高一上学期期末考试数学试题(必修1+2)

合集下载

高一数学上学期期末考试试题含解析

高一数学上学期期末考试试题含解析
【解析】
【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.

河南省洛阳市11-12学年高一上学期期末考试试题(必修1+必修2)(有答案)

河南省洛阳市11-12学年高一上学期期末考试试题(必修1+必修2)(有答案)

洛阳市2011-2012学年高一上学期期末考试数学试题学年高一上学期期末考试数学试题一.选择题:(本大题共12小题,每小题5分,共60分.)1.函数y =log 12(3x -2)的定义域是 A .[1,+∞) B .(23,+∞) C .[23,1] D .(231] 2.下列对应关系:①A={1,4,9},B={-3,-2,-1,1,2,3},f :x →x 的算术平方根;②A=R ,B=R ,f :x →x 的倒数; ③A=R ,B=R ,f :x →x 2-2.其中是A 到B 的函数的是A .①③B .②③C .①②D .①②③3.若直线ax +2y +6=0和直线x +(a -1)y +a 2-1=0相互平行,则实数a 的值为 A .23 B .-1 C .2 D .-1或24.一个三棱锥的三条侧棱两两垂直且长分别为3、4、5,则它的外接球的表面积是A .202πB .252πC .50πD .200π5.已知幂函数f (x )=x a 的图象经过点(2, 4),则下列判断中不正确...的是 A .函数图象经过点(-1,1) B .当x ∈[-1, 2]时,函数f (x )的值域是[0, 4]C .函数满足f (x )+ f (-x )=0D .函数f (x )的单调减区间为(-∞,0]6.直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是 A .直线过圆心 B .直线与圆相切C .直线与圆相交,但不过圆心D .直线与圆没有公共点7.在空间中,a 、b 是两条不同的直线,α、β是两个不同的平面,下列说法正确的是A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β8.已知实数x , y 满足x 2+y 2-4x =0,则y x +2的取值范围是 A .[-33,33 B .(-∞,-33]∪[33,+∞) C .[-3,3] D .(-∞,-3]∪[3,+∞)9.若某几何体的三视图如图所示,则此几何体的体积是A .2π+233B .4π+2 3C .2π+433D .4π+23310.过点P (3,0)作一条直线,它夹在两条直线l 1:2x -y -3=0, l 2:x +y +3=0之间的线段恰被点P 平分,该直线的方程是A .4x -y -6=0B .3x +2y -7=0C .5x -y -15=0D .5x +y -15=011.点P 在圆x 2+y 2=1上,点Q 在圆(x +3)2+(y -4)2=4上,则|PQ |的最小值为是A .1B .2C .3D .412.设x ∈R ,n ∈N*,规定:H n x =x (x +1)(x +2)…(x +n -1),例如:H 4-4=(-4)•(-3)•(-2)•(-1)=24,则f (x )=x •H 5x -2的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数二.填空题:(本大题共4小题,每小题5分,共20分.)13.已知a=log 32,那么log 38-2log 36的结果用a 表示是______.14.若函数f (x )=(3-a)x 与g(x )=log a x 的增减性相同,则实数a 的取值范围是_____.15.如图是一个正方体纸盒的展开图,在原正方体纸盒中有如下结论:①BM ∥ED ;②CN 与BE 是异面直线;③CN 与BM 所成的角为60°;④DM ⊥BN .其中正确命题的序号是________.16.若直线l 过点P (5, 5),且和圆C :x 2+y 2=25相交,截得弦长为45,则l 的方程是____________________.三.解答题17.已知P ={y |y =x 2-2x +3,0≤x ≤3},Q ={x |y =x -a }.(1)若P ∩Q ={x |4≤x ≤6},求实数a 的值;(2) 若P ∪Q =Q ,求实数a 的取值范围.18.求过直线l 1:3x +4y -2=0与直线l 2:2x +y +2=0的交点,且垂直于直线2x -y +7=0的直线方程,并求出这条直线与坐标轴围成的三角形的面积S .19.已知函数f (x )=2x +a x,且f (1)=1. (1)求实数a 的值,并判断函数f (x )的奇偶性(要求写出过程);(2)函数f (x )在(1,+∞)上是增函数还是减函数?并用定义证明.20.如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点.(1)求证:MN//平面PAD(2)若∠PDA=45°,求证:MN ⊥平面PCD .21.已知圆的圆心C在直线2x+y=0上,且与直线x+y-1=0相切于点A(2,-1) .(1)求圆C的方程;(2)经过点B(8,-3)的一束光线射到T(t,0)后被x轴反射,反射光线与圆C有公共点,求实数t的取值范围.22.已知动点M(x, y)到定点F(0, 1)的距离等于它到定直线l:y+1=0的距离.(1)求点M的轨迹方程;(2)经过点F,倾斜角为30°的直线m交M的轨迹于A、B两点,求|AB|;(3)设过点G(0, 4)的直线n交M的轨迹于C(x1,y1),D(x2,y2),O为坐标原点。

高一第一学期数学期末考试试卷(含答案)

高一第一学期数学期末考试试卷(含答案)

高一第一学期期末考试试卷考试时间:120分钟;学校:___________姓名:___________班级:___________考号:___________ 注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上。

写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合,则=()A.B.C.D.2。

的分数指数幂表示为()A. B. a 3C.D.都不对3.下列指数式与对数式互化不正确的一组是( )A。

B.C. D。

4.下列函数中,满足“对任意的,当时,总有"的是A. B. C. D.5。

已知函数是奇函数,当时,则的值等于()A.C.D.-6.对于任意的且,函数的图象必经过点 ( )A。

B。

C。

D.7.设a=,b=,c=,那么()A.a〈b〈c B.b<a<c C.a〈c<b D.c〈a〈b8.下列函数中哪个是幂函数()A.B.C.D.9。

函数的图象是( )10.已知函数在区间上的最大值为,则等于( )A.-B.C.-D.-或-11..函数的零点所在的区间是()A. B。

C。

D.12。

在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )第Ⅱ卷本卷包括必考题和选考题两部分。

第13题-第21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案

济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案

绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。

试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

考试时间120分钟。

温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。

每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。

(word版)高一上数学期末必修一二考试卷(含答案)

(word版)高一上数学期末必修一二考试卷(含答案)

人教高一上数学必修一二期末综合测试 一、选择题(每题5分,共60分)1、点P 在直线a 上,直线 a 在平面α内可记为( ) A 、P∈a,a α B 、Pa ,aα C 、Pa ,a∈αD 、P∈a,a∈α2、直线l 是平面α外的一条直线,以下条件中可推出 l∥α的是( )A 、l 与α内的一条直线不相交 B、l 与α内的两条直线不相交C 、l 与α内的无数条直线不相交 D、l 与α内的任意一条直线不相交3.直线3x+y+1=0的倾斜角为()A .50oB .120oC .60oD .-60o4、在空间中,l ,m ,n ,a ,b 表示直线, α表示平面,那么以下命题正确的选项是() A 、假设l∥α,m⊥l,那么m⊥α B 、假设l⊥m,m⊥n,那么m∥nC 、假设a⊥α,a⊥b,那么b∥αD 、假设l⊥α,l∥a,那么a⊥α5、函数y=log 2(x 2-2x-3)的递增区间是( )〔A 〕(- ,-1) 〔B 〕(- ,1)〔C 〕(1,+) 〔D 〕(3,+ ) 1 1 6.设函数a 2 2 2 3 log 2 13 ,b,c ,那么a,b,c 的大小关系是() 3 3A . abcB . acb C. cab D. cba7、如果ac0且bc0,那么直线ax by c 0不通过〔 〕A 第一象限B 第二象限C 第三象限 D 第四象限8, 右图表示某人的体重与年龄的关系 ,那么( ) A . 体重随年龄的增长而增加体重/kgB . 25岁之后体重不变 6545C. 体重增加最快的是 15 岁至25岁D. 体重增加最快的是15 岁之前40 1525509,计算lg700lg56 3lg120(lg20lg2)2年龄/岁2A. 20B. 22C. 2D. 1810、经过点A 〔1,2〕,且在两坐标轴上的截距相等的直线共有〔 〕A1条B2 条 〔 C32 条D4 条 〕,且与线段交,那么直线的斜率11 、 〔,3) , B 3, 〕,直线 l 过定点 〔,AB l kA2P11的取值范围是〔〕A4k 33k4C1D k4或k3 B4k4 4212、A,B,C,D四点不共面,且A,B,C,D到平面α的距离相等,那么这样的平面()A、1个B、4个C、7个D、无数个二、填空题(每题5分,共20分)13、在空间四边形ABCD中,E,H分别是AB,AD的中点,F,G为CB,CD上的点,且CF∶CB=CG∶CD=2∶3,假设BD=6cm,梯形EFGH的面积28cm2,那么EH与FG间的距离为。

郑州市2009-2010高一上期期末数学试题(必修1+必修2)(含答案)(word典藏版)

郑州市2009-2010高一上期期末数学试题(必修1+必修2)(含答案)(word典藏版)

郑州市2009-2010高一上期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}2,1,0{=A ,集合}4,2,0{=B ,则=B AA .}0{B .}2{C .}2,0{D .}4,1{2.函数)23(log 21-=x y 的定义域是A .),1[+∞B .]1,32( C .]1,32[ D .),32(+∞ 3.下列函数中在)1,(-∞上单调递减的是A .||x y =B .x y -=1C .1-=x yD .21x y -=4.已知函数3)(2++=ax x x f 为偶函数,则实数a 的值为A .0B .2C .2-D .2± 5.直线03)1()2(=--++y a x a 与02)32()1(=+++-y a x a 互相垂直,则a 为A .1-B .1C .23-D .1± 6.若圆)04(02222>-+=++++FE DF Ey Dx y x 关于直线1+=x y 对称,则下列结论成立的是A .2=-E DB .2=+E DC .1=+ED D .1=-E D7.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是A .若α//m ,α//n ,则n m //B .若α//m ,β//m ,则βα//C .若α⊥m ,α⊥n ,则n m //D .若γα⊥,γβ⊥,则βα//8.直线02=+-a y ax 与圆922=+y x 的位置关系是A .相交B .相切C .相离D .与a 的值有关9.在空间直角坐标系下,点),,(z y x P 满足1222=++z y x ,则动点P 的轨迹表示的空间几何体的表面积是·A .πB .π34C .π2D .π4 10.函数10log )(2-+=x x x f 的零点所在区间为A .)7,6(B .)8,7(C .)9,8(D .)10,9(11.定义在]3,0[上的函数)(x f 图象是如图所示的折线段OAB ,点A 的坐标为)2,1(,点B 的坐标为)0,3(.定义函数)1()()(-⋅=x x f x g ,则函数)(x g 的最大值为A .4B .2C .1D .012.所有棱长都相等的三棱锥在平面α上的正投影不可能是A .正三角形B .三边不全等的等腰三角形C .正方形D .邻边不垂直的菱形 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.计算:=++-+-2lg 225lg 5.05121.1230 .14.已知一几何体的三视图如右图所示,其正视图和侧视图都是边长为2的等边三角形,则该几何体的全面积为 .15.拟定从甲地到乙地通话m 分钟的电话费由⨯=06.1)(m f )1][5.0(+⋅m (元)决定,其中0>m ,][m 是不大于m 的最大整数,则从甲地到乙地通话时间为5.6分钟的电话费为 元.16.图甲是一个正三棱柱形的容器,高为m 2,内装水若干.现将容器放倒,把一个侧面作为底面,如图乙所示,这时水面恰好为中截面(EF 与11F E 分别为ABC ∆和111C B A ∆的中位线),则图甲中水面的高度为 .。

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

高一必修一、二数学期末试卷及答案

高一必修一、二数学期末试卷及答案

高一数学期末考试一、选择题(每小题只有一个答案正确,每小题5分,共50分)1.已知集合M={R x x x y y ∈-+=,322},集合N={32≤-y y },则M =⋂N ( )。

A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D.φ2.如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A.(M S P ⋂⋂)B.(M S P ⋃⋂)C.(M ⋂P )⋂(C U S )D.(M ⋂P )⋃(C U S )3.若函数()x f y =的定义域是[2,4],⎪⎪⎭⎫ ⎝⎛=x f y 21log 的定义域是( )A.[21,1]B.[4,16]C.[41,161] D.[2,4] 4.下列函数中,值域是R +的是( )A.132+-=x x yB.32+=x y ,+∞∈,0(x )C.12++=x x yD.x y 31= 5.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且PA ,PB ,PC 与α所成的角相等,则H 是△ABC 的( )A.内心B.外心C.垂心D.重心6.已知二面角α-l -β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )° .60° C° °7.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A.(1,2) B.(,3)eC.(2,)eD.(,)e +∞ 8.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A A 1=1,则B C 1与平面BB 1D 1D 所成的角的正弦值为( )10ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,满分20分11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩…,则()0f f =⎡⎤⎣⎦ . 12.函数b a y x +=(a >0且a 1≠)的图象经过点(1,7),其反函数的图象经过点(4,0),则b a =13.函数⎪⎪⎭⎫ ⎝⎛=x y 3121log log 的定义域为14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个结论:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个作为结论,写出你认为正确的一个命题是__________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15、(12分)已知1()(1)1x x a f x a a -=>+ (1)判断函数()y f x =的奇偶性;(2)探讨()y f x =在区间(,)-∞+∞上的单调性16.(12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD .17、(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .、18、(14分)已知函数2()22,(0)f x ax x a a =+--≤(1)若1,a =-求函数()y f x =的零点;(2)若函数在区间(0,1]上恰有一个零点,求a 的取值范围;19、(14分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份元,卖出的价格是每份元,卖不掉的报纸可以以每份元的价格退回报社。

郑州市2011-2012高一上期期末数学试题(必修1+必修2)(含答案)

郑州市2011-2012高一上期期末数学试题(必修1+必修2)(含答案)

第Ⅱ卷(非选择题
共 90 分)
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上)
x 13.函数 f ( x ) = a + 2( a > 0, 且a ≠ 1) 恒过定点

x>0 2 x, 4 4 14.已知函数 f ( x) = 2 ,则 f ( ) + f ( − ) = 3 3 3x − 4, x ≤ 0
∴ A ∪ ( ∁ R B ) = (−∞,1] ∪ [2, +∞) ;………………………5 分
⑵解: A = ( −
a 3− a , ], 2 2
1 a − ≥ − , 2 2 若 A ⊆ B ,则 ,……………………………7 分 a 3 − <2 2
解之得 −1 < a ≤ 1 ………………………10 分 18.⑴解:由
| −5 | = 1 ,…………………4 分 9 + 16
所以 | AB |= 2 R 2 − d 2 = 2 ,………………………8 分 注意到弦 AB 的长为一定值,所以要使 S 最大,即在圆上找到距离直线 l 最远的点,结合圆 的性质可知,当点 E 是垂直于 AB 的直径距离 AB 较远的端点时,距直线 l 最远,……10 分 故点 E 到弦 AB 的距离 h = R + d = 此时 S =
B .
15.右图是一个无盖的正方体盒子展开后的平面图, A, B, C 是展开图 C 上的三点,则在正方体盒子中, ∠ABC = .
A
16.过坐标原点总可以作两条相异直线与圆 x 2 + y 2 + 2 x − 2 y + 5 − k = 0 相切,则实数 k 的 取值范围是 .

河南省新乡市2021-2022学年高一上学期期末考试数学试题

河南省新乡市2021-2022学年高一上学期期末考试数学试题
A. B. C. D.
【答案】C
6.某灯具商店销售一种节能灯,每件进价10元,每月销售量y(单位:件)与销售价格x(单位:元)之间满足如下关系式: ( 且 ).则灯具商店每月的最大利润为()
A.3000元B.4000元C.3800元D.4200元
【答案】B
7.函数 的单调递增区间为()
A B. C. D.
【答案】D
8.已知 , ,且 ,则 的最小值为()
A.24B.25C.26D.27
【答案】B
9.已知 , , ,则()
A. B. C. D.
【答案】B
10.已知 ,则 ()
A. B. C. D.
【答案】C
11.已知 是定义在 上的偶函数,当 时, 的图象如图所示,则不等式 的解集为()
A. B.
C D.
【答案】D
3.已知幂函数 在 上单调递减,则 ()
A.2B.16C. D.
【答案】D
4.“ 是第四象限角”是“ 是第二或第四象限角”的()
A.充分不必要条件B.必要不充分条件
C 充要条件D.既不充分也不必要条件
【答案】A
5.现有两个相互啮合的齿轮,大轮有64齿,小轮有24齿,当小轮转一周时,大轮转动的弧度是()

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.
2.请将各题答案填写在答题卡上.
3.本试卷主要考试内容:人教A版必修第一册.
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.
【答案】
15.已知函数 ,则不等式 解集为__________.
【答案】

(完整版)山东省高一数学第一学期期末考试试卷(必修1与必修2)及参考答案

(完整版)山东省高一数学第一学期期末考试试卷(必修1与必修2)及参考答案

山东省高一数学第一学期期末考试试卷(必修1、必修2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第I 卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分)1、若集合}22|{-<>=x x x M 或,}|{m x x N >= ,R N M =Y ,则m 的取值范围是( )A .2-≤mB .2-<mC .2->mD .2-≥m2、幂函数)(x f 的图象过点)21,4(,那么)8(f 的值为( ) A.42 B. 64 C. 22 D. 641 3、已知直线l 、m 、n 与平面α、β给出下列四个命题:①若m ∥l ,n ∥l ,则m∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m∥n ;④若m ⊥β,α⊥β,则m ∥α其中,假命题的个数是( )A 1B 2C 3D 44、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值05、若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D. 1或3-6、如图所示,四边形ABCD 中,AD//BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A —BCD ,则在三棱锥A —BCD 中,下列命题正确的是( )A 、平面ABD ⊥平面ABCB 、平面ADC ⊥平面BDCC 、平面ABC ⊥平面BDCD 、平面ADC ⊥平面ABC7、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) A. 6+3 B. 24+3C. 24+23D. 328、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°9、已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]81([f f 的值为( ) A . 27 B .271 C .27- D .271- 10、函数 54x x )(2+-=x f 在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( )A . ),2[+∞B .[2,4]C .(]2,∞- D.[0,2]11、已知函数y=f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x -2x 则f(x)是( )(A)f(x)=x(x-2) (B)f(x)=|x|(x-2)(C)f(x)= |x|(|x|-2)(D)f(x)=x(|x|-2) 12、如图,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是( )A .以下四个图形都是正确的B .只有(1)(4)是正确的C .只有(1)(2)(4)是正确的D .只有(2)(3)是正确的一、选择题(本大题共12题,每小题5分,共60分)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上).13、函数y =-(x -2)x 的递增区间是_______________________________.14、函数12-=x y 的定义域是_______________________________.15、若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________________________.16、经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是_______________________________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分14分)已知△ABC 的三个顶点分别为A (2,3),B (-1,-2),C (-3,4),求(Ⅰ)BC 边上的中线AD 所在的直线方程;(Ⅱ)△ABC 的面积。

高一必修1必修2数学试题

高一必修1必修2数学试题

高一上学期期末考试数学试题第一部分 选择题(共70分)一选择题(本大题共14小题,每小题5分,共70分)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |0≤x ≤1} D .{x |x ≥1或x ≤0}2. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是的个数是 ( ) A .1个 B . 2个C . 3个D .4个3.一个棱锥的三视图如右图所示,则它的体积为.一个棱锥的三视图如右图所示,则它的体积为 ( ) A .12 B .32C .1 D .13 4. 设a =0.7log 0.8,b = 1.1log 0.9,c =0.91.1,那么( ) A .a<b<c B .b<a<c C .a<c<b D .c<a<b 5. 关于直线m 、n 与平面a 、b ,有下列四个命题:,有下列四个命题:①b a //,//n m 且b a //,则n m //; ②b a ^^n m ,且b a ^,则n m ^; ③b a //,n m ^且b a //,则n m ^; ④b a ^n m ,//且b a ^,则n m //. 其中真命题的序号是:( )A. ①、②①、②B. ③、④③、④C. ①、④①、④D. ②、③②、③6. 幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(-∞,0) B .(0,+∞)C .(-∞,1 ) D .(-∞,+∞)7. 直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为( ) A 030 B 045C 060 D 0908. 若圆222(3)(5)x y r -++=上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是(范围是( )A (4,6)B [4,6)C (4,6]D [4,6]9. 圆1)3()1(22=++-y x 的切线方程中有一个是( )A. x-y=0 B. x+y=0 C. x=0 D. y=010.设f(x)=23x x -,则在下列区间中,使函数f(x)有零点的区间是( ) A .[0,1] B .[-1,0] C .[-2,-1] D .[1,2] 11长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(个球的面积为( )A p 27 B p 56 C p 14 D p 64 12. 若U=R ,A=,1)21()3)(2(þýüîíì>-+x x x B={}2)(log 3<-a x x ,要使式子A ÇB=f 成立,则a 的取值范围是(取值范围是( )A -62-££a B a 311a ³£-或C -11<3<a D -113££a13.. 如图,正方体ABCD —A 1B 1C 1D 1中,EF 是异面直线AC 、A 1D 的公垂线,则EF 与BD 1的关系为(为( )A .相交不垂直.相交不垂直B .相交垂直.相交垂直C .异面直线.异面直线D .平行直线.平行直线14. 下列所给4个图像中,与所给3件事吻合最好的顺序为(件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

中职高一数学上期末试卷 第1页 共9页自贡市中等职业学校2023-2024学年高一年级上学期期末考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2.第I 卷共1个大题,15个小题.每个小题4分,共60分.一、选择题(每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 设集合{}1,2,3A =,集合{}3,4,5B =,则AB =( )A. φB. {}3C. {}1,2D. {}1,2,3,4,5 2.函数()f x =)A. {}|2x R x ∈≠B. {}|<2x R x ∈C. {}|2x R x ∈≥D. {}|>2x R x ∈3. 已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中(1, 3)(2, 1)(3, 2)A B C ,,,则()()2f g 的值为( )A. 3B. 2C. 1D. 0中职高一数学上期末试卷 第2页 共9页4. 若>a b ,下列说法正确的是( )A. 1>2a b +-B. >ac bcC. 22>ac bcD. 2>2b a 5. (1)(2)0x x -+≤的解集为( )A. {}|12x x -≤≤B. {}|21x x -≤≤C. {}|21x x x ≤-≥或D. {}|12x x x ≤-≥或 6. 函数1()f x x=的单调递减区间是( ) A . (, 0)(0, +)-∞∞和 B . (, 0)(0, +)-∞∞C . (, 0)-∞D . (0, +)∞7. 已知()y f x =是定义在R 上的奇函数,且(1)3f =,则(1)f -=( ) A. 1- B. 3- C. 3 D. 1 8. 下列所给图象是函数图象的个数为( )A. 1B. 2C. 3D. 4 9. “>0x ”是“>1x ”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件 10. 下列不等式中,解集为{}11x x -<<的是( )A. 210x -≤B. 10x -≤C.()()1011x x ≤+-D. 101x x -≤+中职高一数学上期末试卷 第3页 共9页11. 已知函数1()(>1)x f x a a -=,则该函数图象必经过定点( ) A. (0, 1) B. (0, 2) C. (1, 2) D. (1, 1)12. 若函数2()21f x x mx =+-在区间(3, )-+∞上是增函数,则实数m 的取值范围是( ) A. 3m ≥ B. 3m ≤ C. 3m ≥- D. 3m ≤-13. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则随机调查的100位学生阅读过《西游记》的学生人数为( )A. 50B. 60C. 70D. 8014. 已知函数()f x 是定义在()(),00,∞-+∞上的奇函数,且()10f -=,若对于任意两个实数x 1,()20,x ∈+∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则不等式()0xf x >的解集是( )A. ()(),10,1-∞-B. ()(),11,-∞-+∞C. ()()1,01,-+∞ D. ()()1,00,1-15. 计算0122222()x x N ++++∈,令0122222x S =++++Ⅰ,将Ⅰ两边同时乘以2:123122222x S +=+++Ⅰ,用Ⅰ−Ⅰ得到:2S S -=1231(2222)x ++++_012(2222)x ++++,得到121x S +=-;观察该式子的特点,每一项都是前一项的2倍(除第一项外);运算思路是将代数式每一项乘2后再与原式相减,数学上把这种运算的方法叫做“错位相减”,那么当 0121013333S =++++时候,则1S 的值为( )A. 1131- B. 1031- C. 11312- D. 10312-中职高一数学上期末试卷 第4页 共9页第Ⅱ卷(非选择题 共90分)注意事项:1. 非选择题必须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.2. 本部分共2个大题,12个小题.共90分.二、填空题(本大题共5小题,每小题4分,共20分) 16. 不等式2<1x -的解集为 .(注意:用区间表示)17. 分段函数()22, 11, 2<1x x f x xx x ⎧+≥⎪=⎨⎪+-≤⎩,则分段函数的定义域为________. 18. 若()12f x x =-,则(2)f -= .19. 2023年第31届世界大学生运动会(成都大运会)是中国大陆第三次举办世界大学生夏季运动会,也是中国西部第一次举办的世界性综合运动会,有关吉祥物“蓉宝”的纪念徽章、盲盒等商品成为抢手货,市场供不应求。

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷考生注意:1.本试卷满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:必修第一册第1章至第5章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各角中,与760︒角终边相同的角是()A.60︒B.360︒C.320-︒D.440-︒2.已知集合{}1A x x =<,{}2280B x x x =--≤,则A B ⋂=()A.[]1,4B.[2,1)-C.(2,4]D.(,4]-∞3.函数ln(4)y x =+-的定义域为()A.[2,4)B.(2,4)C.[2,4]D.[2,)+∞4.函数3()20f x x x =+-的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.已知0.12a =,2log 0.1b =,0.13c =,则a ,b ,c 的大小关系是()A.c a b>> B.a c b>> C.b a c>> D.b c a>>6.将函数()sin(2)(0π)f x x ϕϕ=+<<的图象向右平移π6个单位长度后得到函数()g x =πsin 212x ⎛⎫- ⎪⎝⎭的图象,则ϕ的值为()A.π6B.π4C.π3D.2π37.由于我国与以美国为首的西方国家在科技领域内的竞争日益激烈,美国加大了对我国一些高科技公司的打压.为突破西方的技术封锁和打压,我国的一些科技企业积极实施了独立自主、自力更生的策略,在一些领域取得了骄人的成绩.我国某科技公司为突破“芯片卡脖子”问题,实现芯片制造的国产化,加大了对相关产业的研发投入.若该公司2020年全年投入芯片制造方面的研发资金为120亿元,在此基础上,计划以后每年投入的研发资金比上一年增长9%,则该公司全年投入芯片制造方面的研发资金开始超过200亿元的年份是()参考数据:lg1.090.0374≈,lg20. 3010≈,lg30.4771≈.A.2024年B.2025年C.2026年D.2027年8.已知函数()2f x ax =-,122,13,()1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A.[1,1]- B.[]0,4 C.[]1,3 D.[2,2]-二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若sin cos 0αα⋅>,则α终边可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.设函数()||2f x x x x =-,则()f x ()A.是奇函数B.是偶函数C.在(1,1)-上单调递减D.在(,1)-∞-上单调递减11.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示,下列说法正确的是()A.2ω=B.函数π6y f x ⎛⎫=-⎪⎝⎭为偶函数C.函数()y f x =的图象关于直线5π12x =-对称D.函数()y f x =在ππ,312⎡⎤-⎢⎥⎣⎦上的最小值为12.若242log 42log a ba b +=+,则下列结论错误的是()A.2a b >B.2a b< C.2a b > D.2a b <三、填空题:本题共4小题,每小题5分,共20分.13.已知角α的终边经过点(5,12)P -,则sin α=__________.14.如果函数()f x 对任意的正实数a ,b ,都有()()()f ab f a f b =+,则()f x 的解析式可以是()f x =__________.(写出一个即可)15.建于明朝的杜氏雕花楼被誉为“松江最美的一座楼”,该建筑内有很多精美的砖雕,砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖墙精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分,已知1m AD =,弧 πm 3AB =,弧 2πm 3CD =,则此扇环形砖雕的面积为__________2m.16.已知函数()|lg |f x x =,()()f a f b =,a b <,则2023a b +的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知命题:p x ∃∈R ,2260x x a -+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设非空集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.18.(12分)已知幂函数()23()69m f x m m x +=++在(0,)+∞上单调递减.(1)求实数m 的值;(2)若11(32)(4)m m a a -----<+,求实数a 的取值范围.19.(12分)(1)已知4cos 5α=-,且α为第二象限角,求sin α的值;(2)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+的值.20.(12分)已知函数1()(,)f x a b ax b =∈+R ,且1(1)3f =,(1)1f -=-.(1)求a ,b 的值;(2)试判断函数()f x 在(2,)+∞上的单调性,并证明;(3)求函数()f x 在[2,6]x ∈上的最大值和最小值.21.(12分)已知函数()x f x a b =+(0a >,且1a ≠)的部分图象如图所示.(1)求()f x 的解析式;(2)若关于x 的不等式1(2)0xx b m a ⎛⎫+--≤ ⎪⎝⎭在[1,)+∞上有解,求实数m 的取值范围.22.(12分)已知点()()11,A x f x ,()()22,B x f x 是函数π())0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭图象上的任意两点,(0)1f =,且当()()12f x f x -=时,12x x -的最小值为π2.(1)求()f x 的解析式;(2)当ππ,88x ⎡⎤∈-⎢⎥⎣⎦时,2[()]()0f x mf x m --≤恒成立,求实数m 的取值范围.参考答案、提示及评分细则1.C 与760 角终边相同的角为()360760k k ⋅+∈Z.当1k =时,3607601120+= ;当1k =-时,360760300-+= ;当2k =-时,236076040-⨯+= ;当3k =-时,3360760320-⨯+=- ,所以320- 角的终边与760 角的终边相同.2.B 由2280x x -- ,得24x - ,所以{}24,{21}B xx A B x x =-⋂=-<∣∣ .3.A 由题知20,40,x x -⎧⎨->⎩ 得24x < .4.C()y f x =的图象是一条连续不断的曲线,且()f x 在R 上递增,而()()()020,118,210f f f =-=-=-,()()310,448f f ==,可得()()230f f ⋅<,满足零点存在性定理,故()f x 零点所在的区间是()2,3.5.A 因为函数0.1y x =在()0,∞+上单调递增,所以0.10.1023<<,即a c <,又22log 0.1log 10<=,所以c a b >>.6.B 函数()f x 的图象向右平移π6个单位长度后得到函数为ππsin 2sin 263y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,()ππsin 2sin 2123g x x x ϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭,则ππ2π123k ϕ-+=-+,得π2π,4k k ϕ=+∈Z ,因为0πϕ<<,所以π4ϕ=.7.C 设2020年后第n 年该公司全年投入芯片制造方面的研发资金开始超过200亿元,由120(19%)n ⨯+>200,得5(1.09)3n,两边同取常用对数,得lg5lg31lg2lg3 5.93lg1.09lg1.09n --->=≈,所以6n ,所以从2026年开始,该公司全年投入芯片制造方面的研发资金开始超过200亿元.8.D 当[]3,3x ∈-时,记()f x 和()g x 的值域分别为集合,A B .当13x 时,[]121,4x -∈,当31x -< 时,[]218,1x -+∈-,所以函数()g x 的值域为[]8,4B =-.因为对[][]123,3,3,3x x ∀∈-∃∈-,使得()()12f x g x =成立,所以A B ⊆.当0a =时,{}2A =-,满足题意;当0a >时,[]32,32A a a =---,则328,324,a a ---⎧⎨-⎩ 解得02a < ;当0a <时,[]32,32A a a =---,则324,328,a a --⎧⎨--⎩解得20a -< .综上,实数a 的取值范围是[]2,2-.9.AC 因为sin cos 0αα⋅>,若sin 0,cos 0αα>>,则α终边在第一象限;若sin 0,cos 0αα<<,则α终边在第三象限.10.AC11.ACD 由题意ππ2,4π312A T ⎛⎫==⨯-=⎪⎝⎭,则2π2T ω==,A 正确;ππ22π,122k k ϕ⨯+=+∈Z ,又π2ϕ<,所以π3ϕ=,所以()ππ2sin 2,2sin236f x x y f x x ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭为奇函数,B 错误;5ππ2sin 22123⎡⎤⎛⎫⨯-+=- ⎪⎢⎥⎝⎭⎣⎦,所以函数()y f x =的图象关于直线5π12x =-对称,C 正确;ππ,312x ⎡⎤∈-⎢⎥⎣⎦时,πππ2,336x ⎡⎤+∈-⎢⎥⎣⎦,所以min π()3f x f ⎛⎫=-= ⎪⎝⎭D 正确.12.ACD 设()22log xf x x =+,则()f x 在()0,∞+上为增函数,因为22422log 42log 2log a b b a b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <,故B 正确;()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b -=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >;当2b =时,()()21f a f b -=-<0,此时()()2f a f b <,有2a b <,所以A 、C 、D 均错误.13.1213点()5,12P -在角α的终边上,所以12sin 13α==.14.()lg f x x =(答案不唯一)由题意,函数()f x 对任意的正实数,a b ,都有()()()f ab f a f b =+,可考虑对数函数()lg f x x =,满足()()()()lg lg lg f ab ab a b f a f b ==+=+,故()lg f x x =.15.π2设圆心角为α,则 CDAB OD OA α==,所以2ππ331OA OA=+,解得1m OA =,所以2m OD =,所以此扇环形砖雕的面积为 21112π1ππ21m 2223232CD OD AB OA ⋅⋅-⋅=⨯⨯-⨯⨯=.16.()2024,∞+函数()lg f x x =的定义域为()0,∞+,由()(),f a f b a b =<,得lg lg a b =,即有lg lg 0a b +=,解得1ab =,即1a b =,又0b a >>,因此110,20232023b a a b b b>>>+=+,而函数12023y x x =+在()1,∞+上单调递增,于是120232023120232024a b b b+=+>+=,所以2023a b +的取值范围是()2024,∞+.17.解:(1)因为p 为真命题,所以方程2260x x a -+=有解,即2Δ3640a =- 得33a -<<,所以{}33A aa =-∣ .(2)因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集,且B ≠∅,则321,323,13,m m m m --⎧⎪--⎨⎪-⎩解得1132m - ,综上,实数m 的取值范围11,32⎡⎤-⎢⎥⎣⎦.18.解:(1)由幂函数的定义可得2691m m ++=,即2680m m ++=,解得2m =-或4m =-.因为()f x 在()0,∞+上单调递减,所以30m +<,即3m <-,则4m =-.(2)设()()3,g x x g x =是R 上的增函数.由(1)可知11(32)(4)m m a a -----<+,即33(32)(4)a a -<+,则324a a -<+,解得3a <,即实数a 的取值范围为(),3∞-.19.解:(1)因为4cos 5α=-,且α为第二象限角,则3sin 5α==,即sin α的值为35.(2)因为tan 3α=,则4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯.20.解:(1)因为()1f x ax b =+,且()()11,113f f =-=-,所以11,311,a b a b⎧=⎪⎪+⎨⎪=-⎪-+⎩解得2,1.a b =⎧⎨=⎩(2)函数()121f x x =+在()2,∞+上为减函数,证明如下:任取()12,2,x x ∞∈+,且12x x <,则()()()()()2112121221121212121x x f x f x x x x x --=-=++++因为()12,2,x x ∞∈+,且12x x <,所以21120,210,210x x x x ->+>+>,所以()()120f x f x ->,即()()12f x f x >,所以函数()121f x x =+在()2,∞+上为减函数,(3)由(2)可知()121f x x =+在[]2,6上为减函数,所以当2x =时,函数取得最大值,即max 11()2215f x ==⨯+,当6x =时,函数取得最小值,即min 11()26113f x ==⨯+.21.解:(1)由图象可知函数()xf x a b =+经过点()1,0-和()0,1-,所以100,1,a b a b -⎧+=⎨+=-⎩解得1,22,a b ⎧=⎪⎨⎪=-⎩所以函数()f x 的解析式是()122xf x ⎛⎫=- ⎪⎝⎭.(2)由(1)知12,24b a=-=,根据题意知240x x m +- ,即24x x m + 在[)1,∞+上有解,设()24x xg x =+,则min ()g x m ,因为2x y =和4x y =在[)1,∞+上都是单调递增函数,所以()g x 在[)1,∞+上是单调递增函数,故()min ()16g x g ==,所以6m ,实数m 的取值范围是[)6,∞+.22.解:(1)由()01,π02f ϕϕ⎧==⎪⎨<<⎪⎩得π,4ϕ=又因为当()()12f x f x -=12x x -的最小值为π2,所以1ππ22T ω==,即2,ω=所以故()π24f x x ⎛⎫=+⎪⎝⎭.(2)由ππ,88x ⎡⎤∈-⎢⎥⎣⎦,得ππ20,42x ⎡⎤+∈⎢⎥⎣⎦,于是[]πsin 20,14x ⎛⎫+∈ ⎪⎝⎭,则()f x ⎡∈⎣,令(),t f x t ⎡=∈⎣,不等式()()2[]0f x mf x m -- 恒成立,即20t mt m -- 恒成立,设()2,0h t t mt m t =--,因此()00,20,h m h m ⎧=-⎪⎨=--⎪⎩解得2m ,所以实数m的取值范围是)2,∞⎡-+⎣.。

(完整word版)高一上数学期末必修一二考试卷(含答案),推荐文档

(完整word版)高一上数学期末必修一二考试卷(含答案),推荐文档

人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面a 内可记为()A 、P € a , a aB 、Pa , a aC 、P a , a € aD 、P € a , a € a2、直线I 是平面a 外的一条直线,下列条件中可推出 I // a 的是()3 .直线、一 3x+y+仁0的倾斜角为(A 第一象限B 第二象限C 第三象限D 第四象限8, 右图表示某人的体重与年龄的关系 ,则A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是 15岁至25岁D. 体重增加最快的是 15岁之前 1 9, 计算 Ig 700 Ig 56 3Ig — 20(Ig 20 2A. 20B. 22C. 2D. 1810, 经过点A (1, 2),且在两坐标轴上的截距相等的直线共有( ) A 条 B 2 条C 3 条D 4条11、 已知A (2, 3) , ( 3,),直线 I 过定P (1, 1 ),且与线段AB 交,则直线I 的斜率k的取值范围是( )A 4 k 3B 3 k 4 Ck 丄 Dk 4 或 k —442412、 A,B,C,D 四点不共面, 且 A,B,C,D 到平面 a 的距离相等, 则这样的平面 ()A 、 1个B 、 4个C 、7个D、无数个A 、I 与a 内的一条直线不相交 内的两条直线不相交 C 、I 与a 内的无数条直线不相交内的任意一条直线不相交A . 50o .120o.60o —60o4、在空间中, I , m, n , a , b 表示直线, 表示平面,则下列命题正确的是 A 、若 I // a C 若a l5、函数y=log 2(x 2-2X -3)的递增区间是 (A )(-,-1),ml I ,贝 U ml a a , a l b ,贝U b / a、若 I 丄 m ml n ,贝U m 〃n D 若 I 丄 a , I // a , 6.设函数a ,b(B ) (-,1)i2 3 —,c 3)(C ) (1,+)(D ) (3,+log 2 1则a,b,c 的大小关系是3A. a bB.C.cab D.7、如果ac0且be 0,那么直线 ax by c 0不通过(Ig 2)2年龄/岁、填空题(每小题5分,共20分)13、 在空间四边形 ABCD 中, E , H 分别是 AB, AD 的中点,F , G 为CB, CD 上的点,且 CF : CB=CG CD=2: 3,若BD=6cm 梯形EFGH 勺面积28cm 2,贝U EH 与FG 间的距离为 ________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上学期期末考试数学试题(必修1,2)考试时间:120分钟 满分:150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合}{50<≤=x x A ,}{0<=x x B ,则集合B A =( ) A. }{50<≤x x B. }{0 C. }{5<x x D. R2.若()f x =(3)f -等于( )A. 32- B. 34- C. 34D. 32±3. 左面的三视图所示的几何体是( )A. 六棱台B. 六棱柱C. 六棱锥D. 六边形 4. 若函数x x x f 6)(2+=,则函数)(x f 是( )A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 既不是奇函数也不是偶函数 5.下列函数中,在R 上单调递增的是( )A. y x =B.2log y x =C.13y x = D.0.5x y = 6.已知点(,1,2)A x B 和点(2,3,4),且AB =,则实数x 的值是( )A.-3或4B.–6或2C.3或-4D.6或-27.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( )A. 1∶3B. 11∶9 D. 1∶81 8.函数xx x x f +=)(的图像为( )A B C D 9. 函数xe x xf --=44)(的零点所在的区间为( )A. (1,2)B. (0,1)C. (-1,0)D. (-2,-1)10. 下列函数中,当自变量x 变得很大时,随x 的增大速度增大得最快的是( ) A. xe y 1001=B. x y ln 100=C. 100xy = D. xy 2100⋅=x xxxy二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在题中的横线上. 11. 函数43)(-=xx f 的定义域是 _ .12. 设函数421()log 1xx f x xx -⎧<=⎨>⎩,满足()f x =41的x 的值是 .13. 直线l 的斜率是-2,它在x 轴与y 轴上的截距之和是12,那么直线l 的一般式方程是 。

14. 某同学来学校上学,时间t(分钟)与路程s(米)的函数关系如图所示,现有如下几种说法: ① 前5分钟匀速走路 ② 5至13分钟乘坐公共汽车 ③ 13至22分钟匀速跑步 ④ 13至22分钟加速走路其中正确的是 . (注意:把你认为正确的序号都填上)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题12分)如图,长方体1111D C B A ABCD -中,1==AD AB ,点P 为1DD 的中点。

(1)求证:直线1BD ∥平面PAC ;(2)求证:平面PAC ⊥平面1BDD ; 16. (本小题满分14分)⑴已知△ABC 三个顶点的坐标分别为A (4,1),B (0,3),C (2,4),边AC 的中 点为D ,求AC 边上中线BD 所在的直线方程并化为一般式;⑵已知圆C 的圆心是直线012=++y x 和043=-+y x 的交点上且与直线01743=++y x 相切,求圆C 的方程.17.(本小题满分12分)一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的75%,估计约经过多少年,该物质的剩留量是原来的13(结果保留1个有效数字)?(lg 20.3010≈,lg 30.4771≈)18.(本小题14分)设函数2()21xf x a =-+,⑴ 求证: 不论a 为何实数()f x 总为增函数;⑵ 确定a 的值,使()f x 为奇函数.PD 1C 1B 1A 1DC B A19.(本小题满分14分)已知二次函数)(x f y = 在),0[+∞上的图像如图所示,顶点坐标为()1,1-. (1)求)(x f 在R 上的解析式;(2)若)(x g 是定义在R 上的奇函数,且当0≥x 时,)()(x f x g =,画出)(x g 的图像,并 求)(x g 的解析式;(3)由图象指出)(x g 的单调区间(不需要证明).20.(本小题14分)甲乙两人连续6年对某县农村鳗鱼养殖业的规模(息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。

乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。

请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数。

(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。

(3)哪一年的规模(即总产量)最大?说明理由。

x参考答案(估计全市平均分82分)一.CACDC DACBA 二.11. ()∞,+0 12.2 13. 2x +y -8=0 14. ① ③三.15. 证明:(1)设AC 和BD 交于点O ,连PO , 由P ,O 分别是1DD ,BD 的中点,故PO//1BD ,所以直线1BD ∥平面PAC --------------------------------------------------------------------5分 (2)长方体1111D C B A ABCD -中,1==AD AB ,底面ABCD 是正方形,则AC ⊥BD 又1DD ⊥面ABCD ,则1DD ⊥AC ,所以AC ⊥面1BDD ,则平面PAC ⊥平面1BDD -------------------------12分 16. 解:⑴D 点坐标为25241,3224=+==+=y x 即D ⎪⎭⎫⎝⎛25,3 -----------------2分 6103325-=--=BD K --------------------------------------------------------------4分x y l BD613:-=-,一般式为0186=-+y x --------------------------------7分⑵由⎩⎨⎧=-+=++043012y x y x 得圆心坐标为⎪⎭⎫⎝⎛-59,57 -----------------------------------9分 又半径4520431759457322==++⨯+⎪⎭⎫⎝⎛-⨯=r ------------------------------12分所以圆C 的方程为22245957=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+y x ------------------------------14分17. 解:设这种放射性物质最初的质量是1,经过x 年后,剩留量是y ,----2分 则有0.75xy =. --------------------------------------------------------------------------6分依题意,得10.753x=,------------------------------------------------------8分即1lglg 3lg 30.47713 3.8lg 0.75lg 3lg 42lg 2lg 320.3010.4771x -====≈--⨯-. ---11分∴ 估计约经过4年,该物质的剩留量是原来的13.-----------------12分18. 解: (1) ()f x 的定义域为R, 12x x ∴<,则121222()()2121x x f x f x a a -=--+++=12122(22)(12)(12)x xx x ⋅-++,12x x < , 1212220,(12)(12)0x x xx∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数.…………7分(2) ()f x 为奇函数, ()()f x f x ∴-=-,即222121xxa a --=-+++,解得: 1.a = 2()1.21xf x ∴=-+ ………………14分19. 解:(1)设1)1()(2--=x a x f 1,0)0(=∴=a fx x x f 2)(2-= ------------------------------------4分 (2)当0<x 时,0>-x x x x x x g 2)(2)()(22+=---=- 又)(x g 时奇函数,x x x g x g 2)()(2--=--=∴⎪⎩⎪⎨⎧<--≥-=∴)0(2)0(2)(22x x x x x x x g -----------------------------9分图略--------------------------------------------------11分(3)递增区间是(]1,--∞和[)+∞,1,递减区间是[]1,1-----14分 20.解:由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y 甲=0.2x+0.8-------------------------------------------------2分 图乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y 乙=-4x+34.---------------------------------------------------4分 (1)当x=2时,y 甲=0.2×2+0.8 =1.2,y 乙= -4×2+34=26,y 甲·y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.------------ ---6分(2)第1年出产鱼1×30=30(万只), 第6年出产鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了---------------------------------------------8分 (3)设当第m 年时的规模总出产量为n,那么n=y甲·y乙=(0.2m+0.8)(-4m+34)= -0. 8m2+3.6m+27.2=-0.8(m2-4.5m-34)=-0.8(m-2.25)2+31.25------------------------------11分因此, .当m=2时,n最大值=31.2.即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. --------------14分。

相关文档
最新文档