高中数学基础知识基本考点过关题
考点巩固卷12 等差、等比数列(七大考点)(学生版) 2025年高考数学一轮复习考点通关卷(新高考
考点巩固卷12 等差等比数列(七大考点)考点01:单一变量的秒解当数列的选择填空题中只有一个条件时,可将数列看成常数列,即每一项均设为x ,(注意:如果题目中出现公差不为0或公比不为1,则慎用此法)1.已知等差数列{}n a 的前n 项和为123456,6,12n S a a a a a a ++=++=,则12S =( )A .18B .36C .54D .602.已知等差数列{}n a 满足12318a a a ++=,则2a =( )A .5B .6C .7D .83.若{}n a 是正项无穷的等差数列,且396a a +=,则{}n a 的公差d 的取值范围是( )A .[)12,B .305æöç÷èø,C .35¥æö+ç÷èø,D .305éö÷êëø,4.等差数列{}n a 前n 项和为7,4n S a =,则13S =( )A .44B .48C .52D .565.已知等差数列{}n a 满足25815a a a ++=,记{}n a 的前n 项和为n S ,则9S =( )A .18B .24C .27D .456.在等差数列{}n a 中,若354a a +=,则其前7项和为( )A .7B .9C .14D .187.已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( )A .2-B .73C .1D .298.在等比数列{}n a 中,25,a a 是方程2780x x --=的两个根,则16a a =( )A .7B .8C .8-或8D .8-9.已知等差数列{}n a 的前n 项和为S n ,若5414a a a +=+,则15S =( )A .4B .60C .68D .13610.设等差数列{}n a 的前n 项和为n S ,已知2410268a a a ++=,则9S =( )A .272B .270C .157D .153考点02:秒解等差数列的前n 项和等差数列中,有()⇒-=-n n a n S 1212奇偶有适用.()()()()nn n n an n a n a a 12212221212112-=-=-+=--⇒将12-n 换为n 11.在等差数列{}n a 中,公差3d =,n S 为其前n 项和,若89S S =,则17S =( )A .2-B .0C .2D .412.已知n S 是等差数列{}n a 的前n 项和,且7287026S a a =+=,,则{}n a 的公差d =( )A .1B .2C .3D .4.13.已知等差数列{}n a 的公差为d ,前n 项和为n S ,若12413,22a a S +==,则d =( )A .7B .3C .1D .1-14.等差数列 {}n a 中,n S 是其前 n 项和,53253S S -=,则公差 d 的值为( )A .12B .1C .2D .315.记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( )A .72B .73C .13-D .711-16.已知等差数列{}n a 的前15项之和为60,则313a a +=( )A .4B .6C .8D .1017.已知等差数列{}n a 的前n 项和为n S ,23a =,221n n a a =+,若1100n n S a ++=,则n =( )A .8B .9C .10D .1118.n S 是等差数列{}n a 的前n 项和,若1236a a a ++=,7916+=a a ,则9S =( )A .43B .44C .45D .4619.已知n S 是等差数列{}n a 的前n 项和,若23a =,525S =,则442S a a =-( )A .1B .2C .3D .420.已知n S 为等差数列{}n a 的前n 项和,已知848,16S S =-=,则56223839a a a a a ++++=( )A .215B .185C .155D .135考点03:数列片段和问题k k k k k S S S S S 232,,--这样的形式称之为“片段和”①当}{n a 是等差数列时:k k k k k S S S S S 232,,--也为等差数列,且公差为d k 2.②当}{n a 是等比数列时:k k k k k S S S S S 232,,--也为等比数列,且公比为kq .21.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n -=³ÎN ,20n S =,则n 的值为( )A .16B .12C .10D .822.已知等差数列{}n a 的前n 项和为n S ,若330S =,651S =,则9S =( )A .54B .63C .72D .13523.已知等差数列{}n a 的前n 项和为n S ,且365,15S S ==,则9S =( )A .35B .30C .20D .1524.记n S 为等差数列{}n a 的前n 项和,若4127,45S S ==.则8S =( )A .28B .26C .24D .2225.已知等差数列{}n a 的前n 项和为n S ,若42S =,812S =,则20S =( )A .30B .58C .60D .9026.在等差数列{}n a 中,若363,24S S ==,则12S =( )A .100B .120C .57D .1827.等差数列{}n a 的前n 项和为n S .若10111012101310148a a a a +++=,则2024S =( )A .8096B .4048C .4046D .202428.若正项等比数列{}n a 的前n 项和为n S ,且8426S S -=,则9101112a a a a +++的最小值为( )A .22B .24C .26D .2829.设n S 是等比数列{}n a 的前n 项和,若23S =,346a a +=,则108S S =( )A .157B .3115C .2D .633130.在正项等比数列{}n a 中,n S 为其前n 项和,若301010303,80S S S S =+=,则20S 的值为( )A .10B .20C .30D .40考点04:秒杀和比与项比结论1:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dn C B n A T S b a n n n n +-+-==--12121212结论2:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dm C B n A b a m n +-+-=121231.已知等差数列{}n a 与{}n b 的前n 项和分别为,n n S T ,且231n n S n T n +=+,则19119a ab b ++的值为( )A .1311B .2110C .1322D .212032.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且335n n S n T n +=+,则526a b b =+( )A .1417B .417C .313D .1533.已知数列{}{}n n a b ,均为等差数列,其前n 项和分别为n n S T ,,满足(23)(31)n n n S n T +=-,则789610a a ab b ++=+( )A .2B .3C .5D .634.设数列{}n a 和{}n b 都为等差数列,记它们的前n 项和分别为n S 和n T ,满足21n n n a b n =+,则55S T =( )A .12B .37C .59D .3535.已知等差数列{}n a 和{}n b 的前n 项和分别为,n n S T ,若342n n S n T n +=+,则58211a a b b +=+( )A .1713B .3713C .207D .37736.等差数列{}{},n n a b 的前n 项和分别是,n n S T ,若542n n S n T n +=+,则44a b = .37.设等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若对任意正整数n 都有2343n n S n T n -=-,则839457a ab b b b +=++ .38.已知n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,且2131n n S n T n +=-,那么44a b = .39.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T,且523n n S n T n +=+,则220715a a b b ++等于40.已知等差数列{}n a , {}n b 的前n 项和分别为n S ,n T ,且214n nS n T n +=,则537a b b =+ .考点05:等差数列奇偶规律结论()*ÎNn n 2则1,+==-n n a aS S nd S S 偶奇奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a a 则奇数项之和()1212=22n nnn a a n a S na -+×==奇则偶数项之和()22+1+12=22n n n n a a n a S na +×==偶代入公式得1-S =n( )n n S a a nd +-=奇偶,11=S n n n n S na ana a ++=奇偶()*Î+Nn n 12则()()111,11,+++=+=+==-n n n na S a n S nn S S a S S 偶奇偶奇偶奇∵12-n 项,则它的奇数项为127531,,,+n a a a a a 则它的偶数项分别为na a a a 2642,, 则奇数项之和()()()1121112+++=+×+=n n an n a a S 奇则偶数项之和()1222+=×+=n n nan a a S 偶代入公式得()1111+++=-+=-n n n a na a n S S 偶奇()nn na a n S S n n 1111+=+=++偶奇说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和41.已知等差数列{}n a 的项数为()21Ν,m m *+Î其中奇数项之和为140, 偶数项之和为 120,则m =( )A .6B .7C .12D .1342.一个等差数列共100项,其和为80,奇数项和为30,则该数列的公差为( )A .14B .2C .13D .2543.已知等差数列{}n a 的前30项中奇数项的和为A ,偶数项的和为B ,且45B A -=,2615A B =+,则n a =( )A .32n -B .31n -C .31n +D .32n +44.已知数列{}n a 的前n 项和为n S ,且11a =,22a =,13++=n n a a n ,则( )A .45a =B .20300S =C .31720S =D .n 为奇数时,2314+=n n S 45.已知等差数列{}n a 共有21n -项,奇数项之和为60,偶数项之和为54,则n =.46.已知数列{}n a 满足11a =,12,3,n n na n a a n ++ì=í+î为奇数为偶数,则{}n a 的前40项和为.47.已知等差数列{}n a 的项数为21m +()*m ÎN ,其中奇数项之和为140,偶数项之和为120,则数列{}n a 的项数是 .48.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S = .49.在等差数列{}n a 中,已知公差12d =,且1359960+++×××+=a a a a ,求12399100a a a a a +++×××++的值.50.已知{}n a 是等差数列,其中222a =,610a =.(1)求{}n a 的通项公式;(2)求24620a a a a ++++ 的值.考点06: 等差数列前n 项和最值规律方法一:函数法⇒利用等差数列前n 项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解.bn an S n +=2模型演练()n d a n d S d n n na S n n ×÷øöçèæ-+=⇒×-+=222112121122222÷÷÷÷øöççççèæ--÷÷÷÷øöççççèæ-+=⇒d d a d d d a n d S n 2121212212÷øöçèæ--⎥⎦⎤êëé÷øöçèæ--=⇒d a d d a n d S n 由二次函数的最大值、最小值可知,当n 取最接近da 121-的正整数时,n S 取到最大值(或最小值)注意:最接近da 121-的正整数有时1个,有时2个51.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则n S 取最大值时,n =( ).A .9B .10C .9或10D .10或1152.已知等差数列{}n a 的前n 项和为n S ,若50a <,380a a +>,则当n S 取得最小值时,n =( )A .4B .5C .6D .753.设数列{}n a 的前n 项和为11,1,321n nn S S S S n n+-=-=+,则下列说法正确的是( )A .{}n a 是等比数列B .36396,,S S S S S --成等差数列,公差为9-C .当且仅当17n =时,n S 取得最大值D .0n S ³时,n 的最大值为3354.数列{}n a 的前n 项和211n S n n =-,则( )A .110a =B .32a a >C .数列{}n S 有最小项D .n S n ìüíýîþ是等差数列55.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是( )A .1a d>B .使得0n S >成立的最大正整数18n =C .891011a a a a +<+D .n n S a ìüíýîþ中最小项为1100S a 56.等差数列 {}n a 的前 n 项和为 1214,0,0n S a a a >+=,则( )A .80a =B .1n na a +<C .79S S <D .当 0n S < 时, n 的最小值为 1657.已知无穷数列{}n a 满足:110a =-,12n n a a +=+()*N n Î.则数列{}n a 的前n 项和最小值时n 的值为 .58.设等差数列{}n a 的公差为d ,其前n 项和为n S ,且满足991,27a S =-=.(1)求d 的值;(2)当n 为何值时n S 最大,并求出此最大值.59.已知数列{}n a 是公差不为零的等差数列,111a =-,且256,,a a a 成等比数列.(1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,求n S 的最小值.60.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.考点07:等比数列奇偶规律结论()*ÎNn n 2则qS S =奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a aq a a q a a q a a ×=×=×=342312,,∵()q a a a a a a a a a a q a a a a a a a a a a n n n n n n n n =++++++++=++++++++∴-------123253112325311232531222642()*Î+Nn n 12则q S a S =-偶奇112+n ,则它的奇数项分别为13572+1,,,......n a a a a a 则它的偶数项分别为24682,,,......na a a a a q a a q a a q a a ×=×=×=453423,,∵q S a S q a a a a a a a a a a a a a a a a a a a n n n n n n n n =-⇒=+++++++=++++++++∴-+--+-偶奇12226421212532226421212531 说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和61.已知等比数列{}n a 有21n +项,11a =,所有奇数项的和为85,所有偶数项的和为42,则n =( )A .2B .3C .4D .562.已知等比数列{}n a 的前n 项和为n S ,其中10a >,则“31a a >”是“n S 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件63.已知一个等比数列的项数是是偶数,其奇数项之和1011,偶数项之和为2022,则这个数列的公比为( ).A .8B .2-C .4D .264.已知等比数列{}n a 的公比为13-,其前n 项和为n S ,且1a ,243a +,3a 成等差数列,若对任意的*n ÎN ,均有2nnA SB S £-£恒成立,则B A -的最小值为( )A .2B .76C .103D .5365.已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( )A .1B .4C .12D .3666.已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( )A .12B .2C .172341D .34117267.等比数列{}n a 的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q = .68.等比数列的性质已知{}n a 为等比数列,公比为q ,n S 为其前n 项和.(1)若()0,0,1n n S Aq B A q q =+¹¹¹,则A B += ;(2)当0n S ¹时,n S , ,32,n n S S - 为等比数列;(3)若等比数列{}n a 共2k 项,记S 奇为诸奇数项和,S 偶为诸偶数项和,则S S =奇偶 ;69.已知首项均为32的等差数列{}n a 与等比数列{}n b 满足32a b =-,43a b =,且{}n a 的各项均不相等,设n S 为数列{}n b 的前n 项和,则n S 的最大值与最小值之差为 .70.(1)在等比数列{}n a 中,已知248,60n n S S ==,求3n S ;(2)一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.。
高中数学选择性必修一:1.2空间向量基本定理精选考点提升训练
第一章 1.2空间向量基本定理A 级——基础过关练1.已知{a ,b ,c }是空间的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( )A .2aB .2bC .2a +3bD .2a +5c【答案】D 【解析】由于{a ,b ,c }是空间的一个基底,所以a ,b ,c 不共面,在四个选项中,只有D 与p ,q 不共面,因此,2a +5c 与p ,q 能构成一组基底.2.如图,设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A .⎝⎛⎭⎫14,14,14B .⎝⎛⎭⎫34,34,34 C .⎝⎛⎭⎫13,13,13D .⎝⎛⎭⎫23,23,23【答案】A 【解析】由已知OG →=34OG 1→=34(OA →+AG 1→)=34[OA →+13(AB →+AC →)]=34OA →+14[(OB→-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,从而x =y =z =14.3.已知向量a ,b 满足|a |=5,|b |=6,a·b =-6,则cos 〈a ,a +b 〉=( ) A .-3135B .-1935C .1735D .1935【答案】D 【解析】∵|a |=5,|b |=6,a ·b =-6,∴a ·(a +b )=|a |2+a ·b =52-6=19.|a +b |=a +b2=a 2+2a ·b +b 2=25-2×6+36=7,因此cos 〈a ,a +b 〉=a ·a +b|a |·|a +b |=195×7=1935. 4.如图,在三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a ,AC →=b ,AA 1→=c ,用a ,b ,c 表示向量MN →为( )A .13a +13b -cB .a +13b +13cC .13a -13b +13cD .13a +13b +13c【答案】D 【解析】MN →=BN →-BM →=BB 1→+B 1N →-BM →,因为BM =2A 1M ,C 1N =2B 1N ,BB 1→=AA 1→,所以MN →=AA 1→+13B 1C 1→-23BA 1→=AA 1→+13BC →-23((AA 1→-AB →()=AA 1→+13((AC →-AB →()-23(AA 1→-AB →)=13AA 1→+13AC →+13AB →=13a +13b +13c .5.已知{e 1,e 2,e 3}为空间向量的一个基底,若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,且d =αa +βb +γc ,则α,β,γ分别为________.【答案】52,-1,-12 【解析】由题意得a ,b ,c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使得d =αa +βb +γc ,∴d =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ) e 1+(α+β-γ) e 2+(α-β+γ) e 3.又d =e 1+2e 2+3e 3,∴⎩⎪⎨⎪⎧α+β+γ=1,α+β-γ=2,α-β+γ=3,解得⎩⎪⎨⎪⎧α=52,β=-1,γ=-12.6.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC 与BD 交于点O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,用基底{a ,b ,c }表示向量PG →=________.【答案】23a -13b +23c 【解析】PG →=PB →+BG →=PB →+23BD →=PB →+23(BA →+BC →)=PB →+23(P A→-PB →+PC →-PB →)=23P A →-13PB →+23PC →=23a -13b +23c .7.从空间一点P 引出三条射线P A ,PB ,PC ,在P A ,PB ,PC 上分别取PQ →=a ,PR →=b ,PS →=c ,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=________(用a ,b ,c 表示).【答案】-23a +12b +12c 【解析】GH →=PH →-PG →=12(b +c )-23a =-23a +12b +12c .8.如图,已知在四面体ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为点E ,F ,则EF →=________.【答案】3a +3b -5c 【解析】如图,取BC 的中点G ,连接EG ,FG ,则EF →=GF →-GE →=12CD →-12BA →=12CD →+12AB →=12(5a +6b -8c )+12(a -2c )=3a +3b -5c . 9.如图,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)A 1N →; (3)MP →+NC 1→.解:(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c.(3)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c . 10.已知四棱锥P -ABCD 的底面是平行四边形,如图,M 是PC 的中点,问向量P A →,MB →,MD →是否可以组成一个基底,并说明理由.解:P A →,MB →,MD →不可以组成一个基底,理由如下:如图,连接AC ,BD 相交于点O ,连接OM . 因为ABCD 是平行四边形, 所以O 是AC ,BD 的中点. 在△BDM 中,MO →=12(MD →+MB →),在△P AC 中,M 是PC 的中点,O 是AC 的中点,则MO →=12P A →,即P A →=MD →+MB →,即P A →与MD →,MB →共面.所以P A →,MB →,MD →不可以组成一个基底.B 级——能力提升练11.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d≠0,则{a ,b ,d }也可作为空间的一个基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,如果BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面;④已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底.其中真命题的个数是( )A .1B .2C .3D .4【答案】D 【解析】空间任何三个不共面的向量都可作为空间的一个基底,易知①②③④均为真命题.12.若{a ,b ,c }是空间向量的一个基底,且存在实数x ,y ,z 使得x a +y b +z c =0,则x ,y ,z 满足的条件是________.【答案】x =y =z =0 【解析】若x ≠0,则a =-y x b -zx c ,即a 与b ,c 共面.由{a ,b ,c }是空间向量的一个基底,知a ,b ,c 不共面,故x =0,同理y =z =0.13.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是________.【答案】(12,14,10) 【解析】设点A 在基底{a ,b ,c }下对应的向量为p ,则p =8a +6b +4c =8i +8j +6j +6k +4k +4i =12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).14.如图,三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都等于1,∠BAA 1=∠CAA 1=60°. (1)设AA 1→=a ,AB →=b ,AC →=c ,用向量a ,b ,c 表示BC 1→,并求出BC 1的长度; (2)求异面直线AB 1与BC 1所成角的余弦值.解:(1)BC 1→=BB 1→+B 1C 1→=BB 1→+A 1C 1→-A 1B 1→=AA 1→+AC →-AB →=a +c -b , 因为a ·b =|a |·|b |cos ∠BAA 1=1×1×cos(60°=12,同理可得a ·c =b ·c =12,所以|BC 1→|=a +c -b2=a 2+c 2+b 2+2a ·c -2a ·b -2c ·b = 1+1+1+1-1-1= 2. (2)因为AB 1→=a +b , 所以|AB 1→|=a +b2=a 2+b 2+2a ·b =1+1+1= 3.因为AB 1→·BC 1→=(a +b )·(a +c -b )=a 2+a ·c -a ·b +b ·a +c ·b -b 2=1+12-12+12+12-1=1,所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=12×3=66.所以异面直线AB 1与BC 1所成角的余弦值为66. C 级——探究创新练15.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若向量AE →在以{AA 1→,AB →,AD →}为单位正交基底下的坐标为(1,x ,y ),则x =________,y =________.【答案】12 12 【解析】AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(A 1B 1→+B 1C 1→)=AA 1→+12(AB→+AD →)=AA 1→+12AB →+12AD →.16.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. 解:(1)D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ).(2)D 1F →=12(D 1D →+D 1B →)=D 1D →+12DB →=A 1A →+12(AB →-AD →)=-AA 1→+12AB →-12AD →=-c +12a -12b ,所以x =12,y =-12,z =-1.。
高中数学必修1基础知识过关100题带答案
高中数学必修1基础知识过关100题带答案1.方程组3x=6,x+2y=6的解构成的集合是{2}。
2.不同于另外三个集合的是C.{x=1}。
3.若函数f(x)=ax^2-x-1有且仅有一个零点,则实数a的值为1/4.4.是空集的是C.{x|x^2<0}。
5.能使A⊇B成立的实数a的取值范围是B.{a|3<a<4}。
6.若B⊆A,则实数m=4.7.M∪N={3,5,6,7,8}。
8.A∩B={x|x>-1}。
9.M∩N={0}。
10.A∩B={x|-1<x≤3}。
11.A∩(∁B U)=C.{3}。
12.集合C={x|x≥1/2}。
则f(x)=2x+1,x>2或x<-427.若f(x)=ax+b,且f(1)=2,f(2)=3,则a=(),b=().28.已知函数f(x)=x2-4x+3,g(x)=2x-1,则f(g(x))=()A.4x2-12xB.4x2-8x-1C.4x2-4x-1D.4x2-4x+129.已知函数f(x)=x2-x+1,g(x)=x+1,则f(g(x))=() A.x2+2xB.x2+x+1C.x2+2x+1D.x2-2x+130.已知函数f(x)=x3+1,g(x)=x-1,则f(g(x))=()A.x3-x2+xB.x3-3x2+3xC.x3-3xD.x3-2x2+x31.已知函数f(x)=x+1,g(x)=2x-1,则f(g(x))=()A.2xB.2x+1C.2x+2D.2x-132.已知函数f(x)=2x-1,g(x)=x2,则f(g(x))=()A.2x2-1B.2x4-1C.2x2-2D.2x4-2x+133.已知函数f(x)=x2-1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+2x-1D.x2+x34.已知函数f(x)=x+1,g(x)=x2,则f(g(x))=()A.x2+xB.x2+x+1C.x2+2xD.x2+2x+135.已知函数f(x)=x2+1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+x+2D.x2+2x+236.已知函数f(x)=|x|,g(x)=x2,则f(g(x))=()A.|x2|B.x2C.x2+1D.|x2|+137.已知函数f(x)=x2,g(x)=|x|,则f(g(x))=()A.x4B.x2C.|x|2D.|x|27.已知函数f(x) = {2x。
(精选试题附答案)高中数学选修一基本知识过关训练
(名师选题)(精选试题附答案)高中数学选修一基本知识过关训练单选题1、设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1)B.[12,1)C.(0,√22]D.(0,12]答案:C分析:设P(x0,y0),由B(0,b),根据两点间的距离公式表示出|PB|,分类讨论求出|PB|的最大值,再构建齐次不等式,解出即可.设P(x0,y0),由B(0,b),因为x02a2+y02b2=1,a2=b2+c2,所以|PB|2=x02+(y0−b)2=a2(1−y02b2)+(y0−b)2=−c2b2(y0+b3c2)2+b4c2+a2+b2,因为−b≤y0≤b,当−b3c2≤−b,即b2≥c2时,|PB|max2=4b2,即|PB|max=2b,符合题意,由b2≥c2可得a2≥2c2,即0<e≤√22;当−b 3c2>−b,即b2<c2时,|PB|max2=b4c2+a2+b2,即b4c2+a2+b2≤4b2,化简得,(c2−b2)2≤0,显然该不等式不成立.故选:C.小提示:本题解题关键是如何求出|PB|的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.2、美术绘图中常采用“三庭五眼”作图法.三庭:将整个脸部按照发际线至眉骨,眉骨至鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的13,五眼:指脸的宽度比例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为2cm ,五眼中一眼的宽度为1cm ,若图中提供的直线AB 近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为( )A .5√24B .7√24C .9√24D .11√24答案:B分析:建立平面直角坐标系,求出直线AB 的方程,利用点到直线距离公式进行求解.如图,以鼻尖所在位置为原点O ,中庭下边界为x 轴,垂直中庭下边界为y 轴,建立平面直角坐标系,则A (12,4),B (-32,2),直线AB : y -42-4=x -12-32-12,整理为x -y +72=0,原点O 到直线距离为|72|√1+17√24,故选:B3、已知两点A(2,−3),B(−3,2),直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .−4≤k ≤−14B .k ≤−4或k ≥−14C .−4≤k ≤34D .−34≤k ≤4答案:B分析:数形结合法,讨论直线l 过A 、B 时对应的斜率,进而判断率k 的范围. 如下图示,当直线l 过A 时,k =−3−12−1=−4, 当直线l 过B 时,k =2−1−3−1=−14,由图知:k ≤−4或k ≥−14. 故选:B4、已知空间三点A (−2,0,8),P (m,m,m ),B (4,−4,6),若向量PA ⃑⃑⃑⃑⃑ 与PB ⃑⃑⃑⃑⃑ 的夹角为60°,则实数m =( ) A .1B .2C .−1D .−2 答案:B分析:直接由空间向量的夹角公式计算即可 ∵A (−2,0,8),P (m,m,m ),B (4,−4,6),∴PA⃑⃑⃑⃑⃑ =(−2−m,−m,8−m ),PB ⃑⃑⃑⃑⃑ =(4−m,−4−m,6−m ) 由题意有cos60°=|PA⃑⃑⃑⃑⃑ ⋅PB ⃑⃑⃑⃑⃑ ||PA ⃑⃑⃑⃑⃑ ||PB ⃑⃑⃑⃑⃑ |=2√3m 2−12m+68√3m 2−12m+68即3m 2−12m+682=3m 2−12m +40,整理得m 2−4m +4=0, 解得m =2 故选:B5、已知圆C :x 2+y 2=4,直线L :y =kx +m ,则当k 的值发生变化时,直线被圆C 所截的弦长的最小值为2,则m 的取值为( )A .±2B .±√2C .±√3D .±3 答案:C分析:由直线L 过定点M(0,m),结合圆的对称性以及勾股定理得出m 的取值.直线L :y =kx +m 恒过点M(0,m),由于直线被圆C 所截的弦长的最小值为2,即当直线L 与直线OM 垂直时(O 为原点),弦长取得最小值,于是22=(12×2)2+|OM|2=1+m 2,解得m =±√3. 故选:C6、若直线 y =kx +1与圆x 2+y 2=1相交于A ,B 两点, 且∠AOB =60∘(其中O 为原点), 则k 的值为( ) A .−√33或√33B .√33C .−√2或√2D .√2 答案:A分析:根据点到直线的距离公式即可求解.由∠AOB =60∘可知,圆心(0,0)到直线y =kx +1的距离为√32,根据点到直线的距离公式可得√12+k2=√32⇒k =±√33故选:A小提示:7、过点(1,−2),且焦点在y 轴上的抛物线的标准方程是( ) A .y 2=4x B .y 2=−4x C .x 2=−12y D .x 2=12y 答案:C分析:设抛物线方程为x 2=my ,代入点的坐标,即可求出m 的值,即可得解; 解:依题意设抛物线方程为x 2=my ,因为抛物线过点(1,−2), 所以12=m ×(−2),解得m =−12,所以抛物线方程为x 2=−12y ; 故选:C8、已知动点P 在正方体ABCD −A 1B 1C 1D 1的对角线BD 1(不含端点)上.设D 1PD 1B =λ,若∠APC 为钝角,则实数λ的取值范围为( )A .(0,13)B .(0,12)C .(13,1)D .(12,1) 答案:C分析:建立空间直角坐标系,由题设,建立如图所示的空间直角坐标系D −xyz ,用坐标法计算,利用∠APC 不是平角,可得∠APC 为钝角等价于cos∠APC <0,即PA⃑⃑⃑⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ <0,即可求出实数λ的取值范围.设正方体ABCD −A 1B 1C 1D 1的棱长为1, 则有A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,1) ∴D 1B ⃑⃑⃑⃑⃑⃑⃑ =(1,1,−1),∴设D 1P ⃑⃑⃑⃑⃑⃑⃑ =(λ,λ,−λ),∴PA ⃑⃑⃑⃑⃑ =PD 1⃑⃑⃑⃑⃑⃑⃑ +D 1A ⃑⃑⃑⃑⃑⃑⃑ =(−λ,−λ,λ)+(1,0,−1)=(1−λ,−λ,λ−1), PC ⃑⃑⃑⃑⃑ =PD 1⃑⃑⃑⃑⃑⃑⃑ +D 1C ⃑⃑⃑⃑⃑⃑⃑ =(−λ,−λ,λ)+(0,1,−1)=(−λ,1−λ,λ−1), 由图知∠APC 不是平角,∴∠APC 为钝角等价于cos∠APC <0, ∴PA⃑⃑⃑⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ <0, ∴(1−λ)(−λ)+(−λ)(1−λ)+(λ−1)2=(λ−1)(3λ−1)<0, 解得13<λ<1∴λ的取值范围是(13,1)故选:C.9、设圆C 1:x 2+y 2−2x +4y =4,圆C 2:x 2+y 2+6x −8y =0,则圆C 1,C 2的公切线有( ) A .1条B .2条C .3条D .4条 答案:B分析:先根据圆的方程求出圆心坐标和半径,再根据圆心距与半径的关系即可判断出两圆的位置关系,从而得解.由题意,得圆C1:(x−1)2+(y+2)2=32,圆心C1(1,−2),圆C2:(x+3)2+(y−4)2=52,圆心C2(−3,4),∴5−3<|C1C2|=2√13<5+3,∴C1与C2相交,有2条公切线.故选:B.10、已知两圆分别为圆C1:x2+y2=49和圆C2:x2+y2−6x−8y+9=0,这两圆的位置关系是()A.相离B.相交C.内切D.外切答案:B分析:先求出两圆圆心和半径,再由两圆圆心之间的距离和两圆半径和及半径差比较大小即可求解.由题意得,圆C1圆心(0,0),半径为7;圆C2:(x−3)2+(y−4)2=16,圆心(3,4),半径为4,两圆心之间的距离为√32+42=5,因为7−4<5<7+4,故这两圆的位置关系是相交.故选:B.填空题11、从圆x2+y2−2x−2y+1=0外一点P(2,3)向圆引切线,则此切线的长为______.答案:2分析:作图,利用圆心到定点的距离、半径、切线长满足勾股定理可得.将圆化为标准方程:(x−1)2+(y−1)2=1,则圆心C(1,1),半径1,如图,设P(2,3),|PC|=√5,切线长|PA|=√5−1=2.所以答案是:212、在空间直角坐标系中,点P(x,y,z)满足:x2+y2+z2=16,平面α过点M(1,2,3),且平面α的一个法向量n⃑=(1,1,1),则点P在平面α上所围成的封闭图形的面积等于__________.答案:4π分析:由题意,点P在球面上,所以点P在平面α上所围成的封闭图形即为平面α截球面所得的截面圆,根据球的截面性质求出截面圆的半径r即可求解.解:由题意,点P在以(0,0,0)为球心,半径为4的球面上,所以点P在平面α上所围成的封闭图形即为平面α截球面所得的截面圆,因为平面α的方程为1×(x−1)+1×(y−2)+1×(z−3)=0,即x+y+z−6=0,所以球心(0,0,0)到平面α的距离为d=√12+12+12=2√3,所以截面圆的半径r=√42−(2√3)2=2,截面圆的面积为S=πr2=4π,所以点P在平面α上所围成的封闭图形的面积等于4π.所以答案是:4π.13、已知椭圆E的两个焦点分别为F1,F2,点P为椭圆上一点,且tanPF1F2=13,tanPF2F1=3,则椭圆E的离心率为 __.答案:√104分析:由题意得到tanPF1F2(−tanPF2F1)=−1,即PF1⊥PF2,进而求得|PF1|=√10|PF2|=√10,结合|PF1|+|PF2|=2a,得到√10=2a,即可求得椭圆的离心率.因为tanPF1F2=13,tanPF2F1=3,则tanPF1F2(−tanPF2F1)=−1,所以PF1⊥PF2,且cosPF1F2=√10sinPF1F2=√10,所以|PF1|=|F1F2|cos∠PF1F2=√10|PF2|=|F1F2|sin∠PF1F2=√10,又由|PF1|+|PF2|=2a,即√10√10=2a,即√10=2a,所以e =c a=√104. 所以答案是:√104. 14、已知双曲线E :x 2a 2−y 2b 2=1(a >0,b >0),矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |=6,则双曲线E 的标准方程是______. 答案:x 214−y 234=1分析:如图所示,设AB ,CD 的中点分别为M ,N ,则可得|MN |=2c =2,|BN |=52,再利用双曲线的定义可得a 2=14,即求.由题意得|AB |=3,|BC |=2.如图所示,设AB ,CD 的中点分别为M ,N ,在Rt △BMN 中,|MN |=2c =2,故|BN |=√|BM|2+|MN |2=√(32)2+22=52. 由双曲线的定义可得2a =|BN |−|BM |=52−32=1,则a 2=14,又2c =2,所以c =1,b 2=34. 所以双曲线E 的标准方程是x 214−y 234=1.所以答案是:x 214−y 234=1.15、已知圆x 2+y 2+2x −4y −5=0与x 2+y 2+2x −1=0相交于A 、B 两点,则公共弦AB 的长是___________.答案:2分析:两圆方程相减可得公共弦所在直线方程,利用垂径定理即可得解.解:由题意AB所在的直线方程为:(x2+y2+2x−4y−5)−(x2+y2+2x−1)=0,即y=−1,因为圆x2+y2+2x−1=0的圆心O(−1,0),半径为r=√2,所以,圆心O(−1,0)到直线y=−1的距离为1,所以|AB|=2√2−12=2.所以答案是:2解答题16、直线l过点A(1,2)且与直线x+2y+1=0垂直.(1)求直线l的方程;(2)求圆心在直线l上且过点O(0,0)、B(2,0)的圆的方程.答案:(1)y=2x;(2)(x−1)2+(y−2)2=5.分析:(1)设直线l的方程为2x−y+c=0,将点A的坐标代入直线l的方程,求出c的值,即可得出直线l的方程;(2)设圆心的坐标为(a,2a),根据已知条件可得出关于实数a的等式,求出a的值,可得出圆心坐标以及圆的半径,进而可得出所求圆的方程.(1)因为直线l与直线x+2y+1=0垂直,则直线l的方程可设为2x−y+c=0,又因为直线l过点A(1,2),所以2×1−2+c=0,即c=0,所以直线l的方程为y=2x;(2)因为圆心在直线l:y=2x上,所以圆心坐标可设为(a,2a),又因为该圆过点O(0,0)、B(2,0),所以有(a−0)2+(2a−0)2=(a−2)2+(2a−0)2,解得a=1,所以圆心坐标为(1,2),半径r=√(1−0)2+(2−0)2=√5,故圆的方程为(x −1)2+(y −2)2=5.17、已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)过点A(2√2,1),焦距为2√5,B(0,b).(1)求双曲线C 的方程;(2)是否存在过点D(−32,0)的直线l 与双曲线C 交于M ,N 两点,使△BMN 构成以∠MBN 为顶角的等腰三角形?若存在,求出所有直线l 的方程;若不存在,请说明理由.答案:(1)x 24−y 2=1.(2)存在,直线l 为y =0或2x −16y +3=0.分析:(1)根据焦距、双曲线上的点求双曲线参数,进而写出双曲线C 的方程;(2)由题设有B(0,1),设直线l 为y =k(x +32),M(x 1,y 1),N(x 2,y 2),并联立双曲线方程,应用韦达定理、中点坐标公式求M ,N 的中点坐标,由等腰三角形中垂线性质求参数k ,进而可得直线l 的方程.(1)由题设,c =√5,又A(2√2,1)在双曲线上,∴{a 2+b 2=58a 2−1b 2=1,可得{a 2=4b 2=1, ∴双曲线C 的方程为x 24−y 2=1.(2)由(1)知:B(0,1),直线l 的斜率一定存在,当直线斜率为0时,直线l :y =0,符合题意;设直线l 为y =k(x +32),M(x 1,y 1),N(x 2,y 2), 联立双曲线方程可得:(1−4k 2)x 2−12k 2x −(9k 2+4)=0,由题设{1−4k 2≠0Δ>0, ∴x 1+x 2=12k 21−4k 2,x 1x 2=−9k 2+41−4k 2,则y 1+y 2=k(x 1+x 2+3)=3k 1−4k 2.要使△BMN 构成以∠MBN 为顶角的等腰三角形,则|BM|=|BN|,∴MN 的中点坐标为(6k 21−4k 2,3k2(1−4k 2)),∴−1k =3k 2(1−4k 2)−16k 21−4k 2=8k 2+3k−212k 2,可得k =18或k =−2, 当k =−2时,Δ<0,不合题意,所以k =18,直线l :2x −16y +3=0,∴存在直线l 为y =0或2x −16y +3=0,使△BMN 构成以∠MBN 为顶角的等腰三角形.18、已知△ABC 的顶点坐标为A(−5,−1),B(−1,1),C(−2,3).(1)试判断△ABC 的形状;(2)求AC 边上的高所在直线的方程.答案:(1)直角三角形;(2)3x +4y −1=0.分析:(1)先求AB,AC,BC 直线的斜率,再根据斜率关系即可判断;(2)由k AC =43得AC 边上高线所在直线的斜率为−34,进而根据点斜式求解即可. 解:(1)∵k AB =1+1−1+5=12,k BC =3−1−2+1=−2,k AC =3+1−2+5=43∴k AB ⋅k BC =−1,∴AB ⊥BC ,∴△ABC 为直角三角形(2)因为k AC =3−(−1)−2−(−5)=43,所以,AC 边上高线所在直线的斜率为−34∴直线的方程是y −1=−34(x +1),即3x +4y −1=0 19、如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =√66DO .(1)证明:PA⊥平面PBC;(2)求二面角B−PC−E的余弦值.答案:(1)证明见解析;(2)2√55.分析:(1)要证明PA⊥平面PBC,只需证明PA⊥PB,PA⊥PC即可;(2)方法一:过O作ON∥BC交AB于点N,以O为坐标原点,OA为x轴,ON为y轴建立如图所示的空间直角坐标系,分别算出平面PCB的一个法向量n⃑,平面PCE的一个法向量为m⃑⃑ ,利用公式cos<m⃑⃑ ,n⃑>=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |计算即可得到答案.(1)[方法一]:勾股运算法证明由题设,知△DAE为等边三角形,设AE=1,则DO=√32,CO=BO=12AE=12,所以PO=√66DO=√24,PC=√PO2+OC2=√64=PB=PA又△ABC为等边三角形,则BAsin60∘=2OA,所以BA=√32,PA2+PB2=34=AB2,则∠APB=90∘,所以PA⊥PB,同理PA⊥PC,又PC∩PB=P,所以PA⊥平面PBC;[方法二]:空间直角坐标系法不妨设AB=2√3,则AE=AD=ABsin60°=4,由圆锥性质知DO⊥平面ABC,所以DO=√AD2−AO2=√42−22=2√3,所以PO =√66DO =√2.因为O 是△ABC 的外心,因此AE ⊥BC .在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW ⃑⃑⃑⃑⃑⃑⃑ 方向为x 轴正方向,OE ⃑⃑⃑⃑⃑ 方向为y 轴正方向,OD⃑⃑⃑⃑⃑⃑ 方向为z 轴正方向,建立空间直角坐标系O −xyz ,则A(0,−2,0),B(√3,1,0),C(−√3,1,0),E(0,2,0),P(0,0,√2).所以AP⃑⃑⃑⃑⃑ =(0,2,√2),BP ⃑⃑⃑⃑⃑ =(−√3,−1,√2),CP ⃑⃑⃑⃑⃑ =(√3,−1,√2). 故AP ⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =0−2+2=0,AP ⃑⃑⃑⃑⃑ ⋅CP⃑⃑⃑⃑⃑ =0−2+2=0. 所以AP ⊥BP ,AP ⊥CP .又BP ∩CP =P ,故AP ⊥平面PBC .[方法三]:因为△ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE ⊥BC .因为DO (即PO )垂直于底面,BC 在底面内,所以PO ⊥BC .又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO ∩AE =O ,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA ⊥BC .设AE ∩BC =F ,则F 为BC 的中点,连结PF .设DO =a ,且PO =√66DO , 则AF =√32a ,PA =√22a ,PF =12a .因此PA 2+PF 2=AF 2,从而PA ⊥PF .又因为PF ∩BC =F ,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE =AD =DE ,易得OD =√3R ,因为PO =√66OD ,所以PO =√22R . 以OA ⃑⃑⃑⃑⃑ ,OB ⃑⃑⃑⃑⃑ ,OD ⃑⃑⃑⃑⃑⃑ 为基底,OD ⊥平面ABC ,则AP ⃑⃑⃑⃑⃑ =AO ⃑⃑⃑⃑⃑ +OP ⃑⃑⃑⃑⃑ =−OA ⃑⃑⃑⃑⃑ +√66OD ⃑⃑⃑⃑⃑⃑ , BP ⃑⃑⃑⃑⃑ =BO ⃑⃑⃑⃑⃑ +OP ⃑⃑⃑⃑⃑ =−OB ⃑⃑⃑⃑⃑ +√66OD ⃑⃑⃑⃑⃑⃑ ,且OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =−12R 2,OA ⃑⃑⃑⃑⃑ ⋅OD ⃑⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ ⋅OD ⃑⃑⃑⃑⃑⃑ =0 所以AP ⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =(−OA ⃑⃑⃑⃑⃑ +√66OD ⃑⃑⃑⃑⃑⃑ )⋅(−OB ⃑⃑⃑⃑⃑ +√66OD ⃑⃑⃑⃑⃑⃑ )= OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ −OA ⃑⃑⃑⃑⃑ ⋅√66OD ⃑⃑⃑⃑⃑⃑ −OB ⃑⃑⃑⃑⃑ ⋅√66OD ⃑⃑⃑⃑⃑⃑ +16OD ⃑⃑⃑⃑⃑⃑ 2=0. 故AP⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =0.所以AP ⃑⃑⃑⃑⃑ ⊥BP ⃑⃑⃑⃑⃑ ,即AP ⊥BP . 同理AP ⊥CP .又BP ∩CP =P ,所以AP ⊥平面PBC .(2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则E(−12,0,0),P(0,0,√24),B(−14,√34,0),C(−14,−√34,0), PC ⃑⃑⃑⃑⃑ =(−14,−√34,−√24),PB ⃑⃑⃑⃑⃑ =(−14,√34,−√24),PE ⃑⃑⃑⃑⃑ =(−12,0,−√24), 设平面PCB 的一个法向量为n ⃑ =(x 1,y 1,z 1),由{n ⃑ ⋅PC ⃑⃑⃑⃑⃑ =0n ⃑ ⋅PB ⃑⃑⃑⃑⃑ =0 ,得{−x 1−√3y 1−√2z 1=0−x 1+√3y 1−√2z 1=0 ,令x 1=√2,得z 1=−1,y 1=0, 所以n ⃑ =(√2,0,−1),设平面PCE 的一个法向量为m ⃑⃑ =(x 2,y 2,z 2)由{m ⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ =0m ⃑⃑ ⋅PE⃑⃑⃑⃑⃑ =0 ,得{−x 2−√3y 2−√2z 2=0−2x 2−√2z 2=0 ,令x 2=1,得z 2=−√2,y 2=√33, 所以m ⃑⃑ =(1,√33,−√2) 故cos <m ⃑⃑ ,n ⃑ >=n ⃑ ⋅m ⃑⃑⃑ |n ⃑ |⋅|m ⃑⃑⃑ |=√2√3×√10√3=2√55, 设二面角B −PC −E 的大小为θ,由图可知二面角为锐二面角,所以cosθ=2√55. [方法二]【最优解】:几何法 设BC ∩AE =F ,易知F 是BC 的中点,过F 作FG ∥AP 交PE 于G ,取PC 的中点H ,联结GH ,则HF ∥PB .由PA ⊥平面PBC ,得FG ⊥平面PBC .由(1)可得,BC 2=PB 2+PC 2,得PB ⊥PC .所以FH ⊥PC ,根据三垂线定理,得GH ⊥PC .所以∠GHF 是二面角B −PC −E 的平面角.设圆O 的半径为r ,则AF =ABsin60°=32r ,AE =2r ,EF =12r ,EF AF =13,所以FG =14PA ,FH =12PB =12PA ,FG FH=12. 在Rt △GFH 中,tan∠GHF =FG FH =12, cos∠GHF =2√55. 所以二面角B −PC −E 的余弦值为2√55.[方法三]:射影面积法如图所示,在PE 上取点H ,使HE =14PE ,设BC ∩AE =N ,连结NH .由(1)知NE =14AE ,所以NH ∥PA .故NH ⊥平面PBC . 所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B −PC −E 的余弦值为cosθ=S △PCN S △PCH . 在△PCE 中,令PC =PE =√62,则CE =1,易知S △PCE =√54.所以S △PCH =34S △PCE =3√516.又S△PCN=12S△PBC=38,故cosθ=S△PCNS△PCH=383√516=2√55所以二面角B−PC−E的余弦值为2√55.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.。
高考数学基础知识突破训练试题(附答案和解释)
高考数学基础知识突破训练试题(附答案和解释)高三一轮“双基突破训练”〔具体解析+方法点拨〕 (5)一、选择题1.设f(x)是连续的偶函数,且当x0时f(x)是单调函数,则满意f(x)=fx+3x+4的全部x之和为( )A.-3 B.3C.-8 D.8【答案】C【解析】由于f(x)是连续的偶函数,且x0时是单调函数,由偶函数的性质可知若f(x)=fx+3x+4,只有两种状况:①x=x+3x+4 ;②x+x+3x+4 =0.由①知x2+3x-3=0,故两根之和为x1+x2=-3.由②知x2+5x+3=0,故两根之和为x3+x4=-5.因此满意条件的全部x之和为-8.应选择C.此题考查函数的性质及推理论证力量,易错之处是只考虑x=x+3x +4 ,而忽视了x+x+3x+4 =0,误选了A.2.已知函数f(x)=4|x|+2-1的定义域是[a,b](a,b∈Z),值域是[0,1],那么满意条件的整数数对(a,b)共有( )A.2个 B.3个C.5个 D.很多个【答案】C【解析】f(x)在[0,+∞)递减,在(-∞,0]上递增,且f(0)=1,f(-2)=f(2)=0,故(a,b)可以是(-2,0),(-2,1),(-2,2),(-1,2),(0,2),共5个.应选择C.3.对于函数①f(x)=lg(|x-2|+1),②f(x)=(x-2)2,③f(x)=cos(x+2).推断如下三个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.能使命题甲、乙、丙均为真的全部函数的序号是( )A.①③ B.①②C.③ D.②【答案】D【解析】此题考查函数的增减性、奇偶性、考查真假命题的概念,考查分析问题的力量.方法1:函数①、②使命题甲为真,函数③使命题甲为假,排解A、C 选项;依据函数图像分析,函数①、②使命题乙为真;函数②使命题丙也为真,但函数①使命题丙为假,因此选D.方法2:由命题甲f(x+2)是偶函数,可知①、②满意条件,排解③;作出①②函数的图像,可知②满意命题乙的条件,①不满意乙的条件,排解①.因此选D.4.函数f(x)是(-∞,+∞)上的减函数,又a∈R,则( )A.f(a)f(2a) B.f(a2)f(a)C.f(a2+a)f(a) D.f(a2+1)f(a)【答案】D【解析】法1:取a=0,由f(x)在R上是减函数,去A、B、C,∴选D.法2:∵f(x)是R上的减函数,而a0时,a2a.a0时,a2a,∴f(a)与f(2a)大小不定,同样a2与a,a2+a与a的大小关系不确定,从而f(a2)与f(a),f(a2+a)与f(a)的大小关系不定,但a2+1-a=(a-12)2+340,∴a2+1a,从而f(a2+1)f(a).应选D.5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是( )A.[2,+∞) B.[2,+∞)C.(0,2] D.[-2,-1]∪[2,3]【答案】A【解析】当t=1时,x∈[1,3],若x=3,则f(x+t)=f(4)=15,2f(x)=2f(3)=18,故f(x+t)≥2f(x)不恒成立,故答案C、D错误;当t=32时,x∈32,72,令g(x)=f(x+t)-2f(x)=x+322-2x2=-x2+3x+94,g(x)在32,72上是减函数,g(x)≥g72=12,g(x)≥0在32,72上恒成立,即f(x+t)≥2f(x)在32,72上恒成立.故t=32符合题意,答案B错误.应选择A.二、填空题6.设函数f(x)=(x+1)(x+a)为偶函数,则a=.【答案】-1【解析】∵f(x)=(x+1)(x+a)=x2+(a+1)x+a,由函数为偶函数得a+1=0,解得a=-1.【答案】1+22【解析】由x2-2x≥0,x2-5x+4≥0得x≤0或x≥2,x≤1或x≥4,∴函数的定义域为x≤0或x≥4,而原函数在(-∞,0]上为减函数,在[4,+∞)上是增函数,当x=0时f(x)=4,而当x=4时,f(x)=1+22,故f(x)的最小值为1+22.8.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=.【答案】-2x2+4【解析】∵f(-x)=f(x)且f(x)=bx2+(2a+ab)x+2a2,∴b(-x)2+(2a+ab)(-x)+2a2=bx2+(2a+ab)x+2a2,∴-(2a+ab)=2a+ab,即2a+ab=0,∴a=0或b=-2.当a=0时,f(x)=bx2,∵f(x)值域为(-∞,4],而y=bx2值域不行能为(-∞,4],∴a≠0.当b=-2时,f(x)=-2x2+2a2,值域为(-∞,2a2].∴2a2=4,∴a2=2,∴f(x)=-2x2+4.三、解答题9.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,求不等式fx-f-xx0的解集.【解析】∵f(x)为奇函数,∴f(x)=-f(-x),∴fx-f-xx=2fxx0,即fx0,x0,或fx0,x0.由于f(x)是奇函数且在(0,+∞)上是增函数,故f(x)在(-∞,0)上是增函数.由f(1)=0知f(-1)=0,∴fx0,x0,可化为fxf1,x0,∴0x1,fx0,x0,可化为fxf-1,x0,∴-1x0.∴原不等式的解集为x|-1x0或0x1.10.设函数f(x)=x2-2x-1在区间[t,t+1]上的最小值为g(t),求g(t)的解析式.【解析】f(x)=(x-1)2-1.当t+1≤1,即t≤0时,f(x)在[t,t+1]上是减函数,∴最小值g(t)=f(t+1)=t2-2;当t≥1时,f(x)在[t,t+1]上是增函数,∴最小值g(t)=f(t)=(t-1)2-2;当t1t+1,即 0t1时,最小值g(t)=f(1)=-2,∴g(t)=t2-2 t≤0-2 0t1t-12-2 t≥1.11.函数f(x)=-x2+2tx+t在[-1,1]上的最大值为g(t),求函数g(t)的解析式;画出其图像,据图像写出函数g(t)的值域.【解析】f(x)=-x2+2tx+t=-(x-t)2+t2+t,(-1≤x≤1)当-1≤t≤1时,函数f(x)的最大值为f(t)=t2+t.当t-1时,函数f(x)在[-1,1]上是减函数,∴最大值为f(-1)=-1-t.当t1时,函数f(x)在[-1,1]上是增函数,∴最大值为f(1)=-1+3t.综上可得g(t)=t2+t -1≤t≤1-1-t t-1-1+3t t1图像如下:∴g(t)的值域为:-14,+∞.12.设二次函数f(x)=x2+ax+a,方程f(x)-x=0的两根x1和x2满意0x1x21.(1)求实数a的取值范围;(2)试比较f(0)f(1)-f(0)与116的大小,并说明理由.【解析】方法1:(1)令g(x)=f(x)-x=x2+(a-1)x+a,则由题意可得Δ0,01-a21,g10,g00,a0,-1a1,a3-22或a3+22,0a3-22.故所求实数a的取值范围是(0,3-22).(2)∵f(0)f(1)-f(0)=g(0) g(1)=2a2,令h(a)=2a2.∵当a0时,h(a)单调增加,∴当0a3-22时,0h(a)h(3-22)=2(3-22)2=2(17-122)=2117+122116,即f(0)f(1)-f(0)116.方法2:(1)同方法1.(2)f(0)f(1)-f(0)=g(0)g(1)=2a2,由(1)知0a3-22,∴42a-1122-170.又42a+10,于是2a2-116=116(32a2-1)=116(42a-1)(42a+1)0,即2a2-1160,故f(0)f(1)-f(0)116.方法3:(1)方程f(x)-x=0x2+(a-1)x+a=0. 由韦达定理得x1+x2=1-a,x1x2=a,于是0x1x21Δ0,x1+x20,x1x20,1-x1+1-x20,1-x11-x20,a0,a1,a3-22或a3+22,0a3-22.故所求实数a的取值范围是(0,3-22).(2)依题意可设g(x)=(x-x1)(x-x2),则由0x1x21得f(0)f(1)-f(0)=g(0)g(1)=x1x2(1-x1)(1-x2)=[x1(1-x1)][x2(1-x2)]x1+1-x122x2+1-x222=116,故f(0)f(1)-f(0)116.。
高中数学学业水平考试复习知识点及基础题型练习
第一课时 集 合一、目的要求:知道集合的含义;了解集合之间的包含与相等的含义;知道全集与空集的含义;理解两个集合的并集与交集的含义及会运算;理解补集的含义及求法;理解用Venn 图表示集合的关系及运算。
二、要点知识:1、 叫集合。
2、集合中的元素的特性有① ② ③ 。
3、集合的表示方法有① ② ③ 。
4、 叫全集; 叫空集。
关系或运算自然语言表示符号语言图形语言B A ⊆ B A B AA C U6、区分一些符号 ①∈与⊆ ②{}a a 与 ③{}φ与0。
三、课前小练1、下列关系式中①{}φ=0 ②φ=0 ③{}φφ= ④φ∈0 ⑤{}φ⊇0 ⑥φ≠0 其中正确的是 。
2、用适当方法表示下列集合①抛物线y x =2上的点的横坐标构成的集合 。
②抛物线y x =2上的点的纵坐标构成的集合 。
③抛物线y x =2上的点构成的集合 。
④⎩⎨⎧=+=-31y x y x 的解集 。
3、{}5,4,3,2,1=U ,{}4,3=A ,A C U = 。
4、已知集合{}73|≤≤=x x A ,{}73|≤≤=x x B 求①B A = ②B A = ③)(B A C R = ④)(B A C R =5、图中阴影部分表示的集合是( )A 、)(BC A U B 、)(A C B U C 、)(B A C UD 、)(B A C U四、典例精析例1、若集合{}51|<-=x x A ,{}01|2<-=y y B ,则B A = 例2、已知B A ⊆,C A ⊆,{}5,3,2,1=B ,{}8,4,2,0=C ,则A 可以是( ) A 、{}2,1 B 、{}4,2 C 、{}2 D 、{}4 例3、设{}0,4-=A ,{}0)4)((|=++=x a x x B (1)求B B A = ,求a 的值; (2)若φ≠B A ,求a 的取值范围。
例4、已知全集{}100|≤≤∈==x N x B A U ,{}7,5,2,1)(=B C A U 求集合B五、巩固练习1、若{}N k k x x A ∈==,3|,{}N z z x x B ∈==,6|,则A 与B 的关系是 。
高一数学复习考点知识与题型专题讲解33--- 三角恒等变换技巧基础过关必刷题
高一数学复习考点知识与题型专题讲解专题强化训练二:三角恒等变换技巧基础过关必刷30题一、单选题1.(2022·全国·高一)已知0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,若()3s i n 5αβ+=-,5cos 13β=-,则si n α的值为() A .1665B .3365C .5665D .6365 2.(2022·四川·成都外国语学校高一月考(文))已知函数32222cos 2cos 2cos 2()2cos2x x x f x x+-=,则函数()f x 的最小正周期是() A .2πB .πC .2πD .4π3.(2022·全国·高一课时练习)若4cos 5=-α,α是第三象限的角,则1tan 21tan2αα-+=( )A .2B .12C .﹣2D .12-4.(2022·全国·高一课时练习)计算tan82tan 221tan82tan 22︒︒︒︒-=+() A .1-B .1C.5.(2022·全国·高一课时练习)函数()cos cos 36f x x x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,则()f x 的最小正周期和最大值分别为() A .1,4πB .1,2πC.2π.2π 6.(2022·河北·张家口市第一中学高一月考)设α,β均为锐角,且()()sin sin sin cos βαβαβα++-=,则2tan 1sin βα+的最大值是()A .2D .7.(2022·北京·101中学高一期中)函数()2sin cos 2f x x x =-在区间[]0,2π上的零点个数为()A .2B .3C .4D .58.(2022·安徽·合肥百花中学高一期末)设函数()2cos2f x x x =-,则下列结论错误的是()A .()f x 的一个周期为π-B .()y f x =的图像关于直线6x π=-对称C .()y f x =的图像关于点,012π⎛⎫⎪⎝⎭对称D .()f x 在[0,2]π有3个零点9.(2022·上海·上外浦东附中高一期中)若3522ππθ<< A .sin 4θB .cos 4θC .sin 4θ-D .cos 4θ-10.(2022·江苏省前黄高级中学高一月考)若1tan 20211tan αα+=-,则1tan2cos2αα+的值为()A .2019B .2020C .2022D .2022二、多选题11.(2022·全国·高一课时练习)下列三角式中,值为1的是() A .4sin15cos15︒︒B .222cos sin 66ππ⎛⎫- ⎪⎝⎭C .22tan 22.51tan 22.5-︒︒D 12.(2022·全国·高一课时练习)设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()A .()y f x =的最小值为πB .()y f x =的最小值为2-,其周期为2πC .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称13.(2022①tan 25tan3525tan35+︒︒︒︒; ②()2sin35cos 25cos35cos65︒︒+︒︒; ③1tan151tan15+︒-︒;④1tan151tan15-︒+︒.A .①B .②C .③D .④14.(2022·江苏·盱眙县都梁中学高一月考)关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,有下列说法:其中正确说法的是()A .()y f x =B .()y f x =是以π为最小正周期的周期函数;C .()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减;D .将函数2y x 的图象向左平移24π个单位长度后,将与已知函数的图象重合.15.(2022·江苏沭阳·高一期中)已知函数22()sin cos cos f x x x x x =+-,x ∈R ,则下列结论正确的有() A .()22f x -≤≤B .()f x 在区间(0,)π上只有1个零点C .()f x 的最小正周期为πD .若()()g x f x =,,22x ππ⎛⎫∈- ⎪⎝⎭,则()g x 单调递减区间为,26ππ⎛⎫-- ⎪⎝⎭和,32ππ⎛⎫⎪⎝⎭16.(2022·河北安平中学高一月考)已知函数()cos f x x x-,则下列说法正确的是()A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称 B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减C .()f x 在()0,2π上有且仅有1个最小值D .()f x 的值域为[]1,2-三、填空题17.(2022·全国·高一课时练习)化简sin(α+60°)+2sin(α-α)的结果是______.18.(2022·全国·高一课时练习)化简:44sin cos cos 2ααα-=________. 19.(2022·全国·高一课时练习)已知4cos 5θ=-,且t a n 0θ>,则3c o s t a n 1s i n θθθ-的值为______. 20.(2022=______.21.(2022·江苏如皋·高一月考)计算:2211tan 20sin 701tan 20⎛+︒⋅= -︒⎝⎭︒___________.四、解答题22.(2022·全国·高一课时练习)已知sin 2cos 022x x-=.求cos25cos sin()4x x x ππ⎛⎫++ ⎪⎝⎭的值.23.(2022·全国·高一课时练习)(1)求()()1tan11tan 44+︒+︒的值; (2)求()()()()()1tan11tan 21tan31tan 441tan 45+︒+︒+︒+︒+︒的值. 24.(2022·全国·高一课时练习)化简:(1)ππsin sin 44x x ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(2)()()cos cos 120cos 120A A A +-+︒+︒; (3)sin 2cos 1cos 21cos αααα⋅++.25.(2022·全国·高一课时练习)已知函数22sin 2sin cos 3cos y x x x x =+-,x ∈R . (1)求函数的最小正周期; (2)求函数的最大值.26.(2022·湖南·永州市第一中学高一期中)已知函数()22sin cos 2cos 1f x x x x =+-,x ∈R .(1)求函数()f x 的单调递减区间;(2)若函数()0y f x a =-≤在π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.27.(2022·山东·滕州市第一中学新校高一月考)已知角α的终边经过点(2,-,其中0απ<<.(1)求10sincos 29cos1818παππ的值;(2)设()()()sin 22f x x x αα=--,0,4x π⎡⎤∈⎢⎥⎣⎦.求()f x 的最大值. 28.(2022·全国·高一课时练习)求下列各式的值:(1)已知11cos(),cos()23αβαβ-=-+=,求cos cos ,sin sin αβαβ的值;(2)求()2sin 4012cos 402cos 40cos 401+︒︒+︒-︒的值;29.(2022·全国·高一课时练习)已知函数2()cos 2cos 1()f x x x x x =-+∈R . (1)求函数()f x 的最小正周期及在区间20,3π⎡⎤⎢⎥⎣⎦上的最大值和最小值. (2)若()006,0,53f x x π⎡⎤=∈⎢⎥⎣⎦,求0cos2x 的值.30.(2022·陕西·榆林十二中高一月考)化简计算与证明.(1)已知角α是第二象限角,且4sin 3cos 0+=αα,求()cos sin 259cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值;(22sin 50cos101︒+︒︒;(3)已知02xπ<<,证明:()2lg cos tan 12sinlg lg 1sin 224x x x x x π⎤⎛⎫⎛⎫+-+-=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦.参考答案1.D 【详解】因为0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,所以3,22ππαβ⎛⎫+∈ ⎪⎝⎭, 又()3sin 5αβ+=-,则3,2παβπ⎛⎫+∈ ⎪⎝⎭,()4cos 5αβ+=-, 又5cos 13β=-, 所以12sin 13β=, 所以()()()sin sin sin cos cos sin ααββαββαββ=+-=+-+⎡⎤⎣⎦,354126351351365⎛⎫⎛⎫=-⨯---⨯= ⎪ ⎪⎝⎭⎝⎭, 故选:D 2.B 【详解】32222cos 2cos 2cos 2()2cos2x x x f x x +-=322cos 2cos (1cos )1cos x x x x +-+=+22cos (1cos )(1cos )1cos x x x x +-+=+22cos 1x =-cos2x =所以()f x 的最小正周期为22ππ=, 故选:B3.C 【详解】由4cos 5=-α且α是第三象限的角,可得3sin 5α==-,又由311tancossin1sin 152224cos 21tan cos sin 2225αααααααα-+++====----,即1tan221tan 2αα-=-+. 故选:C. 4.C 【详解】由题意,tan82tan 22tan(8222)tan 601tan82tan 22︒︒︒︒︒︒︒-=-==+故选:C 5.B 【详解】 解:函数1cos 2()cos()sin()3332x f x x x ππ+=--12131111sin(2)cos2()sin 2sin 2sin(2)2322222423x x x x x x x x ππ=-=---==- 则()f x 的最小正周期为22ππ=,最大值为12. 故选:B 6.B 【详解】解:因为α,β均为锐角,()()sin sin sin cos βαβαβα++-=,所以sin 2sin cos ,cos βαβα=即tan 2sin cos βαα=,故222tan 2sin cos 22sin cos 1sin 2sin cos cos sin βααααααααα==≤=+++,当且仅当2sin cos cos sin αααα=,即t a nα时等号成立,7.A 【详解】()22sin cos 22sin 12sin f x x x x x =-=-+,令()0f x =可得sin x =sin x =(舍去),因为sin x =[]0,2π有2个根,所以()f x 在区间[]0,2π上的零点个数为2. 故选:A. 8.D 【详解】()2cos 22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,对A ,最小周期为22T ππ==,故π-也为周期,故A 正确;对B ,当6x π=-时,262x ππ-=-为sin y x =的对称轴,故B 正确;对C ,当12x π=时,206x π-=,又()0,0为2sin y x =的对称点,故C 正确;对D ,()0f x =则()2sin 202,66x x k k Z πππ⎛⎫-=⇒-=∈ ⎪⎝⎭,解得(),212k x k Z ππ=+∈,故()f x 在[0,2]π内有71319,,,12121212x ππππ=共四个零点,故D 错误故选:D 9.A 【详解】解:3522ππθ<<,∴35424πθπ<<,84358πθπ<<, 所以cos 0θ>,cos 02θ<,sin 04θ>,∴cos 2θ=-,∴sin 4θ.10.C 【详解】222221cos sin 2tan tan 2cos 2cos sin 1tan αααααααα++=+-- ()222221tan 1tan 2tan 1tan 1tan 1tan αααααα++=+=--- 1tan 20211tan αα+==-.故选:C 11.ABC 【详解】A 选项,1=2sin 30=2=124sin15cos15︒︒︒⨯,故正确.B 选项,2212cossin 2cos 216632=πππ⎛⎫-=⨯= ⎪⎝⎭,故正确. C 选项,22tan 22.5tan 4511tan 22.5︒=︒=-︒,故正确.D 1≠,故错误 故选:ABC 12.AD 【详解】()2244f x x x ππ⎛⎫=++= ⎪⎝⎭,函数的最小值是22T ππ==,故A 正确,B错误;0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,所以()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,令2x k =π,得,2k x k Z π=∈,其中一条对称轴是2x π=,故C 错误,D 正确. 故选:AD【详解】对于①,由于()()tan tan tan 1tan tan αβαβαβ+=+-, 所以tan 25tan353tan 25tan35++()()tan 25351tan 25tan353tan 25tan35tan 25353⎡⎤=+-+=+=⎣⎦;对于②,由于cos65sin 25=,所以()()2sin35cos 25cos35cos652sin35cos 25cos35sin 252sin 603+=+==;对于③,因为tan 451=,1tan15tan 45tan15tan 6031tan151tan 45tan15︒︒︒︒︒︒++===-- 对于④,因为tan 451=,1tan15tan 45tan153tan 301tan151tan 45tan153︒︒︒︒︒︒-+-===+ 故选:ABC 14.ABC 【详解】()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭cos 2cos 2323x x πππ⎡⎤⎛⎫⎛⎫=-++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos 2sin 233x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭234x ππ⎛⎫=-+ ⎪⎝⎭212x π⎛⎫=- ⎪⎝⎭,当2212x k ππ-=,即,24x k k Z ππ=+∈时,max ()f x A 正确;2T wππ==,故选项B 正确; 令22212k x k ππππ≤-≤+,即1132424k x k ππππ+≤≤+,即当113[,]2424x k k ππππ∈++时()y f x =单调递减,取0k =,有()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减,故选项C 正确;将函数2y x 的图象向右平移24π个单位长度后,将与已知函数的图象重合,故选项D 错误.所以ABC 正确,D 错误.15.ACD 【详解】函数22()sin cos cos 2sin 26f x x x x x x π⎛⎫=+-=- ⎪⎝⎭,对于A :由于x ∈R ,故()22f x -≤≤,故A 正确; 对于B :令26x k ππ-=,解得()212k x k Z ππ=+∈,所以函数在(0,)π上有两个零点,故B 错误; 对于C :函数的最小正周期为22ππ=,故C 正确; 对于D :由于,22x ππ⎛⎫∈- ⎪⎝⎭,令:3222()262k x k k Z πππππ+-+∈剟, 解得5()36k x k k Z ππππ++∈剟, 当0k =和-1时,()g x 单调递减区间为,26ππ⎛⎫-- ⎪⎝⎭和,32ππ⎛⎫⎪⎝⎭,故D 正确;故选:ACD . 16.BC 【详解】解:对于A ,因为0,62f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,所以A 错误,因为()sin()||cos()|sin ||cos |()f x x x x x f x πππ+=+-+-=,所以 π为函数的周期,考虑[0,]x π∈的情况,当[0,]2x π∈时, ()cos 2sin(),,6663f x x x x x ππππ⎡⎤-=--∈-⎢⎥⎣⎦,因为,,6322ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以 ()f x 在[0,]2π上单调递增,所以min max ()(0)1,()()2f x f f x f π==-=当 [,]2x ππ∈时,27()cos 2sin(),,,6636f x x x x x ππππ⎡⎤+=++∈⎢⎥⎣⎦因为 273,,3622ππππ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以()f x 在[,]2ππ上单调递减,所以 min max ()()1,()()2f x f f x f ππ==-==()f x 的最小正周期为π,()f x 在 ()0,2π上有且仅有1个最小值,值域为[-,所以BC 正确,D 错误, 故选:BC 17.0 【详解】解: 原式=sin(α(α+60°)]+2sin(α-60°)=sin(αα+60°)+2sin(α-60°) =2sin(α+60°+60°)+2sin(α-60°) =2sin(α-60°+180°)+2sin(α-60°) =-2sin(α-60°)+2sin(α-60°) =0. 故答案为:0 18.-1 【详解】()()22224422sin cos sin cos sin cos 1cos 2cos sin ααααααααα-+-==-- 故答案为:-1 19.625-【详解】解:∵4cos 5θ=-,且tan 0θ>,∴3sin 5θ=-,∴()()2321sin sin cos tan cos sin 3361sin sin 11sin 1sin 1sin 5525θθθθθθθθθθθ-⎛⎫⎛⎫===+=-⨯-=- ⎪ ⎪---⎝⎭⎝⎭.故答案为:625- 20.2sin 4【详解】原式=2|cos4|2|sin 4cos4|=-+,因为342ππ<<, 所以cos40,sin4cos40<+<.所以原式2cos42(sin 4cos4)=-++2sin 4=. 故答案为:2sin 4 21.8 【详解】解:222222sin 20111tan 2020sin 20sin 701tan 20c o 12c s os 0︒+⎛+︒︒⋅=⋅ ︒-︒⎝⎭⎝-︒⎭︒ ()22222220sin 20sin 7030sin1s 0012cos 0cos co co 20440sin 20sin140sin 40s 0cos 42︒+︒+︒⎛⎫︒=︒︒︒︒⨯⨯=⨯⨯ ⎪︒-︒⎝⎭︒sin100sin1008882sin 404s co 8s 0in 0=⨯︒︒︒=⨯︒=︒故答案为:822由sin 2cos 022x x -=,知cos 02x≠,所以tan 22x =,所以222tan2242tan 1231tan 2xx x ⨯===---. 所以cos25cos sin()4xx x ππ⎛⎫++ ⎪⎝⎭cos2cos (sin )4x x x π=⎛⎫-+- ⎪⎝⎭22=⎝⎭cos sin sin x xx +==1tan tan 4x x +==. 23.(1)2;(2)232 【详解】(1)因为tan1tan 44tan(144)11tan1tan 44︒+︒︒+︒==-︒︒,所以tan1tan 441tan1tan 44︒+︒=-︒︒,即tan1tan 44tan1tan 441︒+︒+︒︒=, 所以()()1tan11tan 441tan 44tan1tan1tan 44+︒+︒=+︒+︒+︒︒=2 (2)设45αβ+=︒, 则tan tan tan()11tan tan αβαβαβ++==-,所以tan tan tan tan 1αβαβ++=,所以(1tan )(1tan )1tan tan tan tan 2αβαβαβ++=+++=,所以(1tan1)(1tan 44)(1tan 2)(1tan 43)(1tan 22)(1tan 23)2+︒+︒=+︒+︒=⋅⋅⋅=+︒+︒=, 又1tan 45+︒=2 所以原式=2223222⨯= 24. (1)1cos 22x (2)0 (3)sin 1cos αα+(1)22ππ111sin sin cos sin cos 244222x x x x x x x x x ⎫⎛⎫⎛⎫-+==-=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)()()11cos cos 120cos 120cos cos cos 022A A A A A A A A +-++=--︒=︒(3)2sin 2cos 2sin cos cos sin 1cos 21cos 2cos 1cos 1cos αααααααααα⋅=⋅=++α++25. (1)∵221cos 21cos 2sin 2sin cos 3cos sin 23sin 22cos 2122x xy x x x x x x x -+=+-=+-⨯=--,∴由辅助角公式可得()21y x ϕ--,其中tan 2ϕ=, ∴函数的最小正周期为22ππ=. (2)由(1)知:()21y x ϕ--,其中tan 2ϕ=,∴当22,2x k k Z πϕπ-=+∈,即,24x k k Z ϕππ=++∈时,函数()21y x ϕ=--取得最大值,1.26.(1)()f x 的单调递减区间为5,]()88k k k Z ππππ++∈[;(2)[)1,+∞. 【详解】(1)()sin 2cos2f x x x =+π24x ⎛⎫=+ ⎪⎝⎭令3222()242k x k k Z πππππ+≤+≤+∈,解得5()88k x k k Z ππππ+≤≤+∈. 故()f x 的单调递减区间为5,]()88k k k Z ππππ++∈[ (2)由()0y f x a =-≤在π[,0]2-恒成立,即()a f x ≥,π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立,∵π,02x ⎡⎤∈-⎢⎥⎣⎦,则π3ππ2,444t x ⎡⎤=+∈-⎢⎥⎣⎦,作出3ππ,,44y t t ⎡⎤=∈-⎢⎥⎣⎦草图,由图知:当π4t =,max 1y = ∴1a ≥,即a 的取值范围为[)1,+∞. 27.(1)14;(2)1.解:(1)角α的终边经过点(2,-,其中0απ<<,tan yxα==23πα=.10sin cos 2sincos 2cos 211199cos cos 223234cos 2sin 1818186πππαααπππππππ⎛⎫+ ⎪⎛⎫⎝⎭==-=-+== ⎪⎛⎫⎝⎭-- ⎪⎝⎭(2)()()()sin 222sin 22sin 233f x x x x x ππααα⎛⎫⎛⎫=--=-+=- ⎪ ⎪⎝⎭⎝⎭因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,336x πππ⎡⎤-∈-⎢⎥⎣⎦,()max 2sin 16f x π==.28.(1)112-;512-;(2(1)1cos cos [cos()cos()]2αβαβαβ=++-111123212⎛⎫=⨯-=- ⎪⎝⎭,1sin sin [cos()cos()]2αβαβαβ=-+--111523212⎛⎫=-⨯+=- ⎪⎝⎭.(2)原式()2sin 402sin 40cos 40cos 402cos 401︒+︒︒=︒+︒-()()()()2sin 60sin 60sin 40sin80cos 40cos80cos 60cos 600202020++=︒=-︒︒++︒︒︒︒︒︒-︒︒++︒2sin 60cos 20tan 602cos60cos 20︒︒︒︒===︒29.(1)最小正周期为π,最大值为2,最小值为1-;(2. 【详解】(1)由2()cos 2cos 1f x x x x =-+,得()2()cos )2cos 1f x x x x =--2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以函数()f x 的最小正周期为π. 因为2470,02,233666x x x πππππ≤≤∴≤≤∴-≤-≤, 所以1sin 21,12sin 22266x x ππ⎛⎫⎛⎫-≤-≤∴-≤-≤ ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 在20,3π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为1-.(2)因为062sin 265x π⎛⎫-= ⎪⎝⎭,所以03sin 265x π⎛⎫-= ⎪⎝⎭.又00,3x π⎡⎤∈⎢⎥⎣⎦,所以02,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以04cos 265x π⎛⎫-= ⎪⎝⎭.所以006cos 2cos 26x x ππ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣-⎦=00cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭431552=⨯=30.【详解】(1)由4sin 3cos 0+=αα,则3tan 4α=-,()()cos sin sin sin sin sin 32tan 59sin cos 4cos sin cos sin 2222παπααπααααππππαααααα⎛⎫+-- ⎪--+⎡⎤-⋅⎝⎭⎣⎦===-=⋅⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)原式2sin 50cos101⎛︒+︒ =2sin 50cos10︒+︒==12sin 502cos102⎛⎫︒+︒+︒ ⎪=2sin 502sin 3010︒+︒+︒==50⎫︒︒⎪==2cos52cos5︒===︒. (3)左边2sin lg cos 12sin lg cos 24x x x x x π⎫⎛⎫⎛⎫=⨯+-+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()lg sin cos lg cos sin 44x x x x ππ⎫=++⎪⎭()()2lg sin cos lg 1sin 2x x x =+=+,得证.。
吉林省吉林市高三数学《数列》基础过关(1)
一 高考考点:1.等差、等比数列的定义,等差、等比数列的通项公式; 2.等差、等比数列的前n 项和公式; 3.等差、等比数列的性质.二 强化训练 一、 选择题1. 在等差数列{}n a 中,33,4,31521==+=n a a a a ,则n 为 (A )48 (B )49 (C )50 (D )51 2.在等比数列{}n a 中,已知29-=a ,则此数列前17项之积为 (A )162 (B )-162 (C )172 (D )-172 3.在等差数列{}n a 中,已知9015=S ,那么8a 等于 (A )3 (B )4 (C )6 (D )124. 在等差数列{}n a 中,若40076543=++++a a a a a ,则82a a +值为 (A )45 (B )75 (C )160 (D )300 5.一个等差数列第5项等于10,前3项和等于3,那么 (A )它的首项是-2,公差是3 (B )它的首项是2,公差是-3 (C )它的首项是-3,公差是2 (D )它的首项是3,公差是-21.6.在公比为整数的等比数列{}n a 中,如果83241,12,18S a a a a 则=+=+为(A )513 (B )512 (C )510 (D )82257.设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则(A )54S S <(B )54S S = (C )56S S <(D )56S S =8.在等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为(A )81(B )120 (C )168 (D ) 1929.数列{}n a 中,233,1511-==+n n a a a ,那么该数列中相邻两项乘积为负数的是 (A )21a 和22a (B )22a 和23a (C )23a 和24a (D )24a 和25a 10.在等比数列{}n a 中, a n >0且53645342252a a a a a a a a +=++,那么的值等于 (A )5 (B )10 (C )15 (D )20 二、填空题11.在等差数列{}n a 中,已知856,5,10a S a 则=== ;12.等比数列{a n }中前n 项和等于2(a n R ∈),前3n 项和为14,则前6n 项和_______ ; 13.等比数列{a n }中,=+=+=+874321,60,30a a a a a a 则_______ ;14.在等差数列{}n a 中,若121012108642,120a a a a a a a -=++++则的值为 .三、解答题15. 设数列⎪⎪⎩⎪⎪⎨⎧+=≠=+.,41,,21,41}{11为奇数为偶数且的首项n a n a a a a a n nn n记.,3,2,1,4112 =-=-n a b n n(Ⅰ)求a 2,a 3;(Ⅱ)判断数列}{n b 是否为等比数列,并证明你的结论; (Ⅲ)求).(lim 21n n b b b +++∞→16.数列{a n }满足a 11且8a n116a n12a n 50 (n ≥1)。
高中数学 数列基础知识点和综合练习(含答案) 新人教A版必修5
一、等差等比数列基础知识点(一)知识归纳:1.概念与公式:①等差数列:1°.定义:若数列称等差数列;2°.通项公式:3°.前n项和公式:公式:②等比数列:1°.定义若数列(常数),则称等比数列;2°.通项公式:3°.前n项和公式:当q=1时2.简单性质:①首尾项性质:设数列1°.若是等差数列,则2°.若是等比数列,则②中项及性质:1°.设a,A,b成等差数列,则A称a、b的等差中项,且2°.设a,G,b成等比数列,则G称a、b的等比中项,且③设p、q、r、s为正整数,且1°. 若是等差数列,则2°. 若是等比数列,则④顺次n项和性质:1°.若是公差为d的等差数列,组成公差为n2d的等差数列;2°. 若是公差为q的等比数列,组成公差为qn的等比数列.(注意:当q=-1,n为偶数时这个结论不成立)⑤若是等比数列,则顺次n项的乘积:组成公比这的等比数列.⑥若是公差为d的等差数列,1°.若n为奇数,则而S奇、S偶指所有奇数项、所有偶数项的和);2°.若n为偶数,则(二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d≠0的等差数列的通项公式是项n的一次函数an=an+b;②公差d≠0的等差数列的前n 项和公式项数n的没有常数项的二次函数Sn=an2+bn;③公比q≠1的等比数列的前n项公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m(或a-m,a,a+m)”②三数成等比数列,可设三数为“a,aq,aq2(或,a,aq)”③四数成等差数列,可设四数为“”④四数成等比数列,可设四数为“”等等;类似的经验还很多,应在学习中总结经验.[例1]解答下述问题:(Ⅰ)已知成等差数列,求证:(1)成等差数列;(2)成等比数列.[解析]该问题应该选择“中项”的知识解决,(Ⅱ)设数列(1)求证:是等差数列;(2)若数列求证:{}是等比数列.①②[解析](1)②-①得1)当2)由1)、2)知,[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n项和为求[解析]选择公式做比较好,但也可以考虑用性质完成.①②[解法一]设①-②得:[解法二]不妨设(Ⅱ)等比数列的项数n为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为,求项数n.[解析]设公比为(Ⅲ)等差数列{an}中,公差d≠0,在此数列中依次取出部分项组成的数列:求数列[解析]①,②①②[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单,设等差数列的三项分别为a-d, a, a+d,则有(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.[解析]设此四数为,解得所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列()(A)为常数数列(B)为非零的常数数列(C)存在且唯一(D)不存在2.、在等差数列中,,且,,成等比数列,则的通项公式为()(A)(B)(C)或(D)或3、已知成等比数列,且分别为与、与的等差中项,则的值为()(A)(B)(C)(D)不确定4、互不相等的三个正数成等差数列,是a,b的等比中项,是b,c的等比中项,那么,,三个数()(A)成等差数列不成等比数列(B)成等比数列不成等差数列(C)既成等差数列又成等比数列(D)既不成等差数列,又不成等比数列5、已知数列的前项和为,,则此数列的通项公式为()(A)(B)(C)(D)6、已知,则()(A)成等差数列(B)成等比数列(C)成等差数列(D)成等比数列7、数列的前项和,则关于数列的下列说法中,正确的个数有()①一定是等比数列,但不可能是等差数列②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列(A)4 (B)3 (C)2 (D)18、数列1,前n项和为()(A)(B)(C)(D)9、若两个等差数列、的前项和分别为、,且满足,则的值为()(A)(B)(C)(D)10、已知数列的前项和为,则数列的前10项和为()(A)56 (B)58 (C)62 (D)6011、已知数列的通项公式为, 从中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n项和为()(A)(B)(C)(D)12、下列命题中是真命题的是( ) A.数列是等差数列的充要条件是()B.已知一个数列的前项和为,如果此数列是等差数列,那么此数列也是等比数列C.数列是等比数列的充要条件D.如果一个数列的前项和,则此数列是等比数列的充要条件是二、填空题13、各项都是正数的等比数列,公比,成等差数列,则公比=14、已知等差数列,公差,成等比数列,则=15、已知数列满足,则=16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为二、解答题17、已知数列是公差不为零的等差数列,数列是公比为的等比数列,,求公比及。
人教A版必修1高一数学核心知识点过关练习题汇编(整理含答案)
人教A版必修1高一数学核心知识点过关练习题汇编集合的并、交、补集一、单选题(共12道,每道8分)1.设集合,,则=( )A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}答案:D解题思路:试题难度:三颗星知识点:并集及其运算2.若集合,,则=( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:交集及其运算3.已知集合,,若={2,5},则a+b的值为( )A.10B.9C.7D.4答案:C解题思路:试题难度:三颗星知识点:交集及其运算4.设集合,,若,则a的值为( )A.0B.1C.-1D.±1答案:C解题思路:试题难度:三颗星知识点:交集及其运算5.已知全集,集合,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:补集及其运算6.若集合,集合,则( )A.)B.C. D.答案:B解题思路:试题难度:三颗星知识点:补集及其运算7.设集合,,则满足的集合有( )A.1个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:交集及其运算8.满足,且的集合M有( )A.1个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:子集与真子集9.若,则满足条件的集合共有( )个.A.1B.2C.3D.4答案:D解题思路:试题难度:三颗星知识点:并集及其运算10.如图,U是全集,A,B,C是U的3个子集,则阴影部分所表示的集合是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:Venn图表达集合的关系及运算11.已知全集,,那么下列结论中不成立的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:子集与交集、并集运算的转换12.已知集合,,若,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:交集及其运算集合的含义及表示一、单选题(共14道,每道7分)1.在直角坐标内,坐标轴上的点构成的集合可表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:集合的表示法2.已知集合,用列举法可表示为( )A.{0,1,2}B.{-3,-1,0,1}C.{-3,0,1,2}D.{-2,-1,1,2} 答案:A解题思路:试题难度:三颗星知识点:集合的表示法3.设集合,,则下列关系中正确的是( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:元素与集合的关系4.下面关于集合的表示,正确的个数是( )①;②;③.A.0B.1C.2D.3答案:B解题思路:试题难度:三颗星知识点:集合的相等5.下列集合中,是空集的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:空集的定义、性质及运算6.下列集合中与相等的是( )A.{1,-1}B.{1,0,-1}C.{2,-2}D.{2,0,-2}答案:D解题思路:试题难度:三颗星知识点:集合的相等7.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10答案:D解题思路:试题难度:三颗星知识点:元素与集合的关系8.已知:①;②;③;④,上述四个关系中,错误的个数是( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:集合的子集9.若集合中只有一个元素,则a=( )A.4B.2C.0D.0或4答案:A解题思路:试题难度:三颗星知识点:元素与集合的关系10.若以正实数a,b,c,d四个元素构成集合A,则以A中四个元素为边长构成的四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形答案:A解题思路:试题难度:三颗星知识点:集合中元素的互异性11.下面各数中,集合中的x不能取的一个值是( )A.2B.3C.4D.5答案:B解题思路:试题难度:三颗星知识点:元素与集合的关系12.若,则x的值为( )A.-1B.2C.-1或2D.1或-2答案:B解题思路:试题难度:三颗星知识点:元素与集合的关系13.已知集合,集合.若集合A=B,则a的值为( )A.1B.3C.0D.0或1答案:C解题思路:试题难度:三颗星知识点:集合的相等14.已知集合,且A=B,则x,y的值分别为( )A.-1,0B.1,0C.1,-1或0D.-1,1答案:A解题思路:试题难度:三颗星知识点:集合的相等集合综合检测一、单选题(共10道,每道10分)1.已知全集,集合,,则集合等于( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:交、并、补集的混合运算2.已知均为集合的子集,且,,则=( )A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}答案:D解题思路:试题难度:三颗星知识点:Venn图表达集合的关系及运算3.已知M,N为集合U的非空真子集,且M,N不相等,若,则M∪N=( )A.MB.NC.UD.答案:A解题思路:试题难度:三颗星知识点:Venn图表达集合的关系及运算4.已知集合,则实数a的取值范围是( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:集合关系中的参数取值问题5.设集合,,若A∩B=A,则实数a的取值范围是( )A. B. C. D.答案:C解题思路:试题难度:三颗星知识点:子集与交集、并集运算的转换6.若数集,,则能使成立的所有a的集合是( )A. B. C. D.答案:C解题思路:试题难度:三颗星知识点:集合关系中的参数取值问题7.已知集合,,若,则实数x,y的值为( )A.,或B.C.,D.,答案:B解题思路:试题难度:三颗星知识点:集合中元素的互异性8.设常数,集合,,若,则a的取值范围是( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:并集及其运算9.高一某班有学生46人,其中参加数学兴趣小组的有17人,参加英语兴趣小组的有14人,同时参加这两个兴趣小组的有4人,则两个兴趣小组都没参加的有( )人.A.29B.32C.19D.11答案:C解题思路:试题难度:三颗星知识点:Venn图表达集合的关系及运算10.某班共有30人,其中15人喜爱下象棋,10人喜爱下围棋,8人对这两项棋类都不喜爱,那么喜爱下围棋不喜爱下象棋的人数为( )A.7人B.8人C.9人D.12人答案:A解题思路:试题难度:三颗星知识点:Venn图表达集合的关系及运算函数的单调性一、单选题(共10道,每道10分)1.若函数与在区间(0,+∞)上都是减函数,则在区间(0,+∞)上是( )A.增函数B.减函数C.先增后减D.先减后增答案:B解题思路:试题难度:三颗星知识点:函数单调性的判断与证明2.函数( )A.在(-1,+∞)上单调递增B.在(-1,+∞)上单调递减C.在(1,+∞)上单调递增D.在(1,+∞)上单调递减答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间3.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间4.函数的一个单增区间是( )A. B.C. D.无单增区间答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间5.函数的单调递增区间是( )A. B. C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递减区间是( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间7.设函数,则的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的单调性及单调区间8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的单调性及单调区间9.已知函数是定义在上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式组的解集是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间10.已知函数的图象关于直线x=1对称,且在上单调递减,,则的解集为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的性质函数的概念与定义域一、单选题(共10道,每道10分)1.给出以下对应:①集合,集合,对应关系:数轴上的点与它所代表的实数对应.②集合,,对应关系:每一个圆都对应它的内接三角形.③集合,集合,对应关系.④,,:除以5的余数.其中是从集合到集合的映射的有( )A.0个B.1个C.2个D.3个答案:C解题思路:试题难度:三颗星知识点:映射2.设集合,,则下列四个图形中,能表示从集合A 到集合B的函数关系的是( )A.①②③④B.①②③C.②③D.②答案:C解题思路:试题难度:三颗星知识点:函数的概念及其构成要素3.下列四个函数中,与y=x表示同一个函数的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:判断两个函数是否为同一函数4.下列各项表示同一函数的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:判断两个函数是否为同一函数5.已知函数的定义域是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的定义域及其求法6.函数的定义域是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的定义域及其求法7.函数的定义域是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的定义域及其求法8.已知函数的定义域是,则的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的定义域及其求法9.对于,式子恒有意义,则常数k的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的定义域及其求法10.若函数在上有意义,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的定义域及其求法函数的奇偶性一、单选题(共10道,每道10分)1.设函数的定义域为,且是奇函数,则实数a的值是( )A. B.1C. D.3答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质2.已知函数是偶函数,那么是( )A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的判断3.已知是定义在上的奇函数,则下列函数:①;②;③;④.其中为奇函数的是( )A.①③B.②③C.①④D.②④答案:D解题思路:试题难度:三颗星知识点:函数奇偶性的判断4.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合5.已知在上是奇函数,且,当时,,则的值为( )A.-2B.2C.-98D.98答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质6.已知函数是偶函数,且,则的值为( )A.-1B.1C.-5D.5答案:D解题思路:试题难度:三颗星知识点:函数奇偶性的性质7.定义在R上的偶函数在区间[0,+∞)单调递增,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合8.若奇函数在[2,5]上是增函数,且最小值是1,则在[-5,-2]上是( )A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最小值是-1D.减函数且最大值是-1答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合9.已知函数是定义在上的奇函数,当时,,则当时,的表达式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质10.当x≥0时,为偶函数,则的解析式是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质函数的值域及表达式一、单选题(共12道,每道8分)1.函数的定义域是,则其值域是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的值域2.已知函数的值域是,则其定义域不可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的值域3.函数的值域为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的值域4.已知函数,其中[x]表示不超过实数x的最大整数,如[﹣1.01]=﹣2,[1.99]=1,若,则的值域是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的值域5.已知函数,则方程的解是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的表达式与求值6.已知函数的定义如下表:则方程g(f(x))=x的解是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的值7.已知是一次函数,且,则=( )A.x+1B.2x-1C.-x+1D.x+1或-x-1答案:A解题思路:试题难度:三颗星知识点:函数解析式的求解及常用方法8.已知,则的表达式是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数解析式的求解及常用方法9.若函数满足,则的表达式是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数解析式的求解及常用方法10.已知函数,则函数的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数解析式的求解及常用方法11.设,定义符号函数,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分段函数的表达式12.已知函数,若对于任意的,总存在,使得,则实数a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的值域函数的最值及相关取值范围一、单选题(共10道,每道10分)1.函数的最大值是( )A. B.C.12D.答案:C解题思路:试题难度:三颗星知识点:函数的最值2.函数在区间上的最小值和最大值分别为( )A.1和3B.2和3C.2和4D.1和4答案:B解题思路:试题难度:三颗星知识点:函数的最值3.函数在区间[0,m]上的最大值是5,最小值是1,则m的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的最值4.已知,则的最值是( )A.最大值是3,最小值是﹣1B.最大值是,无最小值C.最大值是3,无最小值D.既无最大值,也无最小值答案:B解题思路:试题难度:三颗星知识点:函数的最值5.若函数在区间(1,+∞)上单调递增,则a的取值范围是( )A.(-∞,0]B.[0,+∞)C.(-∞,-2]D.[1,+∞)答案:D解题思路:试题难度:三颗星知识点:函数单调性的性质6.已知是定义在(0,+∞)上的单调减函数,若,则x的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数单调性的性质7.已知定义在(-1,1)上的函数是减函数,且,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数单调性的性质8.已知函数是定义在[0,1]上单调递减函数,若,则x的取值范围是( )A. B.C. D.答案:B解题思路:。
高中数学苏教版选修22【基础过关】2.3一
§2.3 数学归纳法(一)一、基础过关1.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则下列说法正确的是________.①该命题对于n >2的自然数n 都成立②该命题对于所有的正偶数都成立③该命题何时成立与k 取值无关2.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2n n +1时,由n =k 到n =k +1左边需要添加的项是________________________________________________________________________.3.若f (n )=1+12+13+…+12n +1(n ∈N *),则n =1时f (n )是________. 4.已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (n )共有________项,且f (2)=________. 5.在数列{a n }中,a 1=2,a n +1=a n 3a n +1(n ∈N *),依次计算a 2,a 3,a 4,归纳推测出a n 的通项表达式为________.二、能力提升6.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从k 到k +1左端需要增乘的代数式为________.7.已知f (n )=1n +1+1n +2+…+13n -1(n ∈N *),则f (k +1)-f (k )=________. 8.以下用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为________________________________________________________________________. 证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立.9.用数学归纳法证明(1-13)(1-14)(1-15)…(1-1n +2)=2n +2(n ∈N *). 10.用数学归纳法证明:12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2. 11.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N *),S n 为数列{a n }的前n 项和.(1)求a 2,a 3,a 4,并由此猜想a n 的表达式;(2)用数学归纳法证明{a n }的通项公式.三、探究与拓展12.是否存在常数a 、b 、c ,使得等式1×22+2×32+3×42+…+n (n +1)2=n (n +1)12(an 2+bn +c )对一切正整数成立?并证明你的结论.答案1.②2.11+2+3+…+k +(k +1)3.1+12+134.n 2-n +1 12+13+145.26n -5 6.2(2k +1)7.13k +13k +1+13k +2-1k +18.缺少步骤归纳奠基9.证明 (1)当n =1时,左边=1-13=23,右边=21+2=23, 等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即(1-13)(1-14)(1-15)…(1-1k +2)=2k +2, 当n =k +1时,(1-13)(1-14)(1-15)…(1-1k +2)·(1-1k +3) =2k +2(1-1k +3)=2(k +2)(k +2)(k +3)=2k +3, 所以当n =k +1时等式也成立.由(1)(2)可知,对于任意n ∈N *等式都成立.10.证明 (1)当n =1时,左边=1,右边=(-1)1-1×1×22=1, 结论成立.(2)假设当n =k 时,结论成立.即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2, 那么当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k +1)2 =(-1)k ·(k +1)-k +2k +22=(-1)k ·(k +1)(k +2)2. 即n =k +1时结论也成立.由(1)(2)可知,对一切正整数n 都有此结论成立.11.(1)解 a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a 3=5+5+10=20,猜想a n =⎩⎪⎨⎪⎧5 (n =1)5×2n -2, (n ≥2,n ∈N *). (2)证明 ①当n =2时,a 2=5×22-2=5,公式成立.②假设n =k (k ≥2,k ∈N *)时成立,即a k =5×2k -2,当n =k +1时,由已知条件和假设有a k +1=S k =a 1+a 2+a 3+…+a k=5+5+10+…+5×2k -2.=5+5(1-2k -1)1-2=5×2k -1. 故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N *,有a n =5×2n -2.所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5 (n =1)5×2n -2 (n ≥2,n ∈N *). 12.解 假设存在a 、b 、c 使上式对n ∈N *均成立,则当n =1,2,3时上式显然也成立,此时可得⎩⎪⎨⎪⎧ 1×22=16(a +b +c ),1×22+2×32=12(4a +2b +c ),1×22+2×32+3×42=9a +3b +c ,解此方程组可得a =3,b =11,c =10,下面用数学归纳法证明等式1×22+2×32+3×42+…+n (n +1)2=n (n +1)12(3n 2+11n +10)对一切正整数均成立.(1)当n =1时,命题显然成立.(2)假设n =k 时,命题成立.即1×22+2×32+3×42+…+k (k +1)2=k (k +1)12(3k 2+11k +10), 则当n =k +1时,有1·22+2·32+…+k (k +1)2+(k +1)(k +2)2=k (k +1)12(3k 2+11k +10)+(k +1)(k +2)2 =k (k +1)12(k +2)(3k +5)+(k +1)(k +2)2 =(k +1)(k +2)12(3k 2+5k +12k +24) =(k +1)(k +2)12[3(k +1)2+11(k +1)+10]. 即当n =k +1时,等式也成立.由(1)(2)可知,对任何正整数n,等式都成立.。
高中数学基础知识及基本题型汇总(有答案)
A B Oxy -122C高中数学基础知识汇编及基本题型汇总必修1—集合与函数基础知识【基础知识】①();();()Cu A B CuA CuB Cu A B CuA CuB A B A B A A B B ==⊆⇔== ②AB A ⊆或A B B ⊆;A A B ⊆或B A B ⊆.③A 集合中有n 个元素时,其子集个数:2n; 真子集个数: 21n -; 非空真子集个数:22n-. 【基本题型回顾】例:1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( A )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 2.集合2{|log (1)},{|A y y x B x y ==-=,则AB =( D )A .(1,2]B .(1,2)C .(,1]-∞D .(,2]-∞ 3. 设集合M={y|y=|2cos x —2sinx|,x ∈R},N={x||x —1i,i 为虚数单位,x ∈R},则M ∩N 为( C )A.(0,1)B.(0,1]C.[0,1)D.[0,1]4.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( C )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤ 5.设A 、B 、C 是三个集合,若AB BC =,则有(D )A. A B =B. C B ⊆C. B A ⊆D. A C ⊆选修2-1—常用逻辑【基础知识】简易逻辑部分掌握联结词四种命题(两组等价命题);反证法步骤; 命题关系中的充要条件(理解倒装式和等价转换思想的应用);例:1. 已知p 和q 是两个命题,如果p 是q 的充分不必要条件,那么非p 是非q 的( B ) A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 2.“12m =是直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的( B ) A.充分必要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件3.使不等式22530x x --≥成立的一个充分不必要条件是( C )A. 0x <B. 0x ≥C. {1,3,5}x ∈-D. 12x ≤或3x ≥4.不等式12x x +≥成立的一个必要不充分条件是( D )A .(0,)+∞B .(0,1)C .(1,)-+∞D .(1,)+∞必修1函数【基础知识】1)映射概念:集合A 中的每一个元素在集合B 中有唯一的元素和它对应; 函数概念:每一个x 都有唯一的y 和它对应.2)理解函数三要素:解析式,定义域,值域.【基本题型回顾】1)理解复合函数中“换”的基本思想,必需保证范围相同; 2)识记给定区间“二次函数”和“对勾函数”值域的求法;例:1.设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则()f x =ln x x +.2.若函数()f x 满足2()log f x x=+()f x 的解析式是( B )A. 2log xB. 2log x -C. 2x- D. 2x - 3.若函数()y f x =的定义域是[0,2],则函数(2)()1f x g x x =-的定义域是(B)A .[0,1]B .[0,1)C . [0,1)(1,4] D .(0,1)4.设函数246,0()6,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()(1)f x f >的解集是( B )A .(3,1)(3,)-+∞B .(3,1)(2,)-+∞C .(1,1)(3,)-+∞D .(,3)(1,3)-∞-【基础知识3——函数单调性】1)利用图像判断(撇增捺减);2) 函数单调性证明方法:同增异减; 注:此方法不常用,得到单调区间常用导函数完成 3)1212()(()())0x x f x f x -->或12120()()x x f x f x ->-等价于单增;1212()(()())0x x f x f x --<或12120()()x x f x f x -<-等价于单减;4)复合函数单调性判断方法:同增异减;识记下列单调性:2;;;;log ;sin ,cos ,tan .x x a k y kx b y ax bx c y y a y y x y x y x x=+=++======1x y x =+.【基本题型回顾】1) 注意图像画法的几种形式:负指数化正指数,分数指数化根式;给X 加绝对值号及给整体加绝对值图像画法。
高中数学第一章:解三角形基础过关题
学习必备 欢迎下载3.二、填空题1.2.4.B . 2 3C . .3 或 2 3在厶 ABC 中,/ A = 45° , / B = 60° , a = 10 , b = 在厶 ABC 中,/ A = 105° / B = 45° c^'2,贝U b = 仁 ABC 中,/A = 60° a = 3,则 s^ sinB sinC平行四边形 ABCD 中,AB = 4飞,AC = 4 3,/ BAC = 45° 那么 AD = 高中数学必修5第一章:解三角形基础过关题、选择题己知三角形三边之比为 5: 7: 8,则最大角与最小角的和为B . 13 : 2B . 2 3好,3 km ,那么x 的值是2. 3.A . 90°B . 120°C . 135 ° 150在厶ABC 中,下列等式正确的是 ( A . a : b =Z A :Z B C . a : b = sin B : sin A若三角形的三个内角之比为 B . D . a : b = sin A : sin B asin A = bsin B 1 : 2 : 3,则它们所对的边长之比为 1. 4. 在厶 ABC吊,/ A = 30°则c 等于(5.B .已知△ ABC 中,/ A = 60° C . 2 . 5 或、.5 a =6 , b = 4,那么满足条件的△ ABC D . 或.一 5 的形状大小(A .有一种情形B .有两种情形C .不可求出D .有三种以上情形 6. 在厶ABC 中,若 a 2 + b 2 — c 2v 0,则厶 ABC 是A .锐角三角形B .直角三角形C .钝角三角形D .形状不能确定7. 在厶ABC 中,若 b =8.某人朝正东方向走了 x km 后,向左转150 °然后朝此方向走了3 km ,结果他离出发点恰三、解答题1. 在厶ABC 中,已知b=揖,c= 1,Z B= 60° 求a 和/ A, / C.2. 已知在厶ABC中,/ A= 45° a = 2, c= J6,解此三角形.3. 有一电视塔,在其东南方A处看塔顶时仰角为45°在其西南方B处看塔顶时仰角为30° 若AB= 120米,求电视塔的高度为.高中数学必修5第一章:解三角形基础过关题参考答案一、选择题1. B 解析:设三边分别为5k, 7k, 8k(k>0),中间角为:,2 2 2由cos25k + 64k —49k 1 得60°由cos ::== 一,得:■= 60 °2汇5k汉8k 2•••最大角和最小角之和为180 °-60°= 120 °2. B3. B4. C5. C6. C7. C8. C二、填空题1. 5 6 . 2. 2. 3. 2 , 3 .解析:设a= b= c=k,则 a +b+c=k = a= 3= 2. 3sin A sin sin sin A+ sin B + sin C sin A sin 604. 4 3 .三、解答题1•解析:已知两边及其中一边的对角,可利用正弦定理求解.解:•••旦=丄,• sin C = c sin B= 1 sin6°=丄. sin B sinC b <3 2•/ b>c,Z B = 60°:丄 C<Z B,Z C= 30°:丄 A = 90°由勾股定理a= <b2+ c2= 2,即a = 2,Z A = 90° / C= 30°.2. 解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C=^ sin 45。
高中数学苏教版选修2-2【基础过关】1.1.2二
1. 瞬时转变率——导数(二)一、基础过关1.下列说法正确的是________(填序号).①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线;②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;④若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在.2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是________.3.已知f (x )=1x ,则当Δx →0时,f (2+Δx )-f (2)Δx无穷趋近于________. 4.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则此切线方程为____________.5.设函数f (x )=ax 3+2,若f ′(-1)=3,则a =________.6.设一汽车在公路上做加速直线运动,且t s 时速度为v (t )=8t 2+1,若在t =t 0时的加速度为6 m/s 2,则t 0=________ s.二、能力提升7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.8.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是________.(填序号)9.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.10.用导数的概念,求函数y =f (x )=1x在x =1处的导数.11.已知抛物线y=x2+4与直线y=x+10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.12.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.三、探讨与拓展13.按照下面的文字描述,画出相应的路程s关于时间t的函数图象的大致形状:(1)小王骑车一路匀速行驶,只是在途中碰到一次交通堵塞,耽搁了一些时间;(2)小华早上从家动身后,为了赶时间开始加速;(3)小白早上从家动身后越走越累,速度就慢下来了.答案1.③2.f ′(x A )<f ′(x B )3.-144.4x -y -4=0或4x -y =05.16.387.38.①9.310.解 ∵Δy =f (1+Δx )-f (1)=11+Δx -11 =1-1+Δx 1+Δx =-Δx 1+Δx ·(1+1+Δx ), ∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴当Δx 无穷趋近于0时,-11+Δx ·(1+1+Δx ) 无穷趋近于-12, ∴f ′(1)=-12. 11.解 (1)由⎩⎪⎨⎪⎧y =x 2+4,y =x +10, 解得⎩⎪⎨⎪⎧ x =-2y =8或⎩⎪⎨⎪⎧x =3y =13. ∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y =x 2+4,Δy Δx =(x +Δx )2+4-(x 2+4)Δx (Δx )2+2x ·Δx Δx=Δx +2x , ∴Δx →0时,Δy Δx→2x . ∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0;在点(3,13)处的切线方程为6x -y -5=0.12.解 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无穷趋近于零时,ΔyΔx 无穷趋近于3x 20+2ax 0-9.即f ′(x 0)=3x 20+2ax 0-9∴f ′(x 0)=3(x 0+a3)2-9-a 23.当x 0=-a 3时,f ′(x 0)取最小值-9-a23.∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.13.解 相应图象如下图所示.。
高中数学苏教版选修2-2【基础过关】1.2.2
1. 函数的和、差、积、商的导数一、基础过关1.下列结论不正确的是________.(填序号)①若y =3,则y ′=0;②若f (x )=3x +1,则f ′(1)=3;③若y =-x +x ,则y ′=-12x+1; ④若y =sin x +cos x ,则y ′=cos x +sin x .2.已知f (x )=x 3+3x +ln 3,则f ′(x )=__________.3.若函数f (x )=ax 4+bx 2+c 知足f ′(1)=2,则f ′(-1)=________.4.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =________. 5.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =________.6.若某物体做s =(1-t )2的直线运动,则其在t = s 时的瞬时速度为________.7.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2;(3)y =x -sin x 2cos x2. 二、能力提升8.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________.9.曲线y =x (x -1)(x -2)…(x -6)在原点处的切线方程为__________.10.若函数f (x )=13x 3-f ′(-1)·x 2+x +5,则f ′(1)=________. 11.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的表达式. 12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.三、探讨与拓展13.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2,直线l 与C 1和C 2都相切,求直线l的方程.答案1.④2.3x 2+3x ·ln 33.-24.-26.0.4 m/s7.解 (1)方式一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.方式二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3,∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9.(2)∵y =(x -2)2=x -4x +4,∴y ′=x ′-(4x )′+4′=1-4·12x -12=1-2x -12. (3)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-(12sin x )′=1-12cos x . 8.49.y =720x10.611.解 设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又已知f ′(x )=2x +2,∴a =1,b =2.∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根,∴判别式Δ=4-4c =0,即c =1.故f (x )=x 2+2x +1.12.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +b x 2,∴f ′(2)=74,②由①,②得⎩⎪⎨⎪⎧ 2a -b 2=12,a +b 4=74.解之得⎩⎨⎧ a =1b =3. 故f (x )=x -3x. (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0), 即y -(x 0-3x 0)=(1+3x 20)(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0). 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.13.解 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.②因为两切线重合,所以由①②,得⎩⎨⎧ 2x 1=-2x 2-2,-x 21=x 22-4 解得⎩⎨⎧ x 1=0,x 2=2或⎩⎨⎧x 1=2,x 2=0.所以直线l 的方程为y =0或y =4x -4.。
高中数学苏教版选修2-2【基础过关】1.3.3
1. 最大值与最小值一、基础过关1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值别离是________,________. 2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________.3.函数y =ln xx的最大值为________.4.函数f (x )=x e x 的最小值为________.5.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于________.6.已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是________.7.求函数f (x )=13x 3-4x +4在[0,3]上的最大值与最小值.二、能力提升8.函数y =4xx 2+1的值域为________.9.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象别离交于点M ,N ,则当MN 达到最小时t 的值为________.10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值.12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 三、探讨与拓展13.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.答案1.10 2 2.2 3.e -14.-1e5.-126.[-4,-2]7.解 因为f (x )=13x 3-4x +4,所以f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0,得x =2,或x =-2(舍去).又由于f (0)=4,f (3)=1,f (2)=-43,因此,函数f (x )=13x 3-4x +4在[0,3]上的最大值是4,最小值是-43.8.[-2,2]解析 令y ′=4x 2+1-4x ·2x x 2+12=-4x 2+4x 2+12=0,x (-∞,-1)-1 (-1,1) 1 (1,+∞)y′-0 +0 -y ↘ 极小值↗ 极大值↘∵x >0时y >0,x <0时,y <0.结合表可知x =-1时,y 取极小值也是最小值-2;x =1时,y 取极大值也是最大值2.10.(-∞,2ln 2-2]11.解 f ′(x )=6x 2-12x =6x (x -2), 令f ′(x )=0,得x =0或x =2,当x 转变时,f ′(x ),f (x )转变情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) + 0 - 0 f (x )-40↗极大↘-8∴当x =-2时,f (x )min =-40+a =-37,得a =3. 当x =0时,f (x )最大值为3. 12.解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根.∴⎩⎪⎨⎪⎧-1+3=23a-1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9.当而f (-2)=c -2,f (6)=c +54,∴当x ∈[-2,6]时,f (x )的最大值为c +54, 要使f (x )<2|c |恒成立,只要c +54<2|c |即可, 当c ≥0时,c +54<2c ,∴c >54; 当c <0时,c +54<-2c ,∴c <-18. ∴c ∈(-∞,-18)∪(54,+∞),此即为参数c 的取值范围. 13.解 (1)f ′(x )=(x -k +1)e x . 令f ′(x )=0,得x =k -1,f (x )与f 所以f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1]上单调递减,在(k-1,1)上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1.当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.。
高中数学苏教版选修2-2【基础过关】1.2.1
§ 导数的运算1. 常见函数的导数一、基础过关1.下列结论中正确的个数为________.①f (x )=ln 2,则f ′(x )=12; ②f (x )=1x 2,则f ′(3)=-227; ③f (x )=2x ,则f ′(x )=2x ln 2;④f (x )=log 2x ,则f ′(x )=1x ln 2. 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为________. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于________.4.函数f (x )=x 3的斜率等于1的切线有______条.5.若f (x )=10x ,则f ′(1)=________.6.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______.7.求下列函数的导数:(1)y =x x ;(2)y =1x 4;(3)y =5x 3; (4)y =log 2x 2-log 2x ;(5)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4. 二、能力提升8.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________.9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为________.10.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________. 11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.三、探讨与拓展13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 014(x).答案1.3或⎝ ⎛⎭⎪⎫-12,-2 3.44.25.10ln 106.-347.解 (1)y ′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5. (3)y ′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. (5)∵y =-2sin x 2⎝⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x , ∴y ′=(sin x )′=cos x .8.649.e10.ln 2-111.解 ∵y =3x 2,∴y ′=(3x 2)′=⎝ ⎛⎭⎪⎫x 23′=23x -13, ∴在P (8,4)处曲线的切线斜率k =23×8-13=13. ∴适合题意的切线的斜率为-3.从而适合题意的直线方程为y -4=-3(x -8),即3x +y -28=0.12.解 按照题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则切线斜率k =2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 13.解 f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,f n +4(x )=f n (x ),可知周期为4,∴f 2 014(x )=f 2(x )=-sin x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合及常用逻辑用语第一节 集合的概念及相互关系1.(2009年新宾高中模拟)若集合M ={a ,b ,c }中元素是△ABC 的三边长,则△ABC 一定不是A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 说明:知识点:集合元素的三个性质,选D2. (2011广州一模文)已知集合}{10A x ax =+=,且1A ∈,则实数a 的值为A .1-B . 0C .1D .2 说明:知识点:集合的表示及集合的元素与集合的关系,选A3.设a ,b ,∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =A .1B .-1C .2D .-2 说明:知识点:集合的元素的性质和集合的关系(相等)选C4.已知集合M ={}x | x -a =0,N ={}x | ax -1=0,若N ⊆M ,则实数a 的取值集合是( )A .{1}B .{-1}C .{-1,1}D .{-1,0,1}说明:知识点:集合的关系(子集)及空集,分类讨论的思想,选D5.已知{}{},,,,,a b A a b c d e ⊆⊄,则集合A 的个数是________说明:知识点:集合的关系(子集,真子集,)及个数问题,列举法,7个6.(2009广东文)已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是说明:知识点:集合的关系及集合的韦恩图表示法,选B第二节 集合的运算1. 已知集合A= {1,2,3,4},集合 B= {2,4},则 A ⋃B =A.{2,4}B. {1,3}C. {1,2,3,4}D.说明:知识点:集合的运算(并集)及求法,选C2.(2011广东文)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且1x y +=},则A B ⋂的元素个数为则A ⋂B 的元素个数为A .4B .3C .2D .1 说明:知识点:集合的运算(交集)及求法、点集的概念及集合与其他知识的综合(方程,不等式,函数的定义域和值域等),方程思想或数形结合的思想,选C3.设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U说明:知识点:集合的运算(补集)及求法选A第三节 常用逻辑用语1.下列命题中:(1)命题“在△ABC 中,若AB >AC ,则∠C >∠B ”的逆命题;(2)命题“若ab =0,则a ≠0且b =0”的否命题;(3)命题“若a ≠0且b ≠0,则ab ≠0”的逆否命题;(4)命题“平行四边形的两条对角线互相平分”的逆命题其中真命题的个数是( )A .1个B .2个C .3个D .4个 说明:知识点:命题的概念及四种命题的相互转化及命题的真假判断。
特别是一些常见词语的否定,及逻辑词的否定,命题的否命题和命题的否定的差别。
逐一验证法,选D 2.“a =1”是“直线x +y =0和直线x -ay =0”互相垂直的A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件说明:知识点:条件的四种情形及判断方法,选C3. 如果命题“)(q p ∧⌝”是真命题,则 A.命题p 、q 均为假命题 B.命题p 、q 均为真命题C.命题p 、q 中至少有一个是真命题D.命题p 、q 中至多有一个是真命说明:知识点:含逻辑联结词的命题的真假性判断,选D2.命题2,0x R x x ∀∈-≥的否定是 A .2,0x R x x ∀∈-≥ B .2,0x R x x ∃∈-≥C .0,2<-∈∀x x R xD .0,2<-∈∃x x R x说明:知识点:含有量词命题的否定方法,特别要能识别符号,文字表述也要能发现。
选D第二章 函数的概念与性质第一节 函数的概念1.下面哪一个图形可以作为函数的图象说明:知识点:函数的概念及函数的图像,选B2.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,说明:知识点:函数值的概念及求法,深入理解用()f x 符号记函数的意义,分段函数的概念。
选B4.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为A .{-1,0,3}B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3} 说明:值域的概念及求法,选A5.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.说明:知识点:函数的最值概念及求法,函数的最值和值域的差别。
a =2 6.若函数()y f x =是函数1x y a a a =≠(>0,且)的反函数,且(2)1f =,则()f x =A .x 2logB .x 21C .x 21logD .22-x说明:知识点:反函数的概念及求法,选A第三节 函数的单调性1.下列函数中,在定义域内始终满足()()1212,x x f x f x <<的是A.y=ln (x+2) C.y=(12)x D.y=x+1x说明:知识点:函数单调性的定义、用途、判断方法及有关性质结论,选A2.函数y =x 2+2x -3的递减区间是________.说明:知识点:函数的单调区间的概念及求法,一定要先求定义域,多个相同单调区间不能取并集及并集符号连结。
(-∞,-3)3.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a ,x <1,log ax , x ≥1,在(-∞,+∞)上满足()()()1212120f x f x x x x x -<≠-,那么a 的取值范围是A .(1,+∞)B .(-∞,3) C.⎣⎡⎭⎫35,3 D .(1,3) 说明:知识点:深入理解函数的单调性及及函数单调区间的意义。
由题意应满足 ()30,1,314log 1a a a a a ->>-⨯-≤,选D第四节 函数的奇偶性1.下列函数为在定义域内始终满足()()f x f x -=的是A .sin y x =B .3y x =说明:知识点:函数奇偶性的概念、用途、判断方法及有关性质结论。
选D2.若函数3()()f x x x =∈R ,则函数()y f x =-在其定义域上是A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数 说明:知识点:函数奇偶性与单调性的综合。
选B第五节函数的周期性对称性 1.已知()f x 是奇函数,()()4f x f x +=,当01x ≤≤时,()f x x =,则()7.5f =说明:知识点:函数周期性的定义,用途及有关性质结论。
-0.52.下列两个函数的图像关于x 轴对称的是A .()()13,3xxf xg x ⎛⎫== ⎪⎝⎭B .()()133,f x x g x x ==C .()()sin ,cos f x x g x x ==D .()()313log ,log f x x g x x =说明:知识点:函数的对称性的概念、用途、种类,函数图像变换的有关方法,及对称性的有关性质结论。
选D第三章 基本初等函数与性质第一节 指数及指数函数1.方程2343,84x x x ===,的根分别是________.说明:知识点:根式的定义,要记住一些平方数和立方数。
结果:2,2.()284212241--⋅⎫-+-=⎪⎭说明:知识点:指数幂的运算及性质,结果:-63.指数函数()f x的图像过点1,22⎛⎝⎭,则()5f=________.说明:知识点:指数函数的定义,待定系数法求函数的解析式,求函数值的方法,指数函数的图像及点与函数解析式和图像的关系。
结果:1324.函数()f x=的定义域是________说明:知识点:指数函数的定义域,解简单的指数方程和不等式的方法。
结果:(],0-∞5.函数()[)1,1,2xf x x⎛⎫=∈-+∞⎪⎝⎭的值域为A.[)2,+∞B.1,2⎡⎫+∞⎪⎢⎣⎭C.(]0,2D.(],2-∞说明:知识点:指数函数的单调性,指数函数的值域及最值。
选C6.若函数()33x xf x-=+与()33x xg x-=-的定义域均为R,则A.()()f xg x与均为偶函数B.()f x为偶函数,()g x为奇函数C.()()f xg x与均为奇函数D.()f x为奇函数,()g x为偶函数说明:知识点:指数函数的奇偶性。
选B第二节对数及对数函数1.方程23x=,则x=______说明:知识点:对数的定义及有关概念,对数与指数的联系,解指数方程的方法。
结果:2log32.()()ln2322322log1log22lg5lg44log9log4log log33e+-++=++说明:知识点:对数的运算法则及性质,结果:163..函数2logy x=的反函数是______说明:知识点:对数函数的定义及有关概念,对数与指数的联系及解对数方程的方法。
结果:2xy=4.函数1lnyx=的定义域为______说明:知识点:对数函数的定义域,解对数不等式的方法。
结果:()()0,11,⋃+∞5.函数121l o g,,44y x x⎛⎤=∈ ⎥⎝⎦的值域为_____说明:知识点:单调性法求对数函数的值域,对数函数的图像。
结果:[)2,2-注意区间的开闭6.31,ln,logln3ππ的大小关系是____说明:知识点:两个数比较大小的方法,善于借助中间量。
结果:31ln logln3ππ>>7.若函数()()()log1log1f x x x=++-与()()()log1log1g x x x=+--的定义域均为R,则A.()()f xg x与均为偶函数B.()f x为偶函数,()g x为奇函数C.()()f xg x与均为奇函数D.()f x为奇函数,()g x为偶函数说明:知识点:对数函数的奇偶性。
选B第三节导数及应用1. 已知()3f x x x =-,则()/2=f______说明:知识点:导数的定义及计算方法,平均变化率,瞬时变化率。
结果:112. ()3ln +sin 2tan 2xf x x x e x x =+--+的导数。
说明:知识点:导数公式及运算法则。
结果:221122cos 2cos x x e x x x+-+- 3. 曲线ln y x =在点()1,0处的切线方程是______说明:知识点:导数的几何意义,导数的图像和原函数图像的关系及物理意义。
结果1y x =-4.函数xy xe =的极值点为______极值是______说明:知识点:函数的极值点的定义(极大值点、极小值点),极值的定义(极大值、极小值),极值点和极值的差别。