有理数基础测试题及解析
初中数学有理数基础测试题含解析
初中数学有理数基础测试题含解析一、选择题1.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的2.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=()201911-=-,()202011-=故a 可以是2020(1).故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】 0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D 【解析】 【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|; 所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.17.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.18.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.19.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.20.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.。
专题01 有理数(专题测试)(解析版)
专题01 有理数(满分:100分时间:90分钟)班级_________ 姓名_________ 学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.2.﹣3的相反数是()A.13-B.13C.3-D.3【答案】D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-1【答案】C【分析】由相反数的定义得出a的值,再带入代数式中即可求解.【详解】由a与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C【点睛】此题考查了相反数的定义,熟知相反数的定义是解决此题的关键.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【答案】C【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【答案】C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:214.7亿,用科学记数法表示为2.147×1010,故选C.6.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【答案】B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小. 7.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是( )A.﹣4 B.﹣2 C.2 D.4【答案】D【解析】A B=|﹣1﹣3|=4,故选D.【点睛】本题考查数轴上两点间的距离,解题的关键是要明确两点之间的距离等于表示这两点的数的差的绝对值.8.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:65000=6.5×104,故选B.9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时,n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3【答案】C【分析】先分别求出a 、b 的值,然后代入a+b 计算即可.【详解】∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .【点睛】本题考查了绝对值的意义、相反数的意义及求代数式的值,熟练掌握绝对值和相反数的意义是解答本题的关键. 绝对值等于一个正数的数有2个,它们是互为相反数的关系. 二、填空题(共5小题,每小题4分,共计20分)11.中国的领水面积约为370 000 km 2,将数370 000用科学计数法表示为:__________.【答案】3.7×105【解析】试题分析:科学计数法是指:a×10n ,且1≤a <10,n 为原数的整数位数减一.370000=3.7×510.12.计算:8-=__________.【答案】8【分析】根据绝对值的性质解答即可.【详解】|﹣8|=8.故答案为:8.13.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.【答案】-3【分析】点A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【详解】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是-3.故答案为:-3.【点睛】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握.14.计算:115324⎛⎫--÷⎪⎝⎭=_______.【答案】2 3 -【分析】先计算括号内的减法,同时将除法转化为乘法,再约分即可得.【详解】原式=542 ()653 -⨯=-.故答案为:-23.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.15.用“>”或“<”符号填空:7-______9-.【答案】>【分析】两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵|-7|=7,|-9|=9,7<9,∴-7>-9,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个负数,绝对值大的其值反而小.三、解答题(共5小题,每小题10分,共计50分)16.在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算. 【答案】-;5或×;5 【分析】先选择符号,然后按照有理数的四则运算进行计算即可.【详解】解:(1)选择“-” 212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯ 41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭1422=+⨯ 41=+ 5=【点睛】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键.17.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【答案】(1)-2;(2)-;(3)-20,理由详见解析.【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点睛】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.18.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【答案】(1)211﹣1(2)1+3+32+33+34+…+3n=1312n+-.【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.19.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,,,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和.【答案】解:(1)67.(2)1761【分析】(1)要计算第12层最左边这个圆圈中的数,即求出第11层最后一个数即可;(2)先计算图4中所有圆圈中共有多少个,根据题意即可得到数的规律,从而计算出所有圆圈中各数的绝对值之和.【详解】解:(1)67.(2)图4中所有圆圈中共有1+2+3+ (12)()1212+1=782个数,其中23个负数,1个0,54个正数,所以图4中所有各数的绝对值之和=|-23|+|-22|+···+|-1|+0+1+2+···54=176120.在一条不完整的数轴上从左到右有点,,,其中,,如图所示.设点,,所对应数的和是.(1)若以为原点,写出点,所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求.【答案】(1)-2,1,-1,-4;(2)-88.【解析】试题分析:(1)先确定原点,再根据两点间的距离确定点A,C所对应的数,从而计算出p;(2)原点在点C的右边,说明点C表对应的数是-28,由此确定点A,B对应的数.试题解析:(1)以B为原点,点A,C分别对应-2,1,p=-2+0+1=-1.以点C为原点,p=(-1-2)+(-1)+0=-4.(2)p=(-28-1-2)+(-28-1)+(-28)=-88.。
有理数的运算经典测试题附解析
有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。
有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.6.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
有理数专项训练及解析答案
有理数专项训练及解析答案一、选择题1.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.16的绝对值是( )A.﹣6 B.6 C.﹣16D.16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.4.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2,2a)可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2,2a)在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.5.在数轴上,实数a,b对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】 由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D7.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .8.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .2 【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |. 由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b <【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.11.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .14.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.15.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.2-的相反数是()A.2-B.2 C.12D.12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .18.67-的绝对值是()A.67B.76-C.67-D.76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A.【点睛】本题考查了绝对值的定义.19.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。
语法知识—有理数的基础测试题附答案解析
一、填空题1.数轴上,如果点A 表示–78,点B 表示–67,那么离原点较近的点是__________.(填A 或B )2.如图,点A 、点B 在数轴上表示的数分别是-4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 ______.3.有理数a 、b 、c 在数轴如图所示,且a 与b 互为相反数,则|b+c|-|a-c|= ______.4.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是_______.5.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.6.12的相反数是_____;_____的相反数是﹣234;﹣23的绝对值是_____.7.已知|x|=3,y 2=16,xy <0,则x ﹣y=_____.8.数轴上点A 距原点3个单位,将点A 向左移动7个单位,再向右移动2个单位到达B 点,则点B 所表示的数是_____. 9.比较大小:_____.(填“<”或“>”).10.如果(2m ﹣6)x |m|﹣2=m 2是关于x 的一元一次方程,那么m 的值是_____. 11.若21(2)03x y -++=,则y =________; 12.已知m ,n 满足关系式(m ﹣6)2+|n+2|=0,则2m ﹣3n 的值为_____.二、解答题13.在湖北抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5. (1)请你帮忙确定B 地相对于A 地的方位? (2)救灾过程中,冲锋舟离出发点A 最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?14.(1)画出数轴,并在数轴上画出表示下列各数的点:﹣4.5,﹣2,3,0,4; (2)用“<”号将(1)中各数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是_____,数轴上A 点表示的数为4,B 点表示的数为﹣2,则A 、B 之间的距离是_____. 15.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题: (1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5; (3)解不等式:|x -3|+|x +4|≥9 16.比较下列各组数的大小: (1)56-和67-;(2)1()5--和16--.17.有理数a ,b ,c 在数轴上的位置如图所示,且|a|=|b|. (1)求a+b 与ab的值; (2)化简|c ﹣a|+|c ﹣b|+|a+b|.18.慈善篮球赛,每个队员的得分以20分为标准,超过的部分记为正,不足的部分记为负,已知5位主力队员得分情况分别是(单位:分):4,2,3,﹣7,﹣1. (1)这5位主力队员中,最低得分是多少分?(2)若主力队员每得1分赞助商就额外捐款2000元,那么本次慈善篮球赛赞助商共额外捐款多少元?19.已知a ,b 互为相反数,|m |=3,求34a bm +-的值. 三、1320.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12 B .15 C .17 D .20 21.数轴上与数2-所对应的点相距4个单位长度的点表示的数是( )A .2B .4C .6-D .6-或222.若|x-2y|+2-y =0,则(-xy) 2的值为( )A .64B .-64C .16D .-1623.﹣2018的绝对值是( ) A .±2018B .﹣2018C .﹣12018D .201824.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .|b |<|a |B .a +b=0C .b <aD .ab >025.已知点P(x ,y)的坐标满足|x|=3y ,且xy <0,则点P 的坐标是( ) A .()3,2-B .()3,2-C .()3,4-D .()3,4-【参考答案】***试卷处理标记,请不要删除一、填空题1.B 【分析】讨论谁离原点较近即比较两个数的绝对值的大小【详解】∵|﹣|==|﹣|==∴点B 离原点较近故答案为B 【点睛】理解绝对值的意义会正确计算一个数的绝对值 解析:B 【分析】讨论谁离原点较近,即比较两个数的绝对值的大小. 【详解】∵|﹣78|=78=4956,|﹣67|=67=4856,∴点B 离原点较近.故答案为B . 【点睛】理解绝对值的意义,会正确计算一个数的绝对值.2.2或8【分析】根据题意得到方程再对P 点的值进行分段讨论即可得解【详解】设P 所表示的数为x 由题意可得|x-(-4)|=3|x-4|当x≤-4时方程可化为-4-x=-3x+12∴x=8(舍);当-4<x解析:2或8【分析】根据题意得到方程,再对P点的值进行分段讨论,即可得解.【详解】设P所表示的数为x,由题意可得|x-(-4)|=3|x-4|.当x≤-4时,方程可化为-4-x=-3x+12,∴x=8(舍);当-4<x≤4时,方程可化为x+4=-3x+12,∴x=2;当x>4时,方程可化为x+4=3x-12,∴x=8.故答案为2或8.【点睛】本题主要考查数轴与绝对值结合,关键在于取零点再分区间化简绝对值方程.3.0【解析】由数轴上的点以及已知可得:b<0<a<c|b|=|a|<|c|a+b=0∴b+c>0a-c<0∴|b+c|-|a-c|=(b+c)--(a-c)=b+c+a-c=0故答案为0【点睛】本题考解析:0【解析】由数轴上的点以及已知可得:b<0<a<c,|b|=|a|<|c|,a+b=0,∴b+c>0,a-c<0,∴|b+c|-|a-c|=(b+c)-[-(a-c)]=b+c+a-c=0,故答案为0.【点睛】本题考查了绝对值、数轴、相反数等,解题的关键是要注意借助数轴用几何方法化简含有绝对值的式子.4.-π【解析】【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA之间的距离为圆的周长=πA点在原点的左边∴A点解析:-π【解析】【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∴点B表示的数是-π故答案为-π.【点睛】此题考查了数轴,关键是熟悉数轴的特点及圆的周长公式.5.﹣373【解析】分析:根据一个数的相反数就是在这个数前面添上-号求解即可详解::-(-82)=82;-(+373)=-373;-(-)=故答案为:82-373点睛:本题考查了相反数的意义一个数的相反解析:﹣3.732 7【解析】分析: 根据一个数的相反数就是在这个数前面添上“-”号,求解即可.详解::-(-82)=82;-(+3.73)=-3.73;-(-27)=27,故答案为:82,-3.73,2 7 .点睛: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.6.﹣122【解析】分析:相反数的定义:只有符号不同的两个数互为相反数0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0详解:12的相反数是-12;-解析:﹣1223423.【解析】分析: 相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.详解:12的相反数是-12;-234的相反数是234;|-23|=23.点睛: 主要考查相反数,绝对值的概念及性质.7.±7【解析】分析:本题是绝对值平方根和有理数减法的综合试题同时本题还渗透了分类讨论的数学思想详解:因为|x|=3所以x=±3因为y2=16所以y=±4又因为xy<0所以xy异号当x=3时y=-4所以解析:±7【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=3,所以x=±3.因为y2=16,所以y=±4.又因为xy<0,所以x、y异号,当x=3时,y=-4,所以x-y=7;当x=-3时,y=4,所以x-y=-7.故答案为:±7.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.8.﹣2或﹣8【解析】分析:根据题意可以求得点A 表示的数从而可以得到点B 表示的数本题得以解决详解:由题意可得点A 表示的数是3或-3∴当A 为3时点B 表示的数为:3-7+2=-2当A 为-3时点B 表示的数为:解析:﹣2或﹣8【解析】分析:根据题意可以求得点A 表示的数,从而可以得到点B 表示的数,本题得以解决.详解:由题意可得, 点A 表示的数是3或-3,∴当A 为3时,点B 表示的数为:3-7+2=-2, 当A 为-3时,点B 表示的数为:-3-7+2=-8, 故答案为:-2或-8.点睛:本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.9.<【解析】分析:作差比较大小详解:-58--47=-356<0故-58<-47点睛:比较大小的方法:(1)作差比较法:a-b>0⟹a>b;a-b<0⇒a<b(ab 可以是数也可以是一个式子)(2)作商解析:< 【解析】分析:作差比较大小. 详解:,故.点睛:比较大小的方法: (1)作差比较法:;(可以是数,也可以是一个式子)(2)作商比较法:若a >0,b >0,且,则a >b ;若a <0,b <0,且,则a <b .10.﹣3【解析】由题意得:|m|﹣2=1且2m ﹣6≠0解得:m=﹣3故答案为﹣3解析:﹣3 【解析】由题意得:|m |﹣2=1,且2m ﹣6≠0, 解得:m=﹣3, 故答案为﹣3.11.【解析】∵∴x-2=0=0∴x=0y=-故答案是:- 解析:13-【解析】 ∵()21203x y -++=,∴x-2=0,13y =0,∴x=0,y=-1 3 ,故答案是:-1 3 .12.【解析】解:∵(m﹣6)2+|n+2|=0∴m=6n=﹣22m﹣3n=2×6﹣3×(﹣2)=18故答案为:18点睛:本题主要考查了偶次方的性质以及绝对值的性质正确把握相关定义是解题的关键解析:【解析】解:∵(m﹣6)2+|n+2|=0,∴m=6,n=﹣2,2m﹣3n=2×6﹣3×(﹣2)=18.故答案为:18.点睛:本题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题的关键.二、解答题13.(1)B地在A地的东边20千米;(2)最远处离出发点25千米;(3)还需补充的油量为9升.【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B 地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【详解】(1)∵14-9+8-7+13-6+12-5=20,∴B地在A地的东边20千米.(2)∵路程记录中各点离出发点的距离分别为14千米,14-9=5(千米),14-9+8=13(千米),14-9+8-7=6(千米),14-9+8-7+13=19(千米),14-9+8-7+13-6=13(千米),14-9+8-7+13-6+12=25(千米),14-9+8-7+13-6+12-5=20(千米).∴最远处离出发点25千米.(3)这一天走的总路程为14+|-9|+8+|-7|+13+|-6|+12+|-5|=74(千米),耗油74×0.5=37(升),37-28=9(升),故还需补充的油量为9升.本题考查的是正数与负数的定义,解答此题的关键是熟知用正负数表示两种具有相反意义的量,注意所走总路程一定是绝对值的和.14.(1)见解析(2)-4.5<-2<0<3<4;(3)2,6.【解析】分析:(1)利用数轴确定表示各数的点的位置即可;(2)根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”号将各数连接即可;(3)结合数轴可直接得到答案.详解:(1)如图:;(2)-4.5<-2<0<3<4;(3)数轴上表示3和表示1的两点之间的距离是2,数轴上A点表示的数为4,B点表示的数为-2,则A、B之间的距离是6,故答案为2;6.点睛:此题主要考查了数轴,关键是正确确定表示各数的点的位置.15.(1)x=1或x=-7(2)x≤-2或x≥8(3)x≥4或x≤-5【解析】分析:(1)利用在数轴上到-3对应的点的距离等于4的点对应的数为1或-7求解即可;(2)先求出|x-3|=5的解,再求|x-3|≥5的解集即可;(3)先在数轴上找出|x-3|+|x+4|=9的解,即可得出不等式|x-3|+|x+4|≥9的解集.详解:(1)∵在数轴上到-3对应的点的距离等于4的点对应的数为1或-7,∴方程|x+3|=4的解为x=1或x=-7.(2)在数轴上找出|x-3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8,∴方程|x-3|=5的解为x=-2或x=8,∴不等式|x-3|≥5的解集为x≤-2或x≥8.(3)在数轴上找出|x-3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x对应的点在3的右边或-4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在-4的左边,可得x=-5,∴方程|x-3|+|x+4|=9的解是x=4或x=-5,∴不等式|x-3|+|x+4|≥9的解集为x≥4或x≤-5.点睛:本题主要考查了绝对值及不等式的知识,解题的关键是理解|x1-x2|表示在数轴上数x1与数x2对应的点之间的距离.16.(1)>;(2)>分析: (1)根据两个负数,绝对值大的其值反而小进行比较即可; (2)根据正数大于一切负数可得答案. 详解: (1)∵﹣56=﹣3542,﹣67=﹣3642,∴﹣56>﹣67; (2)∵(﹣15)=15,﹣|﹣16|=﹣16, ∴﹣(﹣15)>﹣|﹣16|. 点睛: 此题主要考查了有理数的比较大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小. 17.(1)0;-1;(2)b-a . 【分析】根据有理数a ,b ,c 在数轴上的位置来求值与化简. 【详解】解:(1)根据|a|=|b|,结合数轴得:a 与b 互为相反数, 即a+b=0,ba=﹣1; (2)根据数轴上点的位置得:a <0<c <b ,且a+b=0, ∴c ﹣a >0,c ﹣b <0, 则|c ﹣a|+|c ﹣b|+|a+b| =c ﹣a+b ﹣c+0 =b ﹣a .18.(1)13;(2)202000元.【解析】试题分析:(1)首先比较出4,2,3,-7,-1的大小关系,判断出-7最小,然后用20加上-7,即可求出这5位主力队员中,最低得分是多少分.(2)用5位主力队员一共得到的分数乘主力队员每得1分赞助商就额外捐款的钱数,求出本次慈善篮球赛赞助商共额外捐款多少元即可. 试题解析:解:(1)-7<-1<2<3<4, 20+(-7)=13(分).答:这5位主力队员中,最低得分是13分; (2)4+2+3+(-7)+(-1)=1, (20×5+1)×2000 =101×2000 =202000(元)答:本次慈善篮球赛赞助商共额外捐款202000元.点睛:此题主要考查了正数、负数的含义和应用,以及有理数大小比较的方法,要熟练掌握.19.±9.【解析】试题分析:根据相反数和绝对值的性质得出a+b=0、m=2或-2,再分情况分别代入计算即可.试题解析:解:根据题意知a+b=0、m=3或m=﹣3,当m=3时,原式=04﹣3×3=0﹣9=﹣9;当m=﹣3时,原式=04﹣3×(﹣3)=0+9=9.点睛:本题主要考查代数式求值,解题的关键是根据相反数和绝对值的性质得到a+b=0、m=3或m=﹣3.三、1320.C解析:C【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|+,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.21.D解析:D【分析】根据题意得出两种情况:当点在表示−2的点的左边时,当点在表示−2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示−2的点的左边时,数为−2−4=−6;②当点在表示−2的点的右边时,数为−2+4=2;故选D.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.22.A解析:A【解析】分析:先根据非负数的性质列出方程组,求出x、y的值,然后将x、y代入(-xy)2中求解即可.详解:由题意,得:2020x yy-=⎧⎨-=⎩,解得42 xy=⎧⎨=⎩;∴(-xy)2=(-4×2)2=64.故选:A.点睛:此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0. 23.D解析:D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.24.A解析:A【解析】解:由数轴可知:﹣2<a<﹣1,0<b<1,|b|<|a|,a+b<0,b>a,ab<0,正确的是A选项.故选A.25.D解析:D【解析】试题解析:∵|x|=3,∴x=3或-3,y=4,∵xy<0,∴x=-3,y=4,∴点P的坐标为(-3,4),故选D.考点:点的坐标.。
有理数基础测试题含答案
有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。
第五章 有理数(基础过关)(解析版)
第五章有理数(基础过关)考试时间:90分钟一、选择题(每小题4分,共24分)1.若a为有理数,则下列数中,一定是负数的是()A.﹣a2B.﹣|a|C.﹣|a|﹣1D.a2﹣1【答案】C【分析】根据字母表示数的任意性即可求解.【解答】解:若a是有理数,则a可能是正数、负数、0.观察选项,只有选项C符合题意.故选:C.【知识点】非负数的性质:偶次方、正数和负数、非负数的性质:绝对值2.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b【答案】A【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【知识点】实数与数轴、绝对值3.冰箱冷藏室的温度零上6℃,记作+6℃,冷冻室的温度零下18℃,记作()A.18℃B.12℃C.﹣18℃D.﹣24℃【答案】C【分析】用正数表示零上,则负数表示零下,【解答】解:温度零上6℃,记作+6℃,冷冻室的温度零下18℃,记作﹣18℃,故选:C.【知识点】正数和负数4.2020年宝安区在教育方面的支出约为9870000000元人民币,将9870000000用科学记数法可表示为()A.987×107B.98.7×108C.9.87×109D.0.987×1010【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9870000000用科学记数法表示为:9.87×109.故选:C.【知识点】科学记数法—表示较大的数5.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示2020的点与圆周上表示数字()的点重合.A.0B.1C.2D.3【答案】B【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,1,2,3的点重合.【解答】解:∵﹣1﹣2020=﹣2021,2021÷4=505…1,∴数轴上表示数2020的点与圆周上表示数字1重合.故选:B.【知识点】数轴6.将1,2,3,4,…,50这50个自然数,任意分成25组,每组两个数,将每组的两个数中的任意一个数记作a,另一个数记作b,代入代数式(|a﹣b|+a+b)中进行计算,求出其结果.25组分别代入可求出25个结果,则这25个值的和的最大值是()A.325B.650C.950D.1275【答案】C【分析】不妨设各组中的数的a比b大,然后去掉绝对值号化简为a,所以当25组中的较大的数a 恰好是26到50时.这25个值的和最大,再根据求和公式列式计算即可得解.【解答】解:假设a>b,则(|a﹣b|+a+b)=(a﹣b+a+b)=a,所以,当25组中的较大的数a恰好是26到50时.这25个值的和最大.最大值为26+27+28+…+50==950,故选:C.【知识点】规律型:数字的变化类、绝对值二、填空题(每小题4分,共48分)7.已知下列各数:a,|a|,a2,a2﹣1,a2+1,其中一定不为负数的有个.【答案】3【分析】根据非负数的性质进行判断.【解答】解:a可以为正数、负数、0;|a|≥0,一定不是负数;a2≥0,一定不是负数;a2﹣1,可以为正数、负数、0;a2+1一定为正数;所以一定不为负数的有3个.故答案为:3.【知识点】绝对值、正数和负数8.计算:(π﹣2)0+|﹣4|=.【答案】5【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=1+4=5.故答案为:5.【知识点】绝对值、零指数幂9.|a﹣5|+3的最小值是.【答案】3【分析】直接利用绝对值的性质分析得出答案.【解答】解:∵|a﹣5|≥0,∴|a﹣5|+3的最小值是:3.故答案为:3.【知识点】非负数的性质:绝对值10.实数a,b在数轴上的位置如图所示,则化简:|b﹣a|﹣|a|的结果为.【答案】b【分析】依据实数a,b在数轴上的位置,即可得到b﹣a>0,进而利用绝对值的性质进行化简计算.【解答】解:由题可得,a<0<b,∴b﹣a>0,∴|b﹣a|﹣|a|=b﹣a﹣(﹣a)=b﹣a+a=b,故答案为:b.【知识点】绝对值、实数与数轴11.已知|a|=5,﹣b=9,ab<0,则a+b的值为.【答案】-4【分析】先根据题意求出a与b的值,然后代入原式即可求出答案.【解答】解:由题意可知:a=±5,b=﹣9,∵ab<0,∴a=5,∴a+b=5﹣9=﹣4,故答案为:﹣4.【知识点】有理数的加法、绝对值、有理数的乘法12.在方程3x+5y=143的正整数解中,使|x﹣y|的值最小的解是.【分析】要求方程3x+5y=143的正整数解,就要先将方程做适当变形,确定其中一组解,进一步得到通解,然后确定出所有的解,即可求得使|x﹣y|的值最小的解.【解答】解:由3x+5y=143,得y=28+,∴是方程组的一个解,其通解为(t为整数),∵x,y都是正整数,∴,,,,,,,,,,∴使|x﹣y|的值最小的解是故答案为.【知识点】绝对值、二元一次方程的解13.定义一种新运算:对任意有理数a,b都有a▽b=﹣a﹣b2,例如:2▽3=﹣2﹣32=﹣11,则(2020▽1)▽2=.【答案】2017【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:2020▽1=﹣2020﹣1=﹣2021,则原式=(﹣2021)▽2=2021﹣4=2017.故答案为:2017.【知识点】有理数的混合运算14.一件衣服按300元出售,盈利率为20%,如果要将盈利率提到35%,那么每件售价应提高到元.【答案】337.5【分析】先利用售价除以(1+盈利率),算出成本,再利用售价等于成本乘以(1+盈利率)计算出提价后的售价即可.【解答】解:每件衣服的成本为:300÷(1+20%)=300÷1.2=250(元),要将盈利率提到35%,那么每件售价为:250×(1+35%)=250×1.35=337.5(元).故答案为:337.5.【知识点】有理数的混合运算15.a,b,c,d为有理数,现规定一种运算:=ad﹣bc,那么当=22时x的值是.【答案】4【分析】根据新定义的运算即可求出答案.【解答】解:根据题意可得:2×5﹣4(1﹣x)=22,10﹣4+4x=22,4x=22﹣10+4,4x=16,x=4,故答案为:4.【知识点】有理数的混合运算、解一元一次方程16.已知a、b互为相反数,c、d互为倒数,|m|是最小的正整数,则m+﹣cd的值为.【答案】1或-1【分析】根据a、b互为相反数,c、d互为倒数,|m|是最小的正整数,可以得到a+b=0,cd=1,m =±1,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,|m|是最小的正整数,∴a+b=0,cd=1,m=±1,当m=1时,m+﹣cd=1+﹣1=1+0﹣1=0;当m=﹣1时,m+﹣cd=﹣1+﹣1=﹣1+0﹣1=﹣2;故答案为:0或﹣2.【知识点】有理数的混合运算17.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]的值是.【分析】按照定义运算⊕的计算法则代入求值即可.【解答】解:根据题意,得[(1⊕2)⊕3]=⊕3==.故答案是:.【知识点】分式有意义的条件、有理数的混合运算18.已知“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4,…,则=.【答案】2021【分析】根据题意,可以计算出所求式子的值.【解答】解:由题意可得,==2021,故答案为:2021.【知识点】有理数的混合运算三、解答题(共78分)19.计算:(1)3x2﹣2[x2﹣2(xy﹣x2)+2xy];(2)﹣12020+(1﹣0.5)2×(﹣4)÷(﹣).【分析】(1)根据整式的运算法则即可求出答案.(2)根据有理数的运算法则即可求出答案.【解答】解:(1)原式=3x2﹣2(x2﹣2xy+2x2+2xy)=3x2﹣2×3x2=﹣3x2.(2)原式=﹣1+×(﹣4)×(﹣2)=﹣1﹣1×(﹣2)=﹣1+2=1.【知识点】整式的加减、有理数的混合运算20.直接写得数.(1)|+6|+|﹣5|=;(2)=;(3)﹣(﹣2.5)﹣4.5=;(4)(a﹣1)﹣(2a﹣1)=.【分析】(1)根据绝对值的性质即可求出答案.(2)根据有理数的除法法则即可求出答案.(3)根据有理数的减法运算法则即可求出答案.(4)根据去括号法则以及整式的运算法则即可求出答案.【解答】解:(1)原式=6+5=11.(2)原式=﹣.(3)原式=2.5﹣4.5=﹣2.(4)原式=a﹣1﹣2a+1=﹣a.故答案为:(1)11.(3)﹣2﹣a.(4)﹣a.【知识点】绝对值、有理数的加减混合运算、整式的加减21.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?【分析】(1)将所有记录数据相加,即可求出守门员离球门线的位置;(2)将所有记录数据取绝对值,再相加即可;(3)观察记录的数据,取绝对值最大的作为守门员离开球门线最远距离.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)由观察可知:在练习过程中,守门员离开球门线最远距离是12米.【知识点】正数和负数、有理数的加减混合运算22.已知在纸面上有一数轴(如图),折叠纸面:(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①6表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【答案】【第1空】2【分析】(1)依题意可知两数关于原点对称,所以可求出与﹣2重合的点;(2)①依题意若﹣1表示的点与5表示的点重合,可知两数关于与2表示的点对称,即可求出6表示的点的对称点;②由①条件可知A、B关于2表示的点对称,即可求出答案.【解答】解:(1)∵1表示的点与﹣1表示的点重合,∴与表示﹣2表示的点表示的数为2.故答案为:2;(2)①∵﹣1表示的点与5表示的点重合,∴与表示6表示的点表示的数为﹣2.故答案为:﹣2;②∵A、B两点之间的距离为11经折叠后重合,∴A、B距离对称点的距离为11÷2=5.5,又∵且关于点2表示的点对称,∴点A表示的数为2+5.5=7.5,点B表示的数为2﹣5.5=﹣3.5.【知识点】数轴23.点A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,即CA=3CB,我们就称点C是【A,B】的三倍点.(1)如图,若点A表示的数为﹣1,点B表示的数为3,点C表示的数为2,可得CA=3,CB=1,即CA=3CB,则点C是【A,B】的三倍点.①若点D表示的数为5,请说明点D是【A,B】的三倍点;②若点E表示的数为0,则点E是【】的三倍点(数轴上不再添加其它点);(2)点M,N为数轴上两点,点M所表示的数为﹣4,点N所表示的数为1,若点P是【M,N】的三倍点,设点P表示的数为x,请直接写出x的值,并在数轴上表示出来.【答案】B,A【分析】(1)①根据题意求得DA=5﹣(﹣1)=6,DB=5﹣3=2,于是得到DA=3DB,根据三倍点的定义即可得到结论;②根据题意得到AE=0﹣(﹣1)=1,BE=3﹣0=3,求得EB=3EA,于是得到结论;(2)由于点P是【M,N】的三倍点,得到PM=3PN,解方程即可得到结论.【解答】解:(1)①∵DA=5﹣(﹣1)=6,DB=5﹣3=2,∴DA=3DB,∴点D是【A,B】的三倍点;②∵点E表示的数为0,∴AE=0﹣(﹣1)=1,BE=3﹣0=3,∴EB=3EA,∴点E是【B,A】的三倍点,故答案为:B,A;(2)∵点P是【M,N】的三倍点,∴PM=3PN,即|x﹣(﹣4)|=3|x﹣1|,解得:x=或x=﹣,在数轴上表示如图所示.【知识点】数轴24.阅读材料:求1+2+22+23+…+22019+22020的值.解:设S=1+2+22+23+…+22019+22020①,将等式①的两边同乘以2,得2S=2+22+23+24+…+22020+22021②,用②﹣①得,2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+…+22019+22020=22021﹣1.请仿照此法计算:(1)请直接填写1+2+22+23的值为;(2)求1+5+52+53+…+510的值;(3)请直接写出1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣的值.【答案】15【分析】(1)根据有理数的乘方和有理数的加法可以解答本题;(2)根据题目中的例子,设S=1+5+52+53+…+510,然后即可得到5S的值,然后作差,整理,即可得到所求式子的值;(3)仿照题目中的例子,设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,然后即可得到10S的值,然后整理,再代入所求式子,即可解答本题.【解答】解:(1)1+2+22+23=1+2+4+8=15,故答案为:15;(2)设S=1+5+52+53+ (510)则5S=5+52+53+ (511)∴5S﹣S=511﹣1,∴4S=511﹣1,∴S=,即1+5+52+53+…+510=;(3)设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,则10S=10﹣102+103﹣104+105﹣…﹣102020+102021,∴S+10S=1+102021,∴11S=1+102021,∴S=,∴1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣=﹣=.【知识点】规律型:数字的变化类、有理数的混合运算25.观察下列等式:=1,=,=.将以上三个等式的两边分别相加,得:+=1=1=.(1)直接写出计算结果:=.(2)计算:.(3)猜想并直接写出:=.(n为正整数)【分析】(1)根据题目中的例子,可以将所求式子拆项,然后计算即可;(2)根据题目中的例子,可以将所求式子拆项,然后计算即可得到所求式子的结果;(3)根据题目中式子的特点,拆项,然后计算即可.【解答】解:(1)=1﹣+…+=1﹣=,故答案为:;(2)=1﹣+…+=1﹣==;(3)=×(1﹣+…+)=×(1﹣)=×=×=,故答案为:.【知识点】规律型:数字的变化类、有理数的混合运算。
有理数经典测试题附答案解析
有理数经典测试题附答案解析一、选择题1.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.2.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3 【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.3.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C . 【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.4.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D . 【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:, 原点在a ,b 的中间, 如图,由图可得:,,,,, 故选项A 错误,故选:A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.5.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.6.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】 解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b +-=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.11.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.12.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .,5或13【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.13.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.14.2019的倒数的相反数是( )A.-2019 B.12019-C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.15.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程217x+=变形为:2x+1=7或2x+1=-7,解得x=3或x=-4故选C.【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.16.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.17.下列运算正确的是( )A .4 =-2B .|﹣3|=3C .4=± 2D .39=3【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.18.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a。
语法知识—有理数的基础测试题含答案
一、填空题1. 如果 a-2 +9 + 1)2 =0,那么"=c-a + c-h + a+b =「~L5. 点A.B 在数轴的位置如图所示,其对应的数分别是a 和b,对于以下结论:®b - a<0(g)lal<lbl(§)a+b>0® - >0其中正确是 ____ ・a-- 1 --- * ------- 1 ----------- 1—• »-3 a 0 3 b6. 已知J < X < y/S r 贝I ]丨 X —31 + I X —1 1= ・7. 有理数abc 在数轴上的位置如图所示,化简\a\ + \a-h\ + \e-a\的值为a b8. ________________________________________________________________ 数轴上点O 表示原点,点A 表示数-4,点P 表示数X,当PA=PO 时,1x1= ___________________ .二、解答题9. 已知数轴上,点。
为原点,点A 对应的数为9,点B 对应的数为”,点C 在点B 右侧, 长度为2个单位的线段BC 在数轴上務动.□ B~C 才(1) 如图,当线段BC 在0、A 两点之间移动到某一位置时,恰好满足线段AC^OB,求 此时b 的值; ⑵当线段肚在数轴上沿射线方向移动的过程中,若存在AC"4/9,求此时 满足条件的b 的值: ⑶当线段肚在数轴上移动时,满足关系式皿5冷展皿则此卄的取值 范困是10. 数轴上点A 对应的数为d ,点B 对应的数为b ,且多项式x'y-2A>' + 5的二次项系数为常数项为b.(1) 直接写出:a = _________ . b= _________ .(2) 数轴上点A. B 之间有一动点P,若点P 对应的数为X,试化简 2%+4+2x — 5 — 6 — X .(3)若点M 从点A 出发,以毎秒「个单位长度的速度沿数轴向右移动:同时点N 从 点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达4点后立即返回并向右2. 3. 4. 已知4一2y 匀X + 3互为相反数,则.F 的值是_ 已知W=3, r=4,且x<y,那么x+y 的值是 _________有理数a 、b 、c 在数轴上的位置如图所示,且a= \b\.化简继续移动,经过I 秒后,M • N 两点相距1个单位长度,求I 的值.11. 化简求值:(1〉如图,已知实数a. b 在数抽上的位置如图所示,试化简lb-小+J(a + b)2・(1) 初= _____ ♦ h= (2) 点A 以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度 也沿着数轴的正方向运动.当点B 到达D 点处立刻返回,返回时,点A 与点B 在数轴的某 点处相遇,求这个点对应的数.(3) 如果A 、C 两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动, 同时,点B 从图上的位苣出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC= -AD 时,点A 对应的数是多少?13. 画出数轴并在数轴上表示出下而的有理数,然后把它们用“v"连接起来. -2, I-L5I, 0,・(・3) , 2—, (-1)纳9214. 点A 、0、B 、C 从左向右依次在数轴上的位置如图所示,点0在原点,点A 、B 、C 表示的数分别是a 、b 、c.⑴若a=-2, b=4. c=8, D 为AB 中点,F 为BC 中点,求DF 的长.(2) 若点A 到原点的距离为3, B 为AC 的中点. ① 用b 的代数式表示C :② 数轴上B 、C 两点之间有一动点M,点M 表示的数为X,无论点M 运动到何处,代数式 lx - cl - 5仪-al+bx+cx ffj 值都不变,求b 的值.15. 小明练习跳绳,以1分钟跳165个为目标,并把20次1分钟跳绳的数记录如表(超过 165个的部分记为—X 少于165个的部分记为“一‘)(1) 小明在这20次跳绳练习中,1分钟最多跳个?ab + b' [a--2ah + h-~ a--b\ 12.如图,在数轴上每相邻两点间的距离为一个单位长度.点是"、b 、e 、J,且 〃-3"=20・B 3 C(2)已知a =近,h = \.求代数式a b F T 的低 h-\B 、C 、D 对应的数分別c=(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多个?(3)小明在这20次跳绳练习中,累计跳绳多少个?16. 如图所示,点A, B. C 是数轴上的三个点,其中AB = 12,且A, B 两点表示的数互 为相反数・(1) 请在数轴上标出原点0,并写出点A 表示的数:(2) 如果点Q 以每秒2个单位的速度从点B 出发向左运动,那么经过_秒时,点C 恰好 是BQ的中点:(3) 如果点P 以每秒1个单位的速度从点A 出发向右运动,那么经过多少秒时PC = 2PB.17. 如图,已知在纸而上有一条数轴操作一:折叠数轴,使表示1的点与表示-1的点重合,则表示-5的点与表示 的点重合. 操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示-2的点与表 示_的点重合;②若数轴上A.B 两点的距离为7(A 在B 的左侧),且折叠后A.B 两点重合,则点A 表示的数 为—点B 表示的数为 二 1318. 如图,数轴上三个点所对应的数分别为a 、b 、c ・则下列结论正确的是()•-5・4・3 ・219.已知 X =3,1 1 I I I>-1 a 0 lbA- aV-aVbV-b B ・-b<a< - a<b C.22.下列说法:①一('<0:②I 一“1=01:③相反数大于它本身的数一!>k 是负数:④绝对值等于它本身的数一泄是正数.其中正确的序号为()A. ①® B ・@@ C.①®A. a+b>0B ・ a-b>0 C. aoO D. lal>lcl A. ±720・G b 在数轴位置如图所示,则皿与Ibl 关系是(B ・±5C ・±1D.a-1 0 bA. I"l>lblB ・ SIMIblC. 21. a 、b 两数在数轴上位置如图所示,将a 、b 、 SiWibl■a 、-b 用“V'>连接,其中正确的是SIVIblD. -a<b< - b<a D. - b<a<b< - aa 、Z?互为倒数戶、"互为相反数,则代数式8(w + /i )-|afe 的值是()加 H0 f-4 4 -2 *1 0 *1 ~~2 3 4〉A. CB ・ n【参考答案]*卄试卷处理标记,请不要删除1 • a=2b=-1 [分析]根据绝对值及平方的非负性即即可求解[详解】根据题意Y 「. •••故答案为:2 [ 点睛】本题主要考查了一个数的绝对值及平方的非负性根据非负性解题时解决此类问题的关犍解析:a =2 b = -l 【分析】根据绝对值及平方的非负性即i“-2ino,(b+i )->0即可求解. 【详解】 根据题意.k/-2l>0, 3 + 1)2 >0,a-2 = 0a = 2b = -l故答案为:2, 一1・ 【点睛]本题主要考査了一个数的绝对值及平方的非负性,根据非负性解题时解决此类问题的关键.2. 9【分析】根据相反数之和为0列出算式再111非负数的性质求得xy 的值从而 将xy 的值代入计算即可【详解】因为l4-2yl 与lx+31互为相反数所以l4-2yl+lx+3l=0 所以4・2y=0x+3=0所以解析:9 【分析】23. A.24.3 9-- B ・ ---2 43 C.— 2 9 D. 一4 A. 201B ・0C ・-2D. -----202025.已知有理数mnc.f 在数轴上的对应点的位置如图所示,则这四个数中,绝对值最小的是C. mD. f根据相反数之和为0列出算式,再由非负数的性质求得X、y的值,从而将X、y的值代入计算即可.【详解】因为|4-2y;与lx+3互为相反数,所以|4-2y| + |x+3 =0,所以4-2y=0, x+3=0,所以y=2, s=-3,所以疋=(_3)2=9.故答案为:9.【点睛]考査了相反数的概念、绝对值的非负数性质,解题关键是利用了相反数之和为0和有限个非负数的和为零,则每一个加数也必为零.3.-1或-5【分析】利用绝对值和乘方的知识确定刃的值然后计算即可解答【详解】解:T HI=3y2 = 4・・・x=±3y=±2Tx<y・・・x= - 3y=±2当x= - 3y=2 时x+y= - 1 当x= - 3y= - 2 时x+解析:-1或-5【分析】利用绝对值和乘方的知识确定X、y的值,然后计算即可解答.【详解】解:VW=3. r=4,-*-x=±3, y=±2,•\x= - 3. y=±2,当X =-3, y=2 时,・K+y=・l.当X = -3, y= -2 时,x+y= -5.所以,x+y的值是-1或-5.故答案为:-1或-5.【点睛】本题主要考査了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定X、y 的值.4・b-a [分析】由数轴可知:b > C > Oa < Oa+b=O再根据有理数的加减运算法则判断出绝对值里的代数式的正负性最后根据绝对值的性质化简【详解】解:由数轴得b > c>Oa < 0又|a| = |b|.\ c-a >Oc解析:b-a.【分析】由数轴可知:b>c>0, a<0, a+b=O.再根据有理数的加减运算法则,判断出绝对值里的代数式的正负性,最后根据绝对值的性质化简.【详解】解:由数轴,得b>c>0, a<0, Xlahlbb.*.c-a>0, c-b<0, a+b=O./. c-a + c-b + a+b =c-a+b-c+O=b-a.故答案是:b-a.【点睛]此题考查了数轴,以及绝对值化简,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是旷进行化简汁算.5.②③【分析】根据图示可得:-3<a<0b>3据此逐个结论判断即可【详解】•••-3 < a V Ob > 3 /. b-a > 0 二故①错误;T -3 V a < Ob > 3 /. a+b > 0 ・••故③正确;7-3<a<0b>3/. laKlb解析:②®【分析】根据图示,可得:-3<aV0, b>3,据此逐个结论判断即可.【详解】7-3<a<0, b>3,.•.b-a>0>二故①错误:V-3<a<0, b>3,,a+b>Ot二故③正确:V-3<a<f), b>3,,KIbl,二选项②正确;V0<a<3, b<-3,b・・• 一VO,a二选项④不正确.故答案为:②③.【点睛]此题主要考査了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:当数轴方向朝右时,右边的数总比左边的数大.6.2【分析】山已知条件确定X的范根据绝对值性质去绝对值符号即可【详解】•••・•・・•・;故填2【点睛】本题主要考査绝对值性质:正数绝对值等于本身0 的绝对值是0负数绝对值等于其相反数解析:2【分析】由已知条件确立X的范阳,根据绝对值性质去绝对值符号即可【详解】& < X < 1 < X < 3 ' Lv — 31 +1X — 11= 3-x+x-l=2 ;故填2.【点睛]本题主要考査绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.7 .-羽+b+c【分析】根据数轴可以判断abc的正负以及绝对值的大小从而可以化简【详解】解:由^5$由可得a < b < 0 < c|a| > |c| > |b|.'. a-b < Oc-a > 0.*. =-a+ ( b- a ) + ( c-a ) =-a+解析:-3a+b+c【分析】根据数轴可以判断a、b、c的正负以及绝对值的大小,从而可以化简l"l + l“一Z)l + lc-“l.【详解】解:由数轴可得,aVbVOVc, lal>lcl>lbl,/-a-b<0. c-a>Or16/1 +1— I +1 c —a I =-a+ (b-a) + (c・a)=-a+b-a+c-a=・3a+b+c故答案为:-3a+b十c.【点睛】本题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.8.2【分析】根据中点坐标公式计算可得点P表示的数再根据绝对值的性质求解即可【详解】解:T数轴上点0表示原点点A表示数-4点P表示数xPA= PO・••点P是OA的中点.••点P表示的数是-2/. !X|=2故答案为解析:2【分析】根据中点坐标公式计算可得点P表示的数,再根据绝对值的性质求解即可.【详解】解:T数轴上点O表示原点,点A表示数-4,点P表示数X, PA=PO.二点P是OA的中点,二点P 表示的数是-2,.-.1x1=2.故答案为:2. 【点睛]考査了实数与数轴,绝对值,关键是求出点P 表示的数.二、解答题129. (1) 35 (2) M 或・ 12: (3) h<-2 或空9 或 〃=3・5【分析】(1)由题意可知B 点表示的数比点C •对应的数少2,进一步用”表示岀AU OB Z 间的距离,联立方程求得b 的数值即可:⑵分别用〃表示映、皿进-步利用AC 5=严建立方程求得答案即 可:(3)分别用丿,表示出OB 、AB. OC,进一步利用lAC - OBI= lAB - OO 建立方程求得答案即可• 【详解】解:{1)由题意得:9- (b+2) =b.解得:/>=3.5.答:线段AC=OB ,此时b 的值是3.5・(2)由题意得: ®9-解得:(h+2) +b=- (9-h),3h= - 12I12答,若AC-QB^-AB.满足条件的b 值是=或-12.3 5 (3)①当空9时,AC=b+2-9, OB=b, AB=b ・9, OC=b+2. 7WC-OBI=—WB-OO,11g).解得:lfo+2-9-6l=7,7 7—lAB-0O=—xll=7, II 11二恒成立:②7动V9时,L4C-0BI=—IAB-0O,117 lb+2・9-bl=—19-b- 3+2) I,11解得b= -2 (舍去)或b=9 (舍去):③0动<7时,7L4C-OBI=—WB-0O,11719 - (b+2) 71=—19-b- (b+2〉I,117解得b= — =3.5-2④-2切VO时,19 - (b+2) +/?!=—19-h- (/>+2) I,11解得h=-2或b=9 (舍去);⑤当-2时,19 - (b+2) +〃|=令9-歼3+2) I恒成立,综上,b的取值范围是/疋-2或绘9或X3.5.故答案为:硬-2或绘9或/>=3.5.【点睛3本题考查了数轴上的动点问题及一元一次方程的应用,需要注意的是要分情况讨论.810.(1) -2: 5:(2) X+8: (3) t的取值为2 或一或6 或&3【分析】(1)根据多项式中二次项系数的左义和常数项的楚义即可求出a、b的值;(2)根据题意,先判断2X +4,A--5,6-%的符号,然后根据绝对值的性质去绝对值化简即可:(3)设经过!秒M , N两点相距一个单位长度,根据M、N的相对位置分类讨论,然后分别列出方程即可.【详解】解:{1) •/多项式x^y-2xy + 5的二次项系数为.常数项为b ,/. a —~2» b = 5 •(2)依题意,得-2<x<5,7:• 2x + 4>0,x-5< 0,6 — x> 0则|2% + 4| + 2|x—5| —16 —x| = 2x + 4 + 2(5 —%)—(6 —X)=2x+4 +10—2% — 6 + X=x+8(3) AB=5- (-2) =7设经过f秒M , N两点相距一个单位长度.①M,N第一次相距一个单位长度时,如下图所示M N根据数轴可得:f + l + 2z=7,解得r = 2.②M, N第二次相距一个单位长度时,如下图所示N 二____________________根据数轴可得:7 +力=7 + 1.Q解得/ = -:③当M. N第三次相距一个单位长度时,如下图所示根据数轴可得:2t + \-t = 7.解得f = 6:④当M,N第四次相距一个单位长度时,如下图所示根据数轴可得:2r-l-f=7, 解得28.Q综合得:I的取值为:2或5或6或8.【点睛】此题考查的是数轴上的动点问题,掌握绝对值的性质、行程问题中的等量关系、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.ah —11.(1) -2a,(2) ------ , -2-V2.a_b【分析】(1)首先根摇实数a、b数轴上位置判断出b-a和《+方的符号,然后进行化简,即可得到答案:(2)先把分式进行化简,得到最简代数式,然后把a、b的值代入计算,即可得到答案.【详解】解:(1)根据数轴可知,b-a>Q. rt+b<0,• • IZ? - a I +J(a + b)2=b — a — (a + h)_ {a-b}{a + h} («/? + /?")(«-/?) ab {a 一 /?)' {a + b} {a 一 /?)'(« + h} h -1 a--Ir -irb + b' ah («-/?)" (a+ /?) b-\{a + h}(a-h)(\-h) (a-b)~(a + h)_ ah a-h当a =迈,"=1时, 原式二一茫xl = _2 一妊V2-1【点睛]本题考查了分式的混合运算,分式的化简求值,二次根式的性质,以及化简绝对值,解题 的关键是利用数轴判断是指的符号,以及熟练掌握分式混合运算的运算法则进行汁算.4 12. (1) -6, -8, -3:(2)人、B 相遇时,这个点对应的数为一 :(3〉点4对应的 332数是一一或・12・【分析】 (1) 由数轴可知d=a+8,结合d-3a=20 nJ 求a 的值,进而可求出b 、c 的值:(2〉先求出BD=10, B 点运动到D 点需要时间为2・5秒.此时A 点运动到-6+2x3.5=l>町 得AB 距离小求出AB 相遇时间为一蔦秒,即可求相遇沁(3) 设运动时间为1秒.A 点运动I 秒后对应的数为-6-21, C 点运动I 秒后对应的数为・3・ 3t. B 点运动I 秒后对应的数为・8+1,由AB+AO ㊁AD,町得l2-3tl+ll-31=14+11,分三种情况22去掉绝对值分别求解:当Osts-时,2-3t+3-t=4+t.当一ts3时,3l-2+t-3=4+t,当1>3时. 3 33t-2+3-t=4+t,求出I 的值即可求A 表示的数.【详解】 (1) 由数轴可知,〃=“+8,7J-3a=20,.*a/+8 - 3“=20,it — • 6»= —2a : /(2) ab + h- [a--2ah + h-~ a--b- J b-\a-hah ab:・b= - & e= - 3.故答案为-6, - 8, - 3;(2)•••“= -6.•••d=2.•••BD=10,B点运动到D点需要时间为2.5秒,此时A点运动到-6+2x3.5= 1. •■•AB距离为1.二相遇时间为一=評,1 4此时A点位置为兀x2=y 二4、B相遇时的点对应的数为土.3(3)设运动时间为F秒,M点运动£秒后对应的数为-6-2/, C点运动/秒后对应的数为-3-引,B点运动/秒后对应的数为-8+f,- 6 - 2/+8 - /1=12 - 3爪AC=I - 6 - 2z+3+3zl=lz - 31, 4D=l2+6+2H=l8+2儿•••12- 3/1+1 一31=14+儿2①当B仃A相遇时,(珈2,解得匸亍•••当0<r<-时,32 - 3/+3 - z=4+z,5②当A与C相遇时, 312=3.解得1=3,2•••当一03 时,33t - 2+t - 3=4+人③当/>3 时,3t - 2+3 - z=4+z,/J=3,32•••A点表示的数是-¥或-12・【点睛3本题考查了数轴上的动点问题,一元一次方程的应用,以及分类讨论的数学思想:熟练掌握数轴的性质,根据题意列出方程是解答本题的关键.b数轴见解析宀< (小叫。
语法知识—有理数的基础测试题附解析
一、选择题1.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c,且0A T 0B=0C,则下列结论中:\a\ h Id , ®abc<0:②a (b+c ) >0: @a - c=b :④—+ -—+ — = 1 • a I/? I cC A OB -- • •—• -- • 》C a 0b 其中正确的个数有 ( ) A. 1个 6・2个 C. 3个 D. 4个2. 如果水库的水位高于正常水位5m 时,记作+5nK 那么低于正常水位3m 时,应记作3. -3的相反数是(A. +3mB ・-3m C. H — ITl D. -5mA- -3 B ・0 D ・4.若lx ・2yl+Jy-2=0.则(・xy)2的值为(A. 5. 6. 64B ・-64C ・ 代数式(m+l)2,(ni>0). x^+l, I 7J-2I, 1个 B ・2个 -2018的绝对值的相反数是(16 疽中一泄是正数的 7. C ・ D ・ D ・•16 2018■ 2018 C ・ 2018 D ・ -2018硕的相反数的倒敎是( 1B ・-1 若ial=4, lbl=5,且 ab<0,则 a+b 的值是(A. 1 6・-9 C A. C. 2016 D. -2016 8. 9或-9 9. 如图为0、A 、B 、C 四点在数线上的位置图,其中0为原点, C 点所表示的数为X,则B 点所表示的数打下列何者相等?(卫C Q B—• ■ F --- W —X 0A. - (X+1)B ・ 10. 式子佰的值(D ・ 且 AOl, OA=OB,若 (X- 1) C. x+1 D ・ X - 1 D ・等于34 11.已知:a = (-99/,b = (-OJ)"\ C ・在4到5之间 -2 ,那么a, b.c 三数的大小为() A. a<b<c B ・ b <a<c f 5] 飞 C. b<c<a D. a<c<b12. 若-lal=-3・2,则 a 是( )A. 3・2B. -3.2 C ・±3・2 D ・以上都不对13. 实数a, b 在数轴上的位置如图所示,下列^$式错误的是()0 r* A. a+b>0 6・ ab<0 C. a-b<0 D. a-b>014. 如图,数轴上点A, B 表示的数分别为-40,50.现有一动点P 以2个单位每秒的速度 从点A 向B 运动,另一动点Q 以3个单位每秒的速度从点B 向A 运动•当AQ = 3PQ 时, 运动的时间为()■ ■ 4 / ................ ・!-40 5A. 15秒 B ・20秒 15. K 列算式中,结果正确的是(A- ( -3) -=6 B. -1 - 31=3 C. -32=9 D. - (-3〉J-9二填空题19. 20. 侧.若la - bl=3.且AO=2BO,则时b 的值为a---- • » / Q21. Q-1的相反数是22. 已知,m. n 互为相反数,p 、q 互为倒数,x 的绝对值为2.则代数式圻診+2O13pq+F 的值为 ___________ .三、解答题23. 務下列各数填入适当的括号内:3 71, 5, "3, —, 89»4负数集合:{ . 分数集合:{ .非负有理数集合:{_ 非负数集合:{ 24. 已知(x+y ・5)2+l4x+3y-17l=O,求(x-y 円浮的值.25. 看数轴,化简:lai - |b| + |a-2|-■*' 30*" C ・15秒或25秒 D. 15秒或20秒,2(a+b) = ”-rtL 则一的值为 ________ .b17.如图,点A 、点B 在数轴上表示的数分别是-4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 ______________ .卫 一「■ 「 0 1 2 3 4 5 16.已知有理数4, 6满足ab<0・a>b -4 -3 -218. 若(x-2)-+y + -=0,则y= 已知rru n 满足关系式(m - 6) ^+|n+2|=0,贝ij 2m - 3n 的值为 ___ .如图,在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右19, -3.14.・9, Or 2- 7 50 fl 2【参考答案】和协试卷处理标记,请不要删除1- B解析:B【分析】根摇图示,可得h>0, l«l+IW=lch 据此逐项判迫即可.【详解】YcV 初V0, Z?>Or/.uZ?C>Or二选项①不符合题意.Vc<£/<0» Z?>Or k#l+l/j|=lcL•*-Z?+c<0»/a/ (b+C >0,二选项②符合题意.YcVaVO, Z?>Or kd+l/7l=lcL/.-u+Z?=-c,/- a-c —b^•••选项③符合题意••••选项④不符合题意,正确的个数有2个:②、③.故选B. 【点睛]此题主要考査了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练 掌握・2. B解析:B【分析】根摇正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m 时,记作+2nb 那么低于正常水位3m 时,应记作b a故选B.【点睛]本题考査了正数和负数,确立相反意义的量是解题关键.3. D解析:D【解析】【分析】依据相反数的概念求值即可.【详解】-3的相反数是3.故答案为:D.【点睛3本题主要考査相反数的概念,解题的关键是掌握:.只有符号不同的两个数互为相反数,0 的相反数是0.4. A解析:A【解析】分析:先根摇非负数的性质列出方程组,求出X 、y 的值,然后将X 、y 代入(-xy ) ?中求 解即可. 解得S Jb = 2••• (.xy ) 2=(4x2〉—64.故选:A.点睛:此题主要考査了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、 二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.5- B解析:B【解析】分析:绝对值,平方数,算术平方根都是非负数,但未必都是正数,据此可判断得出选 项.详解:V (m+1) 90,/.(m+1) 2不一定是正数;V^>0(ni>0)当m=0时,JJJ? =0.故J 乔(皿20)不一左是正数:*.* X 空 0,/.x'+l>0tAx=+1 -zk 是正数:V 73 # 2.•.|x/3-2:>0,故lJJ-21—定是正数;详解:由题意,得:<x — 2y = 0 >■-2 = 0疗是负数・故选B.点睛:此题主要考査绝对值、算术平方根和平方数等的非负性,解题的关键是对0的特殊性的理解和运用,容易出错.6. D解析:D【解析】分析:相反数的运义:只有符号不同的两个数互为相反数,0的相反数是0:绝对值的性质:一个正数的绝对值是它本身:一个负数的绝对值是它的相反数;0的绝对值是0. 详解:71-20181=201 &.•.2018的相反数是-20J8.故选D.点睛:本题考査的是相反数概念和绝对值的性质.7 . C解析:C【解析】解「一的相反数是一‘一的倒数是2叽故选C.8- D解析:D【解析】试题分析::・|胡=4, 1〃1 = 5,且"VO, h= - 5:a= - 4, b=5,则"+b=l或・1.故选D・9 . B解析:B【解析】分析:首先根据AC=1. C点所表示的数为X,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:VAC=1. C点所表示的数为X,二A点表示的数是X- 1,XVOA=OB,AB点和A点表示的数互为相反数,•••B点所表示的数是-(X- 1),故选B・点II釈此题主要考査了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.10. C解析:C【解析】分析:根据数的平方估出佰介于哪两个整数之间,从而找到其对应的点.详解:7>/1^<奶<后,・・・4<717<5,故选(:.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出庐介于哪两个整数之间.11. C解析:C【解析】分析:根据零指数誓,负整数指数扇与正整数指数暮互为倒数,根据有理数的大小比较,可得答案.5 9详解:a= 3宀,bmm -r七bVcVa.故选C点睛:本题考査了有理数的大小比较,利用零指数暮,负整数指数帚与正整数指数墓互为倒数化简各■数是解题关键.12. C解析:C【解析】分析:讣算绝对值要根据绝对值的立义求解.详解::V-lal=-3.2,.•.lal=3.2,a=±3・2.故选:c.点睛:解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身:一个负数的绝对值是它的相反数:0的绝对值是0.13. D解析:D【解析】由数轴知a<0, b>0, laKIbl,所以a+b>0, ab<0. a-b<0,所以选项A、B、C 正确,选项D错误,故选D.14. D解析:D【解析】试题解折:设运动的时间为I秒,P、Q相遇前,依题意有50- (-40) -3t=3[5O- (-40) -2t-3l], 解得t=15:P、Q相遇后,依题意有50- (-40) -3i=3t=3[2l+3t-50+ (-40)], 解得t=20.故运动的时间为15秒或20秒.故选D.15. D解析:D【解析】A. ( -3) 2=9,此选项错误;B.-1-31=-3.此选项错误;C.-3^=-9,此选项错误:D.-( -3)-=-9.此选项正确:故选:D二填空题16 .【解析】【分析】根据ab<0得到a与b异号再由|a|>|b|分两种情况考虑即可求岀所求式子的值【详解】ab <0|a| > |b|.*.当a > Ob <0时a+b > Ob- a < 0可得2 ( a+b ) =2a+2b= | b 解析:-3【解析】【分析】根据abvO,得到a-tjb异号,再由laZbl,分两种情况考虑,即可求出所求式子的值.【详解】Vab<0, lal>lbl..:当a>0, b<0 时,a+b>0, b-a<0,可得2 Ca+b) =2a+2b=lb-al=a-b,即a=-3b.£t当a<0, b>0 时,a+b<0, b-a>0,可得2 (a+b) M|b-al,不合题意,舍去故答案为:-3【点睛]此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17. 2或8【分析】根据题意得到方程再对P点的值进行分段讨论即可得解【详解】设P所表示的数为X由题意可得H- (-4) |=3|x-4|当xW-4时方程可化为 -4-x=-3x+12/.x=8 (舍):当-4<x解析:2或8【分析】根据题意得到方程,再对P点的值进行分段讨论,即可得解.【详解】设P所表示的数为曲由题意可得Lv- (-4) f=3k-4l.当疋H时,方程可化为-4-.V=-3A-+12, .-.^8 (舍);当_4<心时,方程可化为.V+4=-3A+12.:.X=2^当x>4时,方程可化为x+4=3*12, .•.x=8.故答案为2或8.【点睛3本题主要考査数轴与绝对值结合,关键在于取零点再分区间化简绝对值方程.18 •【解析】••• x-2=0=0/. x=0yA故答案是:-【解析】=0,/. x-2=0, y + —=0,Ax=0,y=--,故答案是:-彳.19.【解析】解:T (m- 6) 2+|n+2|=0/.m=6n=- 22in- 3n=2X6 - 3X ( - 2) 二18故答案为:18点睛:本题主要考查了偶次方的性质以及绝对值的性质正确把握相关定义是解题的关键解析:【解析】解:V Cm-6) 2+ in+2 =0,・;m=6, n= - 2, 2m-3n=2X6-3X ( -2) =18.故答案为:18.点睛:本题主要考査了偶次方的性质以及绝对值的性质,正确把握相关迫义是解题的关键.20.-1【解析】曲数轴可知a<0<b7|a-b|=3且AO二2B0二b -沪3①沪-2b② ill②代入①得 b - ( - 2b) =3 解得 b=l /.a+b= - 2b+b= - b= - 1 故答案是-1 解析:-1【解析】由数轴可知,a<O<b. 7|a-b|=3.且AO=2BO, .•.b-a=3①,a= - 2b@,由②代入① 得,b - ( - 2b) =3,解得b=l, a+b= - 2b+b= - b= - 1,故答案是-1.21.【解析】【分析】根据相反数的定义直接可得出答案【详解】解:因为- (-1)=1 -所以-1的相反数是1 -故答案为:1 -【解析】【分析】根据相反数的迫义直接可得出答案【详解】解:因为-(迈-1)= 1 - 42 -所以7^ -1的相反数是1 - 72.故答案为:I - JT22 • 2017【解析】由®B^Snm+n=0pq=lx=±2/. +2013pq+=0+2013xl+ ( ±2 ) 2=0 +2013+4=2017故答案为:2017解析:2017【解析】由题意可知,m+n=0r pq=h x=+2,nt + n 、 、••• -- +2013pq+A-=0+2013x1+ (±2) -=0+2013+4=2017,2016故答案为:2017.三、解答题23・见解析.【分析】利用负数,分数,【详解】【点睛】此题考查了有理数,熟练掌握徉自的左义是解本题的关键.24. 1【解析】分析:根据已知等式,利用非负数的性质列岀方程组,求出方程组的解即可得到 X 打y 的值,再代入计算即可求解.详解:7(x+y-5)'+l4x+3y-17l=0.A x+y-5=0, 4x+3y-17=0rx=2, y=3,非负有理数,以及非负数的;4^义判断即可・ 负数集合:{-3, -3.14, -9,…}非负有理数集合: 非负数集合J {" 5, 6 —» 7 3 {5, —,89, 4 3 —f 89, 4 3 -3・14. 2一,…};5 3 19, 0, 2- r …} ⑼ 0. 2|,/. (x-y)2oix=(2-3)2oix=(-1 )2她=1.点睛:此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.25.2+b.【分析】根摇各点在数轴上的位置判断出其符号,再根据绝对值的性质去绝对值符号,合并同类项即可. 【详解】解:T由图可知,/x0<“<2,原式=H+I J+(2-U),=2也。
有理数真题汇编及答案解析
有理数真题汇编及答案解析一、选择题1.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.2.若x <2()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】 ()2a a = 的化简得出即可. 解析:∵x <2()22x -+|3﹣x|=2352x x x -+-=- .故选D.3.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +22a 可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2,2a )在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.4.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D5.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.6.已知2350x y +-=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵2350x y +-=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.7.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.8.如图数轴所示,下列结论正确的是( )A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大9.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.下列各组数中,互为相反数的组是()A .2-B .2-C .12-与2D .【答案】A【解析】【分析】 根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.下列各组数中互为相反数的是( )A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .17.67-的绝对值是()A.67B.76-C.67-D.76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A.【点睛】本题考查了绝对值的定义.18.下列各组数中互为相反数的一组是()A.3与13B.2与|-2| C.(-1) 2与1 D.-4与(-2) 2【答案】D【解析】考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、2=|-2|,两数相等,不能互为相反数,故选项错误.C、(-1)2=1,两数相等;不能互为相反数,故选项错误;D、(-2)2=4,-4与4互为相反数,故选项正确;故选D.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。
语法知识—有理数的基础测试题含解析
一、填空题1.|x +1|+|y -2|=0,则y -x -13的值是____. 2.已知关于x ,y 的方程组22{256x y ax y a -=+=-的解x ,y 互为相反数,则a =________.3.小贝认为:若a b >,则a b >.小贝的观点正确吗?___________(填“正确”或“不正确”),请说明理由___________.4.已知有理数a 、b 、c 在数轴上对应的点如图所示,则cb _____ab .(填“>”或“<”或“=”)5.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b |+|a +b |的结果是_____.6.在﹣4,23, 0,2.7这四个有理数中,整数有________. 二、解答题7.有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20箱橘子中,最重的一箱比最轻的一箱多重多少干克? (2)与标准重量比较,20箱橘子总计超过或不足多少千克? (3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元? 8.已知数轴上两点A ,B 对应的数分别为﹣4,8.(1)如图1,如果点P 和点Q 分别从点A ,B 同时出发,沿数轴负方向运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒6个单位. ①A ,B 两点之间的距离为 .②当P ,Q 两点相遇时,点P 在数轴上对应的数是 . ③求点P 出发多少秒后,与点Q 之间相距4个单位长度?(3)如图2,如果点P 从点A 出发沿数轴的正方向以每秒2个单位的速度运动,点Q 从点B 出发沿数轴的负方向以每秒6个单位的速度运动,点M 从数轴原点O 出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP =MQ ?9.如图,已知数轴上点A 表示的数为﹣7,点B 表示的数为5,点C 到点A ,点B 的距离相等,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (t >0)秒. (1)点C 表示的数是 ;(2)求当t 等于多少秒时,点P 到达点B 处;(3)点P 表示的数是 (用含有t 的代数式表示); (4)求当t 等于多少秒时,PC 之间的距离为2个单位长度.10.材料阅读:已知点A 、B 在数轴上分别表示有理数a 、b ,|a ﹣b |表示A 、B 两点之间的距离.如:|1﹣2|表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是|1﹣2|=1.(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 ;(3)若x 表示一个有理数,则|x ﹣1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.三、1311.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .1a >-B .0a b +>C .1b <D .0ab > 12.若m 的相反数是n ,下列结论正确的是( )A .m 一定是正数B .一定是负数C .0m n +=D .m 一定大于n13.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( )①b ﹣a <0;②a +b >0;③|a |<|b |;④ab >0.A .①②B .③④C .①③D .②④14.下列各数中,绝对值最小的数是( )A .0B .1C .-3D .±115.一只小球落在数轴上的某点P 0处,第一次从P 0处向右跳1个单位到P 1处,第二次从P 1向左跳2个单位到P 2处,第三次从P 2向右跳3个单位到P 3处,第四次从P 3向左跳4个单位到P 4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P 2n+3处所表示的数恰好是n ﹣3,则这只小球的初始位置点P 0所表示的数是( ) A .﹣4 B .﹣5C .n+6D .n+316.请阅读一小段约翰·斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为 ( )A .18B .12C .14D .3417.面粉厂规定某种面粉每袋的标准质量为500.2±kg ,现随机选取10袋面粉进行质量检测,结果如下表所示: 序号 1 2 3 4 5 6 7 8 9 10 质量(kg )5050.149.950.149.750.1505049.949.95A .1袋B .2袋C .3袋D .4袋18.下列各数: 0,3π,3.14,227,-0.55,8,1.121 221 222 1…(相邻两个1之间依次多一个2),其中有理数的个数是( ) A .4个 B .5个C .6个D .7个19.在6,-5,25-,3.7⋅,0,124-,1.5,19中,分数有( ) A .2 个 B .3 个C .4 个D .5 个20.a ,b ,c 是三个有理数,且abc <0,a +b <0,a +b +c ﹣1=0,下列式子正确的是( ) A .|a |>|b +c |B .c ﹣1<0C .|a +b ﹣c |﹣|a +b ﹣1|=c ﹣1D .b +c >021.若,a b 互为相反数,,c d 互为倒数,m 的绝对值是2,则cd m m ba -+++21的值是( ) A .2B .3C .4D .522.如图,数轴上两定点A 、B 对应的数分别为-18和14,现在有甲、乙两只电子蚂蚁分别从A 、B 同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为()A.55秒B.190秒C.200秒D.210秒23.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A.﹣3B.﹣4C.﹣5D.﹣624.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.–2a3和–2b3B.a2和b2C.–a和–b D.3a和3b25.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.-2B.-1C.0D.2【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0列出二元一次方程组解出xy的值再代入原式即可【详解】解:根据题意得:解得:则原式=2-(-1)-故答案是:【点睛】本题解析:8 3【解析】【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出二元一次方程组,解出x、y的值,再代入原式即可.【详解】解:根据题意得:1020 xy⎧⎨-⎩+==,解得:12xy-⎧⎨⎩==,则原式=2-(-1)-18 33=.故答案是:83. 【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.2.2【分析】根据已知条件xy 互为相反数知x=-y 然后由该式与已知中的方程组组成三元一次方程组解方程组即可【详解】根据题意知x=−y③把③代入①得3y=−2a④把③代入②得3y=a −6⑤由④⑤解得a=2解析:2 【分析】根据已知条件x ,y 互为相反数知x=-y ,然后由该式与已知中的方程组组成三元一次方程组,解方程组即可. 【详解】 根据题意,知22256x y a x y a ①②-=⎧⎨+=-⎩ x =−y ,③ 把③代入①,得 3y =−2a ,④ 把③代入②,得 3y =a −6,⑤ 由④⑤,解得a =2. 故a 的值是2. 【点睛】本题考查了解三元一次方程组,解题的关键是代入消元法.3.不正确;两个负数比较大小绝对值大的反而小【分析】根据数轴具有方向性的特征即可解题【详解】解:绝对值的几何含义表示数轴上该点与原点的距离但是因为数轴是有方向的所以不能单纯的认为如果则比如一正一负的情况解析:不正确; 两个负数比较大小,绝对值大的反而小. 【分析】根据数轴具有方向性的特征即可解题. 【详解】解:绝对值的几何含义表示数轴上该点与原点的距离,但是因为数轴是有方向的,所以不能单纯的认为如果a b >,则a b >,比如一正一负的情况,所以小贝的观点错误. 理由如下:两个负数比较大小,绝对值大的反而小. 【点睛】本题考查了绝对值的大小比较,属于简单题,熟悉绝对值法则是解题关键.4.>【解析】【分析】利用有理数abc在数轴上对应的位置即可解答【详解】解:由图知c<b<0a>0即cb>0ab<0所以cb>ab【点睛】本题考查数轴上点的大小属于基础题解析:>【解析】【分析】利用有理数a、b、c在数轴上对应的位置即可解答.【详解】解:由图知c<b<0,a>0,即cb>0,ab<0,所以cb>ab.【点睛】本题考查数轴上点的大小,属于基础题.5.﹣2a【分析】根据ab的大小去绝对值化简即可【详解】根据ab在数轴上的位置可知a的绝对值大于b的绝对值即|a﹣b|+|a+b|=-a+b-a-b=-2a故本题答案为-2a【点睛】本题考查根据图像判断解析:﹣2a.【分析】根据a,b的大小去绝对值化简即可.【详解】根据a,b在数轴上的位置可知a的绝对值大于b的绝对值,即|a﹣b|+|a+b|=-a+b-a-b=-2a,故本题答案为-2a.【点睛】本题考查根据图像判断式子的正负,能够判断正负是解答本题的关键.6.﹣40【解析】【分析】有理数包括整数和分数整数包括正整数0负整数根据以上内容选出即可【详解】在-4027这四个有理数中整数有-40故答案为:-40【点睛】本题考查了有理数的应用注意:有理数包括整数和解析:﹣4,0【解析】【分析】有理数包括整数和分数,整数包括正整数、0、负整数,根据以上内容选出即可.【详解】在-4,23,0,2.7这四个有理数中,整数有-4,0,故答案为:-4,0.【点睛】本题考查了有理数的应用,注意:有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数、负分数.二、解答题7.(1)5.5千克;(2)0.4千克;(3)1270元.【分析】(1)最重的一箱橘子比标准质量重2.5千克,最轻的一箱橘子比标准质量轻3千克,则两箱相差5.5千克;(2)将这20个数据相加,和为正,表示比标准质量超过,和为负表示比标准质量不足,再求绝对值即可;(3)先求得总质量,再乘以2.5元即可.【详解】(1)2.5-(-3)=5.5,答:最重的一箱比最轻的一箱多重5.5千克;(2)(-3×1)+(-2×4)+(-1.5×2)+(0×3)+(1×2)+(2.5×8)=8,8÷20=0.4(千克)答:20箱橘子的平均质量比标准质量超过0.4千克;(3)(25×20+8)×2.5=1270(元),答:这些橘子可卖1270元.【点睛】本题考查了有理数的加减混合运算,在实际问题中的应用,可见数学来源于生活,应用于生活.8.(1)①12;②﹣10;③点P出发2或4秒后,与点Q之间相距4个单位长度;(2)三个点同时出发,经过23或32秒后有MP=MQ.【解析】【分析】(1)①根据两点间的距离公式即可求解;②根据相遇时间=路程差÷速度差先求出时间,再根据路程=速度×时间求解即可;③分两种情况:P,Q两点相遇前;P,Q两点相遇后;进行讨论即可求解;(2)分两种情况:M在P,Q两点之间;P,Q两点相遇;进行讨论即可求解.【详解】(1)①A,B两点之间的距离为8﹣(﹣4)=12,故答案为:12;②12÷(6﹣2)=3(秒),﹣4﹣2×3=﹣10,故当P,Q两点相遇时,点P在数轴上对应的数是﹣10,故答案为:-10;③P,Q两点相遇前,(12﹣4)÷(6﹣2)=2(秒),P,Q两点相遇后,(12+4)÷(6﹣2)=4(秒),故点P出发2或4秒后,与点Q之间相距4个单位长度;(2)设三个点同时出发,经过t秒后有MP=MQ,M在P,Q两点之间,8﹣6t﹣t=t﹣(﹣4+2t),解得t=23;P,Q两点相遇,2t+6t=12,解得t=32,故若三个点同时出发,经过23或32秒后有MP=MQ.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.9.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.【解析】【分析】(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.【详解】(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为:﹣1;(2)()572--=6;(3)﹣7+2t;故答案为:﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t=2 或t=4.【点睛】此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.10.(1)3;(2)|x+1|,1或﹣3;(3)代数式|x﹣1|+|x+3|有最小值,为4.【解析】(1)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(3)根据绝对值的性质,根据得到结论. 【详解】(1)数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3. 故答案为3;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是|x ﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3. 故答案为|x+1|,1或﹣3;(3)当代数式|x ﹣1|+|x+3|有最小值,理由:根据数轴上两点之间的距离定义有:|x ﹣1|+|x+3|表示x 与﹣3两点的距离之和, 根据几何意义分析可知:当x 在﹣3与1之间时,|x ﹣1|+|x+3|有最小值4. 【点睛】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、13 11.C解析:C 【分析】根据数轴判断a,b 的取值范围即可解题. 【详解】解:由数轴可知,2a 1,0b 1,-<<-<<A 、B 项错误, a,b 异号,D 错误, 故选C. 【点睛】本题考查了数轴的应用,属于简单题,在数轴中判断出有理数的取值范围是解题关键.12.C解析:C 【分析】根据互为相反数的两个数和为0,即可解题. 【详解】解:∵互为相反数的两个数和为0, ∴0,m n += 故选C.本题考查了相反数的性质,属于简单题,熟悉相反数的概念是解题关键.13.C解析:C【解析】【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【详解】①∵b<a,∴b﹣a<0;②∵b<﹣3,0<a<3,∴a+b<0;③∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;④∵b<0,a>0,∴ab<0,∴正确的是:①③,故选C.【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.14.A解析:A【分析】先求出各数的绝对值,然后进行比较即可得答案.【详解】∵|0|=0,|1|=1,|-3|=3,|±1|=1,0<1=1<3,∴绝对值最小的数是0,故选A.【点睛】本题考查了绝对值,非负数的大小比较,熟练掌握绝对值的意义是解题的关键.15.B解析:B【解析】【分析】根据向左为负,向右为正,列出算式计算即可.【详解】解:设P 0所表示的数是a ,则a+ 1-2+3-4+…+2n+3=n -3即a+(1-2)+(3-4)+(4-5)+…+[2n+1-(2n+2)]+(2n+3)=n-3a+(-1)×(n+1)+ (2n+3) =n -3解得:a=-5.点P 0表示的数是-5.故答案为B .【点睛】此题考查数字的变化规律,数轴的认识、有理数的加减,根据题意列出算式,找出简便计算方法是解题的关键.-16.C解析:C【解析】本题是有理数运算的实际应用,就是已知两个数的和及其中一个加数,求另外一个加数,作减法列出正确的算式 依题意得:311424-=故选C . 17.A解析:A【分析】分析表格数据,找到符合标准的质量区间即可解题.【详解】解:∵每袋的标准质量为500.2±kg ,即质量在49.8kg ——50.2kg 之间的都符合要求, 根据统计表可知第5袋49.7kg 不符合要求,故选A.【点睛】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.18.B解析:B【解析】【分析】根据有理数的定义、无理数的定义进行判断即可得解.【详解】在0,3π,3.14,227,-0.55,8,1.121 221 222 1…(相邻两个1之间依次多一个2)中, 有理数有0,3.14,227,-0.55,8,有理数的个数是5个. 故选B .【点睛】本题考查了实数,主要利用了有理数和无理数定义,熟记概念是解题的关键.19.D解析:D【解析】【分析】根据有理数的概念,解答即可,整数和分数统称为有理数.【详解】整数和分数统称为有理数,整数:6,-5,0,;分数:25-,3.7⋅,124-,1.5,19;故选:D.【点睛】本题考查的知识点是分数的概念,解题关键是正确区分分数和整数.20.C解析:C【解析】【分析】由a+b+c﹣1=0,表示出a+b=1﹣c,再由a+b小于0,列出关于c的不等式,求出不等式的解集确定出c大于1,将a+b=1﹣c,a+b﹣1=c代入|a+b﹣c|﹣|a+b+1|中,利用绝对值的代数意义化简,去括号合并得到结果为c﹣1,即可得答案.【详解】∵a+b+c﹣1=0,a+b<0,∴a+b=1﹣c<0,即c>1,则|a+b﹣c|﹣|a+b﹣1|=|1﹣2c|﹣|c|=2c﹣1﹣(c﹣1)=2c﹣1﹣c=c﹣1,故选C.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.21.B解析:B【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选B.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.B解析:B【解析】【分析】根据两点间的距离,可得BA的长,根据爬行的规律,可得以后每两次可以前进3.2,可得爬行的总次数,根据有理数的加法,可得答案.【详解】AB之间的距离为14-(-18)=32,第一次相向爬行1秒后,两只蚂蚁相距32-1×(1.5+1.7)=28.8,以后每两次可以前进3.2,∴28.8÷3.2=9,则最后一次是第19次,即甲乙两只电子蚂蚁相向爬行19秒,故第一次相遇的时间为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=(1+19)19÷2=190(秒),答:它们第一次相遇时所需的时间为190秒.故选B.【点睛】本题考查了数轴,根据爬行的规律得出前进的速度,爬行的总次数是解题关键.23.A解析:A【分析】根据3a=4b-3求出b的值,进而求出a,c,d的值,即可确定出所求式子的值.【详解】∵a=b−1,3a=4b−3,∴b=0解得:c=1,a=−1,d=2,则原式=1-2×2=-3.故选A.【点睛】此题考查数轴上点的表示,以及有理数的加减混合运算,熟练掌握运算法则是解本题的关键.根据已知条件和图形,找到b=a+1也是非常关键的.24.B解析:B【解析】【分析】直接利用互为相反数的定义分析得出答案.【详解】A、∵a和b互为相反数,∴–2a3和–2b3,互为相反数,故此选项错误;B、∵a和b互为相反数,∴a2和b2,相等,故此选项正确;C、∵a和b互为相反数,∴–a和–b,互为相反数,故此选项错误;D、∵a和b互为相反数,∴3a和3b,互为相反数,故此选项错误;故选B.【点睛】此题主要考查了互为相反数的定义,正确判断各数的符号是解题关键.25.B解析:B【解析】【分析】根据已知点求AE的中点,AE长为25,其长为12.5,然后根据AB=2BC=3CD=4DE求出A、C、B、D、E五点的坐标,最后根据这五个坐标找出离中点最近的点即可.【详解】根据图示知,AE=25,∴AE=12.5,∴AE的中点所表示的数是-0.5;∵AB=2BC=3CD=4DE,∴AB:BC:CD:DE=12:6:4:3;而12+6+4+3恰好是25,就是A点和E点之间的距离,∴AB=12,BC=6,CD=4,DE=3,∴这5个点的坐标分别是-13,-1,5,9,12,∴在上面的5个点中,距离-0.5最近的整数是-1.故选B.【点睛】此题综合考查了有理数与数轴,数轴上两点的距离。
语法知识—有理数的基础测试题附答案
一、填空题1.数轴上,点A ,B 对应的数是1和5,点C 是线段AB 的中点,则点C 对应的数是______.2.在数,,,2357--中,最小的数是 _____ .3.与原点的距离为3个单位的点所表示的有理数是_____. 4.若230a b +++=,则b a 的值为_____.5.如图,在数轴上有一个动点A ,从表示1的位置开始以每秒2个单位长度的速度沿负方向运动,运动t 秒之后停止,此时点A 表示的数为_____.6.如果|a+4|+(b ﹣3)2=0,则(a+b )2018=_____.7.在数轴上,表示–3的点A 与表示–8的点B 相距_________个单位长度.8.若a 、b 、c 都是非零有理数,则abc a b c a b c abc+++的值为_____. 二、解答题9.如图,在数轴上 A 点表示的数是 a ,B 点表示的数是b ,且 ab 满足|a + 8|+(b-2)2=0.动线段 CD=4(点 D 在点 C 的右侧),从点 C 与点 A 重合的位置出发,以每秒 2 个单位的速度向右运动,运动时间为 t 秒.(1)求a,b 的值, 运动过程中,点 D 表示的数是多少,(用含有 t 的代数式表示) (2)在 B 、C 、D 三个点中,其中一个点是另外两个点为端点的线段的中点,求 t 的值; (3)当线段 CD 在线段 AB 上(不含端点重合)时,如图,图中所有线段的和记作为 S , 则 S 的值是否随时间 t 的变化而变化?若变化,请说明理由;若不变,请求出 S 值.10.有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20箱橘子中,最重的一箱比最轻的一箱多重多少干克? (2)与标准重量比较,20箱橘子总计超过或不足多少千克? (3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元?11.已知如图,在数轴上有A 、B 两点,所表示的数分别是n ,n+6,A 点以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,设运动时间为t 秒.(1)当n=1时,经过t 秒A 点表示的数是_______,B 点表示的数是______,AB=________;(2)当t 为何值时,A 、B 两点重合;(3)在上述运动的过程中,若P 为线段AB 的中点,数轴上点C 表示的数是n+10.是否存在t 值,使得线段PC=4,若存在,求t 的值;若不存在,请说明理由.12.观察思考:若数轴上点A 表示的数是a ,点B 表示的数是b(1)若a =2,b =4,则线段AB 中点表示的数是______; (2)若a =1,b =-3,则线段AB 中点表示的数是______; (3)若a =-3,b =-5,则线段AB 中点表示的数是______;(4)归纳:用关于a 、b 的代数式表示线段AB 中点所表示的数:______;(5)若a =-8,b =2,现点A 以每秒一个单位的速度沿数轴向负方向移动,同时点B 以每秒3个单位的速度沿数轴向正方向移动,几秒后,线段AB 的中点表示的数是2.5? 13.已知,A 、B 在数轴上对应的数分别用a 、b 表示,且(a ﹣20)2+|b +10|=0,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且|BC |=6,当数轴上有点P 满足PB =2PC 时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P 能移动到与A 或B 重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.14.某茶叶加工厂一周生产任务为182kg ,计划平均每天生产26kg ,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负): +3,﹣2,﹣4,+1,﹣1,+6,﹣5 (1)这一周的实际产量是多少kg ?(2)若该厂工人工资实际计件工资制,按计划每生产1kg 茶叶50元,每超产1kg 奖10元,每天少生产1kg 扣10元,那么该厂工人这一周的工资总额是多少?三、1315.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .1a >-B .0a b +>C .1b <D .0ab > 16.若m 的相反数是n ,下列结论正确的是( )A .m 一定是正数B .一定是负数C .0m n +=D .m 一定大于n17.x 是数轴上任意一点表示的数,若|x ﹣3|+|x+2|的值最小,则x 的取值范围是( )A.x≥3B.x≤﹣2C.﹣2≤x≤3D.﹣2<x<318.下列各数中,绝对值最小的数是()A.0B.1C.-3D.±119.已知a=5,│b│=8,且满足a+b<0,则a-b的值为()A.3 B.-3 C.-13 D.1320.如果|a+2|+(b-1)2=0,那么(a+b)2019的值等于().A.-1B.-2019C.1D.201921.下列式子错误的个数是()①|+3|=3 ②﹣|﹣4|=4 ③﹣23=﹣6 ④|a|>0A.4个 B.3个 C.2个 D.1个22.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A.﹣3B.﹣4C.﹣5D.﹣623.若 m 是有理数,则|m|+m()A.可以是负数B.不可能是负数C.必是正数D.可以是正数也可以是负数24.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )A.a+b>0B.ab >0C.11a b+>D.11-0a b<25.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.-2B.-1C.0D.2【参考答案】***试卷处理标记,请不要删除一、填空题1.3【分析】根据数轴上AB的值求出AB的长取AB得一半长度即可解题【详解】解:∵点AB对应的数是1和5∴AB=5-1=4中点C=1+4÷2=3【点睛】本题考查了数轴的实际应用属于简单题熟悉中点的概念是解析:3【分析】根据数轴上A,B的值,求出AB的长,取AB得一半长度即可解题.【详解】解:∵点A,B对应的数是1和5,∴AB=5-1=4,中点C=1+4÷2=3.【点睛】本题考查了数轴的实际应用,属于简单题,熟悉中点的概念是解题关键.2.-5【解析】【分析】先根据有理数的大小比较法则比较大小即可得出答案【详解】∵-5<-2<3<7∴最小的数是-5故答案为-5【点睛】本题考查了对有理数的大小比较法则的应用注意:正数都大于0负数都小于0解析:-5【解析】【分析】先根据有理数的大小比较法则比较大小,即可得出答案.【详解】∵-5<-2<3<7,∴最小的数是-5,故答案为-5.【点睛】本题考查了对有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.3.±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可【详解】设数轴上到原点的距离等于3个单位长度的点所表示的有理数是x则解得:故本题答案为:【点睛】本题考查了数轴解决本题的关键突破口是知道原点解析:±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x,则x=3,±.解得:x=3±.故本题答案为:3【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.4.-【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+2=0b+3=0解得a=−2b=-3所以ab=(−2)-3==-故答案为-【点睛】本题考查了非负数的解析:-1 8 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+2=0,b+3=0,解得a=−2,b=-3,所以,a b=(−2)-3=312⎛⎫-⎪⎝⎭=-18.故答案为-1 8 .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.1﹣2t【解析】【分析】先根据路程=速度×时间求出动点A行驶的路程再根据左减右加可求点A表示的数【详解】解:点A表示的数为1﹣2t故答案为:1﹣2 t【点睛】此题考查数轴的实际运用结合数轴掌握行程问题解析:1﹣2t【解析】【分析】先根据路程=速度×时间,求出动点A行驶的路程,再根据左减右加可求点A表示的数.【详解】解:点A表示的数为1﹣2t.故答案为:1﹣2t.【点睛】此题考查数轴的实际运用,结合数轴,掌握行程问题中的基本数量关系是解决问题的关键.6.1【分析】根据0+0式求出a=-4b=3代入求值即可【详解】解:∵|a+4|+(b ﹣3)2=0∴a=-4b=3∴(a+b)2018=(-4+3)2018=(-1)2018=1【点睛】本题考查了0+0解析:1【分析】根据0+0式,求出a=-4,b=3,代入求值即可.【详解】解:∵|a+4|+(b﹣3)2=0,∴a=-4,b=3,∴(a+b)2018=(-4+3)2018=(-1)2018=1【点睛】本题考查了0+0式,有理数的乘方,属于简单题,识别出0+0式是解题关键.7.5【解析】【分析】根据数轴上点的位置定义即可解答【详解】数轴上两点间的距离是大数减去小数即-3-(-8)=5【点睛】本题考查的是数轴上两点间的距离掌握当AB同号时两者间的距离为||A|-|B||是解解析:5【解析】【分析】根据数轴上点的位置定义即可解答.【详解】数轴上两点间的距离是大数减去小数,即-3-(-8)=5.【点睛】本题考查的是数轴上两点间的距离,掌握当A,B同号时两者间的距离为| |A|-|B| |是解题关键.8.0﹣4【解析】【分析】根据绝对值的定义进行计算即可【详解】解:当abc 同为正数时原式=1+1+1+1=4;当abc同为负数时原式=-1-1-1-1=-4;当abc中两个数为正数一个为负数时原式=1+解析:0、﹣4【解析】【分析】根据绝对值的定义进行计算即可.【详解】解:当a,b,c同为正数时,原式=1+1+1+1=4;当a,b,c同为负数时,原式=-1-1-1-1=-4;当a,b,c中两个数为正数,一个为负数时,原式=1+1-1-1=0;当a,b,c中两个数为负数,一个为正数时,原式=1-1-1+1=0;综上所述,abca b ca b c abc+++的值为4、0、-4.故答案为:4、0、-4.【点睛】本题考查了绝对值,掌握分类讨论思想是解题的关键.二、解答题9.(1)2t-4;(2)t=1;(3)见解析.【解析】【分析】(1)利用|a + 8|+(b-2)2=0,得a+8=0,b-2=0,解得a ,b 的值,进而求出点 D 表示的数;(2)根据A 、B 之间的距离及线段CD 的长度判断出点D 为线段BC 的中点。
专题01 有理数基础(专题测试)(解析版)
专题01 有理数基础专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题5分,共计60分)1.(2018春黄冈市期末)下列结论成立的是( )A.若|a|=a,则a>0B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0(易错)D.若|a|>|b|,则a>b.【答案】B【详解】A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.2.(2018春南阳市期末)已知:a,b在数轴上位置如图所示,则下列结论中正确的是()A.a<﹣a<b B.|a|>b>﹣a C.﹣a>|a|>b D.|a|>|﹣1|>|b|【答案】D【解析】由图可知:a <−1<0<b<1,∴﹣a>b,|a|>|﹣1|>|b|,故A错误,D正确;由|a|=﹣a,可知B,C错误;故选D.3.(2017春台州市期末)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是( ) A.﹣4B.﹣2C.2D.4【答案】D【解析】A B=|﹣1﹣3|=4,故选D.4.(2018春黄冈市期末)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0【答案】C【详解】由数轴上的点的位置可知:a<b<c,因为ac<0,b+a<0,所以,a,c异号,且a<0,c>0;b<0或b>0,且|b|<|a|,所以,原点的位置有两种可能,所以,b+c可能大于0,|b|可能大于|c|,abc可能大于0.故选:C5.(2018春长春市期末)下列各式中无论m为何值,一定是正数的是()A.|m| B.|m+1| C.|m|+1 D.﹣(﹣m)【答案】C【解析】分析: 直接利用绝对值的意义分析得出答案.详解: A、|m|≥0,是非负数,不合题意;B、|m+1|≥0,是非负数,不合题意;C、|m|+1,一定是正数,符合题意;D、-(-m)=m,无法确定它的符号,故此选项错误.故选:C.6.(2018春上饶县期末)如果式子x-2的绝对值等于7,那么x的值为( )A.9 B.±9 C.±5 D.9或-5【答案】D【详解】∵x-2的绝对值等于7,则x-2=±7,所以x=9或-5.故选D.7.(2017春西城区期末)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解析】由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab <0,故③错误,由①知a -b >a +b ,所以④正确.故选:B.8.(2018春 长春市期末)若﹣|a|=﹣3.2,则a 是( )A .3.2B .﹣3.2C .±3.2D .以上都不对【答案】C【解析】分析: 计算绝对值要根据绝对值的定义求解.详解: :∵-|a|=-3.2,∴|a|=3.2,∴a=±3.2.故选:C.9.(2018春 大埔县期末)下列各组中互为相反数的是( )A .–2.5与|−2|B .|−2|和2C .–2与−12D .−12与|−12|【答案】D【详解】|−2|=2,–2.5与2不互为相反数,A 选项错误;2与|−2|符号相同,不互为相反数,B 选项错误;–2与−12符号相同数值不同,不互为相反数,C 选项错误;|−12|=12,−12与12互为相反数,D 选项正确;故正确答案选D.10.(2017秋 南宁市期中)-12017的相反数的倒数是( )A .1B .-1C .2017D .-2017【答案】C【解析】−12017的相反数是12017,12017的倒数是2017.所以有理数−12017的相反数的倒数是2017.故选:B. 11.(2018邻水县期末)下列说法错误的是( )A .0是绝对值最小的有理数B .如果x 的相反数是−5,那么x =5C .若∣x ∣=∣−4∣,那么x = −4D .任何非零有理数的平方都大于0【答案】C【详解】A选项,因为绝对值是指数轴上表示数对应的点到原点的距离,所以0是绝对值最小的有理数,说法正确,B选项,因为只有符号不同的两个数是互为相反数,所以”如果x的相反数是−5,那么x=5”,说法正确,C选项,因为|a|={a(a>0) 0(a=0)−a(a<0),所以”若∣x∣=∣−4∣,那么x=−4 “说法错误,D选项,因为正数的平方是正数,负数的平方也是正数,所以任何非零有理数的平方都大于0,说法正确,故选C.12.(2018春邻水县期末)已知a、b、c在数轴上的位置如图所示,试化简|a−b|−|b|+|a+c|+|c|−|2a|的结果是( )A.0 B.a-b+cC.4a+2b+2c D.-2b+2a+2c【答案】A【详解】解:由数轴可知:b<c<0<a,|b|>|a|>|c|,∴a-b>0,b<0,a+c>0,c<0,2a>0,∴|a-b|-|b|+|a+c|+|c|-|2a|=a-b-(-b)+a+c+(-c)-2a=a-b+b+a+c-c-2a=0.故选A.二、填空题(共5小题,每小题4分,共计20分)13.(2018春庆阳市期末)已知|a+4|和(b−3)2互为相反数,那么a+3b等于______.【答案】5【解析】试题分析:先根据相反数的性质列出方程,再根据非负数的性质求得a、b的值,最后代入求值即可.由题意得则所以14.(2018春郑州市期末)已知数轴上有A,B两点,A,B之间的距离为3,点A对应的数为1,那么点B 对应的数是_____.【答案】﹣2或4.【解析】设点B对应的数为x,则由题意可得:|x−1|=3,解得:x=4或x=−2.故答案为:-2或4.15.(2018春广州市期末)若(a+3)2+|b﹣2|=0,则(a+b)2011=______.【答案】﹣1【详解】根据题意得,a+3=0,b−2=0,解得a=−3,b=2,所以,(a+b)2011=(−3+2)2011=−1.故答案为:−1.16.(2018春成都市期末)|a|=6,|b|=3,且有ab<0,则a+b=_____.【答案】±3.【详解】∵|a|=6,|b|=3,∴a=±6,b=±3,又∵ab<0,∴a=6,b=﹣3或a=﹣6,b=3;当a=6,b=﹣3时,a+b=6﹣3=3;当a=﹣6,b=3时,a+b=﹣6+3=﹣3;综上,a+b=±3,故答案是:±3.17.(2018春中山市期末)已知|a|=3,且a+|a|=0,则a2−a+1=_________.【答案】13【详解】∵|a|=3,∴a=±3,∵a+|a|=0,∴a=-3,所以原式=9-(-3)+1=-13.故答案是:13.三、解答题(共2小题,每小题10分,共计20分)18.(2018春庆阳市期末)a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【答案】(1)|a|=a,|b|=﹣b,|c|=﹣c;(2)﹣a<a<﹣c;(3)﹣2c.【分析】(1)根据图示可知c<b<0<a,由此根据绝对值的性质即可得答案;(2)根据数轴上点的位置以及绝对值进行比较即可得;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,由此进行化简即可得结果.【详解】(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a-b﹣a﹣c+b-c=﹣2c.19.(2018春咸阳市期末)如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为;②|x﹣a|+|x﹣b|+|x+1|的最小值为;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为.【答案】(1) b>a>c;(2) <;(3)b;(4)①b﹣a;②b+1;③b-c.【详解】分析:(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);(2)先求出b-a的范围,再比较大小即可求解;(3)先计算绝对值,再合并同类项即可求解;(4)根据绝对值的性质以及题意即可求出答案.详解:(1)根据数轴上的点得:b>a>c;(2)由题意得:b-a<1;(3)|c-b|-|c-a+1|+|a-1|=b-c-(a-c-1)+a-1=b-c-a+c+1+a-1=b;(4)①当x在a和b之间时,|x-a|+|x-b|有最小值,∴|x-a|+|x-b|的最小值为:x-a+b-x=b-a;②当x=a时,|x-a|+|x-b|+|x+1|=0+b-x+x-(-1)=b+1为最小值;③当x=a时,|x-a|+|x-b|+|x-c|=0+b-a+a-c=b-c为最小值.故答案为:<;b-a;b+1;b-c.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数基础测试题及解析一、选择题1.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在2.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】 解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.下列说法错误的是( )A .2 a 与()2a -相等B .()2a -与2a -互为相反数C .3 a 与3a -互为相反数D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.7.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b , ∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.8.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a 距0点的位置较近,根据这些特点,判定求解【详解】∵a 在原点右侧,∴a >0,A 正确;∵b 在原点左侧,∴b <0,B 错误;∵a 在b 的右侧,∴a >b ,C 错误;∵b 距离0点的位置远,∴a <b ,D 错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.13.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.15.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.16.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.19.下列各数中,绝对值最大的数是()A.1 B.﹣1 C.3.14 D.π【答案】D【解析】分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选D.点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.20.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.0 C.4或—4 D.0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a,则这个为±a。