高中数学排列组合

合集下载

高中数学排列组合相关公式

高中数学排列组合相关公式

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

高中数学解题技巧之排列组合问题

高中数学解题技巧之排列组合问题

高中数学解题技巧之排列组合问题在高中数学中,排列组合是一个重要的概念和考点。

它不仅在数学中有广泛的应用,而且在生活中也有很多实际的应用场景。

掌握排列组合的解题技巧对于高中学生来说非常重要。

本文将介绍一些常见的排列组合问题,并提供解题技巧和实例,帮助读者更好地理解和应用。

一、排列问题排列是指从给定的元素中选取若干个元素按照一定的顺序排列的方式。

在排列中,元素的顺序是重要的。

例题1:某班有5名男生和3名女生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的排列问题,要求选出3名学生组成一个小组。

由于男生和女生是区分开的,我们可以分别计算男生和女生的组合方式,然后再将两者相乘得到最终的结果。

男生的组合方式为从5名男生中选出3名,即C(5,3) = 5! / (3! * (5-3)!) = 10种。

女生的组合方式为从3名女生中选出0名,即C(3,0) = 1种。

最终的结果为男生的组合方式乘以女生的组合方式,即10 * 1 = 10种。

例题2:某班有6名学生,要从中选出3名学生组成一个小组,其中2名学生是男生,3名学生是女生,问有多少种不同的组合方式?解析:这个问题相比例题1稍微复杂一些,因为要考虑到男生和女生的区分。

我们可以分别计算男生和女生的组合方式,然后将两者相乘得到最终的结果。

男生的组合方式为从2名男生中选出2名,即C(2,2) = 1种。

女生的组合方式为从3名女生中选出1名,即C(3,1) = 3种。

最终的结果为男生的组合方式乘以女生的组合方式,即1 * 3 = 3种。

二、组合问题组合是指从给定的元素中选取若干个元素,不考虑元素的顺序。

例题3:某班有5名学生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的组合问题,要求选出3名学生组成一个小组。

由于不考虑元素的顺序,我们可以直接计算组合的方式。

组合的计算公式为C(5,3) = 5! / (3! * (5-3)!) = 10种。

高中数学排列组合相关公式3篇

高中数学排列组合相关公式3篇

高中数学排列组合相关公式第一篇:排列组合基本概念和公式排列和组合是数学中的重要概念,属于初中和高中数学中的基础知识。

这两个概念通常用于处理有关选择或安排事物的问题。

排列:从n个不同的元素中任选r个元素排成一列,称为从n个不同元素中选r个元素的排列。

排列的基本公式如下:An^r = n(n-1)(n-2) …… (n-r+1)其中An^r表示从n个不同的元素中任选r个元素排成一列的方案数。

例如,从5个不同的元素中任选3个元素排成一列,即为5选3的排列。

根据排列的基本公式,5选3的排列数为An^r=5×4×3=60。

组合:从n个不同的元素中任选r个元素,不考虑元素之间的顺序,称为从n个不同元素中选r个元素的组合。

组合的基本公式如下:Cn^r = n!/r!(n-r)!其中Cn^r表示从n个不同的元素中任选r个元素的组合方案数。

n!表示n的阶乘,即n×(n-1)×(n-2)×……×2×1。

例如,从5个不同的元素中任选3个元素的组合数,即为5选3的组合。

根据组合的基本公式,5选3的组合数为C5^3=5!/(3!2!)=10。

排列和组合的关系:排列和组合有很多类似的性质,但是也有不同点。

其中最重要的一点是:一个排列中,每个元素的位置不同,导致不同的排列。

而在一个组合中,元素之间是不考虑顺序的,所以如果元素相同,不同的顺序算作同一种组合。

第二篇:排列组合的应用排列组合在数学中有着广泛的应用,下面将介绍几个常见的例子。

1. 生日问题如果有23个人在一起,那么至少有两个人生日相同的概率是多少?将每一个人的生日当做一个元素,一共有365个不同的生日(不考虑闰年的情况)。

这时我们要求的其实是在这23个人中选取2个或2个以上有相同生日的概率,也就是不出现任何两个人生日相同的概率。

按照组合的计算方法,我们可以得到不出现任何两个人生日相同的概率为:P = C365^23/365^23 ≈ 0.493所以至少有两个人生日相同的概率为:1-P ≈ 0.5072. 球队比赛现在有5个球队进行比赛,每个球队需要和其他球队各打一场比赛,问总共需要打几场?我们可以将这个问题看作是5个不同的元素进行排列组合。

高中数学排列组合3篇

高中数学排列组合3篇

高中数学排列组合第一篇:排列组合的基础排列组合是高中数学中非常重要的一部分,它是研究对象的排列组合方式的数学分支。

在实际生活和工作中,常常需要用到排列组合的知识,因此,掌握排列组合的基本概念和问题的解法具有重要的意义。

一、排列排列是对一组不同的对象进行有序安排的方式。

设有n 个不同的对象,从中取出m个不同的对象进行排列。

根据排列定义可知,首先有n种选择,选定第一个对象后再从剩下的n-1个对象中选定第二个对象,接着从剩下的n-2个对象中选定第三个对象,以此类推,直到选定第m个对象,于是,选取m个对象的所有排列数为Pm^n,即Pm^n=n×(n-1)×(n-2)×…×(n-m+1)。

如果从n个不同的对象中选取n个进行排列,那么所有的排列就是n个对象的全排列,其个数为n!,即n!=n×(n-1)×(n-2)×…×3×2×1。

二、组合组合是对一组不同的对象进行无序选择的方式。

设有n 个不同的对象,从中取出m个对象进行组合。

从 n 个对象中选取 m 个对象进行组合的所有方案数为:Cm^n。

可以用排列数来计算组合数,根据排列数的定义,设A=n(n-1)(n-2)…(n-m+1),在这些对象中,每个由m个元素组成的排列,可以对应到一个由m个等同元素组成的无序组合,既有m!个排列与同一组合对应,因此有:Cm^n=1/m!×n(n-1)(n-2)…(n-m+1),Cm^n也常用记号表示为nCm,即nCm=1/m!×n(n-1)(n-2)…(n-m+1)。

三、问题的应用1.求解排列组合问题可以利用以上公式进行计算,但最重要的是要掌握排列组合的概念及其本质区别,了解问题的实际背景,并进行相应的数学模型构建。

在实际生活和工作中,有很多涉及排列组合的问题,如:从一个班级里面选出一些人组成A、B、C三个小组,有多少种选法?从26个字母中取出4个字母,有多少种不同的排列方式?等等。

高中数学排列组合

高中数学排列组合

高中数学排列组合一、基本概念排列组合是数学中比较重要的一个分支,它是研究对象按照一定的规则,从有限个数中选出若干个数进行排列和组合的方法和样式。

1、排列排列是由一些元素按照一定顺序排列而成的整体。

排列是从n个不同元素中取出m个元素按一定顺序排列的方法数,用符号$A^m_n$表示。

例如:n个不同的元素依次排成m列,第一列有n种取法,第二列有(n-1)种取法,第三列有(n-2)种取法,依此类推,第m列有(n-m+1)种取法,则这n个元素排成m列有式子:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$2、组合组合是由一些元素按照任意排列组成的新整体。

组合是从n个不同元素中取出m个元素的不同组合数,用符号$C^m_n$表示。

例如:从4个球员中选出3人组成篮球队,有如下四种选法:$$ ABC,ABD,ACD,BCD $$将三个球员组成的篮球队作为一个整体,不考虑其顺序,则这4种选法仅算一种,所以这四种球员的组合方式有:$$ C_4^3=4 $$二、排列按顺序选择元素的方式叫做排列。

排列的计算方法是:从n个元素中取m个元素进行排列的方法有:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$特别地,当m=n时,有:$$ A_n^n=n! $$其中,n!表示n的阶乘,$n!=n(n-1)(n-2)...1$。

例1:从一组大小为6的数字中,任取4个数进行排列,求排列个数。

设全集为{1,2,3,4,5,6},任取其中4个元素进行排列。

$$ A_6^4=6\times 5\times 4\times 3=360 $$例2:一共有5位弟子,要从其中选出3位去参加武术比赛,求有多少种不同的组合方式。

设全集为{A,B,C,D,E},要从其中任选3个弟子参加武术比赛。

$$ C_5^3=10 $$三、组合组合是指从一组元素中任选m个元素,并将其看作一个整体。

组合的计算方法是:从n个元素中取m个元素进行组合的方法有:$$ C_n^m=\frac{A_n^m}{A_m^m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} $$特别地,当m=n时,有:$$ C_n^n=\frac{n!}{n!}=1 $$如果m>n,则组合数为0。

高中排列组合算法

高中排列组合算法

高中排列组合算法什么是排列组合在数学中,排列组合是一种用于计算对象排序或选取的方法。

排列是指从一组对象中选择若干个进行排序,组合是指从一组对象中选择若干个进行组合。

排列和组合的计算方法用于解决一些与排序和选取相关的问题。

在高中数学和一些应用领域,排列组合算法被广泛应用。

排列的计算方法排列表示从一组对象中选择若干个进行排序。

排列的计算方法有两种,分别是升序排列和降序排列。

升序排列升序排列是指从一组对象中选择若干个进行升序排序。

在高中数学中,升序排列的计算方法遵循以下步骤:1.确定对象的总数和要选择的对象数量,分别记为n和m;2.使用数学公式n!/(n−m)!计算升序排列的总数。

其中,n!表示n的阶乘,即将1到n之间的所有正整数相乘。

例如,4!=4×3×2×1=24。

降序排列降序排列是指从一组对象中选择若干个进行降序排序。

在高中数学中,降序排列的计算方法与升序排列相同,只是在计算升序排列的总数时,需要使用n!而不是(n−m)!。

组合的计算方法组合表示从一组对象中选择若干个进行组合。

组合的计算方法也有两种,分别是无重复组合和有重复组合。

无重复组合无重复组合是指从一组对象中选择若干个进行组合,且所选对象之间没有重复。

在高中数学中,无重复组合的计算方法遵循以下步骤:1.确定对象的总数和要选择的对象数量,分别记为n和m;2.使用数学公式n!/(m!(n−m)!)计算无重复组合的总数。

其中,n!和(n−m)!的计算方法与排列中相同。

有重复组合有重复组合是指从一组对象中选择若干个进行组合,且所选对象之间可以有重复。

在高中数学中,有重复组合的计算方法遵循以下步骤:1.确定对象的总数和要选择的对象数量,分别记为n和m;2.使用数学公式(n+m−1)!/(m!(n−1)!)计算有重复组合的总数。

其中,n!的计算方法与排列中相同。

实例演示假设有4个球,分别编号为1、2、3、4。

我们要从中选出3个球进行排序和组合。

高中数学排列组合相关公式

高中数学排列组合相关公式

排列组合公式排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合与古典概率论关系密切。

定义及公式排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号 C(n,m) 表示。

C(n,m)=A(n,m)∧2/m!=A(n,m)/m!;C(n,m)=C(m-n,m)。

(其中m≥n) 其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

符号 C-Combination 组合数 A-Arrangement 排列数(在旧教材为P-Permutation) N-元素的总个数 M-参与选择的元素个数!-阶乘基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

高中数学排列组合总结及例题解析

高中数学排列组合总结及例题解析

高中数学排列组合总结及例题解析内容总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m n mn m m m==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:n n n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C典例分类讲解:一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

高中数学排列组合知识点总结

高中数学排列组合知识点总结

高中数学排列组合知识点总结排列组合是高中数学中的一个重要概念,涉及到数学中的选择、排列和组合等问题。

在解决实际问题中,排列组合常常能够提供有效的理论框架和计算方法。

本文将对高中数学中的排列组合知识点进行总结,帮助读者更好地理解和应用这一内容。

一、基本概念在开始讨论排列组合知识点之前,先来明确一些基本概念。

1.排列(Permutation)指的是从给定的一组元素中选出若干个元素按照一定的顺序进行排列。

2.组合(Combination)指的是从给定的一组元素中选出若干个元素进行组合,不考虑其顺序。

二、排列计算1.排列定义:从n个不同元素中取出m(m≤n)个元素进行排列,称为从n个不同元素中取出m个元素的排列。

记作A(n,m)或P(n,m)。

2.排列计算公式:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,表示从1到n的所有正整数相乘。

三、组合计算1.组合定义:从n个不同元素中取出m(m≤n)个元素进行组合,称为从n个不同元素中取出m个元素的组合。

记作C(n,m)。

2.组合计算公式:C(n,m) = n! / (m! * (n-m)!)四、问题求解1.排列问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定排列的范围和规模;c.根据排列计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

2.组合问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定组合的范围和规模;c.根据组合计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

五、常见问题类型1.选择问题:从给定的选项中选择若干个进行排列或组合。

2.分组问题:将一组元素进行分组排列或组合。

3.座位问题:将若干个人或物品按不同的排列规则安排座位。

4.商业问题:涉及到商品的排列和组合。

5.应用问题:将排列组合运用到实际生活和科学研究中。

六、应用示例1.案例一:某队伍有7名运动员,其中需要选出3名队员参加比赛,有多少种不同的选择方式?解答:根据组合计算公式C(7,3),可以得到答案为35种。

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题高中数学知识点总结及公式大全:排列组合与概率一、排列与组合基础知识在学习排列组合与概率之前,我们首先需要了解一些基础的排列与组合知识。

1. 排列排列是从一组元素中选取出若干元素按照一定的顺序排列的方式。

这些元素可以是数字、字母、物品等。

如果从 n 个元素中选取 m 个进行排列,则表示为 P(n, m) 或 nPm,排列的公式为:P(n, m) = n! / (n - m)!2. 组合组合是从一组元素中选取出若干元素而不考虑顺序的方式。

与排列不同,组合只关心元素的选择而不涉及元素的顺序。

如果从 n 个元素中选取 m 个进行组合,则表示为 C(n, m) 或 nCm,组合的公式为:C(n, m) = n! / [m! * (n - m)!]二、排列组合的应用排列组合的应用广泛,不仅限于数学领域,在实际生活中也能见到许多与排列组合相关的问题。

下面列举几个常见的应用场景:1. 抽奖问题在抽奖活动中,我们常会遇到从一堆奖品中抽取若干个奖品的问题,这就涉及到组合的应用。

2. 选课问题学校的选课系统通常会要求学生从众多课程中选择若干门进行学习,这就是一个排列问题。

3. 组队问题在进行体育竞赛或其他集体活动时,我们需要将一群人分成几个小组,这就是一个组合问题。

三、排列组合的公式总结在实际应用中,我们常常需要用到排列组合的公式来解决问题。

下面是一些常见的排列组合公式:1. 排列公式:- 样本不放回排列:P(n, m) = n * (n - 1) * (n - 2) * ... * (n - m + 1)- 样本放回排列:P(n, m) = n^m2. 组合公式:- C(n, m) = C(n, n - m)- C(n, m) = P(n, m) / m!- C(n, m) * C(m, k) = C(n, k) * C(n - k, m - k)四、概率与排列组合的关系排列组合与概率有着密切的关系,概率问题常常需要借助排列组合的概念来求解。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合的性质及相关题目解析

高中数学排列组合的性质及相关题目解析

高中数学排列组合的性质及相关题目解析在高中数学中,排列组合是一个重要且常见的概念。

它不仅在数学中有着广泛的应用,而且在生活中也有着实际的意义。

本文将从排列组合的性质出发,结合具体的题目进行解析,帮助高中学生和他们的父母更好地理解和掌握排列组合的知识。

一、排列的性质及相关题目解析排列是从给定的元素中选取若干个进行排列,它的性质主要包括全排列和部分排列两种情况。

1. 全排列全排列是指从给定的n个元素中选取n个进行排列,排列的顺序不同即视为不同的排列。

全排列的个数可以通过n!(n的阶乘)来计算。

例如,有4个元素A、B、C、D,它们的全排列个数为4! = 4 × 3 × 2 × 1 = 24。

2. 部分排列部分排列是指从给定的n个元素中选取m个进行排列,排列的顺序不同即视为不同的排列。

部分排列的个数可以通过A(n, m)来计算,其中A代表排列数。

例如,有4个元素A、B、C、D,从中选取2个进行部分排列,部分排列的个数为A(4, 2) = 4 × 3 = 12。

下面通过具体的题目来进一步说明排列的性质。

题目1:某班有5名学生,要从中选取3名学生参加数学竞赛,请问有多少种不同的选取方式?解析:根据题目可知,从5名学生中选取3名学生进行排列。

由于顺序不同即视为不同的排列,因此这是一个部分排列问题。

根据部分排列的计算公式A(n, m)= n × (n-1) × ... × (n-m+1),可得部分排列的个数为A(5, 3) = 5 × 4 × 3 = 60。

所以,有60种不同的选取方式。

题目2:某班有5名学生,要从中选取3名学生参加数学竞赛,如果其中一名学生必须参加,请问有多少种不同的选取方式?解析:根据题目可知,从5名学生中选取3名学生进行排列,并且其中一名学生必须参加。

这个问题可以转化为从剩下的4名学生中选取2名学生进行排列。

高中数学排列组合公式排列组合计算公式

高中数学排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式排列P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2),,(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合公式排列组合计算公式高中数学

排列组合公式排列组合计算公式高中数学

排列组合公式/排列组合计算公式公式P就是指排列,从N个元素取R个进行排列。

公式C就是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)、、(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123与213就是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么瞧,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念与公式典型例题分析例1设有3名学生与4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”就是一种具有直观形象的有效做法,也就是解决计数问题的一种数学模型.例3判断下列问题就是排列问题还就是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长与一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信就是不同的两封信,所以与顺序有关就是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手就是同一次握手,与顺序无关,所以就是组合问题.其她类似分析.(1)①就是排列问题,共用了封信;②就是组合问题,共需握手(次).(2)①就是排列问题,共有(种)不同的选法;②就是组合问题,共有种不同的选法.(3)①就是排列问题,共有种不同的商;②就是组合问题,共有种不同的积.(4)①就是排列问题,共有种不同的选法;②就是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这就是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解 (1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即 ,解得第六章排列组合、二项式定理一、考纲要求1、掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题、2、理解排列、组合的意义,掌握排列数、组合数的计算公式与组合数的性质,并能用它们解决一些简单的问题、3、掌握二项式定理与二项式系数的性质,并能用它们计算与论证一些简单问题、二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理就是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据、例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都与前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都就是选择题或填空题考查、例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A、60个B、48个C、36个D、24个解因为要求就是偶数,个位数只能就是2或4的排法有P12;小于50 000的五位数,万位只能就是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C、例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种)、例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都就是由选择题或填空题考查、例4 从4台甲型与5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A 、140种B 、84种C 、70种D 、35种 解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C 、例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种、根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种)、 (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它就是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题、 例6 在(x- )10的展开式中,x 6的系数就是( ) A 、-27C 610 B 、27C 410 C 、-9C 610 D 、9C 410解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于就是展开式中第5项含x 6,第5项系数就是C410(-)4=9C410故此题应选D、例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的与,则其与为在(x-1)6中含x3的项就是C36x3(-1)3=-20x3,因此展开式中x2的系数就是-2 0、(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A、1B、-1 C、0 D、2解:A、例92名医生与4名护士被分配到2所学校为学生体检,每校分配1名医生与2 名护士,不同的分配方法共有( )A、6种B、12种C、18种D、24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、排列数
从n个不同元素中取出mm n个元素的所有 不同排列的个数叫做从n个不同元素中取出m 个元素的 排列数 , 用符号A
A是英文字arrangemen t排列的第一个字母 .
上面的问题1 ,是求从3个不同元素中取出2个元素
2 2 的排列数, 记为A 3 ,已经算得 A 3 3 2 6;
3 5
1是从5 本 例 3中两两个问题的区别在 : 不同的书同的书 3本送 3名同学 , 各人得 到的书的书, 属于求排列数问题 ; 而 2 中,
由于不同的人得到的 书可能相同,因此不
符合使用排列数公式的 条件, 只能用分 步乘法计数原理进行计 算.
例 4.用0 到 9 这10 个数字, 可以组成多少个没有 重复数字的三位数 ?
问题 2 从1,2,3,4这 4个数字中 , 每次取出 3个排成 一个三位数 , 共可以得到多少个不同 的三位数? 显然, 从4个数字中, 每次取出3个, 按" 百" " 十" " 个" 位 的顺序排成一列, 就得到一个三位数.因此有多少种 不同的排列方法就有多少个不同的三位数.可以分 三个步骤来解决这个问题 : 第1步, 确定百位上的数字, 在1 ,2,3,4这4个数字中任 取1个, 有4种方法; 第2步, 确定十位上的数字,当百位上的数字确定后, 十位上的数字只能从余下的 3 个数字中去取, 有 3 种方法;
4 1 2 3
2 3 4 3 4 2 4 23
1
3 4
1
2 4
3 4 1 4 13
24 14 12
23 13 12
1 2 3 4 3 4 2 4 23 3 1
2 3 4
同样,问题2可归结为:
从 4 个不同的元素 a, b, c, d 中取出3 个 ,然后按照一定 的顺序排成一列 , 共有多少 种不同的排列方法 ?
A nn 1n 2 n m 1. 这里, n, m N , 并且m n.这个公式叫做
m n
排列数公式 . 根据排列数公式 , 我们就能方便地计算 出从n个不同元素中取出 mm n个元 素的所有排列的个数 .
2 例如 A 5 5 4, A 3 8 8 7 6.
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志. 根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同. 如果两个排列所含的元素不完全一样,那么就可以肯定 是不同的排列;如果两个排列所含的元素完全一样,但摆 的顺序不同,那么也是不同的排列.
探究 从n个不同元素中取出 2个元素的排列
假定有排好顺序的两个 空位 (图1.2 3) , 从 n 个 n种 n 1种 元素 a1, a 2 , , an 中任意 取2个去填空 , 一个空位 图1.2 3 填一个元素 , 每一种填法就得到一个 排列; 反 过来, 任一个排列总可以由这 样一种填法得
A n!
n n
另外, 我们规定 0! 1.
事实上, A nn 1n 2 n m 1 nn 1n 2 n m 1n m 2 1 n m 2 1 n n! An nm . n m! A nm n! m . 因此, 排列数公式还可以写成 A n n m!
(5)20位同学互通一次电话 (6)20位同学互通一封信 (7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线 (9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14 个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛 ?
解决这一问题可分两个 步骤 : 第 1 步, 确定参加上 午活动的同学 , 从3人中任选 1人,有3种方法;第2步, 确定参加下午活动的同 学 ,当参加上午活动的同 学确定后 , 参加下午活动的同学只 能从余下的 2人 中去选,于是有2种方法. 上午 下午 相应的排法 根据分步乘法计数原理 ,
在3名同学中选出2名, 按 照参加上午活动在前 ,参 加下 午活动在后的顺序 排列的不同方法共有 3 2 6种, 如图.
所有不同的排列有 abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc, cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb. 共有4 3 2 24种.
3 4 1 4 13 4
m n
3、排列数公式
n! A n(n 1)( n 2)...( n m 1) . n m! 1.排列数公式的特点:第一个因数是n,后面每一个因数 比它前面一个因数少1,最后一个因数是n-m+1,共有m 个因数.
m n
2.从n 个不同元素全部取出的 一个排列 , 叫做n个元素的 一个全排列 .这时公式中m n,
m 因此, 所有不同填法的种数就是排列数An .
m n
第 1位
第2位
第3位

第m位
n种
n 1种 n 2种
n m 1种
第3步,第3位只能从余下的 n 2个元素中任选一 个填上,共有n 2种选法;
填空可分为 m个步骤 : 第1步,第1位可以从 n个元素中任选一个填上 ,共有 n种选法; 第2步,第2位只能从余下的 n 1个元素中任选一 个填上,共有n 1种选法;
n 即有An nn 1n 2 3 2 1,
注:规定 0! 1 ,其中 m ≤ n
例题选讲
例1.下列问题中哪些是排列问题? (1)10名学生中抽2名学生开会 (2)10名学生中选2名做正、副组长 (3)从2,3,5,7,11中任取两个数相乘 (4)从2,3,5,7,11中任取两个数相除
对“n取m的一个排列”的认识:
1、元素不能重复。n个中不能重复,m个中也不能 重复。 2、“按一定顺序”就是与位置有关,这是判断一 个问题是否是排列问题的关键。 3、两个排列相同,当且仅当这两个排列中的元素 完全相同,而且元素的排列顺序也完全相同。 4、m<n时的排列叫选排列,m=n时的排列叫全排 列。 5、为了使写出的所有排列情况既不重复也不遗漏, 最好采用“树形图”。

乙 丙
甲乙
甲丙


乙甲
乙丙
丙甲
丙甲丙ຫໍສະໝຸດ 乙丙乙把上面问题中被取的对 象叫做 元素 , 于是问题可叙述为 : 从3个不同元素a, b, c中任取2个,然后 按照一定的顺序排成一 列, 一共有多 少种不同的排列方法 ?
所有不同的排列是 ab, ac, ba, bc, ca, cb,共有3 2 6种.
m n
表示.
上面的问题2,是求从4个不同元素中取出3个元素
3 的排列数, 记为A 3 , 已经算得 A 4 4 4 3 2 24.
数A 是多少? A , A m n又各是多少 ? 2 根据解问题 1.2的经验,求排列数 A n可以这样 考虑 :
2 n 3 n m n
思考 你能归纳一下排列的特 征吗?
根据排列的定义 ,两个排列相同 ,当且仅当两个排 列的元素完全相同 , 且元素的排列顺序也相 同.例 如在问题2中,123 与134 的元素不完全相同 ,它们 是不同的排列 ;123与132虽然元素完全相同 , 但元 素的排列顺序不同 ,它们也是不同的排列 .
1、排列定义
2 到.因此, 所有不同填法的种数就 是排列数 A n .
第1位
第2位
现在我们计算有多少种 填法.完成填空这件 事可分为两个步骤 : 第1步, 填第1个位置的元素 ,可以从这 n个元 素中任选 1个,有n种方法; 第2步, 填第2个位置的元素 ,可以从剩下的 n 1个元素中任选 1个,有n 1种方法.
第m步,当前面的 m 1 个空位都填上后 ,第m位只 能从余下的 n m 1 个元素中任选一个填上 ,共 有n m 1 种选法. 根据分步乘法计数原理 ,全部填满 m个空位共有 nn 1n 2 n m 1种填法.

这样, 我们就得到公式
解 任意两队间进行1次主场比赛与1次 客场比赛, 对应于从 14 个元素中任取 2 个 元素的一个排列.因此,比赛的总场次是
2 A14 14 13 182.
例 3.1从5本不同的书中选3本送给3名同 学 , 每人各1 本, 共有多少种不同的送法 ?
2从5种不同的书中买 3本送给3名同学, 每
你能概括一下排列数公 式的特点吗 ?
n 2 3 2 1, 即有A m n nn 1
n 个不同元素全部取出的 一个排列 ,叫做 n个元素的一个全排列 .这时公式中m n,
就是说 , n 个不同元素全部取出的 排列数, 等于正整数 1 到n的连乘积.正整数1到n的 连乘积,叫做 n的 阶乘 , 用 n! 表示.所以 n 个 不同元素的全排列数公 式可以写成
2 数为A n nn 1. 3 同理,求排列数 A n可依次填 3个空位来考虑 , 3 有 An nn 1n 2.
根据分步乘法计数原理 ,2个空位的填法种
一般地, 求排列数A 可以按依次填m个空位 来考虑 : 假定有排好顺序的m个空位 , 从 n个元素 a1 , a2 , , an 中任意取m个去填空, 一个空位 填一个元素 , 每一种填法就对应一个排列.
第3步, 确定个位上的数字,当百位、十位上的数 字确定后, 个位上的数字只能从余下的 2 个数字 中去取, 有 2种方法; 根据分步乘法计数原理, 从1,2,3,4这4个不同的数
相关文档
最新文档