【流体数值模拟软件】Fluent基础讲义
fluent讲稿
质量
动量 能量 封闭方程 底层物理模型
求解设置
物理模型 湍流 燃烧 辐射 多相流 相变 动网格技术
后处理
材料特性 边界条件 初始条件
CFD的基本步骤
分析问题及前处理 1. 确定数值模拟的目标 2. 确定计算区域 3. 建立数值模拟物理模型和网格 求解执行过程 4. 建立数学模型 5. 计算并监控结果 后处理 6. 检查结果 7. 修正模型
建立数值模拟物理模型和网格
能否采用结构化的网格? 几何形状以及流动的复杂程度? 在各个控制区域内需要什么样的网格精度 对于这个几何形体需要什么样的网格精度? 大的网格梯度是否能预测流场? 是否需要采用网格自适应技术? 计算机的内存容量是否满足要求? 需要多少的计算网格? 计算模型的数量?
单方程(Spalart-Allmaras)模型、
双方程模型(基于湍流动能和扩散率:标准κ-ε模型、重整化群κ-ε模型、 带漩流修正的Realizable κ-ε模型;基于湍流能量方程和扩散速率方程: 标准k-ω模型,剪切压力传输(SST) k-ω模型) 雷诺应力模型 大涡模拟(3D)
FLUENT中的湍流模型
三维网格:
tetrahedron
hexahedron
pyramid
prism or wedge
FLUENT中的湍流模型
湍流流动模型很多,但大致可以归纳为以下三类: 湍流输运系数模型 模型的任务就是给出计算湍流粘性系数的方法。根据建立模型所需要的 微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型 和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关 联量的输运方程。 大涡模拟
fluent--流体力学基础
m V 0 V
(kg/m3 ) ; lim
(N/m3 )
显然
牢记
g
水 1000 kg/m 3 ; 汞 13590 kg/m 3 ;
前页
水 9.8 kN/m 3 汞 133kN/m 3
后页
返回 主题
1.1 概述
• 1 流体的密度、重度和比重
流体的比重 流体的比重为与零上4℃时水的密度之比。
xx xy M yz zy zz xz zx
o y x
图 1-2
任一点所受到的应力
前页
后页
返回 主题
1.2 流体力学中的力与压强
• 静止流体所受的外力有质量力和压应力两种,流体垂直 作用于单位面积上的力,称为流体的静压强,习惯上 又称为压力。 (1)压力单位 在国际单位制(SI制)中,压力的单位为N/m2,称 为帕斯卡(Pa),帕斯卡与其它压力单位之间的换算 关系为: 1atm(标准大气压)=1.033at(工程大气压) =1.013105Pa =760mmHg =10.33mH2O
前页
后页
1.1 概述
• 5 流体的压缩性
可压缩流体 流体的压缩性是指在外界条件发生变化时,其密度和体 积发生了变化。 研究流体流动的过程中,若考虑流体的压缩性,则称其 为可压缩流动,相应流体称为可压缩流体。(水中的 爆炸、高速气流) 不可压缩流体 若不考虑流体的压缩性,则称其为不可压缩流动,相应 流体称为不可压缩流体。(水和油的流动)
• 1 定常流动与非定常流动
定常流动
流体流动的物理量(如速度、压力、温度等)不随时间变化, 称为定常流动。
☆工程中绝大部分稳定运行的设备可采用定常流动来描述。 如:锅炉燃烧、风机运行、化工过程。
fluent全攻略 资料大全 入门教程【精品】
FLUENT全攻略流体中文网倾情奉献 雷锋精神永放光芒!2005年3月5日版权声明本书乃周华站长、孙为民、徐丽、宋剑的个人工作成果,仅供流体中文网网友下载交流之用,请下载后24小时内删除。
本网对书中内容不承担任何法律责任,请谨慎使用!祝大家身体健康,万事如意!2005年3月5日星期六 纪年学习雷锋四十二周年FLUENT6.1全攻略第一篇 FLUENT基础知识第一章 FLUENT软件介绍FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。
在我们进行的网上调查中发现,FLUENT在中国也是得到最广泛使用的CFD软件。
因此,我们将在这本书中为大家全面介绍FLUENT的相关知识,希望能让您的CFD分析工作变得轻松起来。
用数值方法模拟一个流场包括网格划分、选择计算方法、选择物理模型、设定边界条件、设定材料属性和对计算结果进行后处理几大部分。
本章将概要地介绍FLUENT软件的以下几个方面:(1)FLUENT软件的基本特点。
(2)FLUENT、GAMBIT、TECPLOT和EXCEED的安装和运行。
(3)FLUENT的用户界面。
(4)FLUENT如何读入和输出文件。
(5)FLUENT中使用的单位制。
(6)如何规划计算过程。
(5)FLUENT的基本算法。
1.1FLUENT软件概述1.1.1网格划分技术在使用商用CFD软件的工作中,大约有80%的时间是花费在网格划分上的,可以说网格划分能力的高低是决定工作效率的主要因素之一。
FLUENT软件采用非结构网格与适应性网格相结合的方式进行网格划分。
与结构化网格和分块结构网格相比,非结构网格划分便于处理复杂外形的网格划分,而适应性网格则便于计算流场参数变化剧烈、梯度很大的流动,同时这种划分方式也便于网格的细化或粗化,使得网格划分更加灵活、简便。
FLUENT划分网格的途径有两种:一种是用FLUENT提供的专用网格软件GAMBIT 进行网格划分,另一种则是由其他的CAD软件完成造型工作,再导入GAMBIT中生成网1FLUENT6.1全攻略格。
学习fluent (流体常识及软件计算参数设置)
luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)层流(Laminar Flow)和湍流(Turbulent Flow)定常流动(Steady Flow)和非定常流动(Unsteady Flow)亚音速流动(Subsonic)与超音速流动(Supersonic)热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么如何对计算区域进行离散化离散化时通常使用哪些网格如何对控制方程进行离散离散化常用的方法有哪些它们有什么不同离散化的目的计算区域的离散及通常使用的网格控制方程的离散及其方法各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么主要方法有哪些其基本思路是什么各自的适用范围是什么6 可压缩流动和不可压缩流动,在数值解法上各有何特点为何不可压缩流动在求解时反而比可压缩流动有更多的困难可压缩Euler及Navier-Stokes方程数值解不可压缩Navier-Stokes方程求解7 什么叫边界条件有何物理意义它与初始条件有什么关系8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别9 在网格生成技术中,什么叫贴体坐标系什么叫网格独立解10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量及其在做网格时大致注意到哪些细节11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理b、计算域内的内部边界如何处理(2D)13 为何在划分网格后,还要指定边界类型和区域类型常用的边界类型和区域类型有哪些14 20 何为流体区域(fluid zone)和固体区域(solid zone)为什么要使用区域的概念FLUENT是怎样使用区域的15 21 如何监视FLUENT的计算结果如何判断计算是否收敛在FLUENT中收敛准则是如何定义的分析计算收敛性的各控制参数,并说明如何选择和设置这些参数解决不收敛问题通常的几个解决方法是什么16 22 什么叫松弛因子松弛因子对计算结果有什么样的影响它对计算的收敛情况又有什么样的影响17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决而这里的极限值指的是什么值修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”其具体意义是什么有没有办法避免如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化在FLUENT中初始化的方法对计算结果有什么样的影响初始化中的“patch”怎么理解27 什么叫PDF方法FLUENT中模拟煤粉燃烧的方法有哪些30 FLUENT运行过程中,出现残差曲线震荡是怎么回事如何解决残差震荡的问题残差震荡对计算收敛性和计算结果有什么影响31数值模拟过程中,什么情况下出现伪扩散的情况以及对于伪扩散在数值模拟过程中如何避免32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么如何解决33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值参考压力有何作用如何设置和利用它35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)37 在FLUENT定义速度入口时,速度入口的适用范围是什么湍流参数的定义方法有哪些各自有什么不同38 在计算完成后,如何显示某一断面上的温度值如何得到速度矢量图如何得到流线39 分离式求解器和耦合式求解器的适用场合是什么分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
(完整版)学习fluent(流体常识及软件计算参数设置)
luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
《fluent讲义》课件
Fluent的模拟应用和优化技术
1
热传导模拟
模拟热传导过程,包括传热、热辐射和相变,以优化能量传递和系统效率。
2
多物理场模拟
将不同物理场耦合进行模拟,如流体-固体、流体-电磁和流体-热传导,以研究多 场耦合效应。
3
物流耦合模拟
模拟流体和结构耦合,研究流体对结构的影响,以及结构变化对流体行为的反馈。
流体力学概念与模拟
1 流体力学基础
介绍流体力学的基本概念,包括质量守恒、 动量守恒和能量守恒。
2 多相流模拟
探索多相流模型,如气固流、气液流和固液 流,并学习如何模拟这些复杂的流体行为。
3 湍流模拟
了解湍流的产生机制和模型,并学习如何进 行湍流模拟以预测和优化流体行为。
4 化学反应模拟
研究流体中的化学反应过程,包括燃烧、化 学反应和质量转移,并模拟这些过程的影响。
Fluent的动网格技术和并行计算
动网格技术
介绍Fluent中的动网格技术,包括网格自适应和网 格重构。动态调整网格以捕捉流动细节和提高模拟 精度。
并行计算
探索Fluent中的并行计算技术,利用多核处理器和 集群系统提高模拟速度和处理大规模模拟任务。
Fluent的后处理工具和工程应用案例
后处理工具
Fluent的操作和界面介绍包括模型创建、网 格导入、参数设置等。
物理模型选择
深入了解Fluent所提供的多种物理模型选项,并 选择适合你的应用的模型。
用户界面
探索Fluent友好的用户界面,包括工具栏、菜单 栏、视图控制和后处理选项。
求解器设置
学习如何选择和设置合适的求解器以提高模拟效 率和准确性。
使用Fluent的后处理工具进行数据可视化、图表分析 和结果解释,以实现全面的模拟分析。
《fluent讲稿》课件
Fluent 的使用者评价
刚需软件
FLUENT 是计算机模拟计算领 域重要的工具,是模拟流体动 力学的良好平台。
一流的C FD解决方案
优秀的CFD计算软件,通过设 定各项物理参数和求解域内物 理场,数据格式相当规范。
信赖的计算流体力学 软件
Fluent 是应用计算流体力学和 计算传热学仿真最广泛的工具 之一,深受用户喜爱。
2 仿真预测分析
能够实现准确预测工程设计的流体力学现象,减少了误差和成本,使得研究人员随时随 地设计多组合的流动设计,如此便于定制出最优的方案。
3 涉及多个应用领域
Fluent 已被广泛应用于化工、建筑、环境、能源、食品、医药、航空航天、汽车甚至数 码备等多个领域中。
Fluent 界面及模块介绍
1
结构化网格
应用定制的网格工具,适合直接网格成像、图形分析和CFD训练模型等应用。
2
有限体积网格
一道典型的网格生成方法,基于一个数学模型,可用于大多数非结构化网格生成, 适用于复杂几何体的网格分析。
3
OpenFOAM
采用较为成熟的生产级非结构化网格技术、压缩实时良好,应用范围非常广。
Fluent 边界条件设置
Fluent 的未来发展趋势
革新技术
Fluent 未来发展愿景是,通过创新技术的开发和引入,为行业大众提供技术解决方案,以应 对美好未来的一切挑战。
上云服务
Fluent 可以为运用该服务的行业界或科研机构提供在线学习、在线制图和线上咨询服务,使 更多的科学家和工程师无处不阅读。
直接液态分析
Fluent 在传输和信号处理领域引入完整的红外和激光移相和测距技术,为人们提供更快速和 准确的工程仿真数据实验操作。
FLUENT官方培训教材完整版幻灯片
100%
简化模型
在保证计算精度的前提下,合理 简化模型以降低计算量。
80%
设定边界条件
根据实际问题,设定模型的边界 条件,如入口、出口、壁面等。
网格划分策略及技巧
选择合适的网格类型
根据模型特点选择合适的网格 类型,如结构化网格、非结构 化网格等。
求解策略
采用有限体积法进行数值求解,结合适当的 湍流模型和热传导方程进行迭代计算。
结果分析
展示温度场、热流量和努塞尔数等关键结果 ,评估热设计方案的合理性。
07
总结回顾与拓展学习资源推荐
本次培训内容总结回顾
FLUENT软件基础操作
介绍了FLUENT软件界面、基本功能 、操作流程等。
前处理与网格划分
演示技巧
分享动画演示的实用技巧,如选择合适的帧率、添加背景音乐和解 说等。
输出格式
支持多种动画输出格式,如AVI、MP4等,方便在不同场合进行演 示和分享。
数据提取、导出及报告编写
数据提取
从计算结果中提取关键数据,如某点的速度、压力值等。
数据导出
将提取的数据导出为Excel、CSV等格式,便于进一步分析 和处理。
求解策略
采用有限体积法进行数值求解 ,结合湍流模型捕捉流动细节 ,提高计算精度。
结果分析
展示管道内的速度场、压力场 和流量分布等关键结果,评估
管道设计的合理性。
案例三:多相流混合过程模拟
问题描述
多相流体(如气液、气 固等)在混合过程中的 相互作用和流动特性。
建模方法
在FLUENT中建立多相 流模型,定义各相的物 理属性和相互作用机制
计算流体动力学软件Fluent简介 PPT
软件:
常用软件的教程、视频 软件的HELP文档 实例操作练习
类比:
1 计算流体动力学及Fluent概述
1.1 概念
什么是CFD?
• CFD是计算流体动力学(Computational fluid dynamics)的缩写,是预测流体流动、 传热传质、化学反应及其他相关物理现象的一门学科。CFD一般要通过数值方法 求解以下的控制方程组 – 质量守恒方程 – 动量守恒方程 – 能量守恒方程 – 组分守恒方程 – 体积力 – 等等
模拟结果
结果
2 Fluent应用领域成果概览
2.3 Fluent滑移网格模拟区域运动
实现目标:杯子中装满水,现 在以速度1rad/s延续1s钟使杯子倾斜 1rad,观察5s钟内水的变化情况。
涉及到内容包括: (1)分界面几何模型的建立。 涉及到多几何体的创建,主要是各 部分模型网格的组装问题。 (2)区域运动的指定。在本例 中主要是指定运动区域的旋转速度 。需要注意的是旋转中心与旋转方 向的设定。 (3)多相流的使用。本例中使 用的是VOF模型。
➢ 在被ANSYS收购后为6.3版本 ➢ 2009年6月发布12.0版本 ➢ 2010年底发布13.0版本 ➢ 2011、2013、2015年底分别发布14.0、15.0、16.0版
本
1 CFD软件Fluent简介
1.4 Fluent软件的基本功能
可压缩与不可压缩流动问题 稳态和瞬态流动问题 无粘流、层流及湍流问题 牛顿流体及非牛顿流体 对流换热问题(包括自然对流和混合对流) 导热与对流换热耦合问题 辐射换热 惯性坐标系和非惯性坐标系下的流动问题模拟
顶板高位钻孔抽采模型线框图
3 Fluent在矿业安全中的应用介绍
3.1 煤矿综放工作面高位钻孔瓦斯治理
CFD数值模拟(含Fluent)学习及培训课件
(4)
CFD 求 解 过 程
为了进行CFD计算, 用户可借助商用软件来完 成所需要的任务,也可自 己直接编写计算程序。具 体工作过程如右图所示:
建立控制方程 确定初始条件及边界条件
划分计算网格,生成计算节点
建立离散方程 离散初始条件和边界条件
给定求解控制参数
求解离散方程
解收敛否?
N
Y
显示和输出计算结果
此外, 与CAD联合, 还可进行结构优化设计等。
CFD概述(续)
该方法与传统的实验测量方法、理论分析方法组成了 研究流体流动问题的完整体系,如下图所示:
CFD克服了实验测量方法和理论分析方法存在的弊端,其 更加形象、直观、高效、全面,被得到了广泛应用!
CFD的应用
随着计算机和CFD商业软件的发展,CFD以其强 大的生命力,广泛应用于水利工程、土木工程、食品 工程、航天航空、海洋结构工程、生物医学、工业制 造、燃烧、电子技术和环境污染等各个领域。
CFD的求解过程(续)
❖ 离散初始条件和边界条件
在商用CFD软件中,往往在前处理阶段完成了网格划分后, 直接在边界条件上指定初始条件和边界条件,然后由前处理软 件自动将这些初始条件和边界条件按离散的方式分配到相应的 节点上去。
❖ 给定求解控制参数
主要是给定流体的物理参数和湍流模型的经验系数,给定迭 代计算的控制精度、瞬态问题的时间步长和输出频率等。
计算流体动力学(CFD)培训资料
-CFD原理及Fluent
XXXX有限公司
2021年02月05日
报告大纲
计算流体动力学(CFD)软件原理与应用
Fluent软件的基本用法 相关模拟案例 公XX司工业程绩的CFD模拟
CFD概述
【fluent软件学习】计算流体力学软件Fluent培训共66页
• 在工程中,一般在边界层(靠近壁面)以外 的区域,将实际流体近似成理想流体,带来 的误差很小。
• 为什么要提出理想流体?
– 简化计算。 – 在数学上有很多成熟的、严格的解决理想流体运
动(势流)的方法。
11
理想气体方程式
• 理想气体方程式
学习目的
对计算流体力学原理有初步了解。 能够使用商用流体力学计算软件Fluent进
行简单地计算。 为后续采用Fluent解决工业中实际问题打
下基础。
1
• 什么是Fluent?
– Fluent是一款计算流体力学(Computational Fluid Dynamics, CFD)软件。
• 如何学习Fluent?
PV=nRT
P:压力;V:体积;T:温度(K) n: 气体的摩尔量;R:气体常数 • 幸运的是,在工程应用范围内,实际气体采用理想
气体方程式进行近似可以达到足够的精度。
12
流体运动的描述方法
• 拉格朗日法 • 欧拉法。
13
拉格朗日法
• 该方法着眼于流体内部各质点的运动情况,描述 流体的运动形态。
20
三大守恒定律
• 三大守恒定律指的是:质量守恒、动量守恒和能量守恒定 律。
• 是流体力学的基础,事实上,只要能够得到满足这三个守 恒定律的解,就可以求解任何流体力学问题。
• 直接数值模拟(DNS)即是对这三个守恒定律的直接离散 求解,不依赖任何物理模型。
• 为何要有这么多理论模型(如边界层、湍流、层流)?
• 连续介质假设
– 连续介质假设认为真实流体所占有的空间可近似看作由“流体 质点”连续地无空隙地充满着。
– 换一句话说,就是在我们感兴趣的微小尺度内,都包含着无数 个流体分子。
01-第一篇 FLUENT 基础知识
FLUENT6.1全攻略第一篇 FLUENT基础知识第一章 FLUENT软件介绍FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。
在我们进行的网上调查中发现,FLUENT在中国也是得到最广泛使用的CFD软件。
因此,我们将在这本书中为大家全面介绍FLUENT的相关知识,希望能让您的CFD分析工作变得轻松起来。
用数值方法模拟一个流场包括网格划分、选择计算方法、选择物理模型、设定边界条件、设定材料属性和对计算结果进行后处理几大部分。
本章将概要地介绍FLUENT软件的以下几个方面:(1)FLUENT软件的基本特点。
(2)FLUENT、GAMBIT、TECPLOT和EXCEED的安装和运行。
(3)FLUENT的用户界面。
(4)FLUENT如何读入和输出文件。
(5)FLUENT中使用的单位制。
(6)如何规划计算过程。
(5)FLUENT的基本算法。
1.1FLUENT软件概述1.1.1网格划分技术在使用商用CFD软件的工作中,大约有80%的时间是花费在网格划分上的,可以说网格划分能力的高低是决定工作效率的主要因素之一。
FLUENT软件采用非结构网格与适应性网格相结合的方式进行网格划分。
与结构化网格和分块结构网格相比,非结构网格划分便于处理复杂外形的网格划分,而适应性网格则便于计算流场参数变化剧烈、梯度很大的流动,同时这种划分方式也便于网格的细化或粗化,使得网格划分更加灵活、简便。
FLUENT划分网格的途径有两种:一种是用FLUENT提供的专用网格软件GAMBIT 进行网格划分,另一种则是由其他的CAD软件完成造型工作,再导入GAMBIT中生成网1FLUENT6.1全攻略格。
还可以用其他网格生成软件生成与FLUENT兼容的网格用于FLUENT计算。
可以用于造型工作的CAD软件包括I-DEAS、Pro/E、SolidWorks、Solidedge等。
除了GAMBIT 外,可以生成FLUENT网格的网格软件还有ICEMCFD、GridGen等等。
5-1-FLUENT流体模拟-UDF-讲解PPT优秀课件
A Pera Global Company © PERA China
UDF 数据结构 (1)
▪ 在UDF中,体域和面域通过Thread数据类型获得 ▪ Thread 是 FLUENT 定义的数据类型
Domain Cell
Boundary (face thread or zone)
Fluid (cell thread or zone)
域指针通过变量传递到UDF
thread_loop_c 宏用来获得 所有单元threads (zones), begin_c_loop 宏获得每个 单元thread中的单元
#include "udf.h“
DEFINE_INIT(my_init_function, domain) {
cell_t c; Thread *ct; real xc[ND_ND]; thread_loop_c(ct,domain) {
计算流体力学软件Fluent培训
UDF基础
概要
FLUENT UDF简介 FLUENT 数据结构和宏 两个例子 UDF 支持
A Pera Global Company © PERA China
简介
什么是UDF?
– UDF 是用户自己用C语言写的一个函数,可以和FLUENT动态链接
• 标准C 函数
▪ 三角函数,指数,控制块,Do循环,文件读入/输出等
Define User-Defined Functions Interpreted
把 UDF 源码加入到源文件列表中 点击 Build进行编译和链接 如果没有错误,点击Load读入库文件 如需要,也可以卸载库文件
/define/userdefined/functions/manage
【流体数值模拟软件】Fluent基础讲义
Pressure inlet 给定流动入口的总压和其他标量 Pressure outlet 给定出口处的静压
Incompressible:
Velocity inlet 给定入口处的流速和其他标量 Outflow 对于出口处流速和压力不知道的情况
不能与pressure outlet一起用
湍流粘性系数法 Reynolds应力方程法
Large Eddy Simulation (only 3D)
CFD-FVM
31
Spalart-Allmaras:一方程模型
不适于自由剪切流动、分离流动,多用于外流,如航空航天问题。准2D问 题,如翼型绕流
Standard -:
应用最为广泛的湍流模型,高Re数模型,不适于分离流动,
Compressible flows:
Mass flow inlet 规定入口的质量流量 Pressure far-field 无穷远处的自由流条件
也可读入autocad proE等cad软件生成的图形
CAD中创建的图形要输出为.sat文件,要满 足一定的条件。
对于二维图形来说,它必须是一个region,也就 是说要求是一个联通域。
对于三维图形而言,要求其是一个ASCI body
CFD-FVM
18
由于各软件设置的最小识别尺寸不同, 导入后的几何体可能会出现:
对近壁和远场都适用,对剪切流动的处理不如Standard -
Reynolds Stress:
可以计算各向异性旋涡 ,难于收敛,适于计算弯曲流道、强的旋涡或旋转
CFD-FVM
32
近壁处理及第一个网格的位置
-和RSM适用于离开壁面一定 距离的湍流区域
两种方法: 壁面函数法
fluent--流体力学基础
hj=ξ u2/(2g) 流体在流动过程中的总损失等于各个管路系统所产生 的所有沿程损失和局部损失之和,即来自h=∑hl+∑hj
前页
返回
后页
主题
1. 3 能量损失与总流的能量方程
• 2 总流的伯努利方程
返回
前页
后页
主题
1. 3 能量损失与总流的能量方程
• 3 入口段与充分发展段
返回
前页
后页
主题
1. 4 流体运动的描述
返回
前页
后页
主题
1.1 概述
• 1 流体的密度、重度和比重
均质流体: m (kg/m3) ;
V
G
V
( N/m3 )
非均质流体:
lim
V 0
m V
(kg/m3) ; lim G
V 0 V
( N/m3 )
显然 g
牢记 水 1000 kg/m3 ;
• 以绝对真空为基准测得的压力称为绝对压力,它是流体的 真实压力;以大气压为基准测得的压力称为表压或真空度 、相对压力,它是在把大气压强视为零压强的基础上得出 来的。
• 绝对压强是以绝对真空状态下的压强(绝对零压强)为基 准计量的压强;表压强简称表压,是指以当时当地大气压 为起点计算的压强。两者的关系为:
返回
前页
后页
主题
1. 4 流体运动的描述
• 4 层流与湍流
层流 流体运动规则,各部分分层流动 互不掺混,质点的轨线是光滑 的,而且流动 稳定。
湍流 (紊流) 流体运动极不规则,各部分激 烈掺混,质点的轨线杂乱无章 ,而且流场极不稳定。
返回
前页
后页
主题
fluent基础(入门篇).
1单精度与双精度的区别大多数情况下,单精度解算器高效准确,但是对于某些问题使用双精度解算器更合适。
下面举几个例子:如果几何图形长度尺度相差太多(比如细长管道),描述节点坐标时单精度网格计算就不合适了;如果几何图形是由很多层小直径管道包围而成(比如:汽车的集管)平均压力不大,但是局部区域压力却可能相当大(因为你只能设定一个全局参考压力位置),此时采用双精度解算器来计算压差就很有必要了。
对于包括很大热传导比率和(或)高比率网格的成对问题,如果使用单精度解算器便无法有效实现边界信息的传递,从而导致收敛性和(或)精度下降2分离解与耦合解的区别选择解的格式FLUENT 提供三种不同的解格式:分离解;隐式耦合解;显式耦合解。
三种解法都可以在很大流动范围内提供准确的结果,但是它们也各有优缺点。
分离解和耦合解方法的区别在于,连续性方程、动量方程、能量方程以及组分方程的解的步骤不同,分离解是按顺序解,耦合解是同时解。
两种解法都是最后解附加的标量方程(比如:湍流或辐射)。
隐式解法和显式解法的区别在于线化耦合方程的方式不同。
分离解以前用于 FLUENT 4 和 FLUENT/UNS,耦合显式解以前用于 RAMPANT。
分离解以前是用于不可压流和一般可压流的。
而耦合方法最初是用来解高速可压流的。
现在,两种方法都适用于很大范围的流动(从不可压到高速可压),但是计算高速可压流时耦合格式比分离格式更合适。
FLUENT 默认使用分离解算器,但是对于高速可压流(如上所述),强体积力导致的强烈耦合流动(比如浮力或者旋转力),或者在非常精细的网格上的流动,你需要考虑隐式解法。
这一解法耦合了流动和能量方程,常常很快便可以收敛。
耦合隐式解所需要内存大约是分离解的 1.5 到 2 倍,选择时可以通过这一性能来权衡利弊。
在需要隐式耦合解的时候,如果计算机的内存不够就可以采用分离解或者耦合显式解。
耦合显式解虽然也耦合了流动和能量方程,但是它还是比耦合隐式解需要的内存少,但是它的收敛性相应的也就差一些。
最新2019-FLUENT基础-PPT课件
Control Volume*
Fluid region of pipe flow is discretized into a finite set
of control volumes.
Unsteady
Convection
Diffusion
Generation
– 偏微分方程组离散化为代数方程组 – 用数值方法求解代数方程组以获取流
• 动网格
– Moving zones
• Single and multiple reference frames (MRF)
• Mixing plane model
• Sliding mesh model
– Moving and deforming (dynamic) mesh (MDM)
• 用户定义标量输运方程
设置物理问题和求解器
Pre-Processing
3.
Geometry
4.
Mesh
5.
Physics
6.
Solver Settings
For complex problems solving a simplified or 2D problem will provide valuable experience with the models and solver settings for your problem in a short amount of time.
engineering results!
• 收敛解的精度和以下因素有关: – 合适的物理模型,模型的精度 – 网格密度,网格无关性 – 数值误差
查看结果
9. Update Model
Post Processing
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清理过程主要采用gambit中的虚几何操作。
Example:
unconnected real edges/faces
connected virtual edges/faces
Edge Splits
CFD-FVM
19
Gambit中有三类几何体:
也可读入autocad proE等cad软件生成的图形
CAD中创建的图形要输出为.sat文件,要满 足一定的条件。
对于二维图形来说,它必须是一个region,也就 是说要求是一个联通域。
对于三维图形而言,要求其是一个ASCI body
CFD-FVM
18
由于各软件设置的最小识别尺寸不同, 导入后的几何体可能会出现:
整个流体系统分为主相和多个次相
主相看成是连续介质 次相离散分布在 连续相中
CFD-FVM
21
Multiphase models
Dispersed phase model (DPM):拉格朗日离散相模型
粒子/液滴/气泡在定常和非定常流动中的粒子轨迹
动量、热和质量与流体之间的耦合
液滴的蒸发和沸腾,湿颗粒的干燥
CFD-FVM
12
顶点类型
End (E) 0 < Default Angle < 120 zero internal grid lines
Side (S) 120 < Default Angle < 216 one internal grid line
Corner (C) 216 < Default Angle < 309 two internal grid lines
Reverse (R) 309 < Default Angle < 360 three internal grid lines
CFD-FVM
E
E
E
S
S
S
C
C
C
R
R
13
✓ Formula for map scheme:
4*End+N*Side
✓ Formula for submap scheme:
Real:
Virtual:
根据一个或多个实体(real,称为宿主)来确定其几何描述
Faceted geometry(有小面的几何体):
象virtual 一样处理
一些实几何操作对虚几何体不能正常使用
CFD-FVM
20
多相流动
Multiphase flow in fluent
同一物质,不同的相 (气、液、固) 不同的物质相同的相(水和油)
Mixture model: N种组分的混合模型
求解混合物的动量方程,通过确定相对速度来描述离散相
Eulerian multiphase flow model:欧拉多相流模型
针对于N 种固体颗粒的气-固流和液-固流的粒子相模型 对各相求解动量和连续方程
Volume of fluid model (VOF): VOF 多相流模型
4*End+ L*Side + M*(E+C) + N* (2*E+R)
E
E
CC
E
EE
E
Default
CFD-FVM
S
S
SS
E
EE
E
Map: 4*End + 4*Side
14
✓ How to Make a Volume Cooperable
Manually change the vertex types on the side faces so they are mappable and/or submappable
FLUENT6.0 的使用
CFD-FVM
1
Fluent 简介
主流的CFD软件之一 主要用来计算复杂几何形状的流动和换热
问题 其数学模型的组成主要是以纳维-斯托克斯
方程与各种湍流模型为主体
再加上多相流模型、热辐射模型、化学组分的 输运、燃烧与化学反应流模型等.
大多数附加的模型是在主体方程组上补充一些 附加源项、附加输运方程与关系式.
Example: manually change the vertex types
S S
S
E
E
S
E
E
C
E
EE
CFD-FVM
15
网格划分
网格生成质量对计算精度与稳定性影响极 大。
在几何形状复杂的区域上要生成好的网格 相当困难
Meshing grid number grid quality
超过90%的精力要用在生成合适的网格上
CFD-FVM
6
Boundary layers
在边界处 对2D问题,附着在edges 对3D问题,附着在faces
CFD-FVM
7
线网格划分
CFD-F面网格
CFD-FVM
10
体网格
CFD-FVM
11
体网格
Hex/Wedge: Cooper
Tet/Hybrid: TGrid
CFD-FVM
16
策略
Boundary layers
Pre-meshing
Sizing functions 为降低离散误差,减
少单元数量,最好使 用hex(六面体网格) 对形状复杂的几何体 可分解成几个简单几 何体再用六面体网格
CFD-FVM
17
Gambit可读入其它CFD软件生成的图形
气-液流动或液-液流动,不同组分之间互不相容 自由表面问题,包括表面张力和壁面接触角的影响(不混溶的
流体之间有明显的分界面
CFD-FVM
2
CFD-FVM
3
求解器
针对各种复杂流动的物理现象, FLUENT软件采用的不同的数值解 法,以期在计算速度、稳定性和精 度等方面达到优化组合,
形成多种解算器,可根据实际应用 选择恰当的求解器
FlowWizard,针对设计工程师使用 FIDAP,基于有限元方法 Polyflow,针对粘弹性流动的 MixSim,针对搅拌混合的专用 AirPak,强大的通风系统分析 IcePak,专业的电子热分析 Qfin,专门针对散热器优化
CFD-FVM
4
CFD-FVM
5
产生FLUENT所需要的网格
gambit Tgrid:
在已知边界网格(由GAMBIT或者第三方CAD/CAE软件产生 的)
产生三角网格,四面体网格或者混合网格,
用其他软件(ANSYS)
gambit单独的完整的CFD前处理器 建立几何体和导入几何体 生成网格 检查网格质量 设置边界类型和介质类型