时间长度、图形对称性、几何体体积、生活中的实例结合起来,提高学生分析和解决问题的能力,培养学生对数学问题进行抽象概括和建模的能力。
三、学情分析学生对本内容的学习,主要存在以下三个方面的问题及困惑:1 几何概型的概念的未能正确理解。
解决方法:通过生活实例分析,通过与古典概型的对比,加深学生对几何概型的概念的理解,掌握几何概型的特点。
2未能正确几何概型解决一些实际问题。
解决方法:通过例题、习题分析,使学生在理解好几何概型的概念和计算公式的基础上,培养学生的数学建模素养,进而使学生能运用几何概型解决一些实际问题。
3对古典概型与几何概型区分不清。
解决方法:通过背景相近例题的不同设问的分析、对比,使学生正确理解好古典概型与几何概型,注意两者的联系,正确辨析两者的区别。
四、教学策略分析型与几何概型的联系和区别、几何概型与其他知识网络的交汇。
在教学中通过情境的引入、实例的分析、不同概型的对比,采用问题引导的方式,让学生围绕本节的主线来思考,通过自主探究来深化学生对几何概型的理解和掌握,自主区分古典概型与几何概型的区别,培养学生的数学建模素养。
人教版高中必修3(B版)3.3.1几何概型课程设计
人教版高中必修3(B版)3.3.1几何概型课程设计一、课程背景几何概型是高中数学必修课程的重要内容之一,也是初中数学学习中重要的过渡环节。
在高中课程中,几何概型的学习不仅有利于学生形成立体思维,还有助于他们理解和掌握解决实际问题的几何方法。
本课程主要是以建立学生对几何概型基本概念和方法的认识为主要目的,同时也要在实际问题中应用所学几何知识并使学生形成科学的思维方法和逻辑思维能力。
二、教材分析本课程所使用的教材为人教版高中必修3(B版)。
该教材对几何概型的教学内容进行了比较详细的描述,包括基本概念、基本定理、平面几何、空间几何等内容。
在本课程的教学过程中,将会结合教材中的内容,进行教学和辅导。
三、课程目标本课程的主要目标是:1.让学生掌握几何概型的基本概念和术语。
2.让学生掌握几何概型的基本定理和证明方法。
3.培养学生观察、分析、解决几何问题的能力。
4.培养学生科学的思维方法和逻辑思维能力。
四、课程内容和教学方法本课程的主要内容包括:几何概型的基本概念和术语、基本定理和证明方法、平面几何与空间几何等内容。
在教学过程中,将会采用以下教学方法:1.讲解法。
通过讲解教材内容,引导学生理解概念和定理,并且让学生能够掌握证明方法。
2.实例法。
通过实际问题引出几何概型的相关知识,让学生在解决实际问题的过程中掌握几何知识。
3.讨论法。
通过讨论教材上的例题或是学生提出的问题,让学生积极参与,提高他们的思维能力和分析能力。
4.实验法。
通过实验让学生在实践中感性认识几何知识,提高他们的实际操作能力。
五、课程评估本课程的评估方式主要包括课堂测试、作业评定、实验报告、考试等。
其中,考试是本课程的重要评估方式,在考试中将会设置选择题、填空题、解答题等不同考试题型,从而全面考察学生掌握几何概型的情况。
除了考试,本课程也将充分重视学生的学习兴趣、思维习惯、合作精神等方面的培养,从而全面评估学生的学习成绩。
六、教学资源本课程的教学资源主要包括教师教学PPT、教材、讲义、练习册、作业、实验器材等。
人教版高中数学必修三(教案)3.3几何概型(2课时)
第一课时 3.3.1 几何概型教学要求:结合已学过两种随机事件发生的概率的方法,更进一步研究试验结果为无穷多时的概率问题理解几何概型的定义与计算公式.教学重点:初步体会几何概型的意义.教学难点:对几何概型的理解.教学过程:一、复习准备:1. 回忆基本事件的两个特点:(1)任何两个基本事件是互斥的。
(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.回忆古典概型有两个特征:有限性和等可能性.3.提出问题:在现实生活中,常常遇到试验结果是无穷多的情况,那又怎样计算呢?二、讲授新课:1. 教学:几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability )简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果不是有限个.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故3()5g P A ==Ω的长度的长度 例2.某个人午觉醒来,他打开收音机。
想听电台报时,求他等待的时间不多于10分钟的概率.分析:在0到60分钟任一时刻打开收音机是等可能的,但0到60分钟之间有无穷个时刻,不能用古典概型的公式计算,,因为是等可能的,所以他在哪一时段打开收音机的概率只与该时段的长度有关而与位置无关,这符合几何概型的要求.)3. 小结: 如何利用几何概型事件和随机模拟方法来求一些求知量?三、巩固练习:1.(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.答案:592.猪八戒每天早上7点至9点之间起床,求它在7点半之前起床的概率.(将问题转化为时间长度)1. 作业:P137,A 组第1题第二课时 3.3.2均匀随机数的产生教学要求:让学生知道如何利用计算机Excel 软件产生均匀随机数关利用随机模拟方法估计求知量.教学重点:体会随机模拟中的统计思想.教学难点:如何把求未知量的问题转化为几何概型概率的问题.教学过程:一、复习准备:1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.二、讲授新课:1.教学:均匀随机数的产生操作方法与整数值随机数产生的方法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。
数学人教B版必修3导学案:§3.3 几何概型 Word版含解析
教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?撰稿教师:赵志岩结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、知能训练:1.与长度有关的几何概型例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?2.与面积有关的几何概型例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?3.与体积有关的几何概型例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?4.与角度有关的几何概型例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC 和∠BOC 都不小于30°的概率.注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型基本上包括了我们所要学习的几何概型,希望能对大家有一点帮助.3.3.2 随机数的含义与应用------阅读教材110---114.。
推荐-新人教版高中数学《3.3几何概型》教案必修三
第六课时几何概型一、教学任务分析:1、通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。
2、通过学生玩转盘游戏、教师分析得出几何概型概率计算公式。
3、通过例题教学,使学生能掌握几何概型概率计算公式的应用,并理解均匀分布的概念。
二、教学重点与难点:重点:(1)几何概型概率计算公式及应用。
(2)如何利用几何概型,把问题转化为各种几何概型问题。
难点:正确判断几何概型并求出概率。
三、教学基本流程:四、教学情境设计:问题问题设计意图师生活动(1)谁能叙述古典概型的有关知识吗?复习上节课相关知识师:提出问题,引导学生回忆,对学生活动进行评价。
生:回忆、概括。
(2)现实生活中,常常遇到试验的所有可能结果是无穷多的情况,如何计算概率?引出课题:几何概型。
师:提出问题,引导学生思考,激发兴趣。
生:思考。
(3)学生玩转盘游戏,猜想在两种情况下,甲获胜的概率是多少?让学生通过观察,猜想几何概型的特点及计算公式。
师:提出问题,引导学生思考、猜想,得出几何概型的概率计算公式。
生:观察、思考、猜想。
(4)你能说说几何概型与古典概型的区别吗?引导学生分析、比较,更加深对几何概型的理解。
师:引导学生比较两种概型的区别,明确几何概型要求的基本事件有无限多个,明确几何概型的复习古典概型的概念提出问题,引入课题学生玩转盘游戏、猜想甲获胜的概率几何概型的概念、特点、与古典概型的区别例1 的教学,明确几何概型的计算步骤练习和小结计算公式。
生:思考,比较,理解。
(5)例题,P 147练习。
通过例1明确与长度有关的几何概型概率的求法。
在练习中设置与角度、面积、体积有关的几何概型的概率求法。
师:引导学生把问题抽象为与长度有关的几何概型问题,并明确求解步骤。
师生共同完成解题过程,然后学生独立完成相应练习,教师进行点评。
引导学生阅读书本P 131明确均匀分布的概念。
生:思考完成练习。
(6)小结,作业布置P 149习题A 组1、2。
数学人教B版必修3教案:3.3 几何概型 Word版含答案
例2 :某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)=605060 =61,即此人等车时间不多于10分钟的概率为61. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.例3: 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率.解:记“钻到油层面”为事件A ,则P(A)= 所有海域的大陆架面积储藏石油的大陆架面积=1000040=0.004. 答:钻到油层面的概率是0.004.例4: 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则P(A)= 所有种子的体积取出的种子体积=100010=0.01. 答:取出的种子中含有麦诱病的种子的概率是0.01.例5 (课本例2)(三)课堂练习1.已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率.2.两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m 的概率.3.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 .。
人教版高中数学必修3-3.3《几何概型》参考教案1
3.3.1 几何概型教学目标:1、学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型及古典概型;3、提高学生判断与选择几何概型的概率公式的能力。
教学重点与难点:重点:1、几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择教学方法:“学生为主体,教师为主导”的探究性学习模式板书设计:教学过程:【知识回顾】古典概型的特点及其概率公式: (1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数【课前练习】(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;学生求解:1;6p =甲16p =乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?① ②学生分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;2、利用B 区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B 区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长 法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积 【问题猜想】1.两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?2.你是如何解决这些问题的?3.有什么方法确保所求的概率是正确的?学生对比分析:。
2019-2020年高中数学 3.3几何概型教案 新人教B版必修3
2019-2020年高中数学 3.3几何概型教案 新人教B 版必修3教学目标:初步体会几何概型的意义。
教学重点:初步体会几何概型的意义。
教学过程:1.古典概型要求样本点总数为有限.若是有无限个样本点,特别是连续无限的情况,虽是等可能的,也不能利用古典概型.但是类似的算法可以推广到这种情形.若样本空间是一个包含无限个点的区域Ω(一维,二维,三维或n 维),样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,样本点落在这两区域上的概率相等,而与形状和位置都无关”.在这种理解下,若记事件A={任取一个样本点,它落在区域g},则A 的概率定义为P(A)=. 这样定义的概率称为几何概率.2.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故P(A)=.例2(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.因为两人谁也没有讲好确切的时间,故样本点由两个数(甲乙两人各自到达的时刻)组成.以7点钟作为计算时间的起点,设甲乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y) | 0≤x ≤60,0≤y ≤60},画成图为一正方形.会面的充要条件是|x -y| ≤20,即事件A={可以会面}所对应的区域是图中的阴影线部分.P(A)=9560)2060(60222=--=Ω的面积的面积g课堂练习:略小结:通过实例初步体会几何概型的意义课后作业:略2019-2020年高中数学 3.3几何概型教案苏教版必修3教学目标:1、知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)=;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)会利用均匀随机数解决具体的有关概率的问题.2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
高中数学 331几何概型教案 新人教B版必修3 教案
《几何概型》教学设计一、教学目标1.知识与技能目标:(1)通过本部分内容的学习,理解几何概型的意义、特点,掌握几何概型的概率公式;(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
2.过程与方法目标:(1)情境引入,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(2)通过小组的探究讨论,让学生学会分享自己的见解,培养学生的团队合作精神。
3.情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,同时随机试验多,学习时养成勤学严谨的思维习惯。
通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.二、重点、难点1. 教学重点:体会几何概型的意义,几何概型的概念和公式的应用,注意理解几何概型与古典概型的区别与联系2.教学难点:在几何概型中把试验的基本事件和随机事件与某一特定的几何区域及其子区域对应,并且从中理解如何利用几何概型的知识把实际问题转化为各种几何概率问题,进而熟练应用几何概型的概率公式计算相关事件发生的概率。
三、教学设计情境引入设计意图问题1:若A={1,2,3,4,5,6,7,8,9},则从A中任取出一个数,这个数不大于3的概率是多少?变式1:若A=(0,9],则从A中任意取出一个数,则这个数不大于3的概率是多少?问题2:2008年奥运会期间,某厂商为推销其生产的福娃产品,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,可获得一套福娃玩具。
高中数学 第三章 概率 3.3 几何概型教案 新人教B版必修3
《几何概型》教案教学目标1.了解几何概型的定义及其特点. 2.了解几何概型与古典概型的区别.3.会用几何概型的概率计算公式求几何概型的概率. 教学重难点1.注意理解几何概型与古典概型的区别.2.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积教学过程[情境导学] 在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,例如:一个正方形方格内有一内切圆,往这个方格中投一个石子,求石子落在圆内的概率,由于石子可能落在方格中的任何一点,这个实验不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题. 探究点一 几何概型的概念思考1 计算随机事件发生的概率,我们已经学习了哪些方法?答 (1)通过做试验或计算机模拟,用频率估计概率;(2)利用古典概型的概率公式计算.思考2 某班公交车到终点站的时间可能是11:30~12:00之间的任何一个时刻;往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等? 答 出现的结果是无限个;每个结果出现的可能性是相等的.思考3 下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?答 以转盘(1)为游戏工具时,甲获胜的概率为12;以转盘(2)为游戏工具时,甲获胜的概率为35.思考 4 上述每个扇形区域对应的圆弧的长度(或扇形的面积)和它所在位置都是可以变化的,从结论来看,甲获胜的概率与字母B 所在扇形区域的哪个因素有关?哪个因素无关?答 与扇形的弧长(或面积)有关,与扇形区域所在的位置无关.思考5 玩转盘游戏中所求的概率就是几何概型,你能给几何概型下个定义吗?参照古典概型的特征,几何概型有哪两个基本特征?答 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型;几何概型的基本特征:(1)可能出现的结果有无限多个;(2)每个结果发生的可能性相等. 思考6 古典概型和几何概型有什么相同点和不同点? 答 相同点:两者基本事件发生的可能性都是相等的;不同点:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个. 例1 判断下列试验中事件A 发生的概型是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率; (2)思考3中,求甲获胜的概率.解 (1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.反思与感悟 判断一个概率是古典概型还是几何概型的步骤:(1)判断一次试验中每个基本事件发生的概率是否相等,若不相等,那么这个概率既不是古典概型也不是几何概型;(2)如果一次试验中每个基本事件发生的概率相等,再判断试验结果的有限性,当试验结果有有限个时,这个概率是古典概型;当试验结果有无限个时,这个概率是几何概型.跟踪训练1 判断下列试验是否为几何概型,并说明理由: (1)某月某日,某个市区降雨的概率.(2)设A 为圆周上一定点,在圆周上等可能地任取一点与A 连接,求弦长超过半径的概率.解 (1)不是几何概型,因为它不具有等可能性;(2)是几何概型,因为它具有无限性与等可能性.探究点二 几何概型的概率公式问题 对于具有几何意义的随机事件,或可以化归为几何问题的随机事件,一般都有几何概型的特性,那么,对于属于几何概型的试验,如何求某一事件的概率?有没有求几何概型的概率公式呢?思考1 有一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1 m 的概率是多少?你是怎样计算的?答 从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.如上图,记“剪得两段的长都不小于1 m”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,于是事件A 发生的概率P (A )=13.思考2 射箭比赛的箭靶涂有五个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会射箭比赛的靶面直径是122 cm ,黄心直径是12.2 cm ,运动员在距离靶面70 m 外射箭.假设射箭都等可能射中靶面内任何一点,那么如何计算射中黄心的概率?答 如右图,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,若要射中黄心,则中靶点落在面积为14×π×12.22 cm 2的圆内,所以P =14×π×12.2214×π×1222=0.01.思考3 在装有5升纯净水的容器中放入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是多少?你是怎样计算的?答 概率为15,由于病毒在5升水中的哪个位置的可能性都有,1升水中含有病毒的概率为1升水的体积除以5升水的体积.思考4 根据上述3个思考中求概率的方法,你能归纳出求几何概型中事件A 发生的概率的计算公式吗? 答 P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.例2 某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求乘客候车时间不超过6分钟的概率.解 如下图所示,设上辆车于时刻T 1到达,而下辆车于时刻T 2到达,则线段T 1T 2的长度为10,设T 是线段T 1T 2上的点,且TT 2的长为6,记“等车时间不超过6分钟”为事件A ,则事件A 发生即当点t 落在线段TT 2上,即D =T 1T 2=10,d =TT 2=6.所以P (A )=d D =610=35. 故乘客候车时间不超过6分钟的概率为35.反思与感悟 数形结合为几何概型问题的解决提供了简捷直观的解法.利用图解题的关键:首先用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的几何区域,然后根据构成这两个区域的几何长度(面积或体积),用几何概型概率公式求出事件A 的概率.跟踪训练2 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解 记“等待的时间小于10分钟”为事件A ,打开收音机的时刻位于[50,60]时间段内则事件A 发生.由几何概型的概率公式求得P (A )=60-5060=16,即“等待报时的时间不超过10分钟”的概率为16.探究点三 几何概型的应用例3 在Rt△ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM |>|AC |的概率. 解设事件D 为“作射线CM ,使|AM |>|AC |”. 在AB 上取点C ′使|AC ′|=|AC |, 因为△ACC ′是等腰三角形,所以∠ACC ′=180°-30°2=75°,μA =90-75=15,μΩ=90, 所以P (D )=1590=16.反思与感悟 几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在∠ACB 内的任意位置是等可能的.若以长度为“测度”,就是错误的,因为M 在AB 上的落点不是等可能的.跟踪训练3 在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 ∵∠B =60°,∠C =45°,∴∠BAC =75°, 在Rt△ADB 中,AD =3,∠B =60°, ∴BD =ADtan 60°=1,∠BAD =30°. 记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式得P (N )=30°75°=25.【当堂测、查疑缺】1.下列关于几何概型的说法错误的是( )A .几何概型也是古典概型中的一种B .几何概型中事件发生的概率与位置、形状无关C .几何概型中每一个结果的发生具有等可能性D .几何概型在一次试验中能出现的结果有无限个 答案 A解析 几何概型与古典概型是两种不同的概型.2.面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ) A.13B.12C.14D.16答案 B解析 向△ABC 内部投一点的结果有无限个,属于几何概型.设点落在△ABD 内为事件M ,则P (M )=△ABD 的面积△ABC 的面积=12.3.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B .1-π4C.π8D .1-π8答案 B解析 若以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1, 故所求事件的概率为P (A )=S 长方形-S 半圆S 长方形=1-π4.4.在区间[-1,1]上随机取一个数x ,则sin πx 4的值介于-12与22之间的概率为________.答案 56解析 ∵-1≤x ≤1,∴-π4≤πx 4≤π4.由-12≤sin πx 4≤22,得-π6≤πx 4≤π4,即-23≤x ≤1.故所求事件的概率为1+232=56.作业:习题3.3A 1,2,3。
2022年高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》9
3.3几何概型〔1〕人教版:必修3 牛亚竹一、教学目标:1、理解几何概型的概念,能识别几何摡型并会用其概率公式求解;2、经历从具体到抽象、特殊到一般的思维过程,体会数学建模的一般方法;通过问题求解,领会将实际问题或一般数学问题转化为几何问题的解题策略;3、在实际问题数学化的过程中感受数学与现实世界的联系;在探索交流活动中感受合作的乐趣,提高学习的兴趣。
二、教学重点与难点:教学重点:几何摡型概念的建构。
教学难点:从实际背景中观察、推断、归纳出几何概型概率计算公式。
三、教学方法与教学手段:本节课以直观观察为主线,采用“引导发现、归纳猜测〞为主的教学方法;以导向性问题解决作为教学路径,利用多媒体辅助教学手段。
四、教学过程复习:1古典概型〔1〕所有可能出现的根本领件只有有限个有限性〔2〕每个根本领件出现的可能性相等〔等可能性〕我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型2古典概型的概率公式请问:一、在0至9中,任意取出一整数,那么该整数小于3的概率二、在0至9中,任意取出一实数,那么该整数小于3的概率三、有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出升,求小杯水中含有这个细菌的概率四、〔转盘游戏〕:图中有两个转盘甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否那么乙获胜在两种情况下分别求甲获胜的概率是多少设计意图:这些问题都来自于日常生活中,学生们会跃跃欲试,情境具有暗示作用,在暗示作用下,学生不知不觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会被极大的调动起来。
思考:⑴问题二、三、四概率的求法与一、一样吗?假设不一样,请问是什么原因导致的?⑵如何求问题二、三、四的概率?提示:可以借助几何图形的长度、面积等分析概率;⑶有什么方法确保所求的概率是正确的?提示:对转盘游戏进行模拟试验,确保所求的概率是正确的。
分析如下:一、在0至9中,任意取出一整数,那么该整数小于3的概率1分析:0至9中的整数是有限个,且每个整数取到都是等可能的,因此可以利用古典概型。
高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》4
几何概型习题课【三维目标】一、知识与技能1理解几何概型的概念,掌握几何概型的计算公式;2正确将几何概型问题转化为相应的几何图形,用图形的几何度量进行解决问题。
二、过程与方法1通过对几何概型四个测度的探究,培养学生的观察力及归纳推理能力;2通过对长度型与角度型,面积型和体积型的区分,培养学生思维的深刻性和灵活性。
三、情感态度与价值观通过概念的归纳概括,培养学生的观察、分析的能力,积极思维,追求新知的创新意【重点难点】1、重点:理解几何概型的概念,掌握其计算公式;区分几何概型的四种测度,能够准确解决几何概型问题是教学重点。
2、难点:区分几何概型的四种测度,特别是是长度和角度的区别是教学难点。
【教学过程】引例:如图,△ABC,AB=1,AC=√3,BC=2(1)在BC边上任取一点D,求AD>1的概率(2)过A的∠BAC内任取一条射线AD,交BC于D,求AD>1的概率贝特朗悖论:在一个给定的圆内所有弦中任选一条弦,求该弦长度长于圆内接正三角形边长的概率。
例1:分别在区间[0,5]和[0,3]内任取一个实数,依次记为m 和n,则m>n 的概率为_________基本事件空间{m,n|0n}则概率为例2:某校早8:00上课,设A,B 两人在早上7:30~7:50随机到校,则A 比B 至少早5分钟到校的概率为______ 基本事件空间{m,n|01691-m -n, m1-m -n>nn1-m -n>m所以A={m,n|0<m<,0<n<,<mn<1}则概率为41四、【作业布置】五、【课堂小结】1几何概型适用于试验结果是无限多且事件是等可能发生的概率模型.2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P A=错误!六、【教学后记】。
人教B版必修3高中数学3.3.1《几何概型》word学案
3.3.1几何概型
一、【使用说明】
1、课前完成导学案,牢记基础知识,掌握基本题型;
2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。
二、【重点难点】
重点:几何概型的概念及应用;
难点:几何概型的应用.
三、【学习目标】
1、了解并掌握几何概型的概念及其应用,与古典概型相区别;
2、了解几何概型的两个特点:无限性、等可能性;
四、自主学习
1、几何概型的定义及其算法;
2、几何概型的两大特点:
例1、在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫的概率.
例2、取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?
五、合作探究
1、设为圆周上一定点,在圆周上等可能地任取一点与连结,求弦长超过半径的概率?
2、一海豚在水池中自由游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.
3、平面上画了一些彼此相距的平行线,把一枚半径为的硬币任意掷在这平面上,求硬币不与任一条平行线相碰的概率.
4、在面积为的的边上任取一点,求的面积小于的概率
六、总结升华
1、知识与方法:
2、数学思想及方法:
七、当堂检测(见大屏幕)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 :某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)=
605060 =61,即此人等车时间不多于10分钟的概率为6
1. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.
例3: 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率.
解:记“钻到油层面”为事件A ,则P(A)= 所有海域的大陆架面积储藏石油的大陆架面积=10000
40=0.004. 答:钻到油层面的概率是0.004.
例4: 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.
解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则
P(A)= 所有种子的体积取出的种子体积=1000
10=0.01. 答:取出的种子中含有麦诱病的种子的概率是0.01.
例5 (课本例2)
(三)课堂练习
1.已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率.
2.两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m 的概率.
3.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的
点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一
点,则所投点在E 中的概率是 .。