高中立体几何公理定理汇编教学教材

合集下载

高中数学第一章立体几何初步1.4空间图形的基本关系与公理1.4.1空间图形的基本关系与公理1公理3课

高中数学第一章立体几何初步1.4空间图形的基本关系与公理1.4.1空间图形的基本关系与公理1公理3课
与平面的位置关系. 如果一条直线和一个平面有无数个公共点,则称这条直线在这个 平面内.直线 l 在平面 α 内,记作 l⫋α. 如果一条直线和一个平面只有一个公共点,则称这条直线和这个 平面相交.直线 l 与平面 α 相交于点 P,记作 l∩α=P. 如果一条直线和一个平面没有公共点,则称这条直线和这个平面 平行.直线 l 与平面 α 平行,记作 l∥α. (5)空间平面与平面的位置关系. 如果两个平面没有公共点,则称这两个平面互相平行.平面 α 与平 面 β 平行,记作 α∥β. 如果两个平面不重合但有公共点,则称这两个平面相交.
问题导学
当堂检测
1.公理 1 的应用 活动与探究 例 1 已知 a∥b,a∩c=A,b∩c=B,求证:a,b,c 三条直线在同一 平面内. 思路分析:依题意,可先证 a 与 b 确定一个平面,再证明 c 在这个平 面内,从而可证 a,b,c 在同一平面内. 证明:∵ a ∥b , ∴ a 与 b 确定一个平面 α, ∵ a∩c=A,∴ A∈a,从而 A∈α; ∵ b∩c=B,∴ B∈b,从而 B∈α. 于是 AB⫋α,即 c⫋α,故 a,b,c 三条直线在同一平面内.
若 A∈α,A∈β,且 α,β 不重 合,则 α∩β=l,且 A∈l
目标导航
预习引导
预习交流 3
公理 1 的三个推论是什么? 提示:推论 1:一条直线和直线外一点确定一个平面. 推论 2:两条相交直线确定一个平面. 推论 3:两条平行直线确定一个平面.
预习交流 4
公理 1 中的“有且只有一个”的含义是什么? 提示:“有”是说图形存在,“只有一个”是说图形唯一.“有且只有”强 调的是存在性和唯一性两个方面,确定一个平面中的“确定”是“有且只 有”的同义词,也是指存在性和唯一性这两个方面.

高考数学统考一轮复习 第七章 立体几何 第三节 空间图形的基本关系与公理(教师文档)教案 文 北师

高考数学统考一轮复习 第七章 立体几何 第三节 空间图形的基本关系与公理(教师文档)教案 文 北师

学习资料第三节空间图形的基本关系与公理授课提示:对应学生用书第128页[基础梳理]1.四个公理(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理4:平行于同一条直线的两条直线互相平行.2.空间两条直线的位置关系(1)位置关系分类:错误!错误!(2)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(3)异面直线所成的角:①定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫作异面直线a与b所成的角(或夹角);②范围:错误!.3.空间直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a∩α=A 1个平行a∥α0个在平面内aα无数个平面与平面平行α∥β0个相交α∩β=l 无数个1.公理的作用公理1:可用来证明点、直线在平面内.公理2:可用来确定一个平面.公理3:(1)可用来确定两个平面的交线.(2)判断或证明多点共线.(3)判断或证明多线共点.公理4:(1)可用来判断空间两条直线平行.(2)等角定理的理论依据.2.异面直线的两个结论(1)平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)分别在两个平行平面内的直线平行或异面.[四基自测]1.(基础点:平面的概念)下列命题中,真命题是()A.空间不同三点确定一个平面B.空间两两相交的三条直线确定一个平面C.两组对边相等的四边形是平行四边形D.和同一直线都相交的三条平行线在同一平面内答案:D2.(基础点:空间直线的关系)若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直答案:D3.(易错点:异面直线所成角的概念)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30°B.45°C.60°D.90°答案:C4.(拓展点:点、线、面关系的推理)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________(填序号).①P∈a,P∈α⇒aα;②a∩b=P,bβ⇒aβ;③a∥b,aα,P∈b,P∈α⇒bα;④α∩β=b,P∈α,P∈β⇒P∈b。

高中数学第一章立体几何初步1.4空间图形的基本关系与公理第二课时公理4与等角定理课件

高中数学第一章立体几何初步1.4空间图形的基本关系与公理第二课时公理4与等角定理课件

高效测评·知能提升
3.在正方体ABCD-A1B1C1D1的面对角线中,与AD1成60°角的有________ 条.
解析: 在所有面对角线中,除AD1,A1D,BC1和B1C四条以外,其余8条 均与AD1成60°的角.
答案: 8
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升
第二课时 公理4与等角定理
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升
自主学习·新知突破
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升
1.在平面几何中我们知道,同一个平面内平行于同一直线的两直线平行,结 合长方体中的棱的关系想一想,这样的结论在空间还成立吗?
[提示] 仍然成立.
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升
2.如图是一个三棱台 ABC-A′B′C′,对于∠BAC 和∠B′A′C′来说, 它 们 的 两 边 是 什 么 关 系 ? 这 两 角 的 大 小 有 什 么 关 系 ? 对 于 ∠ ABC 和 ∠
4.已知正方体 ABCD-A1B1C1D1,E,F 分别为 AA1,CC1 的中点,如右图 所示.
求证:BF 綊 ED1.
数学 必修2
第一章 立体几何初步
自主学习·新知突破
合作探究·课堂互动
高效测评·知能提升

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理第2课时

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理第2课时

1.下列结论中正确的是( )
①在空间中,若两条直线不相交,则它们一定平行;②平行于同一条直线
的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条
相交;④空间四条直线 a,b,c,d,如果 a∥b,c∥d,且 a∥d,那么 b∥c.
A.①②③
B.②④
C.③④
D.②③
我还有这些不足: (1) ________________________________________________________ (2) ________________________________________________________ 我的课下提升方案: (1) ________________________________________________________ (2) ________________________________________________________
过空间任意一点 P 分别引两条异面直线 a,b 的平行线 l1,l2(a∥l1, 定义 b∥l2),这两条相交直线所成的 锐角(或直角) ,就是异面直线 a、
b 所成的角
取值 范围
异面直线所成的角 θ 的取值范围: 0,π2
特例
π
当 θ= 2 时,a 与 b 互相垂直,记作 a⊥b
[小组合作型] 公理4的应用
2.结论:这两条直线平行.

3.符号表述:
a∥b
b∥c

a∥c

教材整理 2 等角定理
阅读教材 P26“等角定理”部分内容,完成下列问题. 1.条件:空间中,如果两个角的两条边分别对应 平行. 2.结论:这两个角 相等或互补.
教材整理 3 异面直线所成的角

高中数学第一章立体几何初步142空间图形的公理课件北师大版必修2

高中数学第一章立体几何初步142空间图形的公理课件北师大版必修2

2.空间两个角α,β的两边分别对应平行且方向相同,若α= 50°,则β等于( )
A.50° B.130° C.40° D.50°或130°
解析:由等角定理知β与α相等,故选A. 答案:A
3.垂直于同一条直线的两条直线( ) A.平行 B.相交 C.异面 D.以上都有可能
解析:可借助正方体来分析,可知平行、相交及异面都有可 能,故选D.
结论
这两条相交直线所成的锐角(或直角)即 为异面直线a,b所成的角
范围 记异面直线a与b所成的角为θ,则0°<θ≤90°
特殊 情况
当θ=90°时,a与b互相垂直,记作a⊥b.
|自我尝试|
1.判断正误.(正确的打“√”,错误的打“×”) (1)已知a,b,c,d是四条直线,若a∥b,b∥c,c∥d,则 a∥d.( √ ) (2)两条直线a,b没有公共点,那么a与b是异面直线.( × ) (3)若a,b是两条直线,α,β是两个平面,且a α,b β,则 a,b是异面直线.( × )
自主学习 基础认识
|新知预习|
1.公理4 (1)内容:平行于同一条直线的两条直线平行. (2)符号表述: ba∥∥cb⇒a∥c.
2.两条直线的位置关系
平 直行 线特 记征 法 记: :作在 直m∥同 线n一m. 与平直面线内n没平有行公,共点.
共面
(1)直线相 直交 线特 记征 公 法: 共 :点 直在同 .线一m与平直面线内n有相且交只于有点一A,个
跟踪训练 2 空间中角A的两边和角B的两边分别平行,若∠A =70°,则∠B=________.
解析:由于角A的两边和角B的两边分别平行,所以有∠A= ∠B或∠A+∠B=180°.
因为∠A=70°, 所以∠B=70°或∠B=110°. 故填70°或110°. 答案:70°或110°

高中数学第六章立体几何初步3.2刻画空间点线面位置关系的公理二课件北师大版必修第二册

高中数学第六章立体几何初步3.2刻画空间点线面位置关系的公理二课件北师大版必修第二册

探究四
当堂检测
延伸探究将本例中的条件“M,M1分别是棱AD和A1D1的中点”改为
“M,N分别是棱CD,AD的中点”,其他条件不变,求证:
(1)四边形MNA1C1是梯形;
(2)∠DNM=∠D1A1C1.
探究一
探究二
探究三
探究四
当堂检测
证明(1)如图,连接AC,
在△ACD中,因为M,N分别是CD,AD的中点,所以MN是△ACD的中
.
解析因为E,F,G分别为BC,AD,DB的中点,所以FG∥AB,EG∥DC,所以
∠FGE=60°或120°.
答案60°或120°
探究一
探究二
探究三
探究四
当堂检测
基本事实4的应用
例1如图所示,点P是△ABC所在平面外一点,点D,E分别是△PAB和
1
△PBC的重心.求证:DE∥AC,DE= AC.
3
提示不一定,它们可能相交,可能平行,也可能异面.
微判断
判断(正确的打“√”,错误的打“×”).
(1)没有公共点的两条直线是异面直线.(
)
(2)两直线若不是异面直线,则必相交或平行.(
)
(3)如果直线a与直线b是异面直线,直线b与直线c也是异面直线,那么
直线a与直线c也一定是异面直线.(
)
(4)四个顶点不在同一平面内,且边长相等的四边形是不存在的.(
刻画空间点、线、面位置关系的公理(二)
课标阐释
1.掌握基本事实4及等角定理的含义及作用,能解决有关平行或角
度的证明问题.(数学抽象、逻辑推理)
2.掌握异面直线所成角的概念,能求出一些较特殊的异面直线所成
的角.(数学运算、几何直观)
3.理解空间四边形的结构特点,并能找出与平面四边形的异同.(几

2021学年高中数学第1章立体几何初步§4第1课时空间图形的公理公理123ppt课件北师大版必修2

2021学年高中数学第1章立体几何初步§4第1课时空间图形的公理公理123ppt课件北师大版必修2

4.据图填入相应的符号:A________平面 ABC,A________平面 BCD,BD________平面 ABC,平面 ABC________平面 ACD=AC.
[答案] ∈ ∉

合作 探究 释疑 难
三种语言的相互转换 【例 1】 用符号表示下列语句,并画出图形. (1)平面 α 与 β 相交于直线 l,直线 a 与 α,β 分别相交于点 A,B; (2)点 A,B 在平面 α 内,直线 a 与平面 α 交于点 C,点 C 不在直 线 AB 上.
[跟进训练] 1.(1)如果 a α,b α,l∩a=A,l∩b=B,那么 l 与 α 的位置 关系是________.
(2)如图,在正方体 ABCD-A′B′C′D′中,哪几条棱所在的直 线与直线 BC′是异面直线?
(1)直线 l 在平面 α 内 [如图,l 上有两点 A,B 在 α 内,根据公 理 2,l α.]
A.P∈a,a∥α
B.a∩α=P
C.P∈a,P∉α
D.P∈a,a α
[答案] C
2.两个平面若有三个公共点,则这两个平面( )
A.相交
B.重合
C.相交或重合
D.以上都不对
C [若三个点在同一条直线上,则两平面可能相交;若这三个点
不在同一直线上,则这两个平面重合.]
3.如下所示是表示两个相交平面,其中画法正确的是( ) D [画空间图形时,被遮挡部分应画成虚线,故选 D.]
对于长方体有 12 条棱和 6 个面. 思考 1:12 条棱中,棱与棱有几种位置关系? 提示:相交,平行,既不平行也不相交. 思考 2:棱所在直线与面之间有几种位置关系? 提示:棱在平面内,棱所在直线与平面平行和棱所在直线与平面 相交.

高中数学第一章立体几何初步4空间图形的基本关系与公理第1课时空间图形基本关系的认识与公理1_3北师大必修2

高中数学第一章立体几何初步4空间图形的基本关系与公理第1课时空间图形基本关系的认识与公理1_3北师大必修2
第1课时 空间图形基本关系的认识与公理1~3
[核心必知] 一、空间图形的基本位置关系
二、空间图形的3条公理
4.集合中元素的性质 集合中的元素具有确定性、互异性和无序性.
4.集合中元素的性质 集合中的元素具有确定性、互异性和无序性.
[问题思考] 1.三点确定一个平面吗? 提示:当三点在一条直线上时,不能确定一个平面,当
法二:∵AP∩AR=A, ∴直线 AP 与直线 AR 确定平面 APR. 又∵AB∩α=P,AC∩α=R, ∴平面 APR∩平面 α=PR. ∴B∈平面 APR,C∈平面 APR,∴BC 又∵Q∈直线 BC, ∴Q∈平面 APR.又 Q∈α,∴Q∈PR. ∴P,Q,R 三点共线. 平面 APR.
证明点共线问题的常用方法有:法一是首先找出两个平
则A,B,C,D,E五点可能不共面.
综上所述,在题设条件下,A,B,C,D,E五点不一定 共面.
1.下列图形中不一定是平面图形的是( A.三角形 B.菱形
)
C.梯形
D.四边相等的四边形
解析:四边相等不具有共面的条件,这样的四 庆 高 考 )设 四面 体 的六 条棱 的 长分 别 为 1,1,1,1, 2和 a,且长为 a 的棱与长为 2的棱异面,则 a 的取值范围是 A.(0, 2) C.(1, 2) ( ) B.(0, 3) D.(1, 3)
解析:如图所示的四面体 ABCD 中,
设 AB=a,则由题意可得 CD= 2,其他边的长都为 1, 故三角形 ACD 及三角形 BCD 都是以 CD 为斜边的等腰直 角三角形,显然 a>0.取 CD 中点 E,
连接 AE,BE,则 AE⊥CD,BE⊥CD 且 AE=BE=
1-
2 2 2 = ,显然 A、B、E 三点能构成三角形,应 2 2

北师大版必修2高中数学第一章立体几何初步4空间图形的基本关系与公理第2课时空间图形的公理4及等角定理课件

北师大版必修2高中数学第一章立体几何初步4空间图形的基本关系与公理第2课时空间图形的公理4及等角定理课件
求证:△A1B1C1∽△ABC.
证明:在△OAB 中,∵OOAA1=OOBB1,∴A1B1∥AB. 同理可证 A1C1∥AC,B1C1∥BC. ∴∠C1A1B1=∠CAB,∠A1B1C1=∠ABC.∴△A1B1C1 ∽△ABC.
谢谢观看!
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””

必修二立体几何初步公理定理汇总

必修二立体几何初步公理定理汇总
13
直线与平面垂直的性质定理如果两 Nhomakorabea直线垂直于同一个平面,那么这两条直线平行。
14
两个平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
15
两个平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
16
平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
17
平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
4
推论1
经过一条直线和直线外一点,有且只有一个平面。
5
推论2
经过两条相交的直线,有且只有一个平面。
6
推论3
经过两条平行的直线,有且只有一个平面。
7
公理4
平行于同一条直线的两条直线互相平行
8
等角定理
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两角相等。
9
过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线
10
直线与平面平行的判定定理
平面外一条直线与和这个平面内一条直线平行,那么这条直线和这个平面平行。
(线线平行 线面平行)
11
直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(线面平行 线线平行)
12
直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
高一数学必修二立体几何初步
公理、推论及定理汇总

高中数学第1章立体几何初步§4第2课时空间图形的公理4及等角定理课件北师大版必修2

高中数学第1章立体几何初步§4第2课时空间图形的公理4及等角定理课件北师大版必修2

42
求两条异面直线所成的角的一般步骤: 1构造:根据异面直线的定义,用平移法常用三角形中位线、 平行四边形性质等作出异面直线所成的角. 2证明:证明作出的角就是要求的角. 3计算:求角度,常放在三角形内求解. 4结论:若求出的角是锐角或直角,则它就是所求异面直线所 成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.
9
4.异面直线所成的角
定义
过空间任意一点P分别引两条异面直线a,b的平行线l1,
l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是
异面直线a,b所成的角
取值范围 异面直线所成的角θ的取值范围: 0,π2
特例 当θ= π 时,a与b互相垂直,记作a⊥b 2
10
思考 2:分别在两个平面内的两条直线一定是异面直线吗? 提示:不一定.可能是相交,平行或异面.
45
1.思考辨析 (1)已知 a,b,c,d 是四条直线,若 a∥b,b∥c,c∥d,则 a∥d.( ) (2)两条直线 a,b 没有公共点,那么 a 与 b 是异面直线.( ) (3)若 a,b 是两条直线,α,β 是两个平面,且 a α,b β,则 a, b 是异面直线.( )
46
[解析] (2)×,也可能平行. (3)×,可能平行、相交、异面. [答案] (1)√ (2)× (3)×
因为 E,F 分别是 AB,CD 的中点, 所以 EM 綊21AD,FM 綊12BC,
则∠EMF 或其补角就是异面直线 AD,BC 所成的角. 因为 AD=BC=2,所以 EM=MF=1, 在等腰△MEF 中,过点 M,作 MH⊥EF 于 H,
36
在 Rt△MHE 中,EM=1,EH=21EF= 23, 则 sin∠EMH= 23,于是∠EMH=60°, 则∠EMF=2∠EMH=120°. 所以异面直线 AD,BC 所成的角为∠EMF 的补角, 即异面直线 AD,BC 所成的角为 60°.

人教版高中数学立体几何详细教案全册

人教版高中数学立体几何详细教案全册

【中学数学教案】立体几何教案一,空间直线与直线的关系a ,相交b ,平行c ,异面a , 相交直线b, 平行公理:空间中平行于同一条直线的两条直线平行c, 异面直线:1,求异面直线所成角问题注:利用平行公理找角,利用余弦定理计算,结果要锐角或直角异面直线所成角的范围«Skip Record If...»㈠平移法利用平行公理把异面直线所成的角转化为相交直线所成的角例:正方体«Skip Record If...»中,E,F分别是«Skip Record If...»中点,则直线AE和BF所成角的余弦值㈡补形法补形:底面是直角三角形的直三棱柱可以补成一个长方体例:在直三棱柱«Skip Record If...»中,«Skip Record If...»,点«Skip Record If...»分别是«Skip Record If...»中点,BC=CA=«Skip Record If...»,则«Skip Record If...»所成角的余弦值A、«Skip Record If...»B、«Skip Record If...»C、«Skip Record If...»D、«Skip Record If...»2,求异面直线之间的距离问题和两条异面直线垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的长度叫做异面直线的距离。

二,空间直线和平面关系a , 直线与平面平行b , 直线与平面垂直c , 直线与平面斜交——射影定理和三垂线定理a, 线面平行1,判定定理:若平面外一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行。

2,性质定理:若一条直线和一个平面平行,则过这条直线的平面和这个已知平面的交线必和这条直线平行。

高中数学立体几何课件资料

高中数学立体几何课件资料

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD­A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(2019·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN 是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD­A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(2019·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A2.在正方体ABCD­A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B4.设四棱锥P­ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A6.如图,在平行六面体ABCD­A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.答案:57.在四棱锥P­ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD的交线是________.答案:平行AD8.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,有以下四个结论.①EF与GH平行;②EF与GH异面;③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;④EF与GH的交点M一定在直线AC上.其中正确结论的序号为________.答案:④9.如图所示,正方体ABCD­A1B1C1D1中,M,N分别是A1B1,B1C1的中点.(1)AM和CN是否共面?说明理由;(2)D1B和CC1是否是异面直线?说明理由.第四节 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言 判定定理❶平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α, l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理文字语言 图形语言符号语言 判定定理❷一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β, b ∥β, a ∩b =P ,a ⊂α, b ⊂α, ∴α∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABC­A1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABC­A1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC 1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵若m ⊄α,n ⊂α,且m ∥n ,由线面平行的判定定理知m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴“m ∥n ”是“m ∥α”的充分不必要条件.2.如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,P A⊂平面P AHG,∴P A∥GH.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF 的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN.又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.又DE⊂平面BDE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.[课时跟踪检测]A级1.已知直线a与直线b平行,直线a与平面α平行,则直线b与α的关系为() A.平行B.相交C.直线b在平面α内D.平行或直线b在平面α内解析:选D2.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:选A3.在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C .在平面内D .不能确定解析:选A4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α 解析:选D5.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4解析:选C6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).答案:①或③8.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.答案:89.如图,E,F,G,H分别是正方体ABCD­A1B1C1D1的棱BC,CC1,C1D1,AA1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.10.(2019·南昌摸底调研)如图,在四棱锥P­ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P­ABM的体积.B级1.如图,四棱锥P­ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)求证:MN∥平面P AB;(2)求四面体N­BCM的体积.2.如图所示,几何体E­ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直❶,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥al ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言 符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=al ⊥a⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法] 证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG ,∵F 为PD 的中点,G 为PC 的中点,∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PEC .(2)∵P A =AD ,F 为PD 中点,∴AF ⊥PD , ∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD ,又∵CD ⊥AD ,AD ∩P A =A , ∴CD ⊥平面P AD , ∵AF ⊂平面P AD , ∴CD ⊥AF . 又PD ∩CD =D , ∴AF ⊥平面PCD . 由(1)知EG ∥AF , ∴EG ⊥平面PCD , 又EG ⊂平面PEC , ∴平面PEC ⊥平面PCD .[课时跟踪检测]A 级1.设a ,b 是两条不同的直线,α,β是两个不同的平面,则能得出a ⊥b 的是( ) A .a ⊥α,b ∥β,α⊥β B .a ⊥α,b ⊥β,α∥β C .a ⊂α,b ⊥β,α∥β D .a ⊂α,b ∥β,α⊥β解析:选C2.(2019·湘东五校联考)已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ; ③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.10.如图,在直三棱柱ABC­A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B 上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.B级1.(2018·全国卷Ⅱ)如图,在三棱锥P­ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.2.(2019·河南中原名校质量考评)如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD =2AB,平面P AD⊥底面ABCD,P A⊥AD,E,F分别是CD,PC的中点.求证:(1)BE∥平面P AD;(2)平面BEF⊥平面PCD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何模块公理定理汇编
公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
⊂.(作用:证明直线在平面内)
∈,Bα
∈⇒lα
∈,B l
A l
∈,且Aα
公理2过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)
推论①直线与直线外一点确定一个平面.
②两条相交直线确定一个平面.
③两条平行直线确定一个平面.
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
∈,且Pβ
∈.(作用:证明三点/多点共线)

I=l,且P l
∈⇒αβ
公理4平行于同一条直线的两条直线互相平行.(平行线的传递性)
空间等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
线面平行判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
面面平行判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
推论一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行.
线面平行性质定理一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行.
面面平行性质定理如果两个平行平面同时和第三个平面相交,则它们的交线平行.
线面垂直判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行.
三垂线定理如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直.
逆定理如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直.
射影定理从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短.
面面垂直判定定理一个平面过另一个平面的垂线,则这两个平面垂直.
线面垂直性质定理1如果一条直线垂直于一个平面,则它垂直于平面内的所有直线.
线面垂直性质定理2垂直于同一个平面的两条直线平行.
面面垂直性质定理1两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
面面垂直性质定理2两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.。

相关文档
最新文档