北师大版数学七年级上册第二单元教案word版

合集下载

北师大版初中数学七年级上册《第二章有理数及其运算1有理数》优质课教案_2

北师大版初中数学七年级上册《第二章有理数及其运算1有理数》优质课教案_2

« 3.2实数》教学设计(一)教学目标1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的对应关系。

法”这种对数进行分析、猜测、探索的方法3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点(二)教材分析“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。

由2、n激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。

重点:无理数、实数的意义,在数轴上表示实数。

难点:无理数与有理数的本质区别,实数与数轴上的点的对应关系。

(三)学生分析学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。

思维仍较直观,无理数显得比较抽象,难以理解。

对• 2的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。

(四)设计理念让学生主动参与合作交流,探索、发现,注重知识形成的过程(五)教学方法启发式、探索式教学(六)教学过程复习旧知,揭示矛盾,弓I入概念复习前面所学的有理数的分类,2既然在1与2之间就不是整数,也不是分数,也就是说2不是有理数,但由此题可知' 2确实是存在的,同时n也是如此。

总结-2的特征:无限、不循环,得到无理数的概念。

(以上学生合作探索2特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。

)举例说出无理数,巩固对无理数的理解课本p73课内练习2 掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法叙述数史,剖析概念,扩展数集讲述故事,介绍无理数的来历师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的?有生会答:“有道理的数”与“无道理的数”。

师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)《有理数和无理数之战》在一个早晨,同学小毅一觉醒来,发现窗户外的山坡上在打仗。

北师大版七年级上册数学教案:第二章有理数及其运算

北师大版七年级上册数学教案:第二章有理数及其运算
举例:解释为何0乘以任何数都等于0,以及-3÷(-2)=1.5的运算过程。
(4)混合运算中的运算顺序:学生在进行有理数混合运算时,容易忽视运算顺序,导致计算错误。
举例:强调先计算括号内的运算,再进行乘除运算,最后进行加减运算。
(5)运算律的应用:学生在运用运算律简化运算时,可能不熟练,需要加强练习。
举例:解释为何-3表示3的相反数,理解负数在实际问题中的应用。
(2)有理数的加减运算:特别是在异号相加和减法运算中,理解为何同号相加取相同符号,异号相加取绝对值较大的加数的符号。
举例:讲解-3+2的结果是-1,而不是1,理解其背后的运算规律。
(3)有理数的乘除运算:掌握有理数乘除运算的符号规律,尤其是零与有理数相乘、不为零的有理数相除的规则。
北师大版七年级上册数学教案:第二章有理数及其运算
一、教学内容
本节课选自北师大版七年级上册数学教材第二章“有理数及其运算”。主要内容包括:
1.有理数的概念:整数和分数统称为有理数,介绍正有理数、负有理数和零的概念。
2.有理数的分类:将有理数按照正、负和零进行分类,并了解它们的特点。
3.有理数的加法:掌握同号相加、异号相加、零与有理数相加的法则,并能熟练进行计算。
举例:运用结合律将(3+4)×5简化为3×5+4×5,降低计算难度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和计算的问题?”比如,温度上升和下降,银行存款和取款等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

北师大初中数学七年级上册《2.0第二章 有理数及其运算》word教案 (1)

北师大初中数学七年级上册《2.0第二章 有理数及其运算》word教案 (1)

第二章有理数及其运算 1 有理数1.内容结构特点本章是在小学非负有理数知识的基础上引进负数的.首先介绍有理数的基本概念,然后再学习有理数的运算,并用有理数的知识解决实际问题.本章知识的引入注重从实际情境入手,通过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的概念,初步渗透数形结合的数学思想,通过探索归纳的方式,寻求有理数的加法、减法法则和运算律,通过探索规律的方式归纳总结有理数的乘、除法法则和运算律,在现实背景中理解有理数乘方的意义,通过24点游戏的设立,训练基本运算能力,培养思维能力,通过计算器的使用,既使学生解脱了繁杂的运算,同时又培养了学生探索数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,积累了初步的数感、符号感和基本的运算能力,本章将进一步探索有理数的相关知识并解决实际问题.教材通过现实生活提供的问题背景,给学生提供了归纳、猜想、验证、推理、计算、交流等数学活动机会,使学生在活动中发现问题、探索规律,促进了学生对知识的理解和掌握.所以,本章内容在知识的掌握、数学思想方法的渗透、学习能力的培养等方面都是非常重要的.3.教学重点与难点教学重点:(1)有理数的概念,特别是有理数的分类、绝对值、相反数等的概念.(2)有理数大小的比较方法,探索有理数四则运算法则并熟练计算.(3)用科学记数法表示数.(4)应用有理数的相关知识解决实际问题.教学难点:(1)有理数的概念和有理数的运算.(2)数形结合思想的应用.4.教学目标(1)在具体情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主);理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实际问题.5.教学建议第一,教师应尽量从实际问题引入有理数的概念,借助有趣的情境和生活实例帮助学生理解概念,使学生正确地理解正数和负数是表示具有相反意义的量.也可让学生自己从生活中寻找素材,加深理解;第二,进行有理数运算教学时,鼓励学生自己探索运算法则和运算律,并在与同伴交流的过程中逐步形成较为规范的解题格式.在该过程中,提倡算法多样化,教学时应减少繁难的笔算,对于出现的繁杂运算,鼓励学生使用计算器;第三,要重视应用有理数及其运算解决实际问题的教学,让学生会用正负数表示实际问题中的量,能用运算的结果作出合理的解释,并赋予实际意义.教学重点与难点教学重点:1.理解并掌握有理数的概念.2.会用正、负数表示生活中具有相反意义的量.教学难点:有理数的分类.学情分析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟悉,并且已经熟练地掌握了非负有理数的四则运算法则及运算律,能规范条理地表述运算过程,初步具有了有条理地思考和书面表达能力,这些都为本章的学习奠定了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,密切数学与现实的联系,教材对重要的数学内容都是按照“问题情境——建立模型——解释与应用”的叙述方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了良好的数学思维习惯和应用意识,有了一定的解决问题的能力,同时学生在研究具体问题的过程中自主地参与、探究和交流,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力.教学目标1.了解正数与负数是从实际需要中产生的,并会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量.3.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学方法创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.通过小组交流合作的形式,构建以教师为主导,学生为主体自主探索的课堂学习环境,使学生在探索合作的过程中掌握知识,提高技能,形成自己的观点.教学过程一、引入新课设计说明教材例题贴近学生生活实际,生动活泼,通过对该例设置问题串,由浅入深,引导学生在轻松熟悉的气氛中进行思考,既复习旧知,作好新知学习的铺垫,同时鼓励学生大胆想象,充分进行思考、交流.阅读教材本节起始部分的内容,回答下列问题:问题1:你能很快地为这两个队排一下名次吗?你的依据是什么?学生排名次的依据可能不唯一,如:数笑脸的个数、计算总得分等,只要学生能充分思考,正确表达出排名次的依据,就进行表扬.问题2:在完成表格后,你有什么发现?学生通过填“答错题的得分”这一栏,发现“-3”“-2”,这种数字是我们没有学过的数,它是什么数?表示什么意义?和我们以前学过的数有什么关系?——引入新课.教学说明以上问题从学生已有的知识入手,以问题为载体,自然理顺学生解决问题的思路,问题1和问题2对于开拓学生解题思维有很大帮助,使个性化思维得到鼓励和发展,同时引入了新课的学习.实践证明,该设计调动了学生的积极性,成功引入了新课.二、讲授新课1.达标导学,初探新知通过上面的问题我们看到,生活中的有些量用我们以前学过的数不能表示了,这些比0小的数,可以用带有“-”的数来表示.比如-10,我们读作“负10”.对于比0大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”常常可以省略.问题:“-”可以省略吗?为什么?学生回答:不可以省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组讨论,理解新知生活中你见过带有“-”的数吗?设计说明安排这一活动的目的,主要为了鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数的引入是实际生活的需要.同时,可以根据实际需要,选择一些学生熟悉的实例展开讨论.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.像5,1.2,23…这样的数叫做正数,它们都比0大. 在正数前面加上“-”的数叫做负数,如-10,-3,…问题1:正数和负数有什么关系?根据学生关于具有相反意义的量的讨论,使学生通过对数学模型的观察、归纳、概括、交流等数学活动,进一步理解怎样用正、负数表示现实生活中具有相反意义的量,掌握正、负数的意义,培养学生的正、负数的数感.问题2:0是正数还是负数?学生的回答会多种多样,甚至有的学生无法回答,这里教师明确告诉学生,引入负数以后,“0”的意义就不仅仅表示“没有”了,它还是正、负数的分界,是“基准”.问题3:带“-”的数一定是负数吗?该问题学生回答有一定困难.对于正数和负数的概念,要提醒学生注意不要认为带“+”的数就是正数,带“-”的数就是负数.如-a 不一定是负数.但此处不易引申太多.3.例题处理,巩固新知设计说明通过例题的教学,要求学生能正确地表达出负数所表示的实际意义以及用正、负数表示相反意义的量;同时,了解并不是所有的基准都必须为0.教材实例(例题):问题1:在以上3道题中正数、负数分别表示什么量?问题2:每道题的基准分别是什么?问题1根据学生的回答强调,习惯上人们经常把零上的温度、上升的高度、向东的行程等规定为正的,而把零下的温度、下降的高度、向西的行程等与前面意义相反的量规定为负的;问题2要求学生注意并不是所有的基准都必须为0,如第1小题的基准为转盘静止不动,第2小题的基准为一只乒乓球的标准质量,第3小题的基准为10 kg.练习题组设计说明为了让学生更好地理解巩固正数和负数是表示一对意义相反的量,在例题讲解完成后及时补充练习,同时通过填空题的形式规范书写格式,包括正、负数的书写及填空题的单位.通过该练习培养学生严谨规范地书写.练习完成后教师可提问学生各题中互为相反意义的量分别是什么?基准分别是什么?帮助学生更全面地理解本节的重点.(1)海平面上的高度记为正,海平面下的深度记为负,则海平面下150米记作________;(2)盈利100元记作+100元,那么亏损100元记作________;(3)如果零上5 ℃记作+5 ℃,那么零下5 ℃记作________;(4)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作________;(5)东西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示________,物体原地不动记为________;(6)向南走-4米,实际上是向________走了________米.4.小组活动,再探新知现在大家分组活动,列举我们已学过的数,然后将列举的所有数适当地分成几组,并说明这样分组的理由.有理数的分类:有理数(按定义)⎩⎪⎨⎪⎧ 整数⎩⎪⎨⎪⎧ 正整数零负整数分数⎩⎪⎨⎪⎧ 正分数负分数 有理数(按性质)⎩⎪⎨⎪⎧ 正数⎩⎪⎨⎪⎧ 正整数正分数零负数⎩⎪⎨⎪⎧ 负整数负分数整数和分数统称有理数.设计说明有理数的概念是本节课的重点内容,通过该题组使学生充分理解有理数的分类.把下列各数填入相应数集里:3,-2,3.5,-23,0,-3.14,-10% 正数集合:﹛ …﹜;负数集合:﹛ …﹜;整数集合:﹛ …﹜;有理数集合:﹛ …﹜.教学说明本过程通过初探、理解、巩固、再探四个环节,使学生在教师的引导下,通过问题的探讨、交流、合作,自主地解决问题,巩固知识.同时练习题组的设计使学生的新知得到了及时地巩固掌握,教学效果良好.三、巩固提高设计说明通过三个练习,使学生对本节课学习过程中易出错和模糊的概念从不同题型加以理解,掌握解题技巧.1.小学学过的小数是不是有理数?属于分类中的哪一类?2.判断下列说法是否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是负数;(3)一个整数不是正整数就是负整数;(4)一个分数不是正分数就是负分数.3.议一议:一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%.(1)±10%的含义是什么?(2)请你算出该商品的最高价格和最低价格;(3)如果以标准价格为标准,超过标准记作“+”,低于标准记作“-”,该商品价格的浮动范围又可以怎样表示?答案:1.有限小数和无限循环小数都是有理数,属于分数;无限不循环小数不是有理数.2.第(1),(4)说法正确.3.(1)±10%的含义是在标准的基础上加价或降价的幅度不超过10%.(2)最高价格为200+200×10%=220(元);最低价格为200-200×10%=180(元).(3)因为220-200=20(元),200-180=20(元),所以这件商品加价或降价的幅度不超过20元,所以这件商品价格的浮动范围又可以表示为±20元.中考链接:1.在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A.+2米 B.-2米 C.+18米 D.-18米2.如果水库的水位高于标准水位3 m时,记作+3 m,那么低于标准水位2 m时,应记作( )A.-2 m B.-1 m C.+1 m D.+2 m答案:1.B 2.A教学说明本过程仍然先让学生独立思考,再进行小组交流的方式进行展开.课堂上鼓励学生大胆发言,用自己的语言说明理由,进一步培养提高学生的思维表达能力.练习1对于有限小数和无限循环小数都是分数,学生不能很好的说明理由,考虑到为避免喧宾夺主,教学时可视学生情况适当解释.四、总结反思通过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为什么要学习负数,学会了用正、负数表示生活中的具有相反意义的一对量,还知道了有理数都包括哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易困惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混淆和重复,应通过判断题或选择题的形式多加练习.评价与反思本节课设计为学生创设了轻松愉快地自主探索交流的学习环境,四大环节的设计遵循学生的认知规律,重在挖掘学生潜力,给了学生更多的思考空间.教学过程中注重发挥学生的主体作用,培养学生在学习互动过程中学会竞争与合作,增强团队互助合作精神.教学时一直让学生处于发现问题、提出猜想、交流讨论的状态中,用自己的思维方式形成自己对于问题独特地理解和认识.。

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。

内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。

这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。

二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。

但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。

因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。

三. 教学目标1.理解有理数的概念,掌握有理数的分类。

2.掌握有理数的加减乘除运算规则,能够熟练进行计算。

3.理解有理数的乘方运算规则,能够进行相应的计算。

4.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算规则,特别是乘方运算。

五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,包括基础题和拓展题。

七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。

2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。

3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。

4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。

5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。

6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。

7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。

8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。

教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。

针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版
5.教学工具:确保教师能够使用投影仪、电脑、白板等教学工具,以便进行多媒体教学和互动式教学。
6.学习平台:如果可能,准备在线学习平台或教学管理系统,以便进行在线教学、布置和批改作业,以及进行学生学习情况的跟踪和评估。
7.教学资源库:建立教学资源库,收集与本节课相关的教学资源,如教案、课件、练习题、案例分析等。这些资源将有助于教师进行教学设计和教学活动的实施。
④有理数乘方的注意事项:
1.防止乘方运算中的错误。
2.注意负数的乘方运算规则。
⑤有理数乘方的练习题:
1.计算a^n,其中a是任意有理数,n是正整数。
2.计算a^(-n),其中a是任意有理数,n是正整数。
3.计算(-a)^n,其中a是任意有理数,n是正整数。
⑥有理数乘方的拓展:
1.有理数的乘方在生活中的应用。
3.重点难点解析:在讲授过程中,我会特别强调乘方的运算法则和零指数幂、负指数幂这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数乘方的基本原理。
3.实验器材:本节课可能需要一些简单的实验器材,如计算器、纸张、铅笔等,以确保学生能够进行乘方运算的实践练习。另外,如果有条件,可以准备一些物理实验器材,如测量工具、计时器等,以便进行与乘方相关的实验。
4.教室布置:根据教学需要,对教室进行适当的布置。将学生分组,设置讨论区,以便学生进行小组讨论和合作学习。同时,布置一些展示区,用于展示学生的学习成果和作品。
3.学生可能遇到的困难和挑战:学生在学习有理数的乘方时可能遇到的困难和挑战包括:理解乘方的概念和意义,如何将乘方运用到具体的计算中,以及如何解决与乘方相关的实际问题。学生可能对于乘方的计算规则不太理解,或者在实际操作中容易出错。此外,学生可能对于如何将乘方应用到解决实际问题中感到困惑,不知道如何运用乘方的知识来解决具体的问题。

七年级数学上册第2章《有理数》优质教案(北师大版)

七年级数学上册第2章《有理数》优质教案(北师大版)

第二章有理数及其运算1 有理数一、学情与教材分析1.学情分析学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。

并且在小学通过对温度计的认识活动,学习了用负数解决一些简单的比较大小的问题。

那么,对于刚进入初中的学生来说,他们掌握正数、负数的概念程度参差不齐,因此,结合实际正确的表示具有相反意义的量,建立有理数的概念是学习的难点。

2.教材分析“有理数”是初中数学学习的重要基础。

本节课的内容是正、负数的概念和有理数的分类。

通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。

通过本节课的学习,逐步培养学生的数感,并逐步渗透分类讨论的数学思想。

二、教学目标:1.理解正负数的概念,会判断一个数是正数还是负数.2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.3.培养学生树立分类讨论的思想.三、教学重点、难点:重点:能理解正负数的概念,会判断一个数是正数还是负数.难点:会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.四、教法建议观察归纳、讲练结合、自主学习与合作交流结合.五、教学设计(一)课前设计1、预习任务任务1:阅读P23内容,完成知识竞赛的表格,从中进一步认识负数.你还能找到生活中其他用负数表示的量吗?(不少于3种)任务2:(1)生活中出现的“增长”与“减少”,“零上”和“零下”怎样用数来表示呢?对于0,你是怎么理解的?(2)请举出生活中表示相反意义的量的例子(不少于3个),并自主完成P24例题.任务3:(1)回忆一下,到目前为止都学过哪些数?如果让你对这些数进行分类,怎么分呢?(2)_________、_________、_________统称为整数;_________、_________统称为分数;整数和分数一起统称为_________.2、预习自测一.选择题1.下列各数是负数的是()A.0 B.C.2.5 D.﹣1答案:D解析:在正数的前面加上一个负号就表示一个负数.﹣1是一个负数.故选:D.点拨:考查的是正负数的定义,掌握定义是解题的关键.2.如果+50m表示向东走50m,那么向西走40m表示为()A.﹣50m B.﹣40m C.+40m D.+50m答案:B解析:根据题意,向东走为正,向西则为负,+50m表示向东走50m,那么向西走40m表示为﹣40m,故选:B.点拨:根据正数与负数的意义,向东走为正,向西则为负,进而可得答案.3.在,﹣1,0,﹣3.2这四个数中,属于负分数的是()A.B.﹣1 C.0 D.﹣3.2答案:D解析:根据小于0的分数是负分数,可得答案.﹣3.2是负分数,故选:D.点拨:本题考查了有理数,小于0的分数是负分数.4.下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数答案:D解析:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选D.点拨:考查有理数的分类,易错点为:自然数中包括0,0既不是正数也不是负数,正整数指大于0的整数.(二)课堂设计1、情境引入问题1:我们一起回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.瓦罐没有东西了——有了0 二人分一只西瓜,用数如何表示半只西瓜——有了分数货币购物,用数如何表示10元5角3分——有了小数问题2:用小学学过的数能表示下列数吗?处理方式:让学生回顾小学学过的数,通过多媒体展示发现出现新的需要表示的数,从而引入具有相反意义的量,继而引入本节课内容.设计意图:通过提供学生熟悉的实际生活情景引导学生回顾小学有关数的知识,了解生活当中的数学知识,理解数学与生活息息相关,也为本章的学习做了铺垫. 问题3:同学们能举出类似的例子吗?处理方式:通过交流讨论,积极发言,发现生活中的数学知识,教师适当点评. 设计意图:让学生发现生活中到处存在数学知识,提高学生学习的兴趣.2、探究发现活动1: 用正负数表示具有相反意义的量问题1:答对 答错 不回答某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表: 零上5ºC零下5ºC如果答对题所得的分数用正数表示,那么能用正负数表示每个队答题得分情况吗?试完成下表:学生探究并得出答案.处理方式:学生分小组活动,通过交流讨论,得出结论,组内成员畅所欲言,最后总结集体答案,公开展示,各个小组互相对比,教师给予评价.设计意图:用趣味情景启发学生用正负数表示相反意义的量.初步让学生认识负数,知道负数的来源与生活的需要.问题2:生活中你还见过哪些带有“-”号的数吗?与同伴进行交流.(可以出示实例图片)温度计上零下5℃,记作﹣5℃;财富全球500强中的主要零售企业中大荣的利润下降了195.2百万美元,记作﹣195.2百万美元.高于海平面8848米,记作+8848米;低于海平面155米,记作-155米.总结:零上温度和零下温度,盈利额和亏损额等都是具有相反意义的量.为相反意义的量,规定:其中一个量为正的,用正数来表示;与这个量意义相反的量为负的,用负数来表示.例:利润率上涨3.5%,记作“+3.5%”;利润率下跌3%,记作“﹣3%”.思考:0表示什么?0既不是正数,也不是负数,在这里“0”表示没有变化.例如:利润率既没有上涨,也没有下跌,记作”0”.处理方式:让学生用同样的方法表示出前面例子中具有相反意义的量.教师引导学生认识0的位置.设计意图:加深学生对正负数的理解,熟悉负数的运用.例1(1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?处理方式:先让学生自己独立完成,教师巡视,点拨,然后分组交流,学生自己互相纠错,加深学生对正负数的理解,教师及时给予评价、点评.设计意图:通过对实例的分析,让学生知道如何用正负数表示相反意义的量.活动2:你能选定一个高度为标准,用正负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.处理方式:让学生分组交流讨论,说出自己的答案以及理由,教师适当引导学生发现其中的差异,分析找出存在差异的原因是标准不同.设计意图:通过讨论让学生进一步认识负数,并了解0的意义及作用.活动3:有理数概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.2.有理数的分类问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.3.学习有理数概念的注意事项:(1)正整数和0可称非负整数,也称自然数,负整数和0可称非正整数;正数和0叫非负数,负数和0叫非正数.(2)奇数、偶数的概念也扩展到了负数,例如:-1、-3等是奇数,-2、-4等是偶数.(3)π是正数,但不是有理数,也不是分数.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.处理方式:教师引导学生探讨新出现的数的分类,引出有理数的概念,认清不同的分类方法.设计意图:使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.3、知识运用即时练习1:1.下列语句正确的是()A、“黑色”和“白色”是具有相反意义的量B、“快”和“慢”是具有相反意义的量C、“向北4.5米”和“向南4.5米”是具有相反意义的量D、“+15米”就表示向东走了15米2.(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作______________.(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示___________,物体原地不动记作________.(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作_______________.3.某商店出售三种品牌的面粉袋上,分别标有(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,质量最多相差()A、0.8kgB、0.6kgC、0.5kgD、0.4kg处理方式:3个学生回答问题,并说明理由,其他学生给予补充,教师适当总结. 设计意图:通过巩固练习加深对具有相反意义的量表示,进一步加强对负数的理解与应用.即时练习2:1、下列说法正确的是()A .非负数包括零和整数B .正整数包括自然数和零C .零是最小的整数D .整数和分数统称为有理数2、判断正误:(1)整数分为正整数和负整数.( )(2)带“—”号的数就是负数. ( )(3)分数包括 正分数和负分数.( )(4)一个数不是正数就是负数. ( )3、下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是正数?哪些是负数?7,-9.25,910 ,-301,427,31.25,715,-3.5 正整数:( )负整数:( )正分数: ( )负分数: ( )正数:( )负数:( )处理方式:学生独立完成,互相纠错,教师适当点评.设计意图:通过巩固练习加深对知识的理解与应用.4、随堂检测一.选择题1.在0,﹣2,5,,﹣0.3中,负数的个数是( )A .1B .2C .3D .4答案:B解析:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数, 故选:B .点拨:根据小于0的数是负数即可求解.注意0既不是正数也不是负数.2.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%答案:A解析:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.点拨:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.3.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A.18℃~20℃ B.20℃~22℃ C.18℃~21℃ D.18℃~22℃答案:D解析:药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,则该药品在18℃~22℃范围内.故选:D.点拨:本题考查了正负数表示相反意义的量,关键是正确理解标明保存温度是(20±2)℃的含义.4.下列说法中,正确的是()A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数答案:C解析:A、有理数包括正数、负数和0,故A错误;B、零是自然数,但不是正数,故B错误;C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;D、零是整数,不是分数,故D错误.故选C.点拨:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.二.填空题5.在﹣1,0.2,,3,0,﹣0.3,中,负分数有,整数有.答案:见解析解析:负分数有﹣,﹣0.3;整数有﹣1,3,0.点拨:按照有理数的分类填写:有理数.注意整数和正数的区别.0是整数,但不是正数.6.有理数中,最大的负整数是.答案:﹣1解析:小于零的整数是负整数,有理数中,最大的负整数是﹣1,故答案为:﹣1.点拨:考查了有理数,根据定义解题是解题关键.三.解答题7.把下列各数填入相应的集合中:﹣23,0.5,﹣,28,0,4,,﹣5.2.整数集合:{ …},正数集合:{ …},负分数集合:{ …},正整数集合:{ …},有理数集合:{ …}.答案:见解析解析:整数集合:{﹣23,28,0,4}.正数集合:{0.5,28,4,}.负分数集合:{﹣,﹣5.2}.正整数集合:{28,4}.有理数集合:{﹣23,0.5,﹣,28,0,4,,﹣5.2}.点拨:按照有理数的分类填写:有理数.注意整数和正数的区别,注意0是整数,但不是正数.5、课堂小结小结:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?1.正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2.(1)正整数、0、负整数统称整数,正分数和负分数统称分数,整数和分数统称有理数,即所有整数都是有理数,所有的分数也都是有理数.(2)有理数分类的方法有两种:一是按整数和分数分类,二是按正负分类;(3)奇数、偶数的概念也扩展到了负数,例如:-1、-3等是奇数,-2、-4等是偶数.处理方式:学生自己结合本节所学知识,按教师引导先自己总结,在小组间交流讨论后,分小组展示,教师给予点评总结.设计意图:通过小结整理,培养学生归纳、总结能力,形成知识体系.布置作业:必做题:P26 习题2.1 第2、3题.选做题:P26 习题2.1 第4、6题.设计意图:通过不同层次的作业,让各个层面的学生都能得到充分发展,进一步锻炼学生的综合能力.6、分层作业基础型:一.选择题1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个B.2个C.3个D.4个答案:C解析:在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有﹣2、﹣3、﹣1,共3个.故选:C.点拨:本题考查了负数的定义:小于0的数是负数.2.下列说法正确的是()A.“黑色”和“白色”表示具有相反意义的量B.“快”和“慢”表示具有相反意义的量C.“向南100米”和“向北1000米”表示具有相反意义的量D.“+15米”就表示向东走了15米答案:C解析:∵根据相反意义的量就是两个数字,它们的正负符号相反,代表着相对于基准点(0点)处于不同的方位,而它们的绝对值是不是相等没有关系,∴选项A、B错误,选项C正确;D中“+15米”就表示向东走了15米,没有规定向东走为正,故选项D错误,故选C.点拨:解题的关键是明确正数和负数在题目中的实际意义,明确什么是相反意义的量.3.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m答案:B解析:根据用正负数表示两种具有相反意义的量的方法,可得:高出海平面8844m,记为+8844m;则低于海平面约415m,记为﹣415m,据此解答即可.故选:B.点拨:解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.4.下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.其中正确的有()A.1个B.2个C.3个D.4个答案:C解析:①﹣2.5既是负数、分数,也是有理数,正确;②﹣22既是负数、整数,但不是自然数,错误;③0既不是正数,也不是负数,但是整数,正确;④0是非负数,正确;故选C.点拨:按照有理数的分类,即有理数,即可得出答案.二.填空题5.如果将“收入50元”记作“+50元”,那么“﹣20元”表示.答案:支出20元解析:“正”和“负”相对,如果将“收入50元”记作“+50元”,那么“﹣20元”表示支出20元.故答案为:支出20元.点拨:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.在﹣,1,0,8.9,﹣6、在这些有理数中,正数有,整数有,非正数有.答案:见解析解析:正数有:1,8.9;整数有:1,0,﹣6;非正数有:﹣,0,﹣6.点拨:根据大于零的数是正数,可得正数集合;根据分母为一的数是整数,可得整数集合;根据小于或等于零的数是非正数,可得非正数集合.三.解答题7.请把下列各数填入相应的集合中,5.2,0,,,﹣22,,2005,﹣0.030030003…正数集合:{ …};分数集合:{ …};非负整数集合:{ …};有理数集合:{ …}.答案:见解析解析:正数集合:{,5.2,,,2005,…}分数集合:{,5.2,,﹣,…}非负整数集合:{0,2005,…}有理数集合{,5.2,0,,﹣22,,2005,…},点拨:根据正数的意义,分数包括分数、有限小数、无限循环小数,非负整数包括正整数和0,有理数是指有限小数和无限循环小数,根据以上内容判断即可.能力型:一.选择题1.仔细思考以下各对量:①胜二局与负三局;②气温上升3℃与气温下降3℃;③盈利5万元与支出5万元;④增加10%与减少20%.其中具有相反意义的量有()A.1对B.2对C.3对D.4对答案:C解析:胜负、上升和下降、增加和减少都有相反意义,盈利和亏损有相反意义,故①②④具有相反意义.故选C.点拨:解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.2.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克答案:C解析:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.点拨:此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()星期一二三四五六日水位变化/米0.12 ﹣0.02 ﹣0.13 ﹣0.20 ﹣0.08 ﹣0.02 0.32A.星期二B.星期四C.星期六D.星期五答案:C解析:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故选C.点拨:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分内容时一定要联系实际,不能死学.二.填空题4.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是分.答案:92解析:∵(﹣4+9+0﹣1+6)÷5=2,∴他们的平均成绩=2+90=92(分),故答案为:92.点拨:先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.5.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.答案:0.6解析:这几种大米的质量标准都为25千克,误差的最值分别为:±0.1,±0.2,±0.3.根据题意其中任意拿出两袋,它们最多相差(25+0.3)﹣(25﹣0.3)=0.6kg.点拨:题考查正负数在实际生活中的应用,需注意应理解最值的含义.注意“任意拿出两袋”.三.解答题6.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?答案:见解析解析:解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)点拨:本题考查的是正数与负数的定义,解答此题的关键是熟知用正负数表示两种具有相反意义的量,注意所走总路程一定是绝对值的和.探究型:一.解答题1.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016} 黄金集合,集合{﹣1,2017} 黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.答案:见解析解析:解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2017}是黄金集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).点拨:(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.。

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x一. 教材分析《北师大版七年级数学上册》第二章《有理数及其运算》2.1《有理数》是整个初中数学的基础知识,主要介绍了有理数的概念、分类和运算。

本节课的内容对于学生来说是比较抽象的,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识有一定的了解,但是对有理数的概念和运算可能还比较陌生。

因此,在教学过程中,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

三. 教学目标1.了解有理数的概念,能够对有理数进行分类。

2.掌握有理数的加、减、乘、除运算方法。

3.能够运用有理数的运算解决实际问题。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

五. 教学方法采用问题驱动法、实例教学法和练习法,通过引导学生自主探究、合作交流,让学生在实际问题中理解和掌握有理数的概念和运算方法。

六. 教学准备1.PPT课件2.实例和练习题七. 教学过程1.导入(5分钟)通过问题驱动,引导学生思考:在日常生活中,我们经常用到数,比如身高、体重、温度等,这些数都属于什么类型?从而引出有理数的概念。

2.呈现(10分钟)通过PPT课件,呈现有理数的定义、分类和运算方法。

引导学生关注有理数的符号表示和性质,如正负号、绝对值等。

3.操练(10分钟)让学生分组进行练习,运用有理数的运算方法计算各组题目。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师选取一些典型题目,让学生上黑板演示解题过程,其他学生跟学。

通过这种方式,巩固学生对有理数运算方法的掌握。

5.拓展(10分钟)让学生运用所学知识解决实际问题,如计算购物时的找零、温度转换等。

教师引导学生思考,拓展学生思维。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

7.家庭作业(5分钟)布置一些有关有理数运算的练习题,让学生课后巩固所学知识。

北师大版数学七年级上册2.2《数轴》教案

北师大版数学七年级上册2.2《数轴》教案

北师大版数学七年级上册2.2《数轴》教案一. 教材分析《数轴》是北师大版数学七年级上册第二章第二节的内容。

数轴是数学中的重要概念,是实数与几何之间联系的桥梁。

通过数轴,学生可以直观地理解实数的大小关系、相反数、绝对值等概念。

本节内容为学生提供了数形结合的工具,为后续的代数运算和函数学习打下基础。

二. 学情分析七年级的学生已经掌握了实数的基本概念,对相反数、绝对值有一定的了解。

但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。

此外,学生可能对数轴上点的表示方法、实数的分类等知识点有疑问,需要教师进行解释和引导。

三. 教学目标1.知识与技能:使学生了解数轴的定义、特点,学会在数轴上表示实数,理解数轴与实数的关系。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力。

四. 教学重难点1.重点:数轴的定义、特点,数轴上点的表示方法。

2.难点:数轴与实数的关系,实数的分类。

五. 教学方法采用问题驱动、合作探究的教学方法。

通过设置问题,引导学生观察、操作、思考,培养学生数形结合的思维方式。

同时,鼓励学生互相交流、讨论,提高学生的合作能力。

六. 教学准备1.准备数轴教具和实物模型,以便学生直观地理解数轴。

2.准备练习题和测试题,以便巩固所学知识。

七. 教学过程1.导入(5分钟)利用数轴教具和实物模型,引导学生观察数轴的特点,提问:“数轴是什么?”、“数轴有什么作用?”等问题,激发学生的兴趣,引发学生的思考。

2.呈现(10分钟)教师通过讲解和演示,介绍数轴的定义、特点,以及数轴上点的表示方法。

同时,引导学生理解数轴与实数的关系,解释实数的分类。

3.操练(10分钟)学生分组进行数轴操作,包括在数轴上表示给定的实数、判断两个实数的大小关系等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和分析,巩固数轴知识。

北师七年级数学上册第二章《2.7有理数的乘法》教案

北师七年级数学上册第二章《2.7有理数的乘法》教案
-重点2:通过练习,让学生熟练运用乘法性质,如(a×b)×c=a×(b×c)和a×(b+c)=a×b+a×c,以便简化计算。
-重点3:给定实际问题,如“小明骑自行车以每小时15公里的速度行驶,2小时后他走了多远?”引导学生使用乘法法则计算距离。
2.教学难点
-符号处理:学生容易在有理数乘法中对符号处理出错,特别是乘法中负数的运用。
三、教学难点与重点
1.教学重点
-有理数乘法法则:掌握有理数乘法的基本法则,包括同号得正、异号得负的规律,以及绝对值的乘积。
-乘法运算性质:理解并运用交换律、结合律和分配律等乘法运算性质,简化计算过程。
-实际问题应用:将乘法法则应用于解决实际问题,如路程、速度、时间的关系等。
举例解释:
-重点1:例如,理解2和3的乘积是6,而-2和3的乘积是-6,强调符号和绝对值在乘法中的重要性。
实践活动方面,实验操作环节对学生来说是一个很好的动手实践机会,他们通过实际操作来验证乘法规则,这样的学习方式有助于加深印象。不过,我也观察到在操作过程中,部分学生对乘法运算的步骤还不够熟练,这提示我在接下来的课程中需要增加更多的练习。
在学生分享讨论成果时,我注意到他们在表达自己的思考时略显紧张,这可能是因为平时这样的机会不多。因此,我打算在今后的教学中,更多地鼓励学生表达自己,提高他们的自信心和表达能力。
1.讨论主题:学生将围绕“有理数乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版七年级上册第二章有理数教案

北师大版七年级上册第二章有理数教案

北师大版七年级上册第二章有理数教案1有理数教学目的:【知识与技艺】1.掌握正、正数的概念和表示方法,了解具有相反意义的量的含义.2.了解有理数的意义,会对有理数停止分类.【进程与方法】经过举出生活中具有相反意义的量,了解正数的发生是生活、消费的需求,了解有理数的意义.【情感态度】结合本课教学特点向先生停止热爱生活、热爱学习教育,激起先生学习兴味.教学重难点:【教学重点】会用正正数表示具有相反意义的量,会对有理数停止分类.【教学难点】正数的引入及有理数的分类.教学进程:一、情境导入,初步看法教材第23页〝议一议〞上方的内容【教学说明】从先生熟习的知识竞赛引入,使先生初步看法用正、正数表示具有相反意义的量.二、思索探求,获取新知1.用正、正数表示具有相反意义的量效果1教材第23页〝议一议〞的内容【教学说明】先生很容易找出生活中关于正数的例子,进一步看法用正、正数表示具有相反意义的量.【归结结论】正数的发生是生活、消费的需求.为了表示具有相反意义的量,我们可把其中一个量规则为正的,用正数来表示,而把与这个量意义相反的量规则为负的,用正数来表示.效果2教材第24页〝议一议〞下面〝例〞的内容【教学说明】进一步感受生活中的正正数,领悟数学来源于生活,又运用于生活.【归结结论】假定正数表示某种意义的量,那么正数就表示与其意义相反的量;同理,假定正数表示某种意义的量,那么正数就表示与其意义相反的量.2.有理数的分类效果3我们学过了哪些数?怎样对它们停止分类呢?【教学说明】先生回想学过的数,思索怎样停止分类,然后与同伴停止交流,教员再引导先生停止分类,构成良好的师生互动.【归结结论】有理数有两种分类方法:三、运用新知,深化了解1.填空:〔1〕珠穆朗玛峰高出海平面约8844m,记为+8844m,那么吐鲁番盆地低于海平面155m,记为;〔2〕假设支出1800元记为-1800元,那么支出3.16万元记为;〔3〕假设某天股市中某种股票下跌0.8%,记为+0.8%,那么另一种股票下跌0.25%记为.2~3见教材第25页的〝随堂练习〞1、2题.【教学说明】先生独立完成,加深对新学知识的了解,检测有理数的有关知识的掌握状况,对学习有疑惑的先生及时停止指点.完成上述标题后,教员引导先生完成练习册中本课时练习的课堂作业局部.【答案】1.〔1〕-155m〔2〕+3.16万元〔3〕-0.25%2、3.略四、师生互动,课堂小结1.师生共同回忆用正正数表示具有相反意义的量,有理数的两种分类方法.2.经过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教员引导先生回忆有理数的有关知识?让先生大胆发言,积极与同伴交流,停止知识的提炼和归结.课后作业:1.布置作业:从教材〝习题2.1〞中选取.2.完成练习册中本课时的相应作业.教学反思:本节课是从先生感受生活中正、正数的运用末尾,到先生对有理数停止分类,培育先生爱学习,爱动脑的习气,对有理数的分类还需在前面的学习中进一步掌握.。

北师大版七年级数学上册第二章:2.10《科学计数法》教案.doc

北师大版七年级数学上册第二章:2.10《科学计数法》教案.doc

示范教案教学重点与难点教学重点:进一步感受乘方,用科学记数法表示大数.教学难点:探索归纳出科学记数法中指数与整数位之间的关系,即 a× 10n中 n 的求法,以及a 的范围限定.学情分析a n的意义,特别关注了认知基础:上节课已经学习了“有理数的乘方”,知道了10 的正指数幂的意义,这是本节课的认知基础.活动经验基础:学生生活中接触了许多大数,这些大数既有汉字单位形式的,如18.27 亿;又有全数字形式的,如光速大约是 300 000 000 米 /秒.学生能够感到汉字形式的大数不利于运算,阿拉伯数字形式不利于书写和信息提取.学生还具有如下经验:104= 10 000 ,6 8= 100 000 000 ,这些都为科学记数法的提出和规律探索提供了坚实的活10 =1 000 000,10动经验基础.教学目标1.理解科学记数法产生的背景和科学记数法的概念.2.会用科学记数法表示较大的数,会正确写出形如a× 10n的数的结果.3.积累数学活动经验,发展数感,进一步培养学生自主探究的能力.教学方法为了突出学生的主体性,使学生积极参与到数学活动中来,采用问题性教学模式.“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”,指导学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力.增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯.教学过程一、课题引入设计说明在上节的数学活动中,已经学习了“有理数的乘方”,知道了 a n的意义,本环节给出一些很大、很难表达的数,引发学生在大数的表示形式上的思考.在生活中,还经常会遇到这样的数,如:第六次人口普查时,中国人口约为1 370 000 000 人太阳半径约为696 000 000 米光的速度约为300 000 000 米 /秒上面这些数都很大,书写、信息提取都比较麻烦,也容易出错,你有更简单的表示它们的方法吗?教学说明让学生给出在自然科学、社会科学领域中的一些很大的数字,建议不使用“万、亿” 等汉字单位,因为这些单位不统一时会给运算带来困难.让学生进一步感受这些大数在表示、信息提取方面的困难,进而产生创造更简单的表示形式的愿望.还要让学生感受到这些大数几乎都具有的特征是 0 的个数比较多,这是建立新的表达形式的一个切入点.二、讲授新课1.回顾 10 的幂指数与运算结果中的0 的个数的关系:设计说明通过这个问题的设置,让学生对幂的意义进行回忆,弄清指数与其结果中零的个数的关系,通过这一过程解决大数中0 的个数过多的问题.运算:102= __________, 104= __________, 108= __________ ,1010=__________.n位有什么关系?(1) 10n 100 0 , n 恰巧是 1 后面 0 的个数;n个0(2) 10n 100 0 , n 比运算结果的位数少 1.(n 1)位反之, 1 后面有多少个 0,10 的幂指数就是多少.如10 000 000 107,一般地,10的n7 个0次幂,在 1 的后面就有 __________ 个 0.把下列各数写成10 的幂的形式:100000= __________ ; 10 000 000= __________; 1 000 000 000= __________.教学说明通过对上述问题的学习,让学生深刻体会用幂的形式表示数的简便性,以及10 的指数幂中指数与运算结果中0 的个数的关系,从而初步导出用10 的指数幂表示大数的设想.2.借助 10 的幂的形式来表示大数设计说明分层递进地设计探索规律的题目,去探索科学记数法的表示形式和记数中由谁来确定的规律,目的是让学生顺利探索出科学记数法的表示形式以及对件,由此回避教材中硬性的概念.教师依次展示四个大数的表示方法:10 的幂指数a、 n 的限制条(1)100 000 000 = 1× 108;(2)1 300 000 000 = 1.3×109;(3)69 600 000 000 = 6.96× 1010;(4)123 456.789 = 1.234 567 89× 105 .教学说明教师进而可提问学生 10 的幂指数由谁来确定?学生会简单地认为:0 的个数;教师继续提问:你的结论适合第二个表示方法吗?学生此时会进一步思考:由第一个数后面的位数来决定;教师再提问:你的结论适合第三个数的表示吗?学生确定适合,会以为找到了规律,教师此时不失时机地提问:这个结论适合第四个数的表示吗?学生此时感到茫然了,教师借此组织学生小组讨论探索规律.学生最终会发现原数整数位数与10 的幂指数的关系以及运用移动小数点与 10 的幂指数的关系,然后放手让学生小组讨论,不论学生探索的角度是否相同,只要学生说得合理,教师都应给予肯定.3.科学记数法的概念设计说明a× 10n中 n 的求法,以及给出科学记数法的概念,确定 a 的范围限定.给出概念:一个大于 10 的数可以表示成 __________的形式,其中1≤a< 10, n 是正整数,这种记数方法叫做科学记数法.学生活动:让学生观察上面展示的 4 个大数的表示方法,给出 a 的限定范围,并说明 a 取 1 不取 10 的原因.师生小结: a 必须是一位整数,n 等于原数的整数位数减1,如果一个数是 6 位整数,用科学记数法表示时, 10 的指数是多少?如果一个数是9 位整数呢? n 位整数呢?教学说明通过前面问题的探讨、思考和交流,得出科学记数法的概念,并重点研究 a 的限定范围和 n 的规律.还可以告诉学生这是绝对值大于10 的数的科学记数法,以后我们还要学习绝对值特别小的数的科学记数法,说它科学,因为它简单明了,易写、易读、易判断大小,在自然科学中有广泛的应用.三、应用举例,巩固概念设计说明本环节自然联系上节课的学习目标和学习成果,给出大量自然科学和社会生活中关于大数的情景,让学生在进一步感受有理数的乘方的同时体会用科学记数法表示大数的优越性,并促成对科学记数法的深入理解和对形式互化规律的掌握.1.把下列数据用科学记数 法表示出来:(1)人的大脑约有 10 00 0 000 000 个细胞; (答案: 1× 1010) (2)全世界人口约为 61 亿; (答案: 6.1× 109)(3)中国森林面积约为 128 630 000 公顷. (答案: 1.286 3× 108) 2.下列用科学记数法表示的数,原数各是什么数?(1)5.19× 103; (2)3.15×108.答案: (1)5.19× 103= 5 190;(2)3.15× 108= 315 000 000.(注:让学生总结方法:要将 a × 10n还原成整数就是把小数点向右移动 n 位,如果 a 中的数不够,用“ 0”补足 )3.一个正常人的 平均心跳速率约为每分 70 次,一年大约跳多少次?用科学记数法 表示这个结果,一个正常人一生心跳次数能达到1 亿次吗?解:一年大约跳 70×60× 24× 365= 36 792 000 ≈3.68× 107次,一个正常人活到 70 岁时 大约心跳次数能达到 25 亿多次,远大于 1 亿次.教学说明本环节利用教学媒体给出例题, 并重点达成如下目标: 加强数字表示形式转化时的正确率;学会把一些数据进行合理的处理, 如把一个正常人一生心跳次数估计值最高位后面的部分数字改为 0,更便于用科学记数法来表示;进一步感受有理数的乘方的意义,强化对上节课的再次理解.四、归纳小结,反思提高1.学了这节课你有哪些收获? (1)什么叫做科学记数法?(2)用科学记数法表示大数应注意以下几点:① 1≤ a < 10;②当大数是大于 10 的整数时,n 为整数位减去 1.2.科学记数法易读、易写、易算,在日常生活中非常有用,你能想到哪些应用?与同 伴讨论.五、当堂检测,及时反馈 设计说明 科学记数法表示数属于数学技能学习, 也是比较容易出现错误的类型, 当堂检测可以及 时了解学生的掌握情况.本检测设计 4 类试题,包括一般表示和科学记数法表示形式的互化2 类,汉字单位形式转化为科学记数法表示 1 类,以及有情景的计算并表示1 类,基本可以考查本节课目标的达成度.1.用科学记数法记出下列各数:(1)7 000 000 ;(2)92 000 ; (3)63 000 000 ; (4)304 000.答案: (1)7× 10 64 × 10 7 5; (2)9.2 ×10 ; (3)6.3 ; (4)3.04× 10 .2.下列是用科学记数法表示的数,原来各是什么数?610 5758(1)2× 10 ; (2)9.6 × ; (3)7.85× 10 ; (4)4.31× 10 ;(5)6.03 × 10 .答案: (1)2 000 000 ; (2)960 000; (3)78 500 000 ;(4)431 000 ; (5)603 000 0 00. 3.用科学记数法表示下列数据: (1)地球离太阳约有一亿五千万千米; (2)地球上煤的储量估计为 15 万亿吨以上. 答案: (1)1.5 × 108 千米; (2)1.5× 1013 吨.4.一天有 8.64× 104 秒,一年如果按 365 天计算,一年有多少秒? (用科学记数法表示 )答案: 3.153 6× 107 秒. 教学说明发给学生预先准备好的小纸片,要求学生在 5 分钟之内独立完成,完成即收卷.评价与反思1.由于科学记数法中要用到 10 的次幂,所以在引出新课之前对 10 的次幂进行了复习 和巩固,为后面的知识打基础, 让学生产生对科学记数法的热爱; 通过学习,能感受到数学 知识来源于生活又可应用于实际生活, 激发学生学习数学的兴趣; 会用科学记数法表示大数, 在感受大数的过程中,发展数感.2.本节课设计中,有一个当堂检测,及时反馈的环节,这是数学技能学习、程序性知识学习的重要环节,可以及时了解学生的掌握情况,以便作出及时反馈,使所有学生在最短的时间内掌握这种基本知识.3.本节课设计,特别关注了对上节课教学目标的继承和深化,自觉把两节内容融合在一起,以便顺利实现全章的整体目标.。

北师大版七年级上册(新)第二章《有理数及其运算》优秀教学案例

北师大版七年级上册(新)第二章《有理数及其运算》优秀教学案例
二、教学目标
(一)知识与技能
1.理解有理数的分类,掌握有理数的定义和特点,能够正确识别各种类型的有理数。
2.掌握有理数的加减乘除运算规则,能够熟练进行混合运算,并正确计算结果。
3.理解有理数乘方的概念,掌握有理数乘方的运算规则,能够正确计算乘方结果。
4.能够运用有理数的运算规则解决实际问题,提高运用数学知识解决实际问题的能力。
(三)小组合作
1.设计多样化的教学活动,如小组讨论、游戏、竞赛等,激发学生的学习积极性,培养学生的合作能力和竞争意识。
2.将学生分组,鼓励学生相互交流、合作解决问题,培养学生的团队合作精神和沟通能力。
3.教师应给予学生充分的时间和空间进行小组合作,同时进行观察和指导,及时发现问题并进行调整。
4.设计具有挑战性和实际意义的问题,让学生在小组合作的过程中,自然而然地运用所学的有理数运算规则,提高学生的解决问题的能力。
3.注重培养学生的团队合作精神,让学生在小组讨论和竞赛中体验到合作的重要性和团队的力量,提高学生的人际交往能力。
4.培养学生正确的价值观,使学生认识到数学对于社会发展和个人成长的重要性,培养学生的社会责任感和个人成就感。
三、教学策略
(一)情景创设
1.利用生活实例引入有理数的概念,例如温度、海拔、购物等,让学生感受到数学与实际的联系,激发学生的学习兴趣。
2.将学生分组,鼓励学生相互交流、合作解决问题,培养学生的团队合作精神和沟通能力。
3.教师应给予学生充分的时间和空间进行小组合作,同时进行观察和指导,及时发现问题并进行调整。
4.设计具有挑战性和实际意义的问题,让学生在小组合作的过程中,自然而然地运用所学的有理数运算规则,提高学生的解决问题的能力。
(四)总结归纳

北师大版数学七年级上册第二单元教案word版

北师大版数学七年级上册第二单元教案word版

§2.1数怎么不够用了(1)教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学重点:负数的意义.教学过程一、设疑自探1、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,…… 4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.什么叫做正数?什么叫做负数?2、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.二.解疑合探例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.三.质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.教学后记§2.1数怎么不够用了(2)教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.教学重点:有理数包括哪些数.教学难点:有理数的分类及其分类的标准.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入2.学生设疑①.什么是正、负数?②.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.③.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.二.解疑合探1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.三、运用举例变式练习例1将下列数按上述两种标准分类:例2下列各数是正数还是负数,是整数还是分数:三、质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展1、25,-100按两种标准分类.2.下列各数是正数还是负数,是整数还是分数?3.练习设计把下列各数填在相应的括号里(将各数用逗号分开):正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.2.填空题:(1)整数和分数合起来叫做______,正分数和负分数合起来叫做______.3.选择题(1)-100不是[ ]A.有理数 B.自然数 C.整数 D.负有理数(2)在以下说法中,正确的是[ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数4、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?5、板书设计2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.教学难点:正确理解有理数与数轴上点的对应关系.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二.解疑合探让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:例1画一个数轴,并在数轴上画出表示下列各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习说出下面数轴上A,B,C,D,O,M各点表示什么数?练习设计1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.作业:P391、2教学后记§2.2数轴(2)教学目标1.使学生进一步掌握数轴概念;2.使学生会利用数轴比较有理数的大小;3.使学生进一步理解数形结合的思想方法.教学重点:会比较有理数的大小.教学难点:如何比较两个负数(尤其是两个负分数)的大小.教学方法:三疑三探教学教学过程一、设疑自探1.数轴怎么画?它包括哪几个要素?2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?3、利用数轴比较有理数大小?在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边, 5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大.二.解疑合探通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.例2观察数轴,找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.在解本题时应适时提醒学生,直线是向两边无限延伸的.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)在数轴上画出表示下列各数的点,并用“<”把它们连接起来:四.运用拓展1.把下列各组数从小到大用“<”号连接起来:(1)3,-5,-4; (2)-9,16,-11;2.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.小结教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则.作业:板书设计教学后记§2.3绝对值(1)教学目标1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力教学重点和难点正确理解绝对值的概念 教学方法三疑三探教学教学过程一、设疑自探1.创设情景,导入新课1、复习引入1、下列各数中:+7,-2,31,-8 3,0,+0 01,-52,121,哪些是正数?哪些是负数?哪些是非负数? 2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-1 5,-4,23,2 2.学生设疑例、两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米 这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向 当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离) 这里的5叫做+5的绝对值,4叫做-4的绝对值现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;0的绝对值是0,表明它到原点的距离是0一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值 约定在一个数的两旁各画一条竖线来表示这个数的绝对值 如|+5|、|-5|二.解疑合探利用数轴求5,3 2,7,-2,-7 1,-0 5的绝对值由学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义 把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0?由有理数大小比较可以知道:a 是正数:a >0;a 是负数:a <0;a 是0:a=02、怎样表示a 的本身,a 的相反数?a 的本身是自然数还是a.a 的相反数为-a.现在可以把绝对值的代数定义表示成如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0由绝对值的代数定义,我们可以很方便地求已知数的绝对值了 例4 求8,-8,41,-41,0,6,-π,π-5的绝对值 三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:课堂练习1、下列哪些数是正数? -2,31+,3-,0,-2+,-(-2),-2- 2、在括号里填写适当的数: 5.3-=( ); 21+=( ); -5-=( ); -3+=( ); ()=1, ()=0; -()=-2 3、填空:(1)+3的符号是_____,绝对值是______;(2)-3的符号是_____,绝对值是______; (3)-21的符号是____,绝对值是______;(4)10-5的符号是_____,绝对值是______ 2、填空: (1)符号是+号,绝对值是7的数是________;(2)符号是-号,绝对值是7的数是________; (3)符号是-号,绝对值是0 35的数是________;(4)符号是+号,绝对值是131的数是________;3、(1)绝对值是43的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?小结指导学生阅读教材,进一步理解绝对值的代数和几何意义作业教学后记§2.3绝对值(2)教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力教学重点和难点 负数大小比较 教学方法 三疑三探教学 教学过程一、设疑自探1、复习引入①、计算:|+1 5|;|-31|;|0| ②、计算:|21-31|;|-21-31|. 2.学生设疑 ①、比较-(-5)和-|-5|,+(-5)和+|-5|的大小 ②、哪个数的绝对值等于0?等于31?等于-1?③、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?④、a ,b 所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|⑤、若|a|+|b-1|=0,求a ,b3、归纳总结利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小(这样以后在比较负数大小时就不必每次再画数轴了)二.解疑合探例1 比较-421与-|—3|的大小 例2 已知a >b >0,比较a ,-a ,b ,-b 的大小例3 比较-32与-43的大小 三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:课堂练习1、 比较下列每对数的大小:32与52;|2|与36;-61与112;73-与52- -107与-103;-21与-31;-51与-201;-21与-32 2、 判断下列各式是否正确:(1)|-0 1|<|-0 01|; (2)|-31|<41; (3) 32<43-; (4)81>-71 3、 比较下列每对数的大小: (1)-85与-83;(2)-113与-0 273;(3)-73与-94; (4)- 65与-1110;(5)- 32与-53;(6)- 97与-119 4、 写出绝对值大于3而小于8的所有整数5、 你能说出符合下列条件的字母表示什么数吗?(1)|a|=a ; (2)|a|=-a ; (3)x x =-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=06 若|a+1|+|b-a|=0,求a ,b小结先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定 学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了作业板书设计教学后记§2.4有理数的加法(1)教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学重点和难点重点:有理数加法法则.难点:异号两数相加的法则.教学方法:三疑三探教学教学过程一、创设情景,导入新课1.复习引入前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.2.学生设疑两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.二.解疑合探例1计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算) =-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:1.引导学生自编习题。

北师大版数学七年级上册第二单元教学设计

北师大版数学七年级上册第二单元教学设计

北师大版数学七年级上册第二单元教学设计一. 教材分析北师大版数学七年级上册第二单元主要内容包括有理数的乘方、立方根、实数的分类等。

这些内容是学生学习初中数学的基础,对于学生掌握数学知识体系,培养学生的逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了初步的数学知识,对于一些基本的数学概念和运算规则有一定的了解。

但是,对于有理数的乘方、立方根等概念,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

三. 教学目标1.让学生理解有理数的乘方、立方根的概念,掌握有理数乘方的运算方法。

2.使学生能够对实数进行分类,理解实数的性质和特点。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.有理数的乘方、立方根的概念和运算方法。

2.实数的分类,理解实数的性质和特点。

五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。

通过问题引导,激发学生的思考;通过实例讲解,让学生理解概念和运算方法;通过小组讨论,促进学生的合作和交流。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和测试题,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入有理数的乘方概念。

例如,一个正方形的边长为2,求它的面积。

引导学生思考如何解决这个问题,从而引出有理数的乘方。

2.呈现(10分钟)讲解有理数的乘方概念,并举例说明。

引导学生通过观察和分析,发现有理数乘方的规律。

同时,介绍立方根的概念,并通过实例讲解立方根的运算方法。

3.操练(10分钟)让学生进行有理数乘方和立方根的运算练习。

给予学生足够的思考时间,并对学生的疑问进行解答。

4.巩固(10分钟)通过一些具体的例题,让学生进一步理解和巩固有理数乘方和立方根的概念和运算方法。

同时,引导学生思考如何将实数进行分类,并理解实数的性质和特点。

5.拓展(10分钟)让学生进行一些拓展练习,例如,找出一些特殊的实数,判断它们属于哪种类型。

北师大版七年级数学上册第二单元教学设计(一)

北师大版七年级数学上册第二单元教学设计(一)

北师大版七年级数学上册第二单元教学设计(一)教学设计:北师大版七年级数学上册第二单元知识点概述•整数的概念和意义•整数的比较、加减法运算•整数的绝对值和相反数的概念学习目标•理解整数的概念和意义•掌握整数的比较、加减法运算方法•理解整数的绝对值和相反数的概念教学步骤1.引入整数的概念–通过生活中的实例,引导学生认识整数的概念,并解释整数在数轴上的位置。

–提问学生:你知道哪些场景中会涉及到整数?2.整数的比较–介绍整数的比较方法,即利用数轴或大小关系来进行比较。

–提供一些例题,进行示范演练,并与学生一起讨论答案。

3.整数的加法运算–通过具体的例子,引导学生掌握整数的加法运算方法。

–给学生一些练习题,帮助他们熟练掌握。

4.整数的减法运算–通过具体的例子,引导学生掌握整数的减法运算方法。

–给学生一些练习题,帮助他们熟练掌握。

5.整数的绝对值和相反数–解释整数的绝对值和相反数的概念,并通过实例进行说明。

–引导学生理解并掌握计算整数的绝对值和相反数的方法。

6.综合练习–给学生一些综合性的练习题,巩固他们对整数概念、比较和运算的理解与掌握。

教学辅助方式•使用PPT展示整数概念、数轴和运算方法的示意图。

•提供练习题的纸质或电子版给学生,并在班级内进行批改讨论。

教学评估•教师观察学生的学习状态和参与度,及时给予反馈和指导。

•班级内进行小组或个体练习题的答案讨论,学生互相评价、补充和纠正答案。

•综合练习题的答题情况以及近期作业的整体完成情况。

参考资源[1] 北师大版七年级数学上册 [2] 教学PPT [3] 教学练习题册。

北师大版七年级数学上册第二单元教学设计

北师大版七年级数学上册第二单元教学设计

北师大版七年级数学上册第二单元教学设计教学设计:北师大版七年级数学上册第二单元课程背景•教材版本:北师大版七年级数学上册•单元主题:整数与小数•学科目标:通过本单元的学习,学生能够掌握整数与小数的基本概念、运算规则及应用,提高他们的数学运算能力和解决实际问题的能力。

教学目标1.理解整数与小数的基本概念,并能正确运用。

2.掌握整数与小数的加、减、乘、除运算规则。

3.能够将生活中的实际问题转化为数学语言,并解决问题。

4.提高学生的数学思维能力和解决问题的能力。

教学内容1.整数的概念与表示方法–整数的定义–整数的表示方法–整数的比较大小2.整数的加减法运算–整数的加法原则–整数的减法原则–整数的加减法练习3.小数的概念与表示方法–小数的定义–小数的表示方法–小数的读法4.小数的加减法运算–小数的加法原则–小数的减法原则–小数的加减法练习5.整数与小数的乘法运算–整数与整数的乘法–整数与小数的乘法–小数与小数的乘法6.整数与小数的除法运算–整数除整数的除法–整数除小数的除法–小数除小数的除法7.应用题解决方法–将生活中的实际问题转化为数学语言–运用所学知识解决实际问题教学步骤导入新知识1.通过引入生活中的实际问题,引起学生的兴趣,并了解他们对整数和小数的认识程度。

教授新知识1.介绍整数的概念和表示方法,通过例题演示整数的比较大小。

2.介绍整数的加减法运算原则和步骤,通过练习题帮助学生巩固。

3.介绍小数的概念和表示方法,通过例题演示小数的读法。

4.介绍小数的加减法运算原则和步骤,通过练习题帮助学生巩固。

5.介绍整数与小数的乘法运算和除法运算原则和步骤,通过练习题帮助学生巩固。

拓展应用1.给学生提供一些实际问题,引导他们将问题转化为数学语言,并运用所学知识解决问题。

2.鼓励学生提出自己的解题思路,并与同学进行讨论和交流。

总结与延伸1.对整个单元进行总结,复习重要知识点,强化学生的记忆。

2.提供一些延伸练习,并布置相关作业,巩固学生所学内容。

北师大课标版初中数学七年级上册第二章2

北师大课标版初中数学七年级上册第二章2

有理数的乘法教学设计•一、学情分析: 在此之前, 本班学生已有探索有理数加法法则的经验, 多数学生能在教师指导下探索问题。

由于学生已了解利用数轴表示加法运算过程, 不太熟悉水位变化, 故改为用数轴表示乘法运算过程。

•二、课前准备把学生按组间同质、组内异质分为2个小组, 以便组内合作学习、组间竞争学习, 形成良好的学习气氛。

•三、教学目标• 1. 知识与技能目标掌握有理数乘法法则, 能利用乘法法则正确进行有理数乘法运算。

• 2. 能力与过程目标经历探索、归纳有理数乘法法则的过程, 发展学生观察、归纳、猜测、验证等能力。

•3、情感与态度目标通过学生自己探索出法则, 让学生获得成功的喜悦。

•四、教学重点、难点•重点: 运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程, 符号法则及对法则的理解。

一、温故知新 :1.小学学过的乘法是怎样定义的?答: 乘法是求几个相同加数的和的运算例如: 5+5+5+5=5×4=202.如果向东走5m用+5m来表示, 那么向西走3m该如何表示?3、写出下列各数的绝对值:3.-7、5、1.5二、新授甲水库的水位每天升高3米, 乙水库的水位每天下降3米, 4天后甲, 乙水库水位的总变化量各是多少?解:如果用正号表示水位上升, 用负号表示水位下降, 那么4天后:甲水库的水位变化量为: 3+3+3+3=3×4=12 (表示: 四个3相加)乙水库的水位变化量为: (-3)+(-3)+(-3)+(-3)=(-3)×4=-12(表示: 四个-3相加)三、议一议•(-3) ×4=-12 (-3) ×(-1)=3•(-3) ×3=-9 (-3) ×(-2)=6•(-3) ×2=-6 (-3) ×(-3)=9•(-3) ×1=-3 (-3) ×(-4)=12•(-3) ×0=0思考一下: 当一个因数减小1时, 积是怎样变化的?四、看一看, 做一做(-3)×4= 3 ×(-4)=3 ×4= (-3) ×(-4)=0 ×3= (-3) ×0=想一想: 积的符号及数值怎样确定?1.符号: 正乘以正得 正负乘以负得 正 同号得正 正乘以负得 负负乘以正得 负 异号得负2.数值: 两个数的绝对值相乘。

北师大初中数学七年级上册《2.0第二章 有理数及其运算》word教案 (2)

北师大初中数学七年级上册《2.0第二章 有理数及其运算》word教案 (2)

第二章 有理数及其运算回顾与思考(一)本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分主要内容是有理数的有关概念;第二部分主要内容是学习有理数的加减法运算;第三部分主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.本节课主要是针对第一部分和第二部分的内容进行知识梳理和复习.本节课的教学目标是: 1、整理本章知识网络;2、复习正数与负数,有理数、相反数、绝对值、数轴等概念;3、复习有理数的加、减运算法则;4、复习有理数的加减混合运算的运算律;5、运用有理数及其运算解决实际问题.三、教学过程设计本节课设计了六个教学环节: 第一环节:建构知识网络;第二环节:梳理重点知识;第三环节:剖析典型例题;第四环节:综合应用;第五环节:课堂小结; 第六环节: 拓展延伸。

第一环节:建构知识网络活动内容: 学生对照课本的章节目录,和教师一起画出全章的知识框架图.第二环节:梳理重点知识1、有理数的两种分类;{{{有理数整数 分数正整数 负整数 正分数负分数 {{ {有理数正有理数 负有理数正分数正整数负整数负分数2、数轴:(1)规定了原点、正方向、单位长度的直线叫做数轴. (2)任何一个有理数都可以用数轴上的一个点来表示.3、相反数:(1)只有符号不同的两个数互为相反数. (2)0的相反数是0. (3)a 的相反数是 -a.(4)如果a 与b 互为相反数,那么a +b =0.4、绝对值:(1)从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离. (2)数 a 的绝对值记为 | a |.(3)正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数. 5、有理数的大小比较:(1)在数轴上,右边的数总是大于左边的数.(2)正数都大于零,负数都小于零,正数大于一切负数; (3) 两个正数,绝对值大的大; (4) 两个负数,绝对值大的反而小.6、有理数的加法:同号两数相加,取相同的符号,并把绝对值相加. 异号两数相加, 取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数。

【最新北师大版精选】北师大初中数学七上《2.0第二章 有理数及其运算》word教案 (6).doc

【最新北师大版精选】北师大初中数学七上《2.0第二章 有理数及其运算》word教案 (6).doc

2.13《有理数及其运算》回顾与思考教案1.掌握正、负数的意义,能够对有理数进行恰当地分类.2.掌握数轴、相反数、绝对值、倒数等概念,会求有理数的相反数、绝对值和倒数;会用数轴上的点表示有理数,能利用数轴或绝对值比较有理数的大小.3.熟练掌握有理数的运算法则、运算律、运算顺序及有理数的混合运算,能灵活地运用运算律简化运算.4.会用科学记数法表示大于10的有理数. 教学重点与难点:重点:有理数的有关概念及有理数的计算. 难点:绝对值的概念及有理数的混合运算. 教法及学法指导:本节课以小组活动为主,尽可能在回顾与思考的几个问题的交流过程中逐渐引导、启发学生建立知识体系,归纳、总结本章学习中的收获、因难及需要改进的地方. 课前准备:多媒体课件. 教学过程:一、创设情境,导入新课谁会做菜?介绍自己的做菜全过程.(学生说出的过程中有原料的准备、放置的顺序、做好后的口感等问题,为本节课复习打下铺垫.)师:我们的有理数运算像不像是一道菜,各种运算好像是几种原料,按顺序运算,再到得出结果.(大声发笑,并说“像”)师板书:有理数的运算设计意图:从学生身边的事物引入,引起学生强烈的认知上的冲突,形成一种心理上的想读、想写的求知欲望,从而导出课题.实际效果:学生感受到问题的产生来源于生活实际问题,有了极大的探究热情和强烈的探索欲.二、探究研讨,质疑问难㈠那么我们今天就来说一说“这道菜的做法”,原料的准备交给大家了.1、学生回顾运算的法则.(学生小组活动,为了提高效率,要求每小组选择一到两种运算交流,并举出示例;学生小组内,共同回想,七嘴八舌的交流)2、学生班内交流.配料 使用 顺序组1:我们解决的是加法.同号两数相加,取相同的符号,并把绝对值相加;绝对值相等的异号两数相加,和为0,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数.比如:2+(-3)…… 组2:…… 组3:…… 组4:……3、师引领构建知识网络.师:这些原料间有何关系?我们要做好这道菜,又得按照一个顺序呢?(师引导建构网络图)师:我们要做的好吃,有没有一些技巧呢?(生有困难,不知如何回答,师引导是:运算律)生:a+b=b+a ,(a+b)+c=a+(b+c), ab=ba ,abc=a(bc),(a+b) c=ac+bc 师:原料都有了,还有没准备好的吗?(提示:不会的或不理解的提出来,大家给以帮助)㈡既然原料不成问题,那我们开始加工吧.1、课件出示练习:(主要目的解决基本运算)师:哪几位来板书一下? (生争先恐后的跑上来板演) 生1:按照运算顺序,板书太挤.生2:在25 的计算上出现符号错误,但书写美观. 生3:相对1、2生,书写不工整,错误较多. 生指出错因,师生共同分析讲评:一道菜要色香味俱全才是好菜,那么大家认为他们几人的“菜”出现了哪些问题? 学生:生1的不够美观,既是色香不足;生2的出现错误,味道不好;生3的色香味全来来加法减法乘法除法乘方转化转化相反数、代数和倒数源于加法源于乘法最后先算再算2)2-+(计算(-2)2-(-52)×(-1)5+87÷(-3)×(-1)44-=4-25-29(再乘除)=-50(最后相加)解:4-1)+3)(先乘方解:原式=4-(-25)×(-1)+87÷(-3)×1 (先乘方)计算(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4=4-25-29(再乘除)=-50(最后相加)解:原式=4-(-25)×(-1)+87÷(-3)×1 (先乘方)无,很糟.教师利用课件展示书写,形成共识. 2、课件出示练习:(主要目的解决技巧运算))6543()60(+⨯-师:哪几位来板书一下?(生争先恐后的跑上来板演)生1:按照运算顺序,结果对了,板书美观了.(其余两个学生的结果也对了,但没有出现预想的简便算法)(师在巡视中发现乘法分配律的做法,借助投影展示,并演示“代数和”的快捷写法.)95)50(4565)60(43)60()6543()60(-=-+-=⨯-+⨯-=+⨯- (生) (师)955045656043)60()6543()60(-=--=⨯-⨯-=+⨯-师:好,对比后发现,黑板上这三位同学写的,刘玉娇同学的,老师写的,谁来给大家讲一讲你的想法.生:要注意简算;可以在计算中先确定符号;巧妙使用代数和……师:太棒了,做对了很好,那要是又对又快岂不是更好,所以我们一定要注意观察,巧妙地运算.(板书:简算、巧算)设计意图:通过对知识点的梳理和复习,让学生起到温故而知新的作用.同时,在学生已有的认知基础上对知识点的再复习,能让学生对数学概念有更深层次的理解和认识.实际效果:学生能回忆出大部分知识点;以小组竞赛的形式进行这一环节的学习,能很好地调动学生的学习兴趣.三、展示交流,建构知识那么,咱们再比比,看谁做得又对又快吧.教材73页的题6的奇数题,小组四人,每人解决六题(学生动笔在练习本上运算,学生算出后急于回答;要求小组内互相检查,留给学生同位交流的时机)师:那我们来听听大家的做法吧. 生:……师:谁能说一说,遇到运算我们要注意些什么问题呢?(生积极发言) 板书:⑴理清几种运算,注意顺序⑵能简算的要简算,提高速度 ⑶巧妙利用代数和,简化步骤 ⑷书写要美观大方设计意图:通过对知识点的梳理和复习,让学生起到温故而知新的作用. 同时,在学生已有的认知基础上对知识点的再复习,能让学生对数学概念有更深层次的理解和认识.实际效果:帮助学生建构了本章的知识结构图,因此根据此框架 图能很容易回忆起本章的主要知识点,有助于学生更好地从整体理解全章的知识.四、运用拓展,收获讲评那好,让我们试试吧,记得是对又快呦!1、处理助学相应的练习(要求学生自选2题,或小组长组内分工,合作比快)2、比快训练:)31328()43(-+-⨯-,尽量要求学生口算. 总结:菜要想做好,熟练加技巧.(多动脑) 3、作业: A 类:教材73页的题6的偶数题目. B 类:教材74页的练习题8. C 类:教材76页的第24题.设计意图:这几道题都是与所复习的知识点相关的题目,能帮助学生很好地巩固知识并应用知识.实际效果:此环节应在学生独立思考后,教师再请学生上台进行讲解,并分析题中所应用的知识点,其余学生进行补充和点评。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1数怎么不够用了(1)教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学重点:负数的意义.教学过程一、设疑自探1、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,…… 4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.什么叫做正数?什么叫做负数?2、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.二.解疑合探例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.三.质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.教学后记§2.1数怎么不够用了(2)教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.教学重点:有理数包括哪些数.教学难点:有理数的分类及其分类的标准.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入2.学生设疑①.什么是正、负数?②.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.③.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.二.解疑合探1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.三、运用举例变式练习例1将下列数按上述两种标准分类:例2下列各数是正数还是负数,是整数还是分数:三、质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展1、25,-100按两种标准分类.2.下列各数是正数还是负数,是整数还是分数?3.练习设计把下列各数填在相应的括号里(将各数用逗号分开):正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.2.填空题:(1)整数和分数合起来叫做______,正分数和负分数合起来叫做______.3.选择题(1)-100不是[ ]A.有理数 B.自然数 C.整数 D.负有理数(2)在以下说法中,正确的是[ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数4、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?5、板书设计2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.教学难点:正确理解有理数与数轴上点的对应关系.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二.解疑合探让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:例1画一个数轴,并在数轴上画出表示下列各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习说出下面数轴上A,B,C,D,O,M各点表示什么数?练习设计1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.作业:P391、2教学后记§2.2数轴(2)教学目标1.使学生进一步掌握数轴概念;2.使学生会利用数轴比较有理数的大小;3.使学生进一步理解数形结合的思想方法.教学重点:会比较有理数的大小.教学难点:如何比较两个负数(尤其是两个负分数)的大小.教学方法:三疑三探教学教学过程一、设疑自探1.数轴怎么画?它包括哪几个要素?2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?3、利用数轴比较有理数大小?在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边, 5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大.二.解疑合探通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.例2观察数轴,找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.在解本题时应适时提醒学生,直线是向两边无限延伸的.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)在数轴上画出表示下列各数的点,并用“<”把它们连接起来:四.运用拓展1.把下列各组数从小到大用“<”号连接起来:(1)3,-5,-4; (2)-9,16,-11;2.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.小结教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则.作业:板书设计教学后记§2.3绝对值(1)教学目标1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力教学重点和难点正确理解绝对值的概念 教学方法三疑三探教学教学过程一、设疑自探1.创设情景,导入新课1、复习引入1、下列各数中:+7,-2,31,-8 3,0,+0 01,-52,121,哪些是正数?哪些是负数?哪些是非负数? 2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-1 5,-4,23,2 2.学生设疑例、两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米 这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向 当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离) 这里的5叫做+5的绝对值,4叫做-4的绝对值现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;0的绝对值是0,表明它到原点的距离是0一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值 约定在一个数的两旁各画一条竖线来表示这个数的绝对值 如|+5|、|-5|二.解疑合探利用数轴求5,3 2,7,-2,-7 1,-0 5的绝对值由学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义 把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0?由有理数大小比较可以知道:a 是正数:a >0;a 是负数:a <0;a 是0:a=02、怎样表示a 的本身,a 的相反数?a 的本身是自然数还是a.a 的相反数为-a.现在可以把绝对值的代数定义表示成如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0由绝对值的代数定义,我们可以很方便地求已知数的绝对值了 例4 求8,-8,41,-41,0,6,-π,π-5的绝对值 三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:课堂练习1、下列哪些数是正数? -2,31+,3-,0,-2+,-(-2),-2- 2、在括号里填写适当的数: 5.3-=( ); 21+=( ); -5-=( ); -3+=( ); ()=1, ()=0; -()=-2 3、填空:(1)+3的符号是_____,绝对值是______;(2)-3的符号是_____,绝对值是______; (3)-21的符号是____,绝对值是______;(4)10-5的符号是_____,绝对值是______ 2、填空: (1)符号是+号,绝对值是7的数是________;(2)符号是-号,绝对值是7的数是________; (3)符号是-号,绝对值是0 35的数是________;(4)符号是+号,绝对值是131的数是________;3、(1)绝对值是43的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?小结指导学生阅读教材,进一步理解绝对值的代数和几何意义作业教学后记§2.3绝对值(2)教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力教学重点和难点 负数大小比较 教学方法 三疑三探教学 教学过程一、设疑自探1、复习引入①、计算:|+1 5|;|-31|;|0| ②、计算:|21-31|;|-21-31|. 2.学生设疑 ①、比较-(-5)和-|-5|,+(-5)和+|-5|的大小 ②、哪个数的绝对值等于0?等于31?等于-1?③、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?④、a ,b 所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|⑤、若|a|+|b-1|=0,求a ,b3、归纳总结利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小(这样以后在比较负数大小时就不必每次再画数轴了)二.解疑合探例1 比较-421与-|—3|的大小 例2 已知a >b >0,比较a ,-a ,b ,-b 的大小例3 比较-32与-43的大小 三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:课堂练习1、 比较下列每对数的大小:32与52;|2|与36;-61与112;73-与52- -107与-103;-21与-31;-51与-201;-21与-32 2、 判断下列各式是否正确:(1)|-0 1|<|-0 01|; (2)|-31|<41; (3) 32<43-; (4)81>-71 3、 比较下列每对数的大小: (1)-85与-83;(2)-113与-0 273;(3)-73与-94; (4)- 65与-1110;(5)- 32与-53;(6)- 97与-119 4、 写出绝对值大于3而小于8的所有整数5、 你能说出符合下列条件的字母表示什么数吗?(1)|a|=a ; (2)|a|=-a ; (3)x x =-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=06 若|a+1|+|b-a|=0,求a ,b小结先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定 学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了作业板书设计教学后记§2.4有理数的加法(1)教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学重点和难点重点:有理数加法法则.难点:异号两数相加的法则.教学方法:三疑三探教学教学过程一、创设情景,导入新课1.复习引入前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.2.学生设疑两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.二.解疑合探例1计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算) =-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:1.引导学生自编习题。

相关文档
最新文档