时间序列建模分析优秀课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ARIMA模型建模流程:
获得观察值序列
N 拟合ARMA模型
平稳性 检验 Y
白噪声 检验
Y
分析结束
N 差分运算
EVIEWS 操作
创建文件
数据录入
画图
自相关和偏自相关图
单位根检验
建立方程
Q检验
预测
例:某国1980年至1993年GNP平减指数的季 节时间序列,共56个观测值,见下表
表5.1 某国GNP平减指数季度资料
时间序列建模分析
目录
1、ARIMA模型
1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例
2、季节时间序列模型
2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
时间序列的预处理:
拿到一个时间序列后,首先要对它的平 稳性和纯随机性进行检验,这两个重要的 检验称为序列的预处理。
年/季
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
1
89.89 94.4 98.72 102.95 110.72 122.88 130.12 136.8 145.12 158.6 171.94 190.01 203.98 212.87
对Q统计量 修正
大,小样本场合 LB统计量
检验结果
若P值非常小(<0.05) 则认为该序列属于非白
噪声序列
(有分析价值)
否则,认为该序列为纯 随机序列
(无分析价值)
平稳非白噪声序列建模步骤:
平稳非白噪声序列 计算ACF,PACF ARMA模型识别
估计模型中未知参数的值
N
模型检验
Y 模型优化
预测序列将来的走势
模型ARiMA(2,2,2):d(gnp,2) ar(1) ar(2) c ma(1) ma(2)
C与MA(1)系数的T检 验显示:由于P值均
大于0.05,故接 受原假设,即二者 系数显著为零,所以剔除
剔除C与MA(1):
可供选用模型一 模型参数均通过检验
ARIMA(2,2,(2)) : d(gnp,2) ar(1) ar(2)源自文库ma(2)
在显著性水平为0.05的 条件下,延迟期数为6和12时 ,Q统计量的P值均小于0.05
2阶差分序列为非白噪声序列
结合前面分析,认为该序列为2阶 差分平稳非白噪声序列,可考虑建立 ARIMA模型
根据2阶差分序列的自相关图ACF和偏自相关 图PACF的特点,判断阶数进行建模:
可以尝试用ARMA(2,2) ARMA(3,2) ARMA(3,3);也就是说,对原序 列GNP尝试用ARIMA(2,2,2) ARIMA(3,2,2) ARIMA(3,2,3)进行拟 合,首先建立ARIMA(2,2,2)如下:
4
93.03 97.39 101.54 108.74 119.79 128.99 134.99 143.24 155.38 168.05 185.13 201.69 210.27 218.21
该序列时序图(1.1)和自相关图(1.2) 如下:
图(1.1) 该图显示有明显的长期趋势
序列非平稳
图(1.2)
可供选用模型二
模型适用性检验:
模型ARIMA(2,2,(2))
模型ARIMA(3,2,3)
通过对模型的适用性检验,左侧拟合模型中的残差白噪声检验显示延迟 6阶,12阶,18阶的残差序列属于白噪声序列,模型ARIMA(2,2,(2))显著 有效,对序列适应性更强。因此,选用该模型作为最终拟合模型。
图(1.5) 差分序列在零附近波动, 无明显趋势或周期
认为2阶差分 序列平稳
图(1.6) 自相关系数在零值附近波动
二阶差分序列的单位根检验:
检验t统计量的值是3.709559,小于各个显著 性水平下的临界值,所以 拒绝原假设。也就是说, 二阶差分序列不存在单位 根。二阶差分序列平稳。
对平稳的2阶差分序列进行白噪声检验:
2
91.07 95.7 99.42 104.75 113.48 124.44 131.3 139.01 148.89 161.85 176.46 193.03 206.77 214.25
3
91.79 96.52 100.25 106.53 116.42 126.68 132.89 141.03 152.02 165.12 180.24 197.7 208.53 215.89
一阶差分序列 仍不平稳
图(1.4) 自相关系数向零衰减的速度依然较慢
一阶差分序列D(GNP)的单位根检验 结果:
检验t统计量的值是1.929760,大于各个显著 性水平下的临界值,所以 不能拒绝原假设。也就是 说,一阶差分序列D(GNP) 存在单位根,因此,一阶 差分序列也是非平稳的。
2阶差分时序图与自相关图:
建立ARIMA(3,2,2)如下:
AR(3)系数未通过检验, 予以剔除
结果和前述模型相同
ARIMA(3,2,2):d(gnp,2) ar(1) ar(2) ar(3) ma(1) ma(2)
建立ARIMA(3,2,3):
命令为:d(gnp,2) ar(1) ar(2) ar(3) ma(1) ma(2) ma(3)
根据检验的结果可以将序列分为不同 的类型,对不同类型的序列采取不同的分 析方法。
时间序列的基本类型:
时间序列
平稳时间序列
平稳性检验
非平稳时间序列
平稳白噪声 序列
纯随机性检验
平稳非白噪声 序列
没有分析价值
模型拟合 (常用ARMA模型)
确定性时序 分析
长期趋势 循环波动 季节性变化
随机波动
随机性时序 分析
自相关系数随延迟期数的增加, 衰减向零的速度相当缓慢,且后期 有反向递增趋势
序列GNP的单位根检验结果:
检验t统计量的值是 0.325604,大于各个显著 性水平下的临界值,所以 不能拒绝原假设。也就是 说,序列GNP存在单位根, 因此,是非平稳的。
一阶差分后的时序图与自相关图:
图(1.3) 时序图仍显示有长期趋势
ARIMA模型
残差自回归模型
条件异方差模型
平稳性检验方法:
图检验方法
主观色彩较强
构造检验统计量
时序图检验 自相关图检验
单位根检验
有明显趋势或 周期性,则为
非平稳
随着延迟期数 增加,自相关 系数会很快衰
减向零
平稳
反之,自相关 系数衰减向零 的速度较慢
非平稳
纯随机性检验方法:
构造检验统计量
大样本场合 Q统计量
相关文档
最新文档